1
|
Stopfer M, Zahn I, Jüngert K, Aumüller G, Moll FL, Schicht M, Makarenkova HP, de Paiva CS, Paulsen FP. Glands of Moll: history, current knowledge and their role in ocular surface homeostasis and disease. Prog Retin Eye Res 2025; 106:101362. [PMID: 40334739 DOI: 10.1016/j.preteyeres.2025.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Over the last 20 years, research into the Meibomian glands of the eyelids has increased exponentially and is now widely recognized as a field of research. It is all the more astonishing that knowledge about another type of gland in the eyelids, the Moll glands or ciliary glands, has almost stagnated and there has been little to almost no progress, even though this type of gland as a whole takes up a relatively large volume in the upper and lower eyelids. There is not much information about the namesake Moll or the function of the glands although these are listed in nearly every textbook of anatomy, histology and ophthalmology. For this reason, we set out to compile the existing knowledge about the Moll glands of the eyelids in order to create a basis for follow-up studies and to stimulate research into this type of gland. In our literature research, we went back to the middle of the 19th century and made contact with a descendant of the Moll family and illustrate their relevance for the present. The structure of the secretory part of the Moll glands is very well described, a number of secretory products are known, but the current state of research allows only very rough speculations about their function. The overview provides numerous interesting insights, which, however, raise more questions than they provide answers.
Collapse
Affiliation(s)
- Michael Stopfer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Katharina Jüngert
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Gerhard Aumüller
- Philipps-University Marburg, Am Möhrengarten 1, 35117, Münchhausen, Germany.
| | - Frans L Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands.
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States.
| | - Friedrich P Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| |
Collapse
|
2
|
Jiang TX, Wu P, Li A, Widelitz RB, Chuong CM. Wound-Induced Regeneration in Feather Follicles: A Stepwise Strategy to Regenerate Stem Cells. J Dev Biol 2025; 13:10. [PMID: 40265368 PMCID: PMC12015844 DOI: 10.3390/jdb13020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
How to elicit and harness regeneration is a major issue in wound healing. Skin injury in most amniotes leads to repair rather than regeneration, except in hair and feathers. Feather follicles are unique organs that undergo physiological cyclic renewal, supported by a dynamic stem cell niche. During normal feather cycling, growth-phase proximal follicle collar bulge stem cells adopt a ring configuration. At the resting and initiation phases, these stem cells descend to the dermal papilla to form papillary ectoderm and ascend to the proximal follicle in a new growth phase. Plucking resting-phase feathers accelerates papillary ectoderm cell activation. Plucking growth-phase feathers depletes collar bulge stem cells; however, a blastema reforms the collar bulge stem cells, expressing KRT15, LGR6, Sox9, integrin-α6, and tenascin C. Removing the follicle base and dermal papilla prevents feather regeneration. Yet, transplanting an exogenous dermal papilla to the follicle base can induce re-epithelialization from the lower follicle sheath, followed by feather regeneration. Thus, there is a stepwise regenerative strategy using stem cells located in the collar bulge, papillary ectoderm, and de-differentiated lower follicle sheath to generate new feathers after different levels of injuries. This adaptable regenerative mechanism is based on the hierarchy of stem cell regenerative capacity and underscores the remarkable resilience of feather follicle regenerative abilities.
Collapse
Affiliation(s)
- Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| | - Ang Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (T.-X.J.); (P.W.); (A.L.); (R.B.W.)
| |
Collapse
|
3
|
Milani M, Starinieri F, Fabiano A, Beretta S, Plati T, Canepari C, Biffi M, Russo F, Berno V, Norata R, Sanvito F, Merelli I, Aloia L, Huch M, Naldini L, Cantore A. Identification of hepatocyte-primed cholangiocytes in the homeostatic liver by in vivo lentiviral gene transfer to mice and non-human primates. Cell Rep 2025; 44:115341. [PMID: 39998949 PMCID: PMC11936872 DOI: 10.1016/j.celrep.2025.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Liver regeneration is supported by hepatocytes and, in certain conditions, biliary epithelial cells (BECs). BECs are facultative liver stem cells that form organoids in culture and engraft in damaged livers. However, BEC heterogeneity in the homeostatic liver remains to be fully elucidated. Here, we exploit systemic lentiviral vector (LV) administration to achieve efficient and lifelong gene transfer to BECs in mice. We find that LV-marked BECs retain organoid formation potential and predominantly respond to liver damage; however, they are less clonogenic and display a hepatocyte-primed transcriptome compared to untransduced BECs. We thus identify a BEC subset committed to hepatocyte lineage in the absence of liver damage, characterized by a transcriptional network orchestrated by hepatocyte nuclear factor 4α. We also report in vivo targeting of such BECs in non-human primates. This work highlights intrinsic BEC heterogeneity and that in vivo LV gene transfer to the liver may persist following BEC-mediated repair of hepatic damage.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Starinieri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anna Fabiano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Berno
- Advanced Light and Electron Microscopy BioImaging Center (ALEMBIC), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossana Norata
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate (MI), Italy
| | - Luigi Aloia
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Meritxell Huch
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
4
|
Yoshigai E, Hara T, Hashimoto M, Tsuzuki H, Abe T, Inoue K, Noguchi A, Ohashi T, Fukada T. ZIP13 marks muscle satellite cells and contributes to their quiescent and active phase balance. Sci Rep 2025; 15:9206. [PMID: 40097560 PMCID: PMC11914201 DOI: 10.1038/s41598-025-92501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025] Open
Abstract
Loss of ZIP13 causes Ehlers-Danlos syndrome spondylodysplastic type 3 involving connective tissue dysplasias associated with a reduction in muscular strength. However, ZIP13 role in skeletal muscle homeostasis, particularly for the regulation of muscle satellite cells (MuSCs), remains poorly understood. In this study, we investigated Zip13-knockout (KO) mice and found a reduction in MuSCs of Zip13-KO mice, in which the quiescent and activated phase balances were disrupted. To clarify the physiological role and dynamics of ZIP13 expression in MuSCs, we generated Zip13-GFP knock-in (KI) mice encoding GFP at the Zip13 locus, which showed that ZIP13 contributes to the phase balance regulation of quiescent and activated MuSCs and their functions. Indeed, Zip13-KO mice exhibited delayed recovery from skeletal muscle injury, indicating ZIP13 requirement for proper skeletal muscle regeneration. Moreover, GFP expression was reduced in the MuSCs of homozygous Zip13-GFP KI mice whose intact ZIP13 expression was perturbed, suggesting that positive feedback mechanisms exist to maintain ZIP13 expression. Altogether, our results illustrate that ZIP13 might be positively involved in skeletal muscle regeneration by controlling the quiescent/activated phase balance of MuSCs through autoregulatory ZIP13 expression, and that newly generated Zip13-GFP KI mice would be useful for investigating the roles and dynamics of ZIP13-expressing cells.
Collapse
Affiliation(s)
- Emi Yoshigai
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan.
- JSPS Research Fellowship for Young Scientists, Tokyo, Japan.
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Masaki Hashimoto
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Hidenao Tsuzuki
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Ayaka Noguchi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Takuto Ohashi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro, Tokushima, 770-8514, Japan.
| |
Collapse
|
5
|
Andersen MS, Ulyanchenko S, Schweiger PJ, Hannezo E, Simons BD, Jensen KB. Spatiotemporal Switches in Progenitor Cell Fate Govern Upper Hair Follicle Growth and Maintenance. J Invest Dermatol 2025:S0022-202X(25)00287-8. [PMID: 40010488 DOI: 10.1016/j.jid.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
The epidermis provides a protective barrier against hostile environments. However, our knowledge of how this barrier forms during development and is subsequently maintained remains incomplete. The infundibulum is a cylindrical epidermal tissue compartment that serves as an outlet for hair follicles protruding from the skin and the excretion of the sebaceous glands that are essential for proper skin function. In this study, we applied quantitative fate mapping to address how infundibulum are maintained during adulthood. We demonstrate that progenitors build and maintain tissues through stochastic cell fate choices. Long-term analysis identified a preferential transient contribution from cells initially located at the bottom of the structure to the maintenance of the tissue, with bursts of local progenitor expansion associated with the phases of hair growth. Beyond providing compartment-wide insights into progenitor cell dynamics in infundibulum, these findings demonstrate how spatiotemporal regulation controls transient progenitor dominance.
