1
|
Parise A, Manini I, Pobega E, Covaceuszach S, Secco L, Simonelli F, Mastantuono S, di Loreto C, Pizzignach A, Skrap M, Vindigni M, Sgarra R, Manfioletti G, Cesselli D, Magistrato A. Identification of a new small Rho GTPase inhibitor effective in glioblastoma human cells. Eur J Med Chem 2025; 292:117704. [PMID: 40334503 DOI: 10.1016/j.ejmech.2025.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumour. The prognosis for GBM patients remains poor due to rapid tumour recurrence and resistance to conventional treatments. Small Rho GTPase proteins, which regulate cell shape and motility, are critical for GBM aggressive growth and infiltration into the surrounding brain parenchyma. Hence, small-molecule inhibitors targeting them represent an appealing opportunity to hinder the infiltration behaviour of GBM. Here, a synergistic experimental and computational approach allowed us to identify an inhibitor that reduces migration in patient-derived GBM cell lines. Computational and in vitro functional assays reveal that this compound inhibits Rho GTPases function by targeting multiple allosteric sites thereby enhancing flexibility of key functional regions and hindering their interaction with protein regulators. Our research unveiled a novel hit molecule targeting Rho GTPases with significant potential to improve the treatment of GBM and other highly aggressive tumours.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy
| | - Enrico Pobega
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Strada Statale 14 Km 16.5, Basovizza, 34149, (TS), Italy
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Federica Simonelli
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy
| | | | - Carla di Loreto
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy; Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Alessio Pizzignach
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100, Udine, Italy
| | - Marco Vindigni
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100, Udine, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34151, Trieste, Italy
| | | | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100, Udine, Italy; Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomia 265, 34136, Trieste, Italy.
| |
Collapse
|
2
|
Brenner DA, Dadario NB, Zaman A, Valdivia DJ, Pandya M, Yeung J, Sughrue M, Teo C. Surgical outcomes in high-grade adult type diffuse gliomas (ATDG) with a previous diagnosis of anaplastic astrocytoma without adjuvant therapy. Clin Neurol Neurosurg 2025; 253:108879. [PMID: 40253838 DOI: 10.1016/j.clineuro.2025.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Gliomas pose a significant treatment challenge due to their varied genetic makeup and clinical presentations. This study examines a unique cohort of high-grade adult type diffuse gliomas (ATDG) previously diagnosed as anaplastic astrocytoma prior to the WHO 2021 tumor classification changes. This cohort chose to undergo only surgical resection without adjuvant therapies. We provide a rare dataset of patients allowing for new insight into the natural progression of this disease with surgical treatment alone. METHODS A retrospective review was conducted of patients who were operated on by a single surgeon from the years 2002-2022 and who were diagnosed as having a Grade III Anaplastic Astrocytoma before the WHO 2021 guidelines were published. Correcting for the criteria in the 2021 Guidelines resulted in a mixture of adult-type diffuse malignant gliomas (ATDG), including IDH-Mutant astrocytomas (Grade 3 and 4) and IDH-WT Glioblastoma. All patients included underwent surgical resection alone after declining any adjuvant therapy for various reasons. RESULTS A total of 20 patients met the inclusion criteria with an average age of 38 years. Among them, 15 had IDH-mutant (IDH-mt) Grade 3 astrocytomas (75 %), 1 had an IDH-mt Grade 4 astrocytoma (5 %), and 4 had IDH-wildtype (IDH-WT) glioblastomas (20 %). The 5-year survival rate for the entire cohort was 74.0 %. Grade 3 astrocytomas had a 5-year survival of 86.7 %, while Grade 4 astrocytomas and IDH-WT GBM patients exhibited a 5-year survival rate of 40 %. 5-year progression-free survival (PFS) rates were derived from the surgery date up until the recurrence or censorship. The collective cohort had a PFS rate of 34.3 %. Grade 3 astrocytomas achieved a 5-year PFS of 32.0 %, whereas Grade 4 astrocytomas and IDH-WT GBM reached a PFS of 40.0 %. CONCLUSION In our cohort study, we demonstrate that patients with ATDG can potentially achieve relative long-term survival through surgical resection alone. This unique cohort highlights the natural progression of this disease with surgery alone and provides the foundation for future more rigorous studies to evaluate the additive benefit of different adjuvant therapies. With evolving tumor classifications and variable responses to standard therapeutics, it becomes imperative to revisit and understand the additive benefits of different chemotherapeutic protocols in addition to surgical resection.
Collapse
Affiliation(s)
- Daniel A Brenner
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Ashraf Zaman
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Daniel J Valdivia
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | | | - Jacky Yeung
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
3
|
Bai P, Wang P, Ren T, Tang Q, Lin Z, Zhang N, Zhao L, Zhong R, Sun G. Natural small molecule thymoquinone increases the chemosensitivity of glioblastoma to temozolomide through inhibiting Wnt/β-catenin signaling pathway to downregulate MGMT expression: In vitro and in vivo validation. Biochem Pharmacol 2025; 236:116886. [PMID: 40127739 DOI: 10.1016/j.bcp.2025.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Temozolomide (TMZ) is the only one oral first-line chemotherapeutic drug for glioblastoma treatment. However, O6-methylguanine-DNA methyltransferase (MGMT) can repair the lethal O6-methylguaine (O6-MeG) lesion produced by TMZ, thus imparting resistance to TMZ. Currently, the clinical utility of small molecule covalent MGMT inhibitors is limited by the occurrence of severe hematological toxicity. Therefore, developing new strategies for overcoming MGMT-mediated resistance is highly urgent. Here, we explored the feasibility that modulating Wnt/β-catenin signaling pathway in glioblastoma to inhibit MGMT expression to overcome TMZ resistance. From eight natural products or approved drugs with inhibitory effects on Wnt/β-catenin pathway, we found thymoquinone (TQ) completely suppressed MGMT expression in glioblastoma SF763 and SF767 cell lines within 24 h. As expected, TQ exhibited synergistic killing effects with TMZ in SF763 and SF767 cells, while in MGMT-negative SF126 cells only additive effect observed. Moreover, TQ remarkably enhanced the inhibition of TMZ on cell proliferation, clone formation, invasion and migration, and promoted cell apoptosis. In resistant SF763 mice tumor xenograft model, TQ significantly increased the suppression of TMZ on tumor growth, meanwhile maintaining good biosafety. Western blotting analysis indicated that TQ significantly inhibited the nuclear translocation of β-catenin and the expression of downstream proteins Cyclin D1 and MGMT. The addition of Wnt activator LiCl reversed the nuclear translocation of β-catenin and the expression of Cyclin D1 and MGMT induced by TQ. For the first time, our findings indicate that TQ can considerably increase the sensitivity of glioblastoma to TMZ by interfering Wnt/β-catenin pathway to downregulate MGMT expression.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peng Wang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ziao Lin
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou 311199, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311100, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Liang Q, Wen F, Wang P, Jiang Y, Geng Y, Zha X. A patent review of IDH1 inhibitors (2018-present). Expert Opin Ther Pat 2025:1-28. [PMID: 40317206 DOI: 10.1080/13543776.2025.2500959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION isocitrate dehydrogenase 1 (IDH1), a key metabolic enzyme in the cytosol, catalyzes the oxidative decarboxylation of isocitrate to produce α-ketoglutarate (α-KG) and NADPH in the TCA cycle. Pan-cancer studies have demonstrated that IDH1 exhibits a higher mutation frequency and is implicated in a broader range of cancer types, indicating its potential as a promising anti-tumor target. AREAS COVERED We summarized patents from 2018 to the present that identify novel molecules, compounds, formulations, and methods for inhibiting mIDH1. The literature was retrieved from Web of Science and PubMed. Patent information was obtained via the State Intellectual Property Office's Patent Search and Analysis platform. Clinical data were sourced from the Cortellis Drug Discovery Intelligence database. The date of the most recent search was . EXPERT OPINION Due to multiple signaling pathway dysregulations and compensatory pathways in solid tumor, monotherapies targeting mutant IDH1 (mIDH1) often fail to achieve desired therapeutic outcomes. Consequently, the combination of mIDH1 inhibitors with other therapeutic agents can enhance the efficacy of antitumor treatments and mitigate the risk of drug resistance. Moreover, the development of novel dual or multiple inhibitors and functional molecules targeting mIDH1 May represent a more promising approach.
Collapse
Affiliation(s)
- Qing Liang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Peilin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yitong Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yuting Geng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Al Ghafari M, El Jaafari N, Mouallem M, Maassarani T, El-Sibai M, Abi-Habib R. Key genes altered in glioblastoma based on bioinformatics (Review). Oncol Lett 2025; 29:243. [PMID: 40182607 PMCID: PMC11966088 DOI: 10.3892/ol.2025.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis. Recent advancements in bioinformatics have contributed to uncovering the genetic alterations that underlie the development and progression of GBM. Analysis of extensive genomic data led to the identification of significant pathways involved in GBM, such as the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways, alongside key genes such as EGFR, TP53 and TERT. These findings have enhanced our understanding of GBM biology and led to the identification of new therapeutic targets. Bioinformatics has become an indispensable tool in pinpointing the genetic modifications that drive GBM, paving the way for innovative treatment strategies. This approach not only aids in comprehending the complexities of GBM but also holds promise for improving outcomes in patients suffering from this devastating disease. The ongoing integration of bioinformatics in GBM research continues to be vital for advancing therapeutic options.
Collapse
Affiliation(s)
- Marcelino Al Ghafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nour El Jaafari
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mariam Mouallem
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tala Maassarani
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Biological Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
6
|
Chithra P, Bhatia D, Solanki R. Advanced nanomicelles for targeted glioblastoma multiforme therapy. BIOMATERIALS ADVANCES 2025; 170:214221. [PMID: 39922136 DOI: 10.1016/j.bioadv.2025.214221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor, classified as grade IV by the WHO. Despite standard treatments like surgical resection, radiotherapy and chemotherapy (i.e. temozolomide), GBM's prognosis remains poor due to its heterogeneity, recurrence and the impermeability of the blood-brain barrier (BBB). The exact cause of GBM is unclear with potential factors including genetic predisposition and ionizing radiation. Innovative approaches such as nanomicelles-nanoscale, self-assembled structures made from lipids and amphiphilic polymers show promise for GBM therapy. These nanocarriers enhance drug solubility and stability, enabling targeted delivery of therapeutic agents across the BBB. This review explores the synthesis strategies, characterization and applications of nanomicelles in GBM treatment. Nanomicelles improve the delivery of both hydrophobic and hydrophilic drugs and provide non-invasive delivery options. By offering site-specific targeting, biocompatibility, and stability, nanomicelles can potentially overcome the limitations of current GBM therapies. This review highlights recent advancements in the use of nanomicelles for delivering therapeutic agents and nucleic acids addressing the critical need for advanced treatments to improve GBM patient outcomes.
