1
|
Zhang J, Xie Y, Chen J, Song L. Monocarboxyoctyl phthalate is associated with platelet count: evidence from a large cross-sectional study. Front Public Health 2025; 13:1559808. [PMID: 40352847 PMCID: PMC12061924 DOI: 10.3389/fpubh.2025.1559808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Phthalates are environmental pollutants that are harmful to human health. However, the impact of phthalate on platelet count remains unclear. This study aimed to examine the correlation between five phthalate metabolites in urine and platelet count, as well as the impact of phthalate metabolite exposure on platelet count in adults. Methods This cross-sectional study included 11,409 non-pregnant participants aged >20 years using data available from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. Weighted logistic regression, restricted cubic spline (RCS) modeling, and weighted quantile sum (WQS) were employed to investigate the effects of mono-(carboxyisononyl) phthalate (MCNP), mono-(carboxyoctyl) phthalate (MCOP), mono-(3-carboxypropyl) phthalate (MCPP), mono-isobutyl phthalate (MiBP) and mono-isononyl phthalate (MNP) on platelet count. Results Logistic regression analysis suggested that MCOP [odds ratio (OR) (95% confidence interval CI) = 0.009 (0.002-0.036)] was significantly associated with the platelet count. Subgroup analysis showed negative correlations between MCOP and platelet count across all age and sex groups, and MCNP [OR (95% CI) = 0.083(0.013-0.552)] displayed a negative association with platelet count in females. MCOP had a nonlinear relationship with the platelet count in the RCS model. WQS also revealed that MCOP was related to platelet count. Conclusion Higher urinary MCOP level was associated with lower platelet count. Further investigation is necessary to substantiate these findings, considering the shortcomings of the NHANES study.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hematology, People's Hospital of Rizhao, Rizhao, China
| | - Yuhan Xie
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinqiu Chen
- Department of Hematology, People's Hospital of Rizhao, Rizhao, China
| | - Lei Song
- Department of Hematology, People's Hospital of Rizhao, Rizhao, China
| |
Collapse
|
2
|
Liu W, Li G, Shi J, Gao Y, Fang P, Zhao Y, Zhong F, Guo X, Lyu Y, Da X, Li Z, Fa J, Hu L, Yuan A, Chen L, Liu J, Chen AF, Sheng B, Ji Y, Lu X, Pu J. NR4A1 Acts as a Novel Regulator of Platelet Activation and Thrombus Formation. Circ Res 2025; 136:809-826. [PMID: 40035146 PMCID: PMC11984555 DOI: 10.1161/circresaha.124.325645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Mounting evidence indicates that nuclear receptors play a critical regulatory role in platelet pathophysiology and thrombotic disorders. Although NR4A (the nuclear receptor subfamily 4 group A) plays an important role in cardiovascular pathophysiology, the expression profile and biological function of NR4A member 1 (NR4A1) in platelets have never been reported. METHODS We evaluated the functions and the underlying mechanisms of NR4A1 in platelet activation and thrombus formation using platelet-specific NR4A1-deficient mice and NR4A1-specific agonists. Using a hyperlipidemic mouse model and platelets from patients with hypercholesterolemia, we explored the influence of hypercholesterolemia on NR4A1 expression and the effects of NR4A1-specific agonists on platelet hyperreactivity induced by hypercholesterolemia. RESULTS NR4A1 was expressed in both human and mouse platelets. Platelet-specific NR4A1 deletion accelerated FeCl3-induced carotid arterial occlusive thrombus formation, enhanced collagen/epinephrine-induced pulmonary thromboembolism, and exacerbated microvascular microthrombi obstruction and infarct expansion in an acute myocardial infarction model. NR4A1-deficient platelets exhibited enhanced agonist-induced aggregation responses, integrin αIIbβ3 activation, dense granule release, α-granule release, platelet spreading, and clot retraction. Consistently, pharmacological activation of NR4A1 by specific agonists decreased platelet activation in both mouse and human platelets. Mechanistically, CAP1 (adenylyl cyclase-associated protein 1) was identified as the direct downstream interacting protein of NR4A1. NR4A1 deletion decreased cAMP levels and phosphorylation of VASP (vasodilator-stimulated phosphoprotein), while NR4A1-specific agonists increased cAMP levels and phosphorylation of VASP in platelets. Importantly, NR4A1 expression in platelets was upregulated in the setting of hypercholesterolemia, which was derived from its upregulation in megakaryocytes in a reactive oxygen species-dependent manner. Platelets from hypercholesterolemic patients and mice exhibited hyperreactivity. However, NR4A1-specific agonists significantly inhibited the activation of hypercholesterolemic platelets to the levels of healthy control platelets. CONCLUSIONS We provide the first evidence that nuclear receptor NR4A1 negatively regulates platelet activation and thrombus formation. NR4A1 may serve as a novel therapeutic target for managing thrombosis-based cardiovascular diseases, especially with hypercholesterolemia.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/blood