Collapse
Affiliation(s)
- Marianne S Andersen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Ulyanchenko
- Novo Nordisk Foundation Center for Stem Cell Medicine, ReNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pawel J Schweiger
- Novo Nordisk Foundation Center for Stem Cell Medicine, ReNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Benjamin D Simons
- Centre for Mathematical Science, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, ReNEW, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhu X, Xu M, Portal C, Lin Y, Ferdinand A, Peng T, Morrisey EE, Dlugosz AA, Castellano JM, Lee V, Seykora JT, Wong SY, Iomini C, Millar SE. Identification of Meibomian gland stem cell populations and mechanisms of aging. Nat Commun 2025; 16:1663. [PMID: 39955307 PMCID: PMC11830078 DOI: 10.1038/s41467-025-56907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identify markers for stem cell populations that maintain distinct regions of the gland and uncover Hedgehog (Hh) signaling as a key regulator of stem cell proliferation. Consistent with this, we show that human Meibomian gland carcinoma exhibits increased Hh signaling. Aged glands display decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Celine Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alyssa Ferdinand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tien Peng
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Joseph M Castellano
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sunny Y Wong
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Larkins CE, Grunberg DM, Daniels GM, Feldtmann EJ, Cohn MJ. Endoderm differentiates into a transient epidermis in the mouse perineum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636156. [PMID: 39975347 PMCID: PMC11838455 DOI: 10.1101/2025.02.03.636156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In eutherian mammals, the embryonic cloaca is partitioned into genitourinary and anorectal canals by the urorectal septum. At the caudal end of the mouse embryo, the urorectal septum contributes to the perineum, which separates the anus from the external genitalia. Growth of the urorectal septum displaces cloacal endoderm to the surface of the perineum, where it is incorporated into epidermis, an enigmatic fate for endodermal cells. Here we show that endodermal cells differentiate into true epidermis in the perineum, expressing basal, spinous, and granular cell markers. Endodermal epidermis is lost through terminal differentiation and desquamation postnatally, when it is replaced by ectoderm. Live imaging and single-cell tracking reveal that ectodermal cells move at a faster velocity in a lateral-to-medial direction, converging towards the narrow band of endoderm between the anus and external genitalia. Although the perineum is sexually dimorphic, similar spatiotemporal patterns of cell movement were observed in males and females. These results demonstrate that cloacal endoderm differentiates into a non-renewing, transient epidermis at the midline of the perineum. Differential movement of endodermal and ectodermal cells suggests that perineum epidermis develops by convergent extension. These findings provide a foundation for further studies of perineum development and of sex-specific epidermal phenotypes.
Collapse
Affiliation(s)
- Christine E. Larkins
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610
| | - Daniel M. Grunberg
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610
| | - Gabriel M. Daniels
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610
| | - Erik J. Feldtmann
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610
| | - Martin J. Cohn
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610
- Department of Biology, UF Genetics Institute, University of Florida, Gainesville, FL 32610
| |
Collapse
|
8
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2025; 21:28-44. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Agudo J, Miao Y. Stemness in solid malignancies: coping with immune attack. Nat Rev Cancer 2025; 25:27-40. [PMID: 39455862 DOI: 10.1038/s41568-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Immunotherapy has become a key new pillar of cancer treatment, and this has sparked interest in understanding mechanisms of cancer immune evasion. It has long been appreciated that cancers are constituted by heterogeneous populations of tumour cells. This feature is often fuelled by specialized cells that have molecular programs resembling tissue stem cells. Although these cancer stem cells (CSCs) have capacity for unlimited self-renewal and differentiation, it is increasingly evident that some CSCs are capable of achieving remarkable immune resistance. Given that most immunotherapy regiments have overlooked CSC-specific immune-evasive mechanisms, many current treatment strategies often lead to cancer relapse. This Review focuses on advancements in understanding how CSCs in solid tumours achieve their unique immune-evasive properties, enabling them to drive tumour regrowth. Moreover, as cancers often arise from tissue stem cells that acquired oncogenic mutations, we discuss how tissue stem cells undergoing malignant transformation activate intrinsic immune-evasive mechanisms and establish close interactions with suppressive immune cells to escape immune surveillance. In addition, we summarize how in advanced disease stages, CSCs often hijack features of normal stem cells to resist antitumour immunity. Finally, we provide insights in how to design a new generation of cancer immunotherapies to ensure elimination of CSCs.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
- New York Stem Cell Foundation, Robertson Investigator, New York, NY, USA.
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Karimi N, Dinçsoy AB. The Role of Mesenchymal Stem Cell-Derived Exosomes in Skin Regeneration, Tissue Repair, and the Regulation of Hair Follicle Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:1-17. [PMID: 39841379 DOI: 10.1007/5584_2024_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes. Exosomes, emerging as a promising cell-free therapy in tissue engineering, hold substantial potential due to their ability to influence various biological functions. This review explores the mechanisms by which MSC-derived exosomes facilitate skin regeneration and repair, and hair growth, their therapeutic applications, and the future research directions in this emerging field.
Collapse
Affiliation(s)
- Nazli Karimi
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Adnan Berk Dinçsoy
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
11
|
Cutteridge J, Garrido P, Staniland T, Lim A, Totty J, Lathan R, Smith G, Chetter I. The effectiveness of waxing or epilation compared to conventional methods of hair removal in reducing the incidence of surgical site infections: a systematic review and meta-analysis. Front Surg 2024; 11:1395681. [PMID: 39713809 PMCID: PMC11659287 DOI: 10.3389/fsurg.2024.1395681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgical site infections (SSIs) pose a significant challenge to healthcare systems by elevating patient morbidity and mortality and driving up financial costs. Preoperative skin preparation is crucial for preventing SSIs; however, certain traditional methods of hair removal have been found to increase the risk of SSI development. Mechanical epilation and waxing constitute two relatively explored methods of hair removal, which may hold potential to accelerate wound healing due to the activation of stem cells within hair follicles. This review assesses the efficacy of preoperative hair removal via waxing and mechanical epilation in reducing SSI incidence. Methods This systematic review was prospectively registered with PROSPERO (ref: CRD42023423798) and a protocol previously published in a peer-reviewed journal. All findings are reported according to PRISMA guidelines. A comprehensive search of Medline, Embase, CENTRAL, ClinicalTrials.gov and CINAHL. Inclusion criteria encompassed adult patients undergoing any surgical procedure, comparing waxing or epilation against other hair removal methods or no hair removal, with SSI incidence as the primary outcome. There was no restriction on study size or quality to ensure a comprehensive literature evaluation. Results The review found no studies meeting the selection criteria out of 576 records screened. Discussion/conclusion This review has identified no literature regarding the use of waxing and mechanical epilation as methods of preoperative hair removal. The lack of experimental evidence combined with the potential physiological advantages of these techniques indicate that this could be a valuable area of future research. These techniques may represent novel approaches to SSI prevention, particularly beneficial in high-risk surgical disciplines like vascular surgery. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=423798, PROSPERO (CRD42023423798).