Collapse
Affiliation(s)
- P Chithra
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
7
|
Zhang X, Ou N, Liu C, Zhuo Z, Matthews PM, Liu Y, Ye C, Bai W. Unsupervised brain MRI tumour segmentation via two-stage image synthesis. Med Image Anal 2025; 102:103568. [PMID: 40199108 DOI: 10.1016/j.media.2025.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Deep learning shows promise in automated brain tumour segmentation, but it depends on costly expert annotations. Recent advances in unsupervised learning offer an alternative by using synthetic data for training. However, the discrepancy between real and synthetic data limits the accuracy of the unsupervised approaches. In this paper, we propose an approach for unsupervised brain tumour segmentation on magnetic resonance (MR) images via a two-stage image synthesis strategy. This approach accounts for the domain gap between real and synthetic data and aims to generate realistic synthetic data for model training. In the first stage, we train a junior segmentation model using synthetic brain tumour images generated by hand-crafted tumour shape and intensity models, and employs a validation set with distribution shift for model selection. The trained junior model is applied to segment unlabelled real tumour images, generating pseudo labels that capture realistic tumour shape, intensity, and texture. In the second stage, realistic synthetic tumour images are generated by mixing brain images with tumour pseudo labels, closing the domain gap between real and synthetic images. The generated synthetic data is then used to train a senior model for final segmentation. In experiments on five brain imaging datasets, the proposed approach, named as SynthTumour, surpasses existing unsupervised methods and demonstrates high performance for both brain tumour segmentation and ischemic stroke lesion segmentation tasks.
Collapse
Affiliation(s)
- Xinru Zhang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China; Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Ni Ou
- School of Automation, Beijing Institute of Technology, Beijing, China
| | - Chenghao Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Chuyang Ye
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.
| | - Wenjia Bai
- Department of Brain Sciences, Imperial College London, London, United Kingdom; Department of Computing, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Du Y, Bian Y, Baecker D, Dhawan G, Semghouli A, Kiss L, Zhang W, Sorochinsky AE, Soloshonok VA, Han J. Fluorine in the Pharmaceutical Industry: FDA-Approved Fluorine-Containing Drugs in 2024. Chemistry 2025; 31:e202500662. [PMID: 40119787 DOI: 10.1002/chem.202500662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/24/2025]
Abstract
Fluorine has become an essential element in the development of modern pharmaceuticals, due to its unique chemical properties that can significantly enhance the biological activity, metabolic stability, and lipophilicity of drug molecules. This review explores recent advancements in the synthesis and application of fluorine-containing drugs approved by the US Food and Drug Administration (FDA) in 2024. These novel drugs demonstrate improved efficacy and safety profiles, addressing a range of therapeutic areas including oncology, infectious diseases, metabolic disorders and genetic disorders that affect the adrenal glands. The incorporation of fluorine atoms into drug candidates has facilitated the development of molecules with optimized pharmacokinetic and pharmacodynamic properties, leading to better patient outcomes. The review further discusses the synthetic methodologies employed, the structural characteristics of these drugs, and their clinical implications, providing insights into the ongoing innovation within the pharmaceutical industry driven by fluorine chemistry.
Collapse
Affiliation(s)
- Youlong Du
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yeping Bian
- Department of Intensive Care Unit, Geriatric Hospital of Nanjing Medical University, No.30 Luojia Road, Nanjing, 210024, China
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Gagan Dhawan
- School of Allied Medical Sciences, Delhi Skill and Entrepreneurship University, Dwarka, New Delhi, 110077, India
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Anas Semghouli
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, H-1117, Hungary
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, USA, 02125
| | - Alexander E Sorochinsky
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, The National Academy of Sciences of Ukraine, 1 Murmanska str., Kyiv, 02094, Ukraine
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, Bilbao, 48013, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Wang P, Wang J, Fang Z, Chen Q, Zhang Y, Qiu X, Bao Z. Novel metabolic subtypes in IDH-mutant gliomas: implications for prognosis and therapy. BMC Cancer 2025; 25:815. [PMID: 40307749 PMCID: PMC12044917 DOI: 10.1186/s12885-025-14176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Although IDH-mutant glioma generally has a better prognosis than their IDH-wildtype counterparts, considerable prognostic heterogeneity persists among patients with the same IDH mutation. Current study has primarily focused on the different IDH statuses or grades, while the metabolic heterogeneity within IDH-mutant gliomas remains insufficiently characterized. This study aims to identify transcriptomic metabolic subtypes and associated immune microenvironment differences to better understand survival variability and potential therapeutic targets in IDH-mutant glioma. METHODS Patients with IDH-mutant gliomas were included from four public datasets (TCGA, n = 373; CGGA325, n = 167; CGGA693, n = 333; GLASS, n = 100), supplemented by 22 cases from Beijing Tiantan Hospital as an independent cohort. Consensus clustering was used to define novel metabolic subtypes. Clinical features were assessed using chi-square tests and Kaplan-Meier analysis. Metabolic profiles were characterized through enrichment analysis and GSVA; immune infiltration was analyzed using CIBERSORTx and ESTIMATE. Tumor samples from the independent cohort underwent untargeted metabolomics for validation. LASSO regression was applied to select metabolic signatures, and the CGP2014 drug library was used for drug screening. RESULTS Three metabolic subtypes (C1-C3) with distinct prognoses (p < 0.05) were identified. C1 exhibited enhanced carbohydrate and nucleotide metabolism; C2 displayed upregulated amino acid and lipid metabolism; and C3 demonstrated elevated lipid, nucleotide, and vitamin metabolism. These patterns were validated in the independent cohort. Subtypes were also correlated with immune infiltration. A 13-gene metabolic signature was established to stratify prognostic risk and suggest subtype-specific drug sensitivities. CONCLUSIONS Our study provided a novel metabolic subtype for IDH-mutant glioma and highlighted these patients' metabolic heterogeneity and potential therapeutic strategies.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiaodong Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Xiaoguang Qiu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Huang J, Zhou J, Wang J, Yi Y, Zhang L, Qiu S, Tan Y, Guo Q, Zhao F, Li X, Niu Y, Li H, Wu C, Kang K, Liu Q, Gou D. Diagnostic and prognostic potential of cell-free RNAs in cerebrospinal fluid and plasma for brain tumors. NPJ Precis Oncol 2025; 9:123. [PMID: 40301505 PMCID: PMC12041490 DOI: 10.1038/s41698-025-00909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Systematic assessment of the clinical applicability of cell-free RNAs (cfRNAs), which includes broader RNA categories beyond microRNAs, for patients with brain tumors remains largely unexplored due to the lack of sensitive profiling technologies. Our study endeavors to bridge this gap by utilizing an optimized cell-free transcriptome profiling technique that we have recently developed. We comprehensively profiled the cell-free transcriptome in plasma and cerebrospinal fluid (CSF) samples from a total of 85 patients with glioma, meningioma, or tumor-free central nervous system diseases. We identified 16 cfRNA signatures in CSF with robust performance in brain tumor detection (test set AUC = 0.94; validation set AUC = 1). The integration of CSF and plasma-derived cfRNAs outperformed individual analyses using either CSF or plasma candidates for the classification of glioma (test set AUC = 0.94; validation set AUC = 0.85) and meningioma (test set AUC = 0.92; validation set AUC = 0.83). Additionally, we identified 33 CSF and 3 plasma cfRNAs with prognostic significance for postoperative patient outcomes. Multivariate analysis showed that cfRNA-based risk scores (Hazard ratio=9.9) outperformed traditional risk factors in predicting recurrence-free survival. Importantly, our findings in liquid biopsies are consistent with results from primary tumor tissues. By delving into the diagnostic and prognostic implications of cfRNA signatures in CSF and plasma, our study paves the way for improved diagnostic precision and personalized therapeutic interventions for brain tumor patients.
Collapse
Affiliation(s)
- Jinyong Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jinxia Zhou
- Department of Neurology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yonghao Yi
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Lu Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shuyong Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuanyan Tan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Qianwen Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Feilong Zhao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Xinying Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
García-Vázquez N, González-Robles TJ, Lane E, Spasskaya D, Zhang Q, Kerzhnerman MA, Jeong Y, Collu M, Simoneschi D, Ruggles KV, Róna G, Kaisari S, Pagano M. Stabilization of GTSE1 by cyclin D1-CDK4/6-mediated phosphorylation promotes cell proliferation with implications for cancer prognosis. eLife 2025; 13:RP101075. [PMID: 40272409 PMCID: PMC12021411 DOI: 10.7554/elife.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1-CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.