- Platelet Activation/physiology
- Humans
- Thrombosis/metabolism
- Thrombosis/blood
- Thrombosis/genetics
- Blood Platelets/metabolism
- Mice
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Hypercholesterolemia/blood
- Hypercholesterolemia/genetics
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Gaoxiang Li
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jianfeng Shi
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yu Gao
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Peiliang Fang
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yichao Zhao
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Fangyuan Zhong
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiao Guo
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yuyan Lyu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xingwen Da
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Zhaoyan Li
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jingjing Fa
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Baoshan Branch (J.F.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Liuhua Hu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Ancai Yuan
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lei Chen
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Junling Liu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education (J.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Alex F. Chen
- Department of Cardiology and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (A.F.C.), Shanghai Jiao Tong University School of Medicine, China
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, China (B.S.)
| | - Yong Ji
- Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China(Y.J.)
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Heilongjiang, China (Y.J.)
| | - Xiyuan Lu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute (W.L., G.L., J.S., Y.G., P.F., Y.Z., F.Z., X.G., Y.L., X.D., Z.L., J.F., L.H., A.Y., L.C., J.L., X.L., J.P.), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
3
|
Li L, Zhao C, Zhang R, Wei W, Liu B, Dong J, Gao X, Zhang D, Wang X, Lu M, Zhang Y, Yu Y, Yuan N, Xu Y, Wang J, Fang Y. Beclin 1 of megakaryocytic lineage cells is locally dispensable for platelet hemostasis but functions distally in bone homeostasis. Bone Res 2025; 13:32. [PMID: 40032858 PMCID: PMC11876339 DOI: 10.1038/s41413-025-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between megakaryocytic lineage cells and the skeletal system has just begun to be explored but remains largely elusive. Using conditional gene knockout mouse models, we demonstrated that loss of Beclin 1 (Becn1), a major regulator of mammalian autophagy, exclusively in the megakaryocytic lineage disrupted autophagy in platelets but did not compromise megakaryopoiesis or the formation and function of platelets. Unexpectedly, conditional Becn1 deletion in male mice led to a remarkable increase in bone mass with improved bone quality, in association with a decrease in sex hormone binding globulin (SHBG) and an increase in free testosterone (FT). In vivo Becn1 overexpression in megakaryocytic lineage-specific cells reduced bone mass and quality, along with an increase in SHBG and a decrease in FT. Transplantation of wild-type bone marrow cells into megakaryocytic lineage Becn1-deficient male mice restored bone mass and normalized SHBG and FT. Furthermore, bilateral orchiectomy of Becn1f/f;Pf4-iCre mice, which are crippled with the production of testosterone, resulted in a reduction in bone mass and quality, whereas in vivo overexpression of SHBG, specifically in the liver of Becn1f/f;Pf4-iCre mice, decreased FT and reduced bone mass and quality. In addition, metformin treatment, which induces SHBG expression, reduced FT and normalized bone mass in Becn1f/f;Pf4-iCre mice. We thus concluded that Becn1 of the megakaryocytic lineage is dispensable locally for platelet hemostasis but limits bone mass by increasing SHBG, which in turn reduces the FT of male mice. Our findings highlight a mechanism by which Becn1 from megakaryocytic lineage cells distally balances bone growth.