Collapse
Affiliation(s)
- Joseph Cutteridge
- Department of Health Sciences, Faculty of Sciences, University of York, York, United Kingdom
- Academic Vascular Surgical Unit, Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Pierre Garrido
- Department of General Surgery, Surrey and Sussex Healthcare NHS Trust, Redhill, United Kingdom
| | - Tim Staniland
- Library & Knowledge Services, Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Arthur Lim
- Academic Vascular Surgical Unit, Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Joshua Totty
- Centre for Clinical Sciences, Hull York Medical School, Hull, United Kingdom
| | - Ross Lathan
- Department of Health Sciences, Faculty of Sciences, University of York, York, United Kingdom
- Academic Vascular Surgical Unit, Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - George Smith
- Academic Vascular Surgical Unit, Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
- Centre for Clinical Sciences, Hull York Medical School, Hull, United Kingdom
| | - Ian Chetter
- Academic Vascular Surgical Unit, Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
- Centre for Clinical Sciences, Hull York Medical School, Hull, United Kingdom
| |
Collapse
|
12
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
13
|
Jiao Y, Sun QM, Shen YC, Li QS, Piao YJ, Gong L. Stimulation of mouse hair regrowth by exosomes derived from human umbilical cord mesenchymal stem cells. Acta Histochem 2024; 126:152184. [PMID: 39053176 DOI: 10.1016/j.acthis.2024.152184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND There is an urgent need for new treatments to solve hair loss problem. As mesenchymal stem cells were proved to have effects on promoting tissue repair and regeneration, in which the exosome plays a vital role, we aim to investigate the influence of umbilical cord mesenchymal stem cells exosome (UCMSC-Exos) on hair growth and its mechanism. METHODS The hUCMSC-Exos were extracted by ultracentrifugation. Primary fibroblasts were cultured with or without hUCMSC-Exos and cell proliferation was evaluated by CCK-8 assay. C57BL/6 mice model of depilation-induced hair regrowth was treated with either hUCMSC-Exos (200 μg/mL) or PBS on one side of the dorsal back. Real time quantitative PCR, flow cytometry analysis, immunohistochemistry and Immunofluorescent staining were used to analyze the regulative effect of hUCMSC-Exos on hair follicle stem/progenitor cells and Wnt/β-catenin pathway. RESULTS The proliferation of fibroblasts incubated with hUCMSC-Exos at the concentration of 200 μg/mL was greater than other groups. Treatment with hUCMSC-Exos resulted in rapid reentry into anagen. Hair follicle stem/progenitor cell markers (K15, Lgr5, Lgr6, CD34 and Lrig1) and Wnt/β-catenin pathway related factors (Wnt5, Lef1, Lrp5 and β-catenin) were increased in hUCMSC-Exos-injected region. CONCLUSION hUCMSC-Exos promote fibroblasts proliferation and accelerate mouse hair regrowth by upregulating hair follicle stem/progenitor cell and Wnt/β-catenin pathway, which suggests potential therapeutic approaches for hair loss disorders.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Qing-Min Sun
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China; Chang Zhou Hospital affiliated to Nanjing University of Chinese Medicine, Changzhou City, Jiangsu Province, China
| | - Yu-Chen Shen
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Qing-Shan Li
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Yong-Jun Piao
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China.
| | - Lin Gong
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China.
| |
Collapse
|
14
|
King JS, Wan M, Wagley Y, Stestiv M, Kalajzic I, Hankenson KD, Sanjay A. Signaling pathways associated with Lgr6 to regulate osteogenesis. Bone 2024; 187:117207. [PMID: 39033993 DOI: 10.1016/j.bone.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Fracture management largely relies on the bone's inherent healing capabilities and, when necessary, surgical intervention. Currently, there are limited osteoinductive therapies to promote healing, making targeting skeletal stem/progenitor cells (SSPCs) a promising avenue for therapeutic development. A limiting factor for this approach is our incomplete understanding of the molecular mechanisms governing SSPCs' behavior. We have recently identified that the Leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) is expressed in sub-populations of SSPCs, and is required for maintaining bone volume during adulthood and for proper fracture healing. Lgr family members (Lgr4-6) are markers of stem cell niches and play a role in tissue regeneration primarily by binding R-Spondin (Rspo1-4). This interaction promotes canonical Wnt (cWnt) signaling by stabilizing Frizzled receptors. Interestingly, our findings here indicate that Lgr6 may also influence cWnt-independent pathways. Remarkably, Lgr6 expression was enhanced during Bmp-mediated osteogenesis of both human and murine cells. Using biochemical approaches, RNA sequencing, and bioinformatic analysis of published single-cell data, we found that elements of BMP signaling, including its target gene, pSMAD, and gene ontology pathways, are downregulated in the absence of Lgr6. Our findings uncover a molecular interdependency between the Bmp pathway and Lgr6, offering new insights into osteogenesis and potential targets for enhancing fracture healing.
Collapse
Affiliation(s)
- Justin S King
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Matthew Wan
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Marta Stestiv
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Archana Sanjay
- Department of Orthopaedic Surgery, The Musculoskeletal Research Institute, UCONN Health, Farmington, CT 06032, USA.
| |
Collapse
|
15
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
16
|
Asami S, Yin C, Garza LA, Kalhor R. Deconvolving organogenesis in space and time via spatial transcriptomics in thick tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614640. [PMID: 39386671 PMCID: PMC11463617 DOI: 10.1101/2024.09.24.614640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organ development is guided by a space-time landscape that constraints cell behavior. This landscape is challenging to characterize for the hair follicle - the most abundant mini organ - due to its complex microscopic structure and asynchronous development. We developed 3DEEP, a tissue clearing and spatial transcriptomic strategy for characterizing tissue blocks up to 400 µm in thickness. We captured 371 hair follicles at different stages of organogenesis in 1 mm3 of skin of a 12-hour-old mouse with 6 million transcripts from 81 genes. From this single time point, we deconvoluted follicles by age based on whole-organ molecular pseudotimes to animate a stop-motion 3D atlas of follicle development along its trajectory. We defined molecular stages for hair follicle organogenesis and characterized the order of emergence for its structures, differential signaling dynamics at its top and bottom, morphogen shifts preceding and accompanying structural changes, and series of structural changes leading to the formation of its canal and opening. We further found that hair follicle stem cells and their niche are established and stratified early in organogenesis, before the formation of the hair bulb. Overall, this work demonstrates the power of increased depth of spatial transcriptomics to provide a four-dimensional analysis of organogenesis.
Collapse
Affiliation(s)
- Soichiro Asami
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenshuo Yin
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luis A. Garza
- Department of Dermatology, Department of Cell Biology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Medicine, Department of Neuroscience, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Chen HC, Mueller N, Stott K, Kapeni C, Rivers E, Sauer CM, Beke F, Walsh SJ, Ashman N, O'Brien L, Rafati Fard A, Ghodsinia A, Li C, Joud F, Giger O, Zlobec I, Olan I, Aitken SJ, Hoare M, Mair R, Serrao E, Brenton JD, Garcia-Gimenez A, Richardson SE, Huntly B, Spring DR, Skjoedt MO, Skjødt K, de la Roche M, de la Roche M. Novel immunotherapeutics against LGR5 to target multiple cancer types. EMBO Mol Med 2024; 16:2233-2261. [PMID: 39169164 PMCID: PMC11393416 DOI: 10.1038/s44321-024-00121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
We have developed and validated a highly specific, versatile antibody to the extracellular domain of human LGR5 (α-LGR5). α-LGR5 detects LGR5 overexpression in >90% of colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pre-B-ALL tumour cells and was used to generate an Antibody-Drug Conjugate (α-LGR5-ADC), Bispecific T-cell Engager (α-LGR5-BiTE) and Chimeric Antigen Receptor (α-LGR5-CAR). α-LGR5-ADC was the most effective modality for targeting LGR5+ cancer cells in vitro and demonstrated potent anti-tumour efficacy in a murine model of human NALM6 pre-B-ALL driving tumour attrition to less than 1% of control treatment. α-LGR5-BiTE treatment was less effective in the pre-B-ALL cancer model yet promoted a twofold reduction in tumour burden. α-LGR5-CAR-T cells also showed specific and potent LGR5+ cancer cell killing in vitro and effective tumour targeting with a fourfold decrease in pre-B-ALL tumour burden relative to controls. Taken together, we show that α-LGR5 can not only be used as a research tool and a biomarker but also provides a versatile building block for a highly effective immune therapeutic portfolio targeting a range of LGR5-expressing cancer cells.