Collapse
Affiliation(s)
- Nelson García-Vázquez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Tania J González-Robles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Medicine, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Daria Spasskaya
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - YeonTae Jeong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Marta Collu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of MedicineNew YorkUnited States
| | - Gergely Róna
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural SciencesBudapestHungary
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
12
|
Huang Y, Chen L, Zhang Z, Liu Y, Huang L, Liu Y, Liu P, Song F, Li Z, Zhang Z. Integration of histopathological image features and multi-dimensional omics data in predicting molecular features and survival in glioblastoma. Front Med (Lausanne) 2025; 12:1510793. [PMID: 40337276 PMCID: PMC12055811 DOI: 10.3389/fmed.2025.1510793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Objectives Glioblastoma (GBM) is a highly malignant brain tumor with complex molecular mechanisms. Histopathological images provide valuable morphological information of tumors. This study aims to evaluate the predictive potential of quantitative histopathological image features (HIF) for molecular characteristics and overall survival (OS) in GBM patients by integrating HIF with multi-omics data. Methods We included 439 GBM patients with eligible histopathological images and corresponding genetic data from The Cancer Genome Atlas (TCGA). A total of 550 image features were extracted from the histopathological images. Machine learning algorithms were employed to identify molecular characteristics, with random forest (RF) models demonstrating the best predictive performance. Predictive models for OS were constructed based on HIF using RF. Additionally, we enrolled tissue microarrays of 67 patients as an external validation set. The prognostic histopathological image features (PHIF) were identified using two machine learning algorithms, and prognosis-related gene modules were discovered through WGCNA. Results The RF-based OS prediction model achieved significant prognostic accuracy (5-year AUC = 0.829). Prognostic models were also developed using single-omics, the integration of HIF and single-omics (HIF + genomics, HIF + transcriptomics, HIF + proteomics), and all features (multi-omics). The multi-omics model achieved the best prediction performance (1-, 3- and 5-year AUCs of 0.820, 0.926 and 0.878, respectively). Conclusion Our study indicated a certain prognostic value of HIF, and the integrated multi-omics model may enhance the prognostic prediction of GBM, offering improved accuracy and robustness for clinical application.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyuan Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Leizhen Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Pengcheng Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengqin Song
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lally AR, Ghosh SR, Pecorari IL, Reynolds J, Ledet A, Begley S, Diaz EJ, Zhu E, Joseph K, McGeehan K, Schulder M, Johanns T, Ziemba YC, Agarwal V. Do the benefits of IDH mutations in high-grade glioma persist beyond the first recurrence? A multi-institutional retrospective analysis. J Neurooncol 2025:10.1007/s11060-025-05049-2. [PMID: 40261557 DOI: 10.1007/s11060-025-05049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Recurrence is inevitable in both IDH wild-type glioblastoma and IDH-mutant WHO grade 3 or 4 astrocytoma. While IDH-mutant astrocytomas are associated with longer survival and delayed first progression, less is known about disease course beyond initial treatment. This study examines whether IDH mutation status influences time to second recurrence and identifies additional predictors of recurrence intervals. METHODS This retrospective, multi-institutional study included adults diagnosed with pathologically confirmed high-grade glioma (HGG) between 2015 and 2020. HGG refers to IDH-mutant WHO grade 3 or 4 astrocytomas and IDH wild-type glioblastomas, consistent with WHO CNS5 criteria. Demographics, treatment, extent of resection, and molecular markers were analyzed. Time-to-recurrence was calculated per RANO 2.0 criteria. Statistical tests included Mann‒Whitney U, Fisher's exact, and Cox regression. RESULTS Among 319 patients, 121 met inclusion criteria. Fourteen (11.6%) had IDH-mutant astrocytomas, and 107 (88.4%) had IDH wild-type glioblastomas. Mean time to first recurrence was significantly longer in IDH-mutant patients (17.5 months) than IDH wild-type (9.8 months, p = 0.0130). Mean time-to-second recurrence was not significantly different (IDH-mutant: 10.8 months, IDH wild-type: 8.1 months, p = 0.176). Multivariate analysis found IDH wild-type status (p = 0.0491) and Black race (p = 0.0238) predicted shorter time to first recurrence. CONCLUSIONS IDH mutation status significantly affects time to first but not second recurrence. This study offers insight into recurrence patterns and highlights disparities in disease progression.
Collapse
Affiliation(s)
- Anne R Lally
- Department of Neurological Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, 3316 Rochambeau Avenue, Bronx, NY, USA.
| | - Sayak R Ghosh
- Department of Neurological Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, 3316 Rochambeau Avenue, Bronx, NY, USA
| | - Isabella L Pecorari
- Department of Neurological Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, 3316 Rochambeau Avenue, Bronx, NY, USA
| | - Joshua Reynolds
- Department of Neurological Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, 3316 Rochambeau Avenue, Bronx, NY, USA
| | - Alexander Ledet
- Department of Neurological Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, 3316 Rochambeau Avenue, Bronx, NY, USA
| | - Sabrina Begley
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, 500 Hofstra Blvd, NY, 11549, USA
| | - Elizabeth Juarez Diaz
- Department of Oncology, Washington University at St. Louis, St. Louis, 660 S Euclid Ave, MO, 63110, USA
| | - Eric Zhu
- Department of Oncology, Washington University at St. Louis, St. Louis, 660 S Euclid Ave, MO, 63110, USA
| | - Karan Joseph
- Department of Oncology, Washington University at St. Louis, St. Louis, 660 S Euclid Ave, MO, 63110, USA
| | - Kyle McGeehan
- Department of Oncology, Washington University at St. Louis, St. Louis, 660 S Euclid Ave, MO, 63110, USA
| | - Michael Schulder
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, 500 Hofstra Blvd, NY, 11549, USA
| | - Tanner Johanns
- Department of Oncology, Washington University at St. Louis, St. Louis, 660 S Euclid Ave, MO, 63110, USA
| | - Yonah C Ziemba
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, 500 Hofstra Blvd, NY, 11549, USA
| | - Vijay Agarwal
- Department of Neurological Surgery, Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, 3316 Rochambeau Avenue, Bronx, NY, USA
| |
Collapse
|
14
|
Li C, Xue X, Kong J, Zhang J. A fatty acid metabolism-related gene signature can predict poor prognosis in glioma. Anticancer Drugs 2025:00001813-990000000-00383. [PMID: 40278822 DOI: 10.1097/cad.0000000000001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gliomas, arising from supportive glial cells in the central nervous system, present significant challenges in oncology due to their varying aggressiveness and poor prognosis, particularly in high-grade forms. Understanding the molecular pathways involved in glioma progression is essential for developing effective treatment strategies. This study aimed to develop a fatty acid metabolism (FAM)-related gene signature to better predict poor prognosis in glioma patients, thereby facilitating more targeted therapeutic approaches. We employed the Least Absolute Shrinkage and Selection Operator regression analysis to identify a gene signature associated with FAM from The Cancer Genome Atlas and Chinese Glioma Genome Atlas RNA-seq datasets. Survival analyses, including Kaplan-Meier and Cox regression analyses, were conducted to assess the prognostic value of the identified genes. A total of seven FAM-related genes were associated with survival outcomes in isocitrate dehydrogenase-1 wild-type glioblastoma. The constructed gene signature effectively stratified patients into high-risk and low-risk groups, with high-risk patients demonstrating significantly poorer survival. PTGR1 emerged as the core gene, closely linked to malignant progression and poor prognosis. The FAM-related gene signature developed in this study provides a reliable tool for predicting poor outcomes in glioma patients. PTGR1, identified as a pivotal gene within this signature, may serve as a potential target for future therapeutic interventions, offering promising avenues for enhancing patient survival.
Collapse
Affiliation(s)
- Chuanyu Li
- Neurosurgery Department, Tianjin Hospital, Tianjin University
| | - Xinran Xue
- Neurology Department, Tianjin Third Central Hospital, Tianjin
| | - Jiahui Kong
- Clinical Medical College, Jiamusi University, Jiamusi, China
| | - Jianjun Zhang
- Neurosurgery Department, Tianjin Hospital, Tianjin University
| |
Collapse
|
15
|
Bai P, Wang P, Ren T, Tang Q, Zhang N, Zhao L, Zhong R, Sun G. Discovery of a novel Wnt inhibitor DK419: Reversing temozolomide resistance in glioblastoma by switching off Wnt/β-catenin signaling pathway to inhibit MGMT expression. Eur J Med Chem 2025; 288:117411. [PMID: 39978109 DOI: 10.1016/j.ejmech.2025.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Temozolomide (TMZ) remains the primary oral chemotherapeutic agent for glioblastoma, but its efficacy is hampered by resistance mechanisms involving O6-methylguanine-DNA methyltransferase (MGMT). MGMT repairs the TMZ-induced lethal O6-methylguanine (O6-MeG) lesions, leading to treatment resistance. Current small molecule covalent MGMT inhibitors have limited clinical application due to severe hematological toxicity when used with TMZ. Therefore, alternative strategies to overcome MGMT-mediated resistance are critically needed. Targeting the Wnt/β-catenin signaling pathway to suppress MGMT expression presents a promising approach. We synthesized and discovered that a novel Wnt inhibitor, DK419 (6-chloro-2-(trifluoromethyl)-N-(4-(trifluoromethyl)phenyl)-1H -benzimidazole-4-carboxamide), effectively suppressed MGMT expression within 12 h in TMZ-resistant SF763 and SF767 cell lines. DK419 demonstrated synergistic cytotoxic effects with TMZ in these cell lines, while only an additive effect was observed in MGMT-negative SF126 cells. Furthermore, DK419 significantly enhanced TMZ's inhibitory effects on cell proliferation, colony formation, invasion, and migration, while also promoting apoptosis. In a resistant mouse tumor xenograft model, DK419 significantly boosted TMZ's tumor growth suppression, maintaining good biosafety. Western blot analysis revealed that DK419 markedly inhibited the nuclear translocation of β-catenin and decreased the expression of its downstream targets, Cyclin D1 and MGMT. The addition of the Wnt activator LiCl reversed DK419-induced effects on β-catenin nuclear translocation and Cyclin D1 and MGMT expression. For the first time, our findings demonstrate that DK419 can significantly enhance glioblastoma sensitivity to TMZ by modulating the Wnt/β-catenin pathway to downregulate MGMT expression.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Peng Wang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
16
|
Kołodziejczak-Guglas I, Simões RLS, de Souza Santos E, Demicco EG, Lazcano Segura RN, Ma W, Wang P, Geffen Y, Storrs E, Petralia F, Colaprico A, da Veiga Leprevost F, Pugliese P, Ceccarelli M, Noushmehr H, Nesvizhskii AI, Kamińska B, Priebe W, Lubiński J, Zhang B, Lazar AJ, Kurzawa P, Mesri M, Robles AI, Ding L, Malta TM, Wiznerowicz M. Proteomic-based stemness score measures oncogenic dedifferentiation and enables the identification of druggable targets. CELL GENOMICS 2025:100851. [PMID: 40250426 DOI: 10.1016/j.xgen.2025.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/13/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Cancer progression and therapeutic resistance are closely linked to a stemness phenotype. Here, we introduce a protein-expression-based stemness index (PROTsi) to evaluate oncogenic dedifferentiation in relation to histopathology, molecular features, and clinical outcomes. Utilizing datasets from the Clinical Proteomic Tumor Analysis Consortium across 11 tumor types, we validate PROTsi's effectiveness in accurately quantifying stem-like features. Through integration of PROTsi with multi-omics, including protein post-translational modifications, we identify molecular features associated with stemness and proteins that act as active nodes within transcriptional networks, driving tumor aggressiveness. Proteins highly correlated with stemness were identified as potential drug targets, both shared and tumor specific. These stemness-associated proteins demonstrate predictive value for clinical outcomes, as confirmed by immunohistochemistry in multiple samples. The findings emphasize PROTsi's efficacy as a valuable tool for selecting predictive protein targets, a crucial step in customizing anti-cancer therapy and advancing the clinical development of cures for cancer patients.