Collapse
Affiliation(s)
- Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruizhi Zhang
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Bowen Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqing Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meilin Lu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yumu Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Yu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Youjia Xu
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Liao R, Wang L, Zeng J, Tang X, Huang M, Kantawong F, Huang Q, Mei Q, Huang F, Yang Y, Liao B, Wu A, Wu J. Reactive oxygen species: Orchestrating the delicate dance of platelet life and death. Redox Biol 2025; 80:103489. [PMID: 39764976 PMCID: PMC11759559 DOI: 10.1016/j.redox.2025.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Platelets, which are vital for blood clotting and immunity, need to maintain a delicately balanced relationship between generation and destruction. Recent studies have highlighted that reactive oxygen species (ROS), which act as second messengers in crucial signaling pathways, are crucial players in this dance. This review explores the intricate connection between ROS and platelets, highlighting their dual nature. Moderate ROS levels act as potent activators, promoting megakaryocyte (MK) differentiation, platelet production, and function. They enhance platelet binding to collagen, increase coagulation, and directly trigger cascades for thrombus formation. However, this intricate role harbors a double-edged sword. Excessive ROS unleash its destructive potential, triggering apoptosis and reducing the lifespan of platelets. High levels can damage stem cells and disrupt vital redox-dependent signaling, whereas uncontrolled activation promotes inappropriate clotting, leading to thrombosis. Maintaining a precise balance of ROS within the hematopoietic microenvironment is paramount for optimal platelet homeostasis. While significant progress has been made, unanswered questions remain concerning specific ROS signaling pathways and their impact on platelet disorders. Addressing these questions holds the key to unlocking the full potential of ROS-based therapies for treating platelet-related diseases such as thrombocytopenia and thrombosis. This review aims to contribute to this ongoing dialog and inspire further exploration of this exciting field, paving the way for novel therapeutic strategies that harness the benefits of ROS while mitigating their dangers.
Collapse
Affiliation(s)
- Rui Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Zeng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoqin Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qianqian Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qibing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Feihong Huang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Yao HHY, Kahr WHA. Molecular basis of platelet granule defects. J Thromb Haemost 2025; 23:381-393. [PMID: 39617187 DOI: 10.1016/j.jtha.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/02/2025]
Abstract
Platelets are small, discoid, anucleate blood cells that play key roles in clotting and other functions involved in health and disease. Platelets are derived from bone marrow-resident megakaryocytes, which undergo a complex developmental process where they increase dramatically in size and produce an abundance of organelles destined for platelets. These organelles include mitochondria, lysosomes, peroxisomes, and 2 unique types of secretory organelles: α- and dense (δ-) granules. δ-Granules contain small molecules, including adenosine triphosphate, adenosine diphosphate, serotonin, and ions, such as calcium and zinc (Ca2+ and Zn2+). α-Granules contain a variety of cargo proteins, which, when secreted by activated platelets, are involved in processes such as hemostasis (eg, fibrinogen and von Willebrand factor), angiogenesis, inflammation, and wound healing. Investigations of patients with inherited conditions resulting in decreased/abnormal platelet secretory granules have led to the identification of proteins, protein complexes, and cellular processes involved in their production by megakaryocytes. Notably, studies of ARPC1B deficiency, Hermansky-Pudlak, and Chediak-Higashi syndromes have linked several genes/proteins to δ-granule biogenesis. Studies of multisystemic arthrogryposis, renal dysfunction, and cholestasis syndrome revealed the requirement of 2 proteins, VPS33B and VPS16B, in α-granule formation. Identification of the genetic cause of gray platelet syndrome established that NBEAL2 is an additional protein needed for α-granule cargo retention. These discoveries enabled studies using animal models, cell culture, and molecular analysis to gain insights into the roles of proteins and cellular processes involved in platelet secretory granule production, which are discussed in this review.