Collapse
Affiliation(s)
- Hung-Chang Chen
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Astra Zeneca, Cambridge, UK
| | - Nico Mueller
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Katherine Stott
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Chrysa Kapeni
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Eilidh Rivers
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carolin M Sauer
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Flavio Beke
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen J Walsh
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
- Bicycle Therapeutics, Cambridge, UK
| | - Nicola Ashman
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
- Charles River Laboratories, Saffron Walden, UK
| | - Louise O'Brien
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Amir Rafati Fard
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Arman Ghodsinia
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Changtai Li
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Fadwa Joud
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Olivier Giger
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008, Bern, Switzerland
| | - Ioana Olan
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah J Aitken
- University of Cambridge, MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Histopathology, Cambridge University Hospitals, NHS Foundation Trust, Main Drive, Cambridge, CB2 0QQ, UK
| | - Matthew Hoare
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Richard Mair
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Eva Serrao
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - James D Brenton
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alicia Garcia-Gimenez
- University of Cambridge, Department of Haematology, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Simon E Richardson
- University of Cambridge, Department of Haematology, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Brian Huntly
- University of Cambridge, Department of Haematology, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - David R Spring
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Mikkel-Ole Skjoedt
- Rigshospitalet-University Hospital Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Novo Nordisk, Måløv, Denmark
| | - Karsten Skjødt
- University of Southern Denmark Campusvej 55, Odense M, DK-5230, Denmark
| | - Marc de la Roche
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Maike de la Roche
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
18
|
Xu H, Che Y, Zhou R, Wang L, Huang J, Kong W, Liu C, Guo L, Tang Y, Wang X, Yang X, Wang E, Xu C. Research progress of natural polysaccharide-based and natural protein-based hydrogels for bacteria-infected wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 496:153803. [DOI: 10.1016/j.cej.2024.153803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Lee SH, Platt S, Lim CH, Ito M, Myung P. The development of hair follicles and nail. Dev Biol 2024; 513:3-11. [PMID: 38759942 DOI: 10.1016/j.ydbio.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The hair follicle and nail unit develop and regenerate through epithelial-mesenchymal interactions. Here, we review some of the key signals and molecular interactions that regulate mammalian hair follicle and nail formation during embryonic development and how these interactions are reutilized to promote their regeneration during adult homeostasis and in response to skin wounding. Finally, we highlight the role of some of these signals in mediating human hair follicle and nail conditions.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sarah Platt
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Peggy Myung
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
21
|
Zhu X, Xu M, Portal C, Lin Y, Ferdinand A, Peng T, Morrisey EE, Dlugosz AA, Castellano JM, Lee V, Seykora JT, Iomini C, Millar SE. Identification of Meibomian gland stem cell populations and mechanisms of aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607015. [PMID: 39149265 PMCID: PMC11326261 DOI: 10.1101/2024.08.09.607015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identified markers for stem cell populations that maintain distinct regions of the gland and uncovered Hh signaling as a key regulator of stem cell proliferation. Consistent with this, human Meibomian gland carcinoma exhibited increased Hh signaling. Aged glands displayed decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celine Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alyssa Ferdinand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tien Peng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology and the Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph M. Castellano
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
Kim HJ, Seo DW, Shim J, Lee JS, Choi SH, Kim DH, Moon SJ, Jung HS, Jeong YT. Reassessing the genetic lineage tracing of lingual Lgr5+ and Lgr6+ cells in vivo. Anim Cells Syst (Seoul) 2024; 28:353-366. [PMID: 39040684 PMCID: PMC11262215 DOI: 10.1080/19768354.2024.2381578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Taste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, Lgr5 and Lgr6 were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual Lgr5- and Lgr6-expressing cells. Unexpectedly, we found that antibody staining revealed more diverse Lgr5-expressing cells inside and outside the taste buds of circumvallate papillae than was previously suggested. We also found that, while tamoxifen-induced genetic recombination occurred only in cells expressing the Lgr5 reporter GFP, we did not see any increase in the number of recombined daughter cells induced by consecutive injections of tamoxifen. Similarly, we found that cells expressing Lgr6, another stem/progenitor cell marker candidate and an analog of Lgr5, also do not generate recombined clones. In contrast, Lgr5-expressing cells in fungiform papillae can transform into Lgr5-negative progeny. Together, our data indicate that lingual Lgr5- and Lgr6-expressing cells exhibit diversity in their capacity to transform into Lgr5- and Lgr6-negative cells, depending on their location. Our results complement previous findings that did not distinguish this diversity.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong Woo Seo
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaewon Shim
- Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jun-Seok Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Han-Sung Jung
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Tu J, Toh Y, Aldana AM, Wen JJ, Wu L, Jacob J, Li L, Pan S, Carmon KS, Liu QJ. Antitumor Activity of a Pyrrolobenzodiazepine Antibody-Drug Conjugate Targeting LGR5 in Preclinical Models of Neuroblastoma. Pharmaceutics 2024; 16:943. [PMID: 39065640 PMCID: PMC11279891 DOI: 10.3390/pharmaceutics16070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroblastoma (NB) is a cancer of the peripheral nervous system found in children under 15 years of age. It is the most frequently diagnosed cancer during infancy, accounting for ~12% of all cancer-related deaths in children. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a membrane receptor that is associated with the primary tumor formation and metastasis of cancers in the gastrointestinal system. Remarkably, high levels of LGR5 are found in NB tumor cells, and high LGR5 expression is strongly correlated with poor survival. Antibody-drug conjugates (ADCs) are monoclonal antibodies that are covalently linked to cell-killing cytotoxins to deliver the payloads into cancer cells. We generated an ADC with an anti-LGR5 antibody and pyrrolobenzodiazepine (PBD) dimer-based payload SG3199 using a chemoenzymatic conjugation method. The resulting anti-LGR5 ADC was able to inhibit the growth of NB cells expressing LGR5 with high potency and specificity. Importantly, the ADC was able to completely inhibit the growth of NB xenograft tumors in vivo at a clinically relevant dose for the PBD class of ADCs. The findings support the potential of targeting LGR5 using the PBD class of payload for the treatment of high-risk NBs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qingyun J. Liu
- The Brown Foundation Institute of Molecular Medicine, Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
25
|
Hegde A, Ghosh S, Ananthan ASHP, Kataria S, Dutta A, Prabhu S, Khedkar SU, Dutta A, Jamora C. Extracellular Caspase-1 induces hair stem cell migration in wounded and inflamed skin conditions. J Cell Biol 2024; 223:e202306028. [PMID: 38587472 PMCID: PMC11001599 DOI: 10.1083/jcb.202306028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
The wound-healing process is a paradigm of the directed migration of various pools of stem cells from their niche to the site of injury where they replenish damaged cells. Two decades have elapsed since the observation that wounding activates multipotent hair follicle stem cells to infiltrate the epidermis, but the cues that coax these cells out of their niche remain unknown. Here, we report that Caspase-1, a protein classically known as an integral component of the cytosolic inflammasome, is secreted upon wounding and has a non-canonical role in the extracellular milieu. Through its caspase activation recruitment domain (CARD), Caspase-1 is sufficient to initiate the migration of hair follicle stem cells into the epidermis. Uncovering this novel function of Caspase-1 also facilitates a deeper understanding of the mechanistic basis of the epithelial hyperplasia found to accompany numerous inflammatory skin diseases.