Collapse
Affiliation(s)
- Iga Kołodziejczak-Guglas
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Renan L S Simões
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Emerson de Souza Santos
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5G 1X5, Canada
| | - Rossana N Lazcano Segura
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Pietro Pugliese
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Houtan Noushmehr
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Alexey I Nesvizhskii
- Departments of Pathology and Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Waldemar Priebe
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paweł Kurzawa
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, 60-514 Poznań, Poland
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850, USA
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tathiane M Malta
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil.
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Department of Oncology, Institute of Oncology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, 60-659 Poznań, Poland.
| |
Collapse
|
17
|
Anwer MS, Abdel-Rasol MA, El-Sayed WM. Emerging therapeutic strategies in glioblastsoma: drug repurposing, mechanisms of resistance, precision medicine, and technological innovations. Clin Exp Med 2025; 25:117. [PMID: 40223032 PMCID: PMC11994545 DOI: 10.1007/s10238-025-01631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Glioblastoma (GBM) is an aggressive Grade IV brain tumor with a poor prognosis. It results from genetic mutations, epigenetic changes, and factors within the tumor microenvironment (TME). Traditional treatments like surgery, radiotherapy, and chemotherapy provide limited survival benefits due to the tumor's heterogeneity and resistance mechanisms. This review examines novel approaches for treating GBM, focusing on repurposing existing medications such as antipsychotics, antidepressants, and statins for their potential anti-GBM effects. Advances in molecular profiling, including next-generation sequencing, artificial intelligence (AI), and nanotechnology-based drug delivery, are transforming GBM diagnosis and treatment. The TME, particularly GBM stem cells and immune evasion, plays a key role in therapeutic resistance. Integrating multi-omics data and applying precision medicine show promise, especially in combination therapies and immunotherapies, to enhance clinical outcomes. Addressing challenges such as drug resistance, targeting GBM stem cells, and crossing the blood-brain barrier is essential for improving treatment efficacy. While current treatments offer limited benefits, emerging strategies such as immunotherapies, precision medicine, and drug repurposing show significant potential. Technologies like liquid biopsies, AI-powered diagnostics, and nanotechnology could help overcome obstacles like the blood-brain barrier and GBM stem cells. Ongoing research into combination therapies, targeted drug delivery, and personalized treatments is crucial. Collaborative efforts and robust clinical trials are necessary to translate these innovations into effective therapies, offering hope for improved survival and quality of life for GBM patients.
Collapse
Affiliation(s)
- Mohamed S Anwer
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohammed A Abdel-Rasol
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
18
|
Tang J, Amin MA, Campian JL. Glioblastoma Stem Cells at the Nexus of Tumor Heterogeneity, Immune Evasion, and Therapeutic Resistance. Cells 2025; 14:562. [PMID: 40277888 PMCID: PMC12025403 DOI: 10.3390/cells14080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma (GBM) is an exceedingly aggressive primary brain tumor defined by rapid growth, extensive infiltration, and resistance to standard therapies. A central factor driving these malignancies is the subpopulation of glioblastoma stem cells (GSCs), which possess self-renewal capacity, multipotency, and the ability to regenerate tumor heterogeneity. GSCs contribute to key hallmarks of GBM pathobiology, including relentless progression, resistance to chemotherapy and radiotherapy, and inevitable recurrence. GSCs exhibit distinct molecular signatures, enhanced DNA repair, and metabolic adaptations that protect them against conventional treatments. Moreover, they reside within specialized niches-such as perivascular or hypoxic microenvironments-that sustain stemness, promote immunosuppression, and facilitate angiogenesis. Recent discoveries highlight signaling pathways like Notch, Wnt/β-catenin, Hedgehog, STAT3-PARN, and factors such as TFPI2 and HML-2 as critical regulators of GSC maintenance, plasticity, and immune evasion. These findings underscore the complexity of GSC biology and their pivotal role in driving GBM heterogeneity and therapeutic failure. Emerging therapeutic strategies aim to target GSCs through multiple avenues, including surface markers, immunotherapeutics (e.g., CAR T cells), metabolic vulnerabilities, and combination regimens. Advances in patient-derived organoids, single-cell omics, and 3D co-culture models enable more accurate representation of the tumor ecosystem and personalized therapeutic approaches. Ultimately, improved understanding of GSC-specific targets and the tumor microenvironment promises more effective interventions, paving the way toward better clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Justin Tang
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.A.A.); (J.L.C.)
| | - Md Al Amin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.A.A.); (J.L.C.)
| | - Jian L. Campian
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.A.A.); (J.L.C.)
| |
Collapse
|
19
|
Alcicek S, Ronellenfitsch MW, Steinbach JP, Manzhurtsev A, Thomas DC, Weber KJ, Prinz V, Forster MT, Hattingen E, Pilatus U, Wenger KJ. Optimized Long-TE 1H sLASER MR Spectroscopic Imaging at 3T for Separate Quantification of Glutamate and Glutamine in Glioma. J Magn Reson Imaging 2025. [PMID: 40197808 DOI: 10.1002/jmri.29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Glutamate and glutamine are critical metabolites in gliomas, each serving distinct roles in tumor biology. Separate quantification of these metabolites using in vivo MR spectroscopy (MRS) at clinical field strengths (≤ 3T) is hindered by their molecular similarity, resulting in overlapping, hence indistinguishable, spectral peaks. PURPOSE To develop an MRS imaging (MRSI) protocol to map glutamate and glutamine separately at 3T within clinically feasible time, using J-modulation to enhance spectral differentiation, demonstrate its reliability/reproducibility, and quantify the metabolites in glioma subregions. STUDY TYPE Prospective. POPULATION Phantoms, 5 healthy subjects, and 30 patients with suspected glioma. IDH wild-type glioblastoma cases were evaluated to establish a uniform group. FIELD STRENGTH/SEQUENCE 3T, Research protocol: 2D 1H sLASER MRSI (40 and 120 ms TE) with water reference, 3D T1-weighted and 2D T2-weighted. Trial-screening process: T1-weighted, T1-weighted contrast-enhanced, T2-weighted, FLAIR. ASSESSMENT Spectral simulations and phantom measurements were performed to design and validate the protocol. Spectral quality/fitting parameters for scan-rescan measurements were obtained using LCModel. The proposed long-TE data were compared with short-TE data. BraTS Toolkit was employed for fully automated tumor segmentation. STATISTICAL TESTS Scan-rescan comparison was performed using Bland-Altman analysis. LCModel coefficient of modeling covariance (CMC) between glutamate and glutamine was mapped to evaluate their model interactions for each spectral fitting. Metabolite levels in tumor subregions were compared using one-way ANOVA and Kruskal-Wallis. A p value < 0.05 was considered statistically significant. RESULTS Spectral quality/fitting parameters and metabolite levels were highly consistent between scan-rescan measurements. A negative association between glutamate and glutamine models at short TE (CMC = -0.16 ± 0.06) was eliminated at long TE (0.01 ± 0.05). Low glutamate in tumor subregions (non-enhancing-tumor-core: 5.35 ± 4.45 mM, surrounding-non-enhancing-FLAIR-hyperintensity: 7.39 ± 2.62 mM, and enhancing-tumor: 7.60 ± 4.16 mM) was found compared to contralateral (10.84 ± 2.94 mM), whereas glutamine was higher in surrounding-non-enhancing-FLAIR-hyperintensity (9.17 ± 6.84 mM) and enhancing-tumor (7.20 ± 4.42 mM), but not in non-enhancing-tumor-core (4.92 ± 3.38 mM, p = 0.18) compared to contralateral (2.94 ± 1.35 mM). DATA CONCLUSION The proposed MRSI protocol (~12 min) enables separate mapping of glutamate and glutamine reliably along with other MRS-detectable standard metabolites in glioma subregions at 3T. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Seyma Alcicek
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
| | - Andrei Manzhurtsev
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
| | - Dennis C Thomas
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Katharina J Weber
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, Institute of Neurology (Edinger-Institute), Frankfurt am Main, Germany
| | - Vincent Prinz
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt am Main, Germany
| | - Marie-Thérèse Forster
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt am Main, Germany
| | - Elke Hattingen
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
| | - Katharina J Wenger
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt am Main, Germany
- LOEWE Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Frankfurt am Main, Germany
| |
Collapse
|
20
|
Lyu J, Liu Y, Liu N, Vu HS, Cai F, Cao H, Kaphle P, Wu Z, Botten GA, Zhang Y, Wang J, Achyutuni S, Gao X, Iacobucci I, Mullighan CG, Chung SS, Ni M, DeBerardinis RJ, Xu J. CD44-mediated metabolic rewiring is a targetable dependency of IDH-mutant leukemia. Blood 2025; 145:1553-1567. [PMID: 39841003 PMCID: PMC12002223 DOI: 10.1182/blood.2024027207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Recurrent isocitrate dehydrogenase (IDH) mutations catalyze nicotinamide adenine dinucleotide phosphate (NADPH)-dependent production of oncometabolite (R)-2-hydroxyglutarate (R-2HG) for tumorigenesis. IDH inhibition provides clinical response in a subset of acute myeloid leukemia (AML) cases; however, most patients develop resistance, highlighting the need for more effective IDH-targeting therapies. By comparing transcriptomic alterations in isogenic leukemia cells harboring CRISPR base-edited IDH mutations, we identify the activation of adhesion molecules including CD44, a transmembrane glycoprotein, as a shared feature of IDH-mutant leukemia, consistent with elevated CD44 expression in IDH-mutant AML patients. CD44 is indispensable for IDH-mutant leukemia cells through activating pentose phosphate pathway and inhibiting glycolysis by phosphorylating glucose-6-phosphate dehydrogenase and pyruvate kinase muscle isozyme M2, respectively. This metabolic rewiring ensures efficient NADPH generation for mutant IDH-catalyzed R-2HG production. Combining IDH inhibition with CD44 blockade enhances the elimination of IDH-mutant leukemia cells. Hence, we describe an oncogenic feedforward pathway involving CD44-mediated metabolic rewiring for oncometabolite production, representing a potentially targetable dependency of IDH-mutant malignancies.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yuxuan Liu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ningning Liu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hieu S. Vu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Feng Cai
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hui Cao
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pranita Kaphle
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zheng Wu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuannyu Zhang
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jin Wang
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sarada Achyutuni
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiaofei Gao
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Charles G. Mullighan
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stephen S. Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
21
|
Alcicek S, Simicic D, Blair L, Saint-Germain M, Zöllner HJ, Davies-Jenkins CW, Holdhoff M, Laterra J, Bettegowda C, Schreck KC, Lin DD, Barker PB, Kamson DO, Oeltzschner G. Pitfalls in 2HG detection with TE-optimized MRS at 3T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25324828. [PMID: 40236436 PMCID: PMC11998809 DOI: 10.1101/2025.03.31.25324828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background and Purpose In-vivo magnetic resonance spectroscopy (MRS) of 2-hydroxyglutarate (2HG) may provide diagnostic and monitoring biomarkers in isocitrate dehydrogenase (IDH)-mutated glioma. A previous meta-analysis has shown good diagnostic accuracy of TE-optimized PRESS for IDH-mutated glioma, but most studies feature IDH-wildtype glioma as a comparison. However, when considering newly identified brain lesions that may mimic glioma, full characterization of its diagnostic utility should also consider the accuracy of 2HG measurement in non-tumor tissue. Therefore, we tested how well TE-optimized 2HG levels distinguish between IDH-mutated glioma and non-tumor tissue, in this case, normal-appearing brain. We further examined the impact of different spectral modeling strategies (baseline stiffness, macromolecule inclusion, and basis set composition). Materials and Methods 48 patients with diagnosed/suspected IDH-mutated glioma were enrolled. 3T MRS data were acquired from tumor and contralateral non-tumor tissue with PRESS localization (TE = 97 ms, optimized for 2HG detection) and analyzed with 'LCModel' software. Receiver operating characteristic analysis evaluated 2HG estimates' ability to distinguish IDH-mutated glioma from non-tumor brain tissue. Modeling interactions between 2HG and other metabolites were evaluated to identify reasons for potential false-positive 2HG detection. Results TE-optimized PRESS distinguished IDH-mutated glioma from non-tumor tissue with lower sensitivity (range 0.76-0.62) and specificity (0.85-0.78) than literature suggests for IDH-mutated vs. IDH-wildtype glioma. Strong negative correlations between gamma-aminobutyric acid (GABA) and 2HG persisted across all modeling strategies and may lead to false-positive 2HG detection in non-tumor tissue. We further present a cautionary example from a patient on a ketogenic diet, showing that the ketone body acetone can interfere with 2HG detection. Conclusions Spectral overlap with GABA and acetone can lead to false-positive 2HG detection in non-tumor tissue. Clinicians need to be mindful of these pitfalls when interpreting 2HG estimates.