Collapse
Affiliation(s)
- Helen H Y Yao
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
7
|
Mekchay P, Ingrungruanglert P, Leela-Adisorn N, Uaprasert N, Israsena N, Rojnuckarin P. Roles of ROCK/Myosin Pathway in Macrothrombocytopenia in Bernard-Soulier Syndrome. Thromb Haemost 2024. [PMID: 39694061 DOI: 10.1055/a-2474-5644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
BACKGROUND Megakaryocytes (MK) from Bernard-Soulier syndrome (BSS) induced pluripotent stem cells (iPSCs) yielded reduced numbers but increased sizes of platelets. The molecular mechanisms remain unclear. This study aims to determine roles of signaling molecules involved in this process. MATERIAL AND METHODS Wild-type (WT) iPSCs and iPSCs from BSS patients with GP1BA (BSS-A) or GP1BB (BSS-B) mutations were differentiated into MKs and platelets with or without myosin II inhibitor (blebbistatin), ROCK inhibitor (Y27632), and procaspase-3 activator (PAC-1). Proplatelet and platelet numbers and sizes were characterized. The iPSC lines containing tubulin-green fluorescent protein (GFP) reporters were constructed to observe proplatelet formation under time-lapse microscopy. RESULT BSS-derived MKs (BSS-MKs) yielded fewer but larger platelets compared with the WT. In the presence of blebbistatin, ROCK inhibitor, or PAC-1, WT, BSS-A, and BSS-B MKs could generate more platelets with decreased sizes, but PAC-1 caused CD42 loss on WT platelets. The proportions of proplatelet formation from MKs carrying tubulin-GFP were not different between WT and BSS-MKs, as well as among inhibitors. Notably, initially thick cytoplasmic processes were transformed into thin branching proplatelets over the observation time. The proplatelet shafts of BSS-MK became thinner in the presence of blebbistatin or ROCK inhibitor, but not of PAC-1, which displayed uneven F-actin distribution. CONCLUSION Inhibition of the ROCK/myosin pathway, downstream of GpIb, could restore normal morphology of proplatelets in BSS-MKs. Procaspase-3 activation could increase platelet yields, but with abnormal proplatelet and platelet structures. Our model can be used for therapeutic drug screening and a disease model for platelet production in the future.
Collapse
Affiliation(s)
- Ponthip Mekchay
- Division of Hematology, Faculty of Medicine, Excellence Center in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Netchanok Leela-Adisorn
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Noppacharn Uaprasert
- Division of Hematology, Faculty of Medicine, Excellence Center in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Faculty of Medicine, Excellence Center in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Jackett KN, Browne AT, Aber ER, Clements M, Kaplan RN. How the bone microenvironment shapes the pre-metastatic niche and metastasis. NATURE CANCER 2024; 5:1800-1814. [PMID: 39672975 DOI: 10.1038/s43018-024-00854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/04/2024] [Indexed: 12/15/2024]
Abstract
The bone is a frequent metastatic site, with changes in the mineralized bone and the bone marrow milieu that can also prime other sites for metastasis by educating progenitor cells to support metastatic spread. Stromal and immune populations cooperatively maintain the organizationally complex bone niches and are dysregulated in the presence of a distant primary tumor and metastatic disease. Interrogating the bone niches that facilitate metastatic spread using innovative technologies holds the potential to aid in preventing metastasis in and mediated by the bone. Here, we review recent advances in bone niche biology and its adaptations in the context of cancer.
Collapse
Affiliation(s)
- Kailey N Jackett
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice T Browne
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Etan R Aber
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miranda Clements
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Reusswig F, An O, Deppermann C. Platelet life cycle during aging: function, production and clearance. Platelets 2024; 35:2433750. [PMID: 39618096 DOI: 10.1080/09537104.2024.2433750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Platelets are important players in hemostasis. Alterations in platelet number and/or function lead to life-threatening conditions like thrombosis, myocardial infarction and stroke. During aging, changes at the cellular, organ and systemic level occur that affect platelet counts, platelet functionality, the expression of platelet surface receptors, clearance markers as well as their interactions with immune cells. Understanding how these changes influence platelets can help to prevent the alterations of hemostasis and thrombosis we observe in the elderly. In this review, we highlight the respective changes at important sites of the platelet life cycle: bone marrow, liver and spleen, but also show how alterations in immunity contribute. We point out the necessity for further research on age-related systemic alterations in these systems and their interplay with platelets to better understand the complex processes that cause alterations in the platelet life cycle during aging.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy, Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Chen X, Zhao Y, Lv Y, Xie J. Immunological platelet transfusion refractoriness: current insights from mechanisms to therapeutics. Platelets 2024; 35:2306983. [PMID: 38314765 DOI: 10.1080/09537104.2024.2306983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024]
Abstract