Collapse
Affiliation(s)
- Akshay Hegde
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology (SCBT), Shanmugha Arts, Science, Technology and Research Academy (SASTRA), Deemed to be University, Thanjavur, India
| | - Subhasri Ghosh
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Akhil SHP Ananthan
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sunny Kataria
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Abhik Dutta
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology (SCBT), Shanmugha Arts, Science, Technology and Research Academy (SASTRA), Deemed to be University, Thanjavur, India
| | - Srilekha Prabhu
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sneha Uday Khedkar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anupam Dutta
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
26
|
Xu G, Qiao Z, Schraauwen R, Avan A, Peppelenbosch MP, Bijvelds MJC, Jiang S, Li P. Evidence for cross-species transmission of human coronavirus OC43 through bioinformatics and modeling infections in porcine intestinal organoids. Vet Microbiol 2024; 293:110101. [PMID: 38718529 DOI: 10.1016/j.vetmic.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
Cross-species transmission of coronaviruses has been continuously posing a major challenge to public health. Pigs, as the major animal reservoirs for many zoonotic viruses, frequently mediate viral transmission to humans. This study comprehensively mapped the relationship between human and porcine coronaviruses through in-depth bioinformatics analysis. We found that human coronavirus OC43 and porcine coronavirus PHEV share a close phylogenetic relationship, evidenced by high genomic homology, similar codon usage patterns and comparable tertiary structure in spike proteins. Inoculation of infectious OC43 viruses in organoids derived from porcine small and large intestine demonstrated that porcine intestinal organoids (pIOs) are highly susceptible to human coronavirus OC43 infection and support infectious virus production. Using transmission electron microscopy, we visualized OC43 viral particles in both intracellular and extracellular compartments, and observed abnormalities of multiple organelles in infected organoid cells. Robust OC43 infections in pIOs result in a significant reduction of organoids viability and widespread cell death. This study bears essential implications for better understanding the evolutionary origin of human coronavirus OC43, and provides a proof-of-concept for using pIOs as a model to investigate cross-species transmission of human coronavirus.
Collapse
Affiliation(s)
- Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhiwen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Rick Schraauwen
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Amine Avan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Taylor MA, Kandyba E, Halliwill K, Delrosario R, Khoroshkin M, Goodarzi H, Quigley D, Li YR, Wu D, Bollam SR, Mirzoeva OK, Akhurst RJ, Balmain A. Stem-cell states converge in multistage cutaneous squamous cell carcinoma development. Science 2024; 384:eadi7453. [PMID: 38815020 DOI: 10.1126/science.adi7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Stem cells play a critical role in cancer development by contributing to cell heterogeneity, lineage plasticity, and drug resistance. We created gene expression networks from hundreds of mouse tissue samples (both normal and tumor) and integrated these with lineage tracing and single-cell RNA-seq, to identify convergence of cell states in premalignant tumor cells expressing markers of lineage plasticity and drug resistance. Two of these cell states representing multilineage plasticity or proliferation were inversely correlated, suggesting a mutually exclusive relationship. Treatment of carcinomas in vivo with chemotherapy repressed the proliferative state and activated multilineage plasticity whereas inhibition of differentiation repressed plasticity and potentiated responses to cell cycle inhibitors. Manipulation of this cell state transition point may provide a source of potential combinatorial targets for cancer therapy.
Collapse
Affiliation(s)
- Mark A Taylor
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Clinical Research Centre, Medical University of Bialystok, Bialystok 15-089, Poland
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- AbbVie, South San Francisco, CA 94080, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matvei Khoroshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94518, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94518, USA
- Arc Institute, Palo Alto, CA 94304, USA
| | - David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94518, USA
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA 94518, USA
| | - Yun Rose Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Cancer Genetics & Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, Phoenix, CA 85004, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Saumya R Bollam
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94518, USA
| | - Olga K Mirzoeva
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94518, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94518, USA
| |
Collapse
|
28
|
Inomata Y, Kawatani N, Yamashita H, Hattori F. Lgr6-expressing functional nail stem-like cells differentiated from human-induced pluripotent stem cells. PLoS One 2024; 19:e0303260. [PMID: 38743670 PMCID: PMC11093308 DOI: 10.1371/journal.pone.0303260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The nail matrix containing stem cell populations produces nails and may contribute to fingertip regeneration. Nails are important tissues that maintain the functions of the hand and foot for handling objects and locomotion. Tumor chemotherapy impairs nail growth and, in many cases, loses them, although not permanently. In this report, we have achieved the successful differentiation of nail stem (NS)-like cells from human-induced pluripotent stem cells (iPSCs) via digit organoids by stepwise stimulation, tracing the molecular processes involved in limb development. Comprehensive mRNA sequencing analysis revealed that the digit organoid global gene expression profile fits human finger development. The NS-like cells expressed Lgr6 mRNA and protein and produced type-I keratin, KRT17, and type-II keratin, KRT81, which are abundant in nails. Furthermore, we succeeded in producing functional Lgr6-reporter human iPSCs. The reporter iPSC-derived Lgr6-positive cells also produced KRT17 and KRT81 proteins in the percutaneously transplanted region. To the best of our knowledge, this is the first report of NS-like cell differentiation from human iPSCs. Our differentiation method and reporter construct enable the discovery of drugs for nail repair and possibly fingertip-regenerative therapy.
Collapse
Affiliation(s)
- Yukino Inomata
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
- Osaka College of High-Technology, Osaka City, Osaka, Japan
| | - Nano Kawatani
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
- Osaka College of High-Technology, Osaka City, Osaka, Japan
| | - Hiromi Yamashita
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Fumiyuki Hattori
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
29
|
Liu Y, Gao H, Chen H, Ji S, Wu L, Zhang H, Wang Y, Fu X, Sun X. Sebaceous gland organoid engineering. BURNS & TRAUMA 2024; 12:tkae003. [PMID: 38699464 PMCID: PMC11063650 DOI: 10.1093/burnst/tkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Indexed: 05/05/2024]
Abstract
Sebaceous glands (SGs), as holocrine-secreting appendages, lubricate the skin and play a central role in the skin barrier. Large full-thickness skin defects cause overall architecture disruption and SG loss. However, an effective strategy for SG regeneration is lacking. Organoids are 3D multicellular structures that replicate key anatomical and functional characteristics of in vivo tissues and exhibit great potential in regenerative medicine. Recently, considerable progress has been made in developing reliable procedures for SG organoids and existing SG organoids recapitulate the main morphological, structural and functional features of their in vivo counterparts. Engineering approaches empower researchers to manipulate cell behaviors, the surrounding environment and cell-environment crosstalk within the culture system as needed. These techniques can be applied to the SG organoid culture system to generate functionally more competent SG organoids. This review aims to provide an overview of recent advancements in SG organoid engineering. It highlights some potential strategies for SG organoid functionalization that are promising to forge a platform for engineering vascularized, innervated, immune-interactive and lipogenic SG organoids. We anticipate that this review will not only contribute to improving our understanding of SG biology and regeneration but also facilitate the transition of the SG organoid from laboratory research to a feasible clinical application.
Collapse
Affiliation(s)
- Yiqiong Liu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Yujia Wang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| |
Collapse
|
30
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
31
|
An L, Kim D, Donahue LR, Mejooli MA, Eom CY, Nishimura N, White AC. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. Nat Commun 2024; 15:796. [PMID: 38280858 PMCID: PMC10821900 DOI: 10.1038/s41467-024-45034-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal re-pigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.
Collapse
Affiliation(s)
- Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Leanne R Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA
| | | | - Chi-Yong Eom
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
32
|
Kananykhina E, Elchaninov A, Bolshakova G. Impact of Stem Cells on Reparative Regeneration in Abdominal and Dorsal Skin in the Rat. J Dev Biol 2024; 12:6. [PMID: 38390957 PMCID: PMC10885081 DOI: 10.3390/jdb12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
A characteristic feature of repair processes in mammals is the formation of scar tissue at the site of injury, which is designed to quickly prevent contact between the internal environment of the organism and the external environment. Despite this general pattern, different organs differ in the degree of severity of scar changes in response to injury. One of the areas in which regeneration after wounding leads to the formation of a structure close to the original one is the abdominal skin of laboratory rats. Finding out the reasons for such a phenomenon is essential for the development of ways to stimulate full regeneration. The model of skin wound healing in the abdominal region of laboratory animals was reproduced in this work. It was found that the wound surface is completely epithelialized on the abdomen by 20 days, while on the back-by 30 days. The qPCR method revealed higher expression of marker genes of skin stem cells (Sox9, Lgr6, Gli1, Lrig1) in the intact skin of the abdomen compared to the back, which corresponded to a greater number of hairs with which stem cells are associated on the abdomen compared to the back. Considering that some stem cell populations are associated with hair, it can be suggested that one of the factors in faster regeneration of abdominal skin in the rat is the greater number of stem cells in this area.