Collapse
Affiliation(s)
- Seyma Alcicek
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
- University Cancer Center Frankfurt (UCT), Frankfurt/Main, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Germany and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany
| | - Dunja Simicic
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay Blair
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Max Saint-Germain
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias Holdhoff
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - John Laterra
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Karisa C. Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Doris D. Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - David O. Kamson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Gabellier L, Bosetta E, Heiblig M, Sarry JE. [Metabolism and therapy in acute myeloid leukemia with isocitrate dehydrogenase 1/2 mutations]. Med Sci (Paris) 2025; 41:355-366. [PMID: 40294295 DOI: 10.1051/medsci/2025045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Isocitrate dehydrogenase IDH1 and IDH2, key enzymes in central and energy metabolism, are frequently mutated in acute myeloid leukemia (AML). They catalyze the production of the oncometabolite R-2-hydroxyglurate, which plays a key role in leukemogenesis and relapse of patients after standard AML treatments. Although the recent introduction of selective inhibitors of IDH1 (ivosidenib) and IDH2 (enasidenib) has improved the prognosis of patients with IDH1- and IDH2-mutant AML, several mechanisms of resistance to these treatments have already been identified, including metabolic reprogramming. The study of these mechanisms has opened up new therapeutic opportunities for the monitoring and treatment of patients with this subtype of AML.
Collapse
Affiliation(s)
- Ludovic Gabellier
- Service d'hématologie clinique, Centre Hospitalier Universitaire de Montpellier, Montpellier, France - Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Université de Montpellier, Montpellier, France
| | - Enzo Bosetta
- Centre de recherches en cancérologie de Toulouse, Inserm U1037, Université de Toulouse, Toulouse, France
| | - Maël Heiblig
- Service d'hématologie clinique, Hôpital Lyon Sud Pierre-Bénite, Lyon, France - Inserm U1111, CNRS UMR5308, Université Claude Bernard, Lyon I-ENS de Lyon, Faculté de médecine Lyon-Sud, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de recherches en cancérologie de Toulouse, Inserm U1037, Université de Toulouse, Toulouse, France
| |
Collapse
|
23
|
Wu J, Qiu J, Yang Y, Sun W, Wang P, Hu P, Yang Y, Liu Y, Wen J. A qBOLD-based clinical radiomics-integrated model for predicting isocitrate dehydrogenase-1 mutation in gliomas. Med Phys 2025; 52:2247-2256. [PMID: 39704530 DOI: 10.1002/mp.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Quantitative blood oxygenation level-dependent (qBOLD) technique can be applied to detect tissue damage and changes in hemodynamic in gliomas. It is not known whether qBOLD-based radiomics approaches can improve the prediction of isocitrate dehydrogenase-1 (IDH-1) mutation. PURPOSE To establish a qBOLD-based clinical radiomics-integrated model for predicting IDH-1 mutation in gliomas. METHODS A total of 125 patients of grade II-IV glioma (IDH1 mutation: IDH1 wild-type = 50:75) were divided into a training group (n = 87) and a validation group (n = 38). Contrast enhanced T1-weighted (CE-T1W), T2-weighted (T2W), and 3D multi-gradient-recalled-echo (MGRE) images were acquired. Radiomics features were extracted from the region of interests of each image. The feature selection and support vector machine radiomics models were established for each sequence. A clinical radiomics-integrated model was finally constructed combining the best radiomics model with age. The predictive effectiveness of the models was evaluated by area under the receiver operating characteristic curve (AUC). Brier score was used to assess overall predictive performance. Decision curve analysis and calibration curve were also conducted. RESULTS The best radiomics model was CE-T1W + T2W + qBOLD with AUCs of 0.823 (95% confidence interval [CI]: 0.743-0.831) in the training group and 0.751 (95% CI: 0.655-0.794) in the validation group, respectively. The clinical radiomics-integrated model, incorporating the best radiomics model with age, showed the best predictive effectiveness with AUCs of 0.851 (95% CI 0.759-0.918) in the training group and 0.786 (95% CI 0.622-0.902) in the validation group. CONCLUSION A clinical radiomics-integrated model that combined qBOLD parametric maps, CE-T1W, and T2W images with age achieved promising performance for predicting IDH1 mutation in glioma patients.
Collapse
Affiliation(s)
- Jingzhi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Qiu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Sun
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Hu
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yidong Yang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jie Wen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
24
|
Dissanayake UC, Roy A, Maghsoud Y, Polara S, Debnath T, Cisneros GA. Computational studies on the functional and structural impact of pathogenic mutations in enzymes. Protein Sci 2025; 34:e70081. [PMID: 40116283 PMCID: PMC11926659 DOI: 10.1002/pro.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Enzymes are critical biological catalysts involved in maintaining the intricate balance of metabolic processes within living organisms. Mutations in enzymes can result in disruptions to their functionality that may lead to a range of diseases. This review focuses on computational studies that investigate the effects of disease-associated mutations in various enzymes. Through molecular dynamics simulations, multiscale calculations, and machine learning approaches, computational studies provide detailed insights into how mutations impact enzyme structure, dynamics, and catalytic activity. This review emphasizes the increasing impact of computational simulations in understanding molecular mechanisms behind enzyme (dis)function by highlighting the application of key computational methodologies to selected enzyme examples, aiding in the prediction of mutation effects and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Upeksha C. Dissanayake
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Arkanil Roy
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Yazdan Maghsoud
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Sarthi Polara
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Tanay Debnath
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Present address:
Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - G. Andrés Cisneros
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
25
|
Huan X, Li J, Chu Z, Zhang H, Cheng L, Lun P, Du X, Chen X, Jiao Q, Jiang H. Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma. Neurosci Bull 2025; 41:569-582. [PMID: 39666195 PMCID: PMC11978602 DOI: 10.1007/s12264-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/19/2024] [Indexed: 12/13/2024] Open
Abstract
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Collapse
Affiliation(s)
- Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jiangang Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhaobin Chu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hongliang Zhang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lei Cheng
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Peng Lun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
26
|
Siddiq Z, Gilani A, Ung TH, Kleinschmidt-DeMasters BK. Isocitrate dehydrogenase-mutant astrocytoma in persons aged 55 years and older: Survival differences versus the young. J Neuropathol Exp Neurol 2025:nlaf024. [PMID: 40156602 DOI: 10.1093/jnen/nlaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Isocitrate dehydrogenase (IDH)-mutant astrocytomas show a peak incidence in young and middle-aged adults and have relatively favorable outcomes. In patients with these tumors ≥55 years at diagnosis, clinical, histopathologic, and prognostic characteristics are less clear. Here, we compared histopathological, immunohistochemical, molecular, and overall survival of 34 patients aged ≥55 years with a group of 84 patients aged 19-54 years; all had IDH mutant astrocytomas. The older cohort had 14 World Health Organization (WHO) grade 2, 7 WHO grade 3, and 13 WHO grade 4 tumors versus 24, 32, and 28 WHO grade 2, 3, and 4 tumors in the younger group. Comparing equal-grade tumors in both cohorts, Kaplan-Meyer survival analysis revealed that patients ≥55 years of age showed worse prognosis despite receiving comparable treatment regimens (Stupp protocol). Roughly equal numbers of noncanonical IDH mutations were seen in both groups (11.76% in ≥55 vs 19.04% in <55). Older patients were more likely to show retention of nuclear protein alpha-thalassemia and mental retardation X-linked syndrome (ATRX) and/or absence of strong P53 staining by immunohistochemistry. Although patients ≥55 years of age with astrocytomas, IDH-mutant, had worse overall survival, many, particularly those with low-grade tumors, had 5 years or greater survival. Employing parallel treatment regimens with chemotherapy, radiation, and maximum safe resection may improve survival of older patients with IDH mutant gliomas.