Although there have been tremendous improvements in the production and storage of platelets, platelet transfusion refractoriness (PTR) remains a serious clinical issue that may lead to various severe adverse events. The burden of supplying platelets is worsened by rising market demand and limited donor pools of compatible platelets. Antibodies against platelet antigens are known to activate platelets through FcγR-dependent or complement-activated channels, thereby rapidly eliminating foreign platelets. Recently, other mechanisms of platelet clearance have been reported. The current treatment strategy for PTR is to select appropriate and compatible platelets; however, this necessitates a sizable donor pool and technical assistance for costly testing. Consolidation of these mechanisms should be of critical significance in providing insight to establish novel therapeutics to target immunological platelet refractoriness. Therefore, the purposes of this review were to explore the modulation of the immune system over the activation and elimination of allogeneic platelets and to summarize the development of alternative approaches for treating and avoiding alloimmunization to human leukocyte antigen or human platelet antigen in PTR.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhong Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Li Y, Chen K, Wang QF. Immunological face of megakaryocytes. Front Med 2024; 18:988-1001. [PMID: 39542989 DOI: 10.1007/s11684-024-1087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/17/2024] [Indexed: 11/17/2024]
Abstract
Megakaryocytes (MKs), which are traditionally known for their role in platelet production, are now emerging as unique immune cells with diverse capabilities. They express immune receptors, participate in pathogen recognition and response, phagocytose pathogens, contribute to antigen presentation, and interact with various immune cell types. When encountering inflammatory challenges, MKs exhibit intricate immune functions that can either promote or inhibit inflammation. These responses are mediated through mechanisms, such as the secretion of either anti-inflammatory or pro-inflammatory cytokines and release of immunomodulatory platelets according to specific conditions. This intricate array of responses necessitates a detailed exploration to determine whether the immune functions of MKs are carried out by the entire MK population or by a specific subpopulation. Breakthroughs in single-cell RNA sequencing have uncovered a unique "immune MK" subpopulation, revealing its distinct characteristics and immunoregulatory functions. This review provides latest insights into MKs' immune attributes and their roles in physiological and pathological contexts and emphasizes the discovery and functions of "immune MKs".
Collapse
Affiliation(s)
- Yueying Li
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kunying Chen
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Fei Wang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Furniss JA, Tarassova N, Poole AW. Platelet generation in vivo and in vitro. Blood 2024; 144:2283-2294. [PMID: 39357055 DOI: 10.1182/blood.2024024601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Platelets play crucial roles in hemostasis, thrombosis, and immunity, but our understanding of their complex biogenesis (thrombopoiesis) is currently incomplete. Deeper insight into the mechanisms of platelet biogenesis inside and outside the body is fundamental for managing hematological disorders and for the development of novel cell-based therapies. In this article, we address the current understanding of in vivo thrombopoiesis, including mechanisms of platelet generation from megakaryocytes (proplatelet formation, cytoplasmic fragmentation, and membrane budding) and their physiological location. Progress has been made in replicating these processes in vitro for potential therapeutic application, notably in platelet transfusion and bioengineering of platelets for novel targeted therapies. The current platelet-generating systems and their limitations, particularly yield, scalability, and functionality, are discussed. Finally, we highlight the current controversies and challenges in the field that need to be addressed to achieve a full understanding of these processes, in vivo and in vitro.
Collapse
Affiliation(s)
- Jonathan A Furniss
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Nathalie Tarassova
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Leung G, Middleton EA. The role of platelets and megakaryocytes in sepsis and ARDS. J Physiol 2024; 602:6047-6063. [PMID: 39425883 DOI: 10.1113/jp284879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024] Open
Abstract
Since the global COVID-19 pandemic, there has been a renewed focus on lung injury during infection. Systemic inflammatory responses such as acute respiratory distress syndrome (ARDS) and sepsis are a leading cause of morbidity and mortality for both adults and children. Improvements in clinical care have improved outcomes but mortality remains ∼40% and significant morbidity persists for those patients with severe disease. Mechanistic studies of the underlying biological processes remain essential to identifying therapeutic targets. Furthermore, methods for identifying the underlying drivers of organ failure are key to treating and preventing tissue injury. In this review, we discuss the contribution of megakaryocytes (MKs) and platelets to the pathogenesis of systemic inflammatory syndromes. We explore the role of MKs and the new identification of extramedullary MKs during sepsis. We describe the alterations in the platelet transcriptome during sepsis. Lastly, we explore platelet function as defined by aggregation, activation and the formation of heterotypic aggregates. Much more work is necessary to explore the contribution of platelets to these heterogenous syndromes, but the foundation of platelets as key contributors to inflammation has been laid.