Collapse
Affiliation(s)
- Evgeniya Kananykhina
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (E.K.); (G.B.)
| | - Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (E.K.); (G.B.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (E.K.); (G.B.)
| |
Collapse
|
33
|
Nguyen MB, Flora P, Branch MC, Weber M, Zheng XY, Sivan U, Joost S, Annusver K, Zheng D, Kasper M, Ezhkova E. Tenascin-C expressing touch dome keratinocytes exhibit characteristics of all epidermal lineages. SCIENCE ADVANCES 2024; 10:eadi5791. [PMID: 38241368 PMCID: PMC10798558 DOI: 10.1126/sciadv.adi5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan C. Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Unnikrishnan Sivan
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Dingwall HL, Tomizawa RR, Aharoni A, Hu P, Qiu Q, Kokalari B, Martinez SM, Donahue JC, Aldea D, Mendoza M, Glass IA, Wu H, Kamberov YG. Sweat gland development requires an eccrine dermal niche and couples two epidermal programs. Dev Cell 2024; 59:20-32.e6. [PMID: 38096824 PMCID: PMC10872420 DOI: 10.1016/j.devcel.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023]
Abstract
Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progenitors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair.
Collapse
Affiliation(s)
- Heather L Dingwall
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Reiko R Tomizawa
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam Aharoni
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Peng Hu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Qi Qiu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Blerina Kokalari
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Joan C Donahue
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Aldea
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Meryl Mendoza
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yana G Kamberov
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Zhou Y, Seo J, Tu S, Nanmo A, Kageyama T, Fukuda J. Exosomes for hair growth and regeneration. J Biosci Bioeng 2024; 137:1-8. [PMID: 37996318 DOI: 10.1016/j.jbiosc.2023.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Exosomes are lipid bilayer vesicles, 30-200 nm in diameter, that are produced by cells and play essential roles in cell-cell communication. Exosomes have been studied in several medical fields including dermatology. Hair loss, a major disorder that affects people and sometimes causes mental stress, urgently requires more effective treatment. Because the growth and cycling of hair follicles are governed by interactions between hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs), a better understanding of the mechanisms responsible for hair growth and cycling through exosomes may provide new insights into novel treatments for hair loss. In this review, we focused on the comprehensive knowledge and recent studies on exosomes in the field of hair development and regeneration. We classified exosomes of several cellular origins for the treatment of hair loss. Exosomes and their components, such as microRNAs, are promising drugs for effective hair loss treatment.
Collapse
Affiliation(s)
- Yinghui Zhou
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Jieun Seo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Shan Tu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ayaka Nanmo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
36
|
Deng Y, Xu W, Ni M, Sun X, Wang X, Zhang T, Pan F. DNA methylation and expression of LGR6 gene in ankylosing spondylitis: A case-control study. Hum Immunol 2023; 84:110719. [PMID: 37802707 DOI: 10.1016/j.humimm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE The objectives of the present research were to ascertain the relationship of Leucine-Rich Repeat-Containing G-Protein Coupled Receptors 6 (LGR6) methylation and transcript levels with ankylosing spondylitis (AS). METHODS Targeted bisulfite sequencing was applied to analyze LGR6 DNA methylation in 81 AS cases and 81 controls. Besides, the LGR6 transcription level of peripheral blood mononuclear cells (PBMCs) from 70 AS cases and 64 controls was measured utilizing quantitative real-time transcription-polymerase chain reaction (qRT-PCR). RESULTS The study detected the methylation levels of 43 sites in two CpG (cytosine-guanine dinucleotide) islands of LGR6 and found that LGR6 were significantly hypomethylated in AS patients (LGR6_1: P = 0.002; LGR6_2: P < 0.001). LGR6 transcript level was obviously reduced in AS (P = 0.001) and was positively related to DNA methylation level (CpG-1: P = 0.010; CpG-2: P = 0.007). Besides, the Receiver operating characteristic curve (ROC) exhibited good diagnostic performance of LGR6 methylation level (AUC = 0.676, 95% CI = 0.594-0.758, P < 0.001). Further subgroup analysis revealed that gender may affect the LGR6_1 methylation pattern. CONCLUSION The present study revealed that LGR6 DNA methylation dysregulation may be involved in the pathogenesis of AS from an epigenetic perspective for the first time, with the aim of providing new directions for biomarker identification and treatment development for AS patients.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
37
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
38
|
Farnhammer F, Colozza G, Kim J. RNF43 and ZNRF3 in Wnt Signaling - A Master Regulator at the Membrane. Int J Stem Cells 2023; 16:376-384. [PMID: 37643759 PMCID: PMC10686798 DOI: 10.15283/ijsc23070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The Wnt β-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.
Collapse
Affiliation(s)
- Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Division of Oncology and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Jihoon Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
39
|
Yusupova M, Ankawa R, Yosefzon Y, Meiri D, Bachelet I, Fuchs Y. Apoptotic dysregulation mediates stem cell competition and tissue regeneration. Nat Commun 2023; 14:7547. [PMID: 37985759 PMCID: PMC10662150 DOI: 10.1038/s41467-023-41684-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2023] [Indexed: 11/22/2023] Open
Abstract
Since adult stem cells are responsible for replenishing tissues throughout life, it is vital to understand how failure to undergo apoptosis can dictate stem cell behavior both intrinsically and non-autonomously. Here, we report that depletion of pro-apoptotic Bax protein bestows hair follicle stem cells with the capacity to eliminate viable neighboring cells by sequestration of TNFα in their membrane. This in turn induces apoptosis in "loser" cells in a contact-dependent manner. Examining the underlying mechanism, we find that Bax loss-of-function competitive phenotype is mediated by the intrinsic activation of NFκB. Notably, winner stem cells differentially respond to TNFα, owing to their elevated expression of TNFR2. Finally, we report that in vivo depletion of Bax results in an increased stem cell pool, accelerating wound-repair and de novo hair follicle regeneration. Collectively, we establish a mechanism of mammalian cell competition, which can have broad therapeutic implications for tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Marianna Yusupova
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roi Ankawa
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Augmanity, Rehovot, Israel
| | - Yahav Yosefzon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Yaron Fuchs
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Augmanity, Rehovot, Israel.
| |
Collapse
|
40
|
Mäkelä OJM, Mikkola ML. Mesenchyme governs hair follicle induction. Development 2023; 150:dev202140. [PMID: 37982496 DOI: 10.1242/dev.202140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.
Collapse
Affiliation(s)
- Otto J M Mäkelä
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
41
|
Danielian A, Danielian M, Cheng MY, Burton J, Han PS, Kerr RPR. Antiaging Effects of Topical Defensins. Facial Plast Surg Clin North Am 2023; 31:535-546. [PMID: 37806687 DOI: 10.1016/j.fsc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Topical defensins have recently gained attention as agents to improve skin composition. This study aimed to aggregate and synthesize studies in the literature assessing the effects of topical defensins on skin composition in the context of its ability to combat signs of aging.
Collapse
Affiliation(s)
- Arman Danielian
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 200 Medical Plaza, Suite 550, Los Angeles, CA 90095, USA
| | - Marie Danielian
- Independent Researcher, 200 Medical Plaza, Suite 550, Los Angeles, CA 90095, USA
| | - Melodyanne Y Cheng
- David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Jason Burton
- University of California Los Angeles, 200 Medical Plaza, Suite 550, Los Angeles, CA 90095, USA
| | - Peter S Han
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 200 Medical Plaza, Suite 550, Los Angeles, CA 90095, USA
| | - Rhorie P R Kerr
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 200 Medical Plaza, Suite 550, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Abstract
Diseases affecting the hair follicle are common in domestic animals, but despite the importance of an intact skin barrier and a fully functional hair coat, knowledge about the detailed morphological features and the diversity of these complex mini-organs are often limited, although mandatory to evaluate skin biopsies with a history of alopecia. The factors that regulate the innate hair follicle formation and the postnatal hair cycle are still not completely understood in rodents, only rudimentarily known in humans, and are poorly understood in our companion animals. This review aims to summarize the current knowledge about hair follicle and hair shaft anatomy, the arrangement of hair follicles, hair follicle morphogenesis in the embryo, and the lifelong regeneration during the postnatal hair cycle in domestic animals. The role of follicular stem cells and the need for a multitude of interacting signaling events during hair follicle morphogenesis and regeneration is unquestioned. Because of the lack of state of the art methods that can be applied in rodents but are not feasible in companion animals, most of the information in this review is based on rodent studies. However, the few data from domestic animals that are available will be discussed, and it can be assumed that at least the principal molecular mechanisms are similar in rodents and other species.