Collapse
Affiliation(s)
- Zainab Siddiq
- Colorado School of Public Health, University of Colorado, Aurora, CO, United States
| | - Ahmed Gilani
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, Children's Hospital Colorado, Aurora, CO, United States
| | - Timothy H Ung
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bette K Kleinschmidt-DeMasters
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Arun AS, Liarakos D, Mendiratta G, Kim J, Goshua G, Olson P, Stites EC. Integrating epidemiology and genomics data to estimate the prevalence of acquired cysteine drug targets in the U.S. cancer patient population. THE PHARMACOGENOMICS JOURNAL 2025; 25:5. [PMID: 40044654 DOI: 10.1038/s41397-025-00364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/12/2025] [Accepted: 02/14/2025] [Indexed: 04/25/2025]
Abstract
Reliable estimates for the number of cancer patients with a specific mutation can help quantify the size of the population that could potentially benefit from a targeted therapy. We adapt our previously developed approach for estimating gene-level mutation abundances to estimate mutation-specific (e.g., KRAS G12C) abundances by combining United States cancer epidemiology and genomic data. We demonstrate the approach by obtaining population-level estimates for all acquired somatic missense mutations that create a de novo cysteine residue. We find that approximately 14% of non-epidemiological informed estimates are more than twice the epidemiological informed estimate. Non-epidemiologically informed pan-cancer estimation of mutation rates may not be representative of the number of cancer patients with a specific mutation. Our study suggests that epidemiological and genomic information should be combined when estimating the population level abundance of specific pathogenic mutations.
Collapse
Affiliation(s)
- Adith S Arun
- Yale School of Medicine, New Haven, CT, 06510, USA
| | - David Liarakos
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biomolecular Engineering, University of Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Gaurav Mendiratta
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jacob Kim
- Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, 06510, USA
| | - George Goshua
- Yale School of Medicine, New Haven, CT, 06510, USA
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, New Haven, CT, 06510, USA
- Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, 06510, USA
| | - Peter Olson
- Mirati Therapeutics, Inc, San Diego, CA, 92121, USA
| | - Edward C Stites
- Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Laboratory Medicine, Yale University, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|
28
|
Li K, Du S, Li H, Li Z, Zhu Q, Peng Q, Liao B, Qi L. A novel three-dimensional co-culture model for studying exosome-mediated cell interactions in glioblastoma. Biochim Biophys Acta Gen Subj 2025; 1869:130752. [PMID: 39793675 DOI: 10.1016/j.bbagen.2024.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
Three-dimensional(3D) cell culture systems provide a larger space for cell proliferation, which is crucial for simulating cellular behavior and drug responses in the tumor microenvironment. In this study, we developed a novel 3D co-culture system for cell interactions, utilizing a commercialized bioreactor-microcarrier system. Mesenchymal stem cells (MSCs) were extracted via enzymatic digestion, and markers CD105 and CD31 were identified. Cell growth was observed using AO and immunofluorescence staining. No significant differences in Ki67 and GFAP expression were found between 2D and 3D cultures, though the 3D system offered more space for proliferation and reduced contact inhibition. Therefore, this 3D culture system may represent the tumor microenvironment more accurately than 2D cultures and will facilitate the investigation of the characteristics and functions of exosomes derived from this system. Exosomes are nanoscale vesicles that mediate intercellular communication by transferring molecules such as miRNAs between cells. Exosomes from 3D cultures were collected via ultra-high-speed centrifugation and characterized using nano-flow cytometry, transmission electron microscopy, and western blotting for markers CD9, Alix, and TSG101. PKH26 staining revealed peak exosome uptake by tumor cells at 24 h and complete metabolism by 72 h. Exosomes from 3D cultures inhibited GBM cell proliferation, migration, and invasion. Lastly, miRNA sequencing of exosomes was performed. This study emphasizes the importance of creating 3D co-culture systems to advance cancer research and offers a helpful tool for studying the complex cell interaction environment of GBM and other malignancies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China
| | - Siyuan Du
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China
| | - Haichao Li
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China
| | - Zhaohui Li
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China
| | - Qihui Zhu
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China
| | - Qian Peng
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China
| | - Baojian Liao
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China.
| | - Ling Qi
- Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, PR China.
| |
Collapse
|
29
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
30
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part I-Essential Information on Preoperative and Immediate Postoperative Imaging. Korean J Radiol 2025; 26:246-268. [PMID: 39999966 PMCID: PMC11865903 DOI: 10.3348/kjr.2024.0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/27/2025] Open
Abstract
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification. The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
31
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
32
|
Li L, Li H, Zhang K, Zhao C, Wang F, Sun J, Wang J. The role and mechanism of hepatocyte nuclear factor 1β in the occurrence and development of different human tumors: A pan-cancer analysis. ENVIRONMENTAL TOXICOLOGY 2025; 40:471-480. [PMID: 39887605 DOI: 10.1002/tox.24254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 02/01/2025]
Abstract
Carcinomatosis is one of the leading threats to human public fitness. HNF1B is a critical transcription element in vertebrate proliferation and oncogenesis, which has been shown to play roles in reactive oxygen species (ROS) metabolism. Our previous results have identified HNF1B as a tumor suppressor that could inhibit the malignant progression of prostate cancer. Yet there is no pan-carcinomatosis analysis of HNF1B, which could help us better understand common and unique underlying mechanisms in mankind knubs to enhance novel and competent treatment. Here, in our research, we evaluated the utterance pattern and explored the function of HNF1B in 33 knub categories using the data from the Cancer Genome Atlas Program (TCGA), Gene Expression Omnibus (GEO), and CLNICAL PROTEOMICTUMOR ANALYSIS CONSORTIUM (CPTAC) dataset. We found different HNF1B roles in various cancer types. HNF1B was upregulated in CHOL, STAD, KIRP, and THCA, and was downregulated in GBM, KICH, COAD, KIRC, LUSC, SARC, PAAD, and TGCT. Prognostic analyses indicated that higher HNF1B displayed better illness outcomes in BLCA, READ, and PRAD, while poorer outcomes in LUSC and THYM. HNF1B mutation was most frequent in endometrial cancer but was not associated with disease prognosis. It was discovered that HNF1B utterance relevant to endothelial cell penetration status in BLCA, ESCA, LUAD, LUSC, and TGCT, and carcinomatosis-associated fibroblast infiltration was observed in ESCA, KIRC, LIHC, and TGCT. Moreover, functional enrichment analysis disclosed that metabolism-related functions were implicated in the function of HNF1B. Taken together, our pan- carcinomatosis analysis showed the complicated roles of HNF1B in a variety of carcinomatoses, being able to improve the extensive comprehension of HNF1B's role in tumorigenesis.
Collapse
Affiliation(s)
- Liang Li
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Haikun Li
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ke Zhang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fei Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Sun
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
33
|
Cui R, Duan H, Hu W, Li C, Zhong S, Liang L, Chen S, Hu H, He Z, Wang Z, Guo X, Chen Z, Xu C, Zhu Y, Chen Y, Sai K, Yang Q, Guo C, Mou Y, Jiang X. Establishment of Human Pituitary Neuroendocrine Tumor Derived Organoid and Its Pilot Application for Drug Screening. J Clin Endocrinol Metab 2025; 110:e827-e840. [PMID: 38656317 DOI: 10.1210/clinem/dgae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 04/26/2024]
Abstract
CONTEXT Precision medicine for pituitary neuroendocrine tumors (PitNETs) is limited by the lack of reliable research models. OBJECTIVE To generate patient-derived organoids (PDOs), which could serve as a platform for personalized drug screening for PitNET patients. DESIGN From July 2019 to May 2022, a total of 32 human PitNET specimens were collected for the establishment of organoids with an optimized culture protocol. SETTING This study was conducted at Sun Yat-Sen University Cancer Center. PATIENTS PitNET patients who were pathologically confirmed were enrolled in this study. INTERVENTIONS Histological staining and whole-exome sequencing were utilized to confirm the pathologic and genomic features of PDOs. A drug response assay on PDOs was also performed. MAIN OUTCOME MEASURES PDOs retained key genetic and morphological features of their parental tumors. RESULTS PDOs were successfully established from various types of PitNET samples with an overall success rate of 87.5%. Clinical nonfunctioning PitNETs-derived organoids (22/23, 95.7%) showed a higher likelihood of successful generation compared to those from functioning PitNETs (6/9, 66.7%). Preservation of cellular structure, subtype-specific neuroendocrine profiles, mutational features, and tumor microenvironment heterogeneity from parental tumors was observed. A distinctive response profile in drug tests was observed among the organoids from patients with different subtypes of PitNETs. With the validation of key characteristics from parental tumors in histological, genomic, and microenvironment heterogeneity consistency assays, we demonstrated the predictive value of the PDOs in testing individual drugs. CONCLUSION The established PDOs, retaining typical features of parental tumors, indicate a translational significance in innovating personalized treatment for refractory PitNETs.
Collapse
Affiliation(s)
- Run Cui
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
- Department of Neurosurgery, Guangdong 2nd Provincial Peoples Hospital, Guangzhou, 523058 Guangdong, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510000 Guangdong, China
| | - Chang Li
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Sheng Zhong
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Lun Liang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Hongrong Hu
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Zhenqiang He
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Zhenning Wang
- Department of Neurosurgery, Dongguan People's Hospital, Dongguan, 523058 Guangdong, China
| | - Xiaoyu Guo
- Department of Neurosurgery, First Affiliated Hospital of Ji'nan University, Guangzhou, 510630 Guangdong, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Cong Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510320 Guangdong, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Ke Sai
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, S Yat-Sen University Cancer Center, Guangzhou, 510060 Guangdong, China
| |
Collapse
|
34
|
Yu S, Wu J, Jing Y, Lin P, Lang L, Xiong Y, Chen W, Liu W, Sun C, Lu Y. Research trends in glioma chemoradiotherapy resistance: a bibliometric analysis (2003-2023). Front Oncol 2025; 15:1539937. [PMID: 39990688 PMCID: PMC11842341 DOI: 10.3389/fonc.2025.1539937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Background Glioma is the most aggressive primary malignant tumor of the central nervous system, characterized by high recurrence rates and resistance to chemoradiotherapy, making therapeutic resistance a major challenge in neuro-oncology. Recent research emphasizes the role of the tumor microenvironment (TME) and immune modulation in glioma progression and resistance. Despite these advances, a comprehensive bibliometric analysis of research trends in glioma chemoradiotherapy resistance over the past two decades is lacking. This study aims to systematically evaluate the research landscape, identify emerging hotspots, and provide guidance for future investigations. Methods Articles on glioma chemoradiotherapy resistance published between 2003 and 2023 were retrieved from the Web of Science Core Collection, resulting in 4,528 publications. Bibliometric tools, including VOSviewer, CiteSpace, and R packages such as bibliometrix and ggplot2, were used to analyze co-authorship networks, keyword evolution, and citation bursts to identify collaboration patterns, thematic developments, and influential contributions. Results Publication output increased significantly between 2013 and 2022, peaking at 650 articles in 2022. Over 1,000 institutions from 88 countries contributed to this research. The United States, Switzerland, and Germany showed the highest citation impact, while China led in publication volume but demonstrated relatively lower citation influence. The research focus has shifted from traditional topics such as the "MGMT gene" to emerging areas including the "tumor microenvironment," "immune infiltration," and "nanoparticles." The androgen receptor was identified as a promising but underexplored therapeutic target. Conclusions Research on glioma chemoradiotherapy resistance has seen substantial growth, with increasing emphasis on immune modulation, the tumor microenvironment, and novel therapeutic targets such as the androgen receptor. This study represents the first comprehensive bibliometric analysis of this field, providing a detailed overview of research trends and potential directions for future studies. The findings highlight the need for strengthened international collaboration and multidisciplinary approaches to address the challenges of therapeutic resistance in glioma.