Collapse
Affiliation(s)
- Gabriel Leung
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth A Middleton
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Huang L, Shao B. New insights of glycoprotein Ib-IX-V complex organization and glycoprotein Ibα in platelet biogenesis. Curr Opin Hematol 2024; 31:294-301. [PMID: 39046849 DOI: 10.1097/moh.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Glycoprotein (GP) Ib-IX-V, a platelet surface receptor that plays a critical role in platelet adhesion and platelet-mediated immune responses, consists of GPIbα, GPIbβ, GPIX, and GPV in a stoichiometry of 2 : 4 : 2 : 1. Forming a complex is essential for GPIb-IX-V to function. GPIb-IX-V also plays an important role in platelet biogenesis by regulating the number and size of platelets. Yet how GPIb-IX-V regulates platelet biogenesis remains elusive. This review will summarize recent findings in the complex organization of GPIb-IX-V and its role in platelet biogenesis. RECENT FINDINGS Proteomics studies suggest that GPIbα, GPIbβ, GPIX, and GPV form the complex in a ratio of 1 : 2 : 1 : 1, which is supported by analysis of molecular weight of GPIb-IX-V and GPIb-IX and the structure of entire GPIb-IX-V. To activate platelets, GPIbα requires binding of CLEC-2 to trigger signals. Furthermore, disrupting the GPIbα anchorage to filamin A causes defects in platelet budding away from proplatelets leading to giant platelets and a low platelet count. SUMMARY New studies challenge the traditional model for the organization of GPIb-IX-V as a complex and indicate the role of GPIb-IX-V in platelet production. Those studies provide insights for GPIb-IX-V in the regulation of platelet activation and platelet biogenesis.
Collapse
Affiliation(s)
- Lulu Huang
- Laboratory of Vascular Inflammation and Thrombosis Research, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | |
Collapse
|
15
|
Carminita E, Becker IC, Italiano JE. What It Takes To Be a Platelet: Evolving Concepts in Platelet Production. Circ Res 2024; 135:540-549. [PMID: 39088641 DOI: 10.1161/circresaha.124.323579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Platelets are among the most abundant cells within the circulation. Given that the platelet lifespan is 7 to 10 days in humans, a constant production of around 100 billion platelets per day is required. Platelet production from precursor cells called megakaryocytes is one of the most enigmatic processes in human biology. Although it has been studied for over a century, there is still controversy about the exact mechanisms leading to platelet release into circulation. The formation of proplatelet extensions from megakaryocytes into bone marrow sinusoids is the best-described mechanism explaining the origin of blood platelets. However, using powerful imaging techniques, several emerging studies have recently raised challenging questions in the field, suggesting that small platelet-sized structures called buds might also contribute to the circulating platelet pool. How and whether these structures differ from microvesicles or membrane blebs, which have previously been described to be released from megakaryocytes, is still a matter of discussion. In this review, we will summarize what the past and present have revealed about platelet production and whether mature blood platelets might emerge via different mechanisms.
Collapse
Affiliation(s)
- Estelle Carminita
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
- Harvard Medical School, Boston, MA (E.C., I.C.B.)
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
- Harvard Medical School, Boston, MA (E.C., I.C.B.)
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (E.C., I.C.B., J.E.I.)
| |
Collapse
|
16
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
18
|
Gaertner F, Ishikawa-Ankerhold H, Stutte S, Fu W, Weitz J, Dueck A, Nelakuditi B, Fumagalli V, van den Heuvel D, Belz L, Sobirova G, Zhang Z, Titova A, Navarro AM, Pekayvaz K, Lorenz M, von Baumgarten L, Kranich J, Straub T, Popper B, Zheden V, Kaufmann WA, Guo C, Piontek G, von Stillfried S, Boor P, Colonna M, Clauß S, Schulz C, Brocker T, Walzog B, Scheiermann C, Aird WC, Nerlov C, Stark K, Petzold T, Engelhardt S, Sixt M, Hauschild R, Rudelius M, Oostendorp RAJ, Iannacone M, Heinig M, Massberg S. Plasmacytoid dendritic cells control homeostasis of megakaryopoiesis. Nature 2024; 631:645-653. [PMID: 38987596 PMCID: PMC11254756 DOI: 10.1038/s41586-024-07671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.