Collapse
|
43
|
Lim C, Lim J, Choi S. Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration. Mol Cells 2023; 46:573-578. [PMID: 37650216 PMCID: PMC10590709 DOI: 10.14348/molcells.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.
Collapse
Affiliation(s)
- Chaeryeong Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jooyoung Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Medical Science and Engineering, POSTECH, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
44
|
Wang J, Koch DT, Hofmann FO, Härtwig D, Beirith I, Janssen KP, Bazhin AV, Niess H, Werner J, Renz BW, Ilmer M. WNT enhancing signals in pancreatic cancer are transmitted by LGR6. Aging (Albany NY) 2023; 15:10897-10914. [PMID: 37770230 PMCID: PMC10637827 DOI: 10.18632/aging.205101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
The G-protein-coupled receptor LGR6 associates with ligands of the R-Spondin (RSPO) family to potentiate preexisting signals of the canonical WNT pathway. However, its importance in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we show that LGR6 is differentially expressed in various PDAC cell lines of mesenchymal and epithelial phenotype, respectively, siding with the latter subsets. LGR6 expression is altered based upon the cells' WNT activation status. Furthermore, extrinsic enhancement of WNT pathway signaling increased LGR6 expression suggestive of a reinforcing self-regulatory loop in highly WNT susceptible cells. Downregulation of LGR6 on the other hand, seemed to tamper those effects. Last, downregulation of LGR6 reduced cancer stemness as determined by functional in vitro assays. These findings shed new insights into regulatory mechanisms for the canonical WNT pathway in pancreatic cancer cells. It may also have potential value for treatment stratification of PDAC.
Collapse
Affiliation(s)
- Jing Wang
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Dominik T. Koch
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
| | - Felix O. Hofmann
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
| | - Daniel Härtwig
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
| | - Iris Beirith
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
| | - Klaus Peter Janssen
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Bavaria, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Munich, Bavaria, Germany
| | - Hanno Niess
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Bavaria, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Munich, Bavaria, Germany
| | - Bernhard W. Renz
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Bavaria, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Munich, Bavaria, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Ludwig-Maximilians-University (LMU), Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Bavaria, Germany
- Bavarian Cancer Research Center (BZKF), LMU Munich, Munich, Bavaria, Germany
| |
Collapse
|
45
|
Watanabe K, Horie M, Hayatsu M, Mikami Y, Sato N. Spatiotemporal expression patterns of R-spondins and their receptors, Lgrs, in the developing mouse telencephalon. Gene Expr Patterns 2023; 49:119333. [PMID: 37651925 DOI: 10.1016/j.gep.2023.119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Development of the mammalian telencephalon, which is the most complex region of the central nervous system, is precisely orchestrated by many signaling molecules. Wnt signaling derived from the cortical hem, a signaling center, is crucial for telencephalic development including cortical patterning and the induction of hippocampal development. Secreted protein R-spondin (Rspo) 1-4 and their receptors, leucine-rich repeat-containing G-protein-coupled receptor (Lgr) 4-6, act as activators of Wnt signaling. Although Rspo expression in the hem during the early stages of cortical development has been reported, comparative expression analysis of Rspos and Lgr4-6 has not been performed. In this study, we examined the detailed spatiotemporal expression patterns of Rspo1-4 and Lgr4-6 in the embryonic and postnatal telencephalon to elucidate their functions. In the embryonic day (E) 10.5-14.5 telencephalon, Rspo1-3 were prominently expressed in the cortical hem. Among their receptors, Lgr4 was observed in the ventral telencephalon, and Lgr6 was highly expressed throughout the telencephalon at the same stages. This suggests that Rspo1-3 and Lgr4 initially regulate telencephalic development in restricted regions, whereas Lgr6 functions broadly. From the late embryonic stage, the expression areas of Rspo1-3 and Lgr4-6 dramatically expanded; their expression was found in the neocortex and limbic system, such as the hippocampus, amygdala, and striatum. Increased Rspo and Lgr expression from the late embryonic stages suggests broad roles of Rspo signaling in telencephalic development. Furthermore, the Lgr+ regions were located far from the Rspo+ regions, especially in the E10.5-14.5 ventral telencephalon, suggesting that Lgrs act via a Rspo-independent pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
46
|
Gao H, Liu Y, Shi Z, Zhang H, Wang M, Chen H, Li Y, Ji S, Xiang J, Pi W, Zhou L, Hong Y, Wu L, Cai A, Fu X, Sun X. A volar skin excisional wound model for in situ evaluation of multiple-appendage regeneration and innervation. BURNS & TRAUMA 2023; 11:tkad027. [PMID: 37397511 PMCID: PMC10309083 DOI: 10.1093/burnst/tkad027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/24/2023] [Indexed: 07/04/2023]
Abstract
Background Promoting rapid wound healing with functional recovery of all skin appendages is the main goal of regenerative medicine. So far current methodologies, including the commonly used back excisional wound model (BEWM) and paw skin scald wound model, are focused on assessing the regeneration of either hair follicles (HFs) or sweat glands (SwGs). How to achieve de novo appendage regeneration by synchronized evaluation of HFs, SwGs and sebaceous glands (SeGs) is still challenging. Here, we developed a volar skin excisional wound model (VEWM) that is suitable for examining cutaneous wound healing with multiple-appendage restoration, as well as innervation, providing a new research paradigm for the perfect regeneration of skin wounds. Methods Macroscopic observation, iodine-starch test, morphological staining and qRT-PCR analysis were used to detect the existence of HFs, SwGs, SeGs and distribution of nerve fibres in the volar skin. Wound healing process monitoring, HE/Masson staining, fractal analysis and behavioral response assessment were performed to verify that VEWM could mimic the pathological process and outcomes of human scar formation and sensory function impairment. Results HFs are limited to the inter-footpads. SwGs are densely distributed in the footpads, scattered in the IFPs. The volar skin is richly innervated. The wound area of the VEWM at 1, 3, 7 and 10 days after the operation is respectively 89.17% ± 2.52%, 71.72% ± 3.79%, 55.09 % ± 4.94% and 35.74% ± 4.05%, and the final scar area accounts for 47.80% ± 6.22% of the initial wound. While the wound area of BEWM at 1, 3, 7 and 10 days after the operation are respectively 61.94% ± 5.34%, 51.26% ± 4.89%, 12.63% ± 2.86% and 6.14% ± 2.84%, and the final scar area accounts for 4.33% ± 2.67% of the initial wound. Fractal analysis of the post-traumatic repair site for VEWM vs human was performed: lacunarity values, 0.040 ± 0.012 vs 0.038 ± 0.014; fractal dimension values, 1.870 ± 0.237 vs 1.903 ± 0.163. Sensory nerve function of normal skin vs post-traumatic repair site was assessed: mechanical threshold, 1.05 ± 0.52 vs 4.90 g ± 0.80; response rate to pinprick, 100% vs 71.67% ± 19.92%, and temperature threshold, 50.34°C ± 3.11°C vs 52.13°C ± 3.54°C. Conclusions VEWM closely reflects the pathological features of human wound healing and can be applied for skin multiple-appendages regeneration and innervation evaluation.