Collapse
Affiliation(s)
- Shishi Yu
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinya Wu
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan Jing
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Lin
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Lang Lang
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Xiong
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangzhong Chen
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhua Liu
- Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changpeng Sun
- The Editorial Department of the Journal of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuntao Lu
- Nanfang hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Khouri-Farah N, Winchester EW, Schilder BM, Robinson K, Curtis SW, Skene NG, Leslie-Clarkson EJ, Cotney J. Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633396. [PMID: 39868299 PMCID: PMC11761091 DOI: 10.1101/2025.01.18.633396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks). This resource resolves the transcriptional dynamics of seven major cell types and uncovers distinct major cell types, including muscle progenitors and cranial neural crest cells (CNCCs), as well as dozens of subtypes of ectoderm and mesenchyme. Comparative analyses reveal substantial conservation of major cell types, alongside human biased differences in gene expression programs. CNCCs, which play a crucial role in craniofacial morphogenesis, exhibit the lowest marker gene conservation, underscoring their evolutionary plasticity. Spatial transcriptomics further localizes cell populations, providing a detailed view of their developmental roles and anatomical context. We also link these developmental processes to genetic variation, identifying cell type-specific enrichments for common variants associated with facial morphology and rare variants linked to orofacial clefts. Intriguingly, Neanderthal-introgressed sequences are enriched near genes with biased expression in cartilage and specialized ectodermal subtypes, suggesting their contribution to modern human craniofacial features. This atlas offers unprecedented insights into the cellular and genetic mechanisms shaping the human face, highlighting conserved and distinctly human aspects of craniofacial biology. Our findings illuminate the developmental origins of craniofacial disorders, the genetic basis of facial variation, and the evolutionary legacy of ancient hominins. This work provides a foundational resource for exploring craniofacial biology, with implications for developmental genetics, evolutionary biology, and clinical research into congenital anomalies.
Collapse
Affiliation(s)
| | | | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | | | - Justin Cotney
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
Sojka C, Wang HLV, Bhatia TN, Li Y, Chopra P, Sing A, Voss A, King A, Wang F, Joseph K, Ravi VM, Olson J, Hoang K, Nduom E, Corces VG, Yao B, Sloan SA. Mapping the developmental trajectory of human astrocytes reveals divergence in glioblastoma. Nat Cell Biol 2025; 27:347-359. [PMID: 39779941 DOI: 10.1038/s41556-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM. We generated a transcriptomic and epigenomic map of human astrocyte maturation using cortical organoids maintained in culture for nearly 2 years. Through this approach, we chronicled a multiphase developmental process. Our time course of human astrocyte maturation includes a molecularly distinct intermediate period that serves as a lineage commitment checkpoint upstream of mature quiescence. This intermediate stage acts as a site of developmental deviation separating IDH-wild-type neoplastic astrocyte-lineage cells from quiescent astrocyte populations. Interestingly, IDH1-mutant tumour astrocyte-lineage cells are the exception to this developmental perturbation, where immature properties are suppressed as a result of D-2-hydroxyglutarate oncometabolite exposure. We propose that this defiance is a consequence of IDH1-mutant-associated epigenetic dysregulation, and we identified biased DNA hydroxymethylation (5hmC) in maturation genes as a possible mechanism. Together, this study illustrates a distinct cellular state aberration in GBM astrocyte-lineage cells and presents developmental targets for experimental and therapeutic exploration.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Edjah Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
37
|
Suero Molina E, Azemi G, Özdemir Z, Russo C, Krähling H, Valls Chavarria A, Liu S, Stummer W, Di Ieva A. Predicting intraoperative 5-ALA-induced tumor fluorescence via MRI and deep learning in gliomas with radiographic lower-grade characteristics. J Neurooncol 2025; 171:589-598. [PMID: 39560696 PMCID: PMC11729117 DOI: 10.1007/s11060-024-04875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely sampled to avoid undergrading. We aimed to analyze whether a deep learning model could predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). METHODS We evaluated a cohort of 163 glioma patients categorized intraoperatively as fluorescent (n = 83) or non-fluorescent (n = 80). The preoperative MR images of gliomas lacking high-grade characteristics (e.g., necrosis or irregular ring contrast-enhancement) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a tenfold cross-validation procedure. RESULTS Our proposed approach's performance was assessed using mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSIONS Our findings highlight the potential of a U-Net model, coupled with a Random Forest classifier, for pre-operative prediction of intraoperative fluorescence. We achieved high accuracy using the features extracted by the U-Net model pre-trained for brain tumor segmentation. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- Macquarie Neurosurgery & Spine, Macquarie University Hospital, Sydney, Australia.
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Zeynep Özdemir
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Hermann Krähling
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Alexandra Valls Chavarria
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
- Macquarie Neurosurgery & Spine, Macquarie University Hospital, Sydney, Australia
| |
Collapse
|
38
|
Wang L, Peng J, Wen B, Zhai Z, Yuan S, Zhang Y, Ii L, Li W, Ding Y, Wang Y, Ye F. Contrast-Enhanced Computed Tomography-Based Machine Learning Radiomics Predicts IDH1 Expression and Clinical Prognosis in Head and Neck Squamous Cell Carcinoma. Acad Radiol 2025; 32:976-987. [PMID: 39256086 DOI: 10.1016/j.acra.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
RATIONALE AND OBJECTIVES Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) and examined its prognostic significance. MATERIALS AND METHODS We utilized genomic data, clinicopathological features, and contrast-enhanced computed tomography (CECT) images from The Cancer Genome Atlas and the Cancer Imaging Archive for prognosis analysis and radiomic model construction. The selection of optimal features was conducted using the intraclass correlation coefficient, minimum redundancy maximum relevance, and recursive feature elimination algorithms. A radiomic model for IDH1 prediction and radiomic score (RS) were established using a gradient-boosting machine. Associations between IDH1 expression, RS, clinicopathological variables, and overall survival (OS) were determined using univariate and multivariate Cox proportional hazards regression analyses and Kaplan-Meier curves. RESULTS IDH1 emerged as a distinct predictive factor in patients with HNSCC (hazard ratio [HR] 1.535, 95% confidence interval [CI]: 1.117-2.11, P = 0.008). The radiomic model, built on eight optimal features, demonstrated area under the curve values of 0.848 and 0.779 in the training and validation sets, respectively, for predicting IDH1 expression levels. Calibration and decision curve analyses validated the model's suitability and clinical utility. RS was significantly associated with OS (HR=2.22, 95% CI: 1.026-4.805, P = 0.043). CONCLUSION IDH1 expression is a significant prognostic marker. The developed radiomic model, derived from CECT features, offers a promising approach for diagnosing and prognosticating HNSCC.
Collapse
Affiliation(s)
- Le Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jilin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ziyu Zhai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sijie Yuan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulin Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ling Ii
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weijie Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yinghui Ding
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yixu Wang
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing 100044, China
| | - Fanglei Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
39
|
Bumbaca B, Huggins JR, Birtwistle MR, Gallo JM. Network analyses of brain tumor multiomic data reveal pharmacological opportunities to alter cell state transitions. NPJ Syst Biol Appl 2025; 11:14. [PMID: 39893170 PMCID: PMC11787326 DOI: 10.1038/s41540-025-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Glioblastoma Multiforme (GBM) remains a particularly difficult cancer to treat, and survival outcomes remain poor. In addition to the lack of dedicated drug discovery programs for GBM, extensive intratumor heterogeneity and epigenetic plasticity related to cell-state transitions are major roadblocks to successful drug therapy in GBM. To study these phenomenon, publicly available snRNAseq and bulk RNAseq data from patient samples were used to categorize cells from patients into four cell states (i.e., phenotypes), namely: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte progenitor-like (OPC-like), (iii) astrocyte-like (AC-like), and (iv) mesenchymal-like (MES-like). Patients were subsequently grouped into subpopulations based on which cell-state was the most dominant in their respective tumor. By incorporating phosphoproteomic measurements from the same patients, a protein-protein interaction network (PPIN) was constructed for each cell state. These four-cell state PPINs were pooled to form a single Boolean network that was used for in silico protein knockout simulations to investigate mechanisms that either promote or prevent cell state transitions. Simulation results were input into a boosted tree machine learning model which predicted the cell states or phenotypes of GBM patients from an independent public data source, the Glioma Longitudinal Analysis (GLASS) Consortium. Combining the simulation results and the machine learning predictions, we generated hypotheses for clinically relevant causal mechanisms of cell state transitions. For example, the transcription factor TFAP2A can be seen to promote a transition from the NPC-like to the MES-like state. Such protein nodes and the associated signaling pathways provide potential drug targets that can be further tested in vitro and support cell state-directed (CSD) therapy.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Jonah R Huggins
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - James M Gallo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
40
|
Garcia Fox R, Chukwueke UN, Sannes T, Miran D, Chiu D, Bagley C, Holmes EG, Peirce B, Beroukhim R, Youssef G, McFaline-Figueroa JR, Aquilanti E, Quant Lee E, Nayak L, Wen PY, Gonzalez Castro LN, Reardon DA. Glioma resource outreach with support: A program to identify and initiate supportive care interventions for unmet needs among adult lower-grade glioma patients. Neurooncol Pract 2025; 12:87-99. [PMID: 39917752 PMCID: PMC11798613 DOI: 10.1093/nop/npae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Background Lower-grade (WHO grades 2-3) gliomas typically affect young and middle-aged adults and exhibit isocitrate dehydrogenase (IDH) mutations. For such patients, symptoms related to the tumor and associated treatment contribute to morbidity and erode quality of life. With improved treatment, a better understanding of these effects over time is critically needed. Existing data characterizing unmet needs of lower-grade glioma patients is limited and little consensus exists on addressing these needs in clinical practice. Methods In order to better identify and address the unmet needs of lower-grade glioma patients, focus groups among patients and caregivers were initially conducted among patients treated at a single academic center. A semi-structured interview guide to comprehensively understand unmet needs was then developed. Each patient-defined unmet need was categorized into domains through qualitative content analysis. In parallel, a database of established local and regional community-based resources was established, and a dedicated resource specialist provided patient-specific referrals and follow-up. Results Eighty-five patients were interviewed. Median age was 41 years and the median time from tumor diagnosis was 63 months. Approximately 68% had a WHO grade 2 tumor and 60% were off therapy. Qualitative analysis of interview content identified 5 overarching domains of unmet need: Psychosocial; Neurologic/Cognitive; Lifestyle; Financial; and Other Medical. At least one unmet need was identified by 71% of participants and the most common domains were Psychosocial (40.7%) and Lifestyle (34.9%). Conclusions Our program begins to address frequently unmet survivorship needs of lower-grade glioma patients that spanned 5 major domains. Further research aimed to better define and address unmet needs among these patients is warranted.