Collapse
Affiliation(s)
- Florian Gaertner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany.
| | | | - Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wenwen Fu
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jutta Weitz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anne Dueck
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Bhavishya Nelakuditi
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Larissa Belz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Gulnoza Sobirova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Zhe Zhang
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Anna Titova
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Michael Lorenz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, Ludwig-Maximilians-University School of Medicine, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatic Core facility, LMU Munich, Planegg-Martinsried, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU Munich, Planegg-Martinsried, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Chenglong Guo
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St Louis, MO, USA
| | - Sebastian Clauß
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Scheiermann
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - William C Aird
- Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Konstantin Stark
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Deutsches Herzzentrum der Charité (DHZC) University Hospital Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Friede Springer - Centre of Cardiovascular Prevention @ Charité, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Engelhardt
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Robert A J Oostendorp
- Laboratory of Stem Cell Physiology, Department of Internal Medicine III-Hematology and Oncology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Dynamics of Immune Responses, Vita-Salute San Raffaele University, Milan, Italy
| | - Matthias Heinig
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Computational Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Kim H, Jarocha D, Johnson I, Ahn H, Hlinka N, French DL, Rauova L, Lee K, Poncz M. Studies of infused megakaryocytes into mice support a "catch-and-release" model of pulmonary-centric thrombopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597316. [PMID: 38895231 PMCID: PMC11185690 DOI: 10.1101/2024.06.04.597316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Many aspects of thrombopoiesis, the release of platelets from megakaryocytes (Mks), remain under debate, including where this process occurs. Murine lung in situ -microscopy studies suggested that a significant fraction of circulating platelets were released from lung-entrapped, marrow-derived Mks. We now confirm these in situ studies that endogenous mMks are entrapped in the lungs and show that intravenously infused in vitro -differentiated, mature murine (m) and human (h) Mks are similarly entrapped followed by shedding of their cytoplasm over ∼30 minutes with a peak number of released platelets occurring 1.5-4 hours later. However, while infused Mks from both species shed large intrapulmonary cytoplasmic fragments that underwent further processing into platelet-sized fragments, the two differed: many mMks escaped from and then recycled back to the lungs, while most hMks were enucleated upon first intrapulmonary passage. Infused immature hMks, inflammatory hMks, umbilical cord-blood-derived hMks and immortalized Mk progenitor cell (imMKCL)-derived hMks were also entrapped in the lung of recipient mice, and released their cytoplasm, but did so to different degrees. Intraarterial infused hMks resulted in few Mks being entrapped in tissues other than the lungs and was accompanied by a blunted and delayed rise in circulating human platelets. These studies demonstrate that the lung entraps and processes both circulating Mks and released large cytoplasmic fragments consistent with a recent lung/heart murine study and support a pulmonary-centric "catch-and-release" model of thrombopoiesis. Thus, thrombopoiesis is a drawn-out process with the majority of cytoplasmic processing derived from Mks occurring in the pulmonary bed. Key Points Infused in vitro -differentiated megakaryocytes synchronously release cytoplasmic fragments highly selectively in the pulmonary bed. Large, released megakaryocyte fragments recycle to the lungs, undergo further fission, terminally form platelets.
Collapse
|
20
|
Di Buduo CA, Lunghi M, Kuzmenko V, Laurent P, Della Rosa G, Del Fante C, Dalle Nogare DE, Jug F, Perotti C, Eto K, Pecci A, Redwan IN, Balduini A. Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308276. [PMID: 38514919 PMCID: PMC11095152 DOI: 10.1002/advs.202308276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.