Collapse
Affiliation(s)
| | | | | | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Shaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Wei Pi
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4 Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Aizhen Cai
- Correspondence. Sun Xiaoyan, ; Xiaobing Fu, ; Aizhen Cai,
| | - Xiaobing Fu
- Correspondence. Sun Xiaoyan, ; Xiaobing Fu, ; Aizhen Cai,
| | - Xiaoyan Sun
- Correspondence. Sun Xiaoyan, ; Xiaobing Fu, ; Aizhen Cai,
| |
Collapse
|
47
|
An L, Kim D, Donahue L, Mejooli MA, Chi-Yong E, Nishimura N, White AC. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541644. [PMID: 37293072 PMCID: PMC10245926 DOI: 10.1101/2023.05.22.541644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitiligo is an autoimmune skin disease caused by cutaneous melanocyte loss. Although phototherapy and T cell suppression therapy have been widely used to induce epidermal repigmentation, full pigmentation recovery is rarely achieved due to our poor understanding of the cellular and molecular mechanisms governing this process. Here, we identify unique melanocyte stem cell (McSC) epidermal migration rates between male and female mice, which is due to sexually dimorphic cutaneous inflammatory responses generated by ultra-violet B exposure. Using genetically engineered mouse models, and unbiased bulk and single-cell mRNA sequencing approaches, we determine that manipulating the inflammatory response through cyclooxygenase and its downstream prostaglandin product regulates McSC proliferation and epidermal migration in response to UVB exposure. Furthermore, we demonstrate that a combinational therapy that manipulates both macrophages and T cells (or innate and adaptive immunity) significantly promotes epidermal melanocyte re-population. With these findings, we propose a novel therapeutic strategy for repigmentation in patients with depigmentation conditions such as vitiligo.
Collapse
Affiliation(s)
- Luye An
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | - Dahihm Kim
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | - Leanne Donahue
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| | | | - Eom Chi-Yong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 14850
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA, 14850
| | - Andrew C White
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA, 14850
| |
Collapse
|
48
|
Taylor MA, Kandyba E, Halliwill K, Delrosario R, Koroshkin M, Goodarzi H, Quigley D, Li YR, Wu D, Bollam S, Mirzoeva O, Akhurst RJ, Balmain A. Gene networks reveal stem-cell state convergence during preneoplasia and progression to malignancy in multistage skin carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539863. [PMID: 37215032 PMCID: PMC10197547 DOI: 10.1101/2023.05.08.539863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Adult mammalian stem cells play critical roles in normal tissue homeostasis, as well as in tumor development, by contributing to cell heterogeneity, plasticity, and development of drug resistance. The relationship between different types of normal and cancer stem cells is highly controversial and poorly understood. Here, we carried out gene expression network analysis of normal and tumor samples from genetically heterogeneous mice to create network metagenes for visualization of stem-cell networks, rather than individual stem-cell markers, at the single-cell level during multistage carcinogenesis. We combined this approach with lineage tracing and single-cell RNASeq of stem cells and their progeny, identifying a previously unrecognized hierarchy in which Lgr6+ stem cells from tumors generate progeny that express a range of other stem-cell markers including Sox2, Pitx1, Foxa1, Klf5, and Cd44. Our data identify a convergence of multiple stem-cell and tumor-suppressor pathways in benign tumor cells expressing markers of lineage plasticity and oxidative stress. This same single-cell population expresses network metagenes corresponding to markers of cancer drug resistance in human tumors of the skin, lung and prostate. Treatment of mouse squamous carcinomas in vivo with the chemotherapeutic cis-platin resulted in elevated expression of the genes that mark this cell population. Our data have allowed us to create a simplified model of multistage carcinogenesis that identifies distinct stem-cell states at different stages of tumor progression, thereby identifying networks involved in lineage plasticity, drug resistance, and immune surveillance, providing a rich source of potential targets for cancer therapy.
Collapse
Affiliation(s)
- Mark A. Taylor
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Eve Kandyba
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Kyle Halliwill
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Reyno Delrosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Matvei Koroshkin
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Hani Goodarzi
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - David Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Yun Rose Li
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Di Wu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Saumya Bollam
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Olga Mirzoeva
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Rosemary J. Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco; San Francisco, 94158, USA
| |
Collapse
|
49
|
Agarwal R, Dittmar T, Beer HD, Kunz M, Müller S, Kappos EA, Contassot E, Navarini AA. Human epidermis organotypic cultures, a reproducible system recapitulating the epidermis in vitro. Exp Dermatol 2023. [PMID: 37114406 DOI: 10.1111/exd.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The translatability of research is highly dependent on models that recapitulate human tissues and organs. Here, we describe a procedure for the generation of human epidermis organotypic cultures (HEOCs) from primary keratinocytes isolated from foreskin and adult skin as well as from an immortalized keratinocyte cell line (KerTr). We tested several media conditions to develop a defined HEOC growing and expansion media. We characterized the HEOCs and show that in optimal culture conditions they express the proliferation marker Ki67, the basement membrane protein collagen 17 (col17) and the epidermal differentiation markers keratin 15 (K15), keratin 14 (K14), keratin 5 (K5), keratin 10 (K10), keratin 1 (K1), transglutaminase 1 (TGM1), transglutaminase 3 (TGM3) and filaggrin (FLG). Thus, they recapitulate the human epidermis and are stratified from the basal layer to the stratum corneum. These HEOC can be generated reproducibly on a large scale, making it an invaluable model for screening therapeutic compounds and also for the study of pathologies affecting the epidermis.
Collapse
Affiliation(s)
- Rishika Agarwal
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tanja Dittmar
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hans-Dietmar Beer
- Dermatology Department, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Kunz
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
| | - Simon Müller
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
| | - Elisabeth A Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Emmanuel Contassot
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Dermatology Department, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
50
|
Pereira B, Duque K, Ramos-Gonzalez G, Díaz-Solano D, Wittig O, Zamora M, Gledhill T, Cardier JE. Wound healing by transplantation of mesenchymal stromal cells loaded on polyethylene terephthalate scaffold: Implications for skin injury treatment. Injury 2023; 54:1071-1081. [PMID: 36801131 DOI: 10.1016/j.injury.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Several clinical studies have shown that cellular therapy based on mesenchymal stromal cells (MSCs) transplantation may accelerate wound healing. One major challenge is the delivery system used for MSCs transplantation. In this work, we evaluated the capacity of a scaffold based on polyethylene terephthalate (PET) to maintain the viability and biological functions of MSCs, in vitro. We examined the capacity of MSCs loaded on PET (MSCs/PET) to induce wound healing in an experimental model of full-thickness wound. METHODS Human MSCs were seeded and cultured on PET membranes at 37 °C for 48 h. Adhesion, viability, proliferation, migration, multipotential differentiation and chemokine production were evaluated in cultures of MSCs/PET. The possible therapeutic effect of MSCs/PET on the re-epithelialization of full thickness wounds was examined at day 3 post-wounding in C57BL/6 mice. Histological and immunohistochemical (IH) studies were performed to evaluate wound re-epithelialization and the presence of epithelial progenitor cells (EPC). As controls, wounds without treatment or treated with PET were established. RESULTS We observed MSCs adhered to PET membranes and maintained their viability, proliferation and migration. They preserved their multipotential capacity of differentiation and ability of chemokine production. MSCs/PET implants promoted an accelerated wound re-epithelialization, after three days post-wounding. It was associated with the presence of EPC Lgr6+ and K6+. DISCUSSION Our results show that MSCs/PET implants induce a rapid re-epithelialization of deep- and full-thickness wounds. MSCs/PET implants constitute a potential clinical therapy for treating cutaneous wounds.
Collapse
Affiliation(s)
- Betzabeth Pereira
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela; Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Kharelys Duque
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Giselle Ramos-Gonzalez
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Dylana Díaz-Solano
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Olga Wittig
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
| | - Mariela Zamora
- Departamento de Dermatologia, Hospital Militar "Dr Carlos Arvelo, Venezuela
| | - Teresa Gledhill
- Servicio de Anatomía Patológica, Hospital Vargas, Caracas 1010-A, Venezuela
| | - José E Cardier
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
| |
Collapse
|