Collapse
Affiliation(s)
- Rachel Garcia Fox
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ugonma N Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Timothy Sannes
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Damien Miran
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel Chiu
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christina Bagley
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Emerson Grace Holmes
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Benjamin Peirce
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gilbert Youssef
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - J Ricardo McFaline-Figueroa
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Elisa Aquilanti
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eudocia Quant Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lakshmi Nayak
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - L Nicolas Gonzalez Castro
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
García-Vázquez N, González-Robles TJ, Lane E, Spasskaya D, Zhang Q, Kerzhnerman M, Jeong Y, Collu M, Simoneschi D, Ruggles KV, Rona G, Kaisari S, Pagano M. Stabilization of GTSE1 by cyclin D1-CDK4/6-mediated phosphorylation promotes cell proliferation: relevance in cancer prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.26.600797. [PMID: 38979260 PMCID: PMC11230433 DOI: 10.1101/2024.06.26.600797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1-CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1-CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1's role in cell cycle control and oncogenesis beyond RB phosphorylation.
Collapse
Affiliation(s)
- Nelson García-Vázquez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Tania J González-Robles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Daria Spasskaya
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Marc Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - YeonTae Jeong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Marta Collu
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
| | - Kelly V Ruggles
- Department of Medicine, New York University Grossman School of Medicine, NYC, NY, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sharon Kaisari
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NYC, NY, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, NYC, NY, USA
| |
Collapse
|
43
|
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26:917. [PMID: 39940686 PMCID: PMC11817476 DOI: 10.3390/ijms26030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (J.R.); (N.G.); (S.K.); (A.N.-T.); (R.S.)
| |
Collapse
|
44
|
Söderlund M, Almqvist C, Sjöström O, Dahlin AM, Sjöström S, Numan Hellquist B, Melin B, Sandström M. The impact of socioeconomic status on glioma survival: a retrospective analysis. Cancer Causes Control 2025:10.1007/s10552-025-01960-1. [PMID: 39827416 DOI: 10.1007/s10552-025-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE Although sociodemographic factors such as socioeconomic status (SES), travel time to health care, cohabitation status, and region of residence are observed to influence incidence and survival for several types of cancers, it is unclear whether similar effects have been observed in patients with glioma. This study investigates whether these factors affect survival for glioma patients. METHODS In this retrospective study, the Swedish National Quality Registry for Brain Tumors was used to identify 1,276 patients with glioma WHO grade I-IV for whom data were deposited between 2009 and 2013. The RISK North database, which links data from the National Cancer Quality Register with citizen demographic data from the Longitudinal Integration Database for Health Insurance and Labor Market Studies (LISA), the Total Population Registry (TPR), and the Geography Database (GD), was utilized to assess survival in patients with glioma in relation to education level, cohabitation status, travel time to regional hospitals, and region of residence. RESULTS In the multivariable analysis, longer survival was observed among WHO grade III-IV glioma patients with higher education level (middle school (ref) HR: 1, high school HR: 0.81 CI [0.67-0.98], p = 0.033; university/college HR: 0.81 CI [0.66-1.00], p = 0.048). Survival was not associated with travel time, cohabitation status, or region of residence in the multivariable survival analysis. CONCLUSION Low education level was associated with reduced survival for patients with glioma WHO grade III and IV in multivariable survival analyses, but no differences in survival were found in relation to travel time, cohabitation status, or region of residence.
Collapse
Affiliation(s)
- Maria Söderlund
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden.
| | - Carl Almqvist
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Olle Sjöström
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Anna M Dahlin
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Sara Sjöström
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Barbro Numan Hellquist
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Maria Sandström
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
45
|
Wang X, Wang Z, Wang W, Liu Z, Ma Z, Guo Y, Su D, Sun Q, Pei D, Duan W, Qiu Y, Wang M, Yang Y, Li W, Liu H, Ma C, Yu M, Yu Y, Chen T, Fu J, Li S, Yu B, Ji Y, Li W, Yan D, Liu X, Li ZC, Zhang Z. IDH-mutant glioma risk stratification via whole slide images: Identifying pathological feature associations. iScience 2025; 28:111605. [PMID: 39845415 PMCID: PMC11751506 DOI: 10.1016/j.isci.2024.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/12/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set (N = 486) and evaluated on internal validation set (N = 209), HPPH validation set (N = 54), and TCGA validation set (N = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set (N = 100). The WSI-based pathological signature was an independent prognostic factor. Incorporating the pathological features into a clinical model resulted in a pathological-clinical model that predicted survival better than either the pathological model or clinical model alone. Ten categories of pathways (metabolism, proliferation, immunity, DNA damage response, disease, migrate, protein modification, synapse, transcription and translation, and complex cellular functions) were significantly correlated with the WSI-based pathological features.
Collapse
Affiliation(s)
- Xiaotao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Dingyuan Su
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongqiang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoran Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caoyuan Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yinhui Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Te Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Fu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sen Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
46
|
Sahu V, Lu C. Metabolism-driven chromatin dynamics: Molecular principles and technological advances. Mol Cell 2025; 85:262-275. [PMID: 39824167 PMCID: PMC11750176 DOI: 10.1016/j.molcel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources. We discuss recent advances in our understanding of the mechanisms by which metabolic enzyme activities shape the chromatin structure and modifications, how specificity may emerge from their seemingly broad effects, and technologies that facilitate the study of epigenome-metabolome interplay. The recognition that metabolites are immanent components of the chromatin regulatory network has significant implications for the evolution, function, and therapeutic targeting of the epigenome.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
47
|
Gai C, Zeng H, Xu H, Chai X, Zou Y, Zhuang C, Ge G, Zhao Q. Comprehensive exploration of isocitrate dehydrogenase (IDH) mutations: Tumorigenesis, drug discovery, and covalent inhibitor advances. Eur J Med Chem 2025; 282:117041. [PMID: 39591851 DOI: 10.1016/j.ejmech.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Isocitrate dehydrogenase (IDH) is an enzyme that catalyses the oxidative decarboxylation of isocitrate, producing α-ketoglutarate (α-KG) relative to the hydroxylation of substrates. However, IDH mutants can further reduce α-KG to 2-hydroxyglutarate (2-HG) which competitively inhibits α-KG dependent enzymes, leading to the downregulation of normal hydroxylation pathways. Good IDH mutant inhibitors can effectively reduce the level of 2-HG and therefore disturb cellular malignant transformation. In this review, we introduce the biological functions of IDH, describe the tumorigenesis mechanisms of IDH variants, and review the structure-based drug discovery of clinical inhibitors during 2012-2024. We also find successful applications of covalent strategy in the development of irreversible IDH inhibitors. Biological screening methods are also collected in this paper, which may help researchers to rapidly construct workflows for drug discovery and development.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Hairong Zeng
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Haoming Xu
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Xiaoyun Chai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yan Zou
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Guangbo Ge
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
48
|
Zhang J, Zhang J, Yang C. Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities. J Transl Med 2025; 23:52. [PMID: 39806481 PMCID: PMC11727735 DOI: 10.1186/s12967-024-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors. Hence, having knowledge of the role of molecular processes in the advancement of brain tumors is enlightening, and the current review specifically examines the role of autophagy. The discussion would focus on the molecular pathways that control autophagy in brain tumors, and its dual role as a tumor suppressor and a supporter of tumor survival. Autophagy can control the advancement of different types of brain tumors like glioblastoma, glioma, and ependymoma, demonstrating its potential for treatment. Autophagy mechanisms can influence metastasis and drug resistance in glioblastoma, and there is a complex interplay between autophagy and cellular responses to stress like hypoxia and starvation. Autophagy can inhibit the growth of brain tumors by promoting apoptosis. Hence, focusing on autophagy could offer fresh perspectives on creating successful treatments.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinan Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| |
Collapse
|
49
|
Furth N, Cohen N, Spitzer A, Salame TM, Dassa B, Mehlman T, Brandis A, Moussaieff A, Friedmann-Morvinski D, Castro MG, Fortin J, Suvà ML, Tirosh I, Erez A, Ron G, Shema E. Oncogenic IDH1 mut drives robust loss of histone acetylation and increases chromatin heterogeneity. Proc Natl Acad Sci U S A 2025; 122:e2403862122. [PMID: 39793065 PMCID: PMC11725805 DOI: 10.1073/pnas.2403862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2mut) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype. Yet, the complete depiction of the epigenetic alterations in IDHmut cells has not been thoroughly explored. Here, we applied an unbiased approach, leveraging epigenetic-focused cytometry by time-of-flight (CyTOF) analysis, to systematically profile the effect of mutant-IDH1 expression on a broad panel of histone modifications at single-cell resolution. This analysis revealed extensive remodeling of chromatin patterns by mutant-IDH1, with the most prominent being deregulation of histone acetylation marks. The loss of histone acetylation occurs rapidly following mutant-IDH1 induction and affects acetylation patterns over enhancers and intergenic regions. Notably, the changes in acetylation are not predominantly driven by 2-HG, can be rescued by pharmacological inhibition of mutant-IDH1, and reversed by acetate supplementations. Furthermore, cells expressing mutant-IDH1 show higher epigenetic and transcriptional heterogeneity and upregulation of oncogenes such as KRAS and MYC, highlighting its tumorigenic potential. Our study underscores the tight interaction between chromatin and metabolism dysregulation in glioma and highlights epigenetic and oncogenic pathways affected by mutant-IDH1-driven metabolic rewiring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Niv Cohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tevie Mehlman
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alexander Brandis
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem9112102, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurobiology, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Guy Ron
- Racah Institute of Physics, Hebrew University, Jerusalem9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
50
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|