Collapse
Affiliation(s)
| | - Marco Lunghi
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
| | | | | | | | - Claudia Del Fante
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | | | | | - Cesare Perotti
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | - Koji Eto
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto UniversityKyoto606‐8507Japan
- Department of Regenerative MedicineGraduate School of MedicineChiba UniversityChiba260‐8670Japan
| | - Alessandro Pecci
- Department of Internal MedicineI.R.C.C.S. Policlinico S. Matteo Foundation and University of PaviaPavia27100Italy
| | | | - Alessandra Balduini
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| |
Collapse
|
21
|
Wang Y, Wang C, Xia M, Tian Z, Zhou J, Berger JM, Zhang XHF, Xiao H. Engineering small-molecule and protein drugs for targeting bone tumors. Mol Ther 2024; 32:1219-1237. [PMID: 38449313 PMCID: PMC11081876 DOI: 10.1016/j.ymthe.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Chenhang Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Meng Xia
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Joseph Zhou
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Julian Meyer Berger
- Osteologic Therapeutics, Inc., 228 Park Ave S PMB 35546, New York, NY 10003, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; SynthX Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
22
|
El-Mortada F, Landelouci K, Bertrand-Perron S, Aubé FA, Poirier A, Bidias A, Jourdi G, Welman M, Gantier MP, Hamilton JR, Kile B, Lordkipanidzé M, Pépin G. Megakaryocytes possess a STING pathway that is transferred to platelets to potentiate activation. Life Sci Alliance 2024; 7:e202302211. [PMID: 37993259 PMCID: PMC10665521 DOI: 10.26508/lsa.202302211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
Platelets display unexpected roles in immune and coagulation responses. Emerging evidence suggests that STING is implicated in hypercoagulation. STING is an adaptor protein downstream of the DNA sensor cyclic GMP-AMP synthase (cGAS) that is activated by cytosolic microbial and self-DNA during infections, and in the context of loss of cellular integrity, to instigate the production of type-I IFN and pro-inflammatory cytokines. To date, whether the cGAS-STING pathway is present in platelets and contributes to platelet functions is not defined. Using a combination of pharmacological and genetic approaches, we demonstrate here that megakaryocytes and platelets possess a functional cGAS-STING pathway. Our results suggest that in megakaryocytes, STING stimulation activates a type-I IFN response, and during thrombopoiesis, cGAS and STING are transferred to proplatelets. Finally, we show that both murine and human platelets contain cGAS and STING proteins, and the cGAS-STING pathway contributes to potentiation of platelet activation and aggregation. Taken together, these observations establish for the first time a novel role of the cGAS-STING DNA sensing axis in the megakaryocyte and platelet lineage.
Collapse
Affiliation(s)
- Firas El-Mortada
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Karima Landelouci
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Samuel Bertrand-Perron
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Félix-Antoine Aubé
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amélie Poirier
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Amel Bidias
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Georges Jourdi
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Mélanie Welman
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- CSL Innovation, Melbourne, Australia
| | - Benjamin Kile
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Marie Lordkipanidzé
- Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, Canada
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Geneviève Pépin
- Groupe de Recherche en Signalisation Cellulaire, Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
23
|
Ellis ML, Terreaux A, Alwis I, Smythe R, Perdomo J, Eckly A, Cranmer SL, Passam FH, Maclean J, Schoenwaelder SM, Ruggeri ZM, Lanza F, Taoudi S, Yuan Y, Jackson SP. GPIbα-filamin A interaction regulates megakaryocyte localization and budding during platelet biogenesis. Blood 2024; 143:342-356. [PMID: 37922495 DOI: 10.1182/blood.2023021292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.
Collapse
Affiliation(s)
- Marc L Ellis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Antoine Terreaux
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Imala Alwis
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Rhyll Smythe
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jose Perdomo
- Haematology Research Unit, St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Anita Eckly
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Susan L Cranmer
- Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia
| | - Freda H Passam
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Jessica Maclean
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Simone M Schoenwaelder
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Zaverio M Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| | - Francois Lanza
- Université de Strasbourg, INSERM, French Blood Establishment (EFS) Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Samir Taoudi
- Blood Cell Formation Lab, Walter and Eliza Hall Institute, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Yuping Yuan
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Shaun P Jackson
- Thrombosis Research Group, The Heart Institute, Newtown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
24
|
Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14:1277808. [PMID: 38116017 PMCID: PMC10728659 DOI: 10.3389/fimmu.2023.1277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Bhattacharyya ND, Kyaw W, McDonald MM, Dhenni R, Grootveld AK, Xiao Y, Chai R, Khoo WH, Danserau LC, Sergio CM, Timpson P, Lee WM, Croucher PI, Phan TG. Minimally invasive longitudinal intravital imaging of cellular dynamics in intact long bone. Nat Protoc 2023; 18:3856-3880. [PMID: 37857852 DOI: 10.1038/s41596-023-00894-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/28/2023] [Indexed: 10/21/2023]
Abstract
Intravital two-photon microscopy enables deep-tissue imaging at high temporospatial resolution in live animals. However, the endosteal bone compartment and underlying bone marrow pose unique challenges to optical imaging as light is absorbed, scattered and dispersed by thick mineralized bone matrix and the adipose-rich bone marrow. Early bone intravital imaging methods exploited gaps in the cranial sutures to bypass the need to penetrate through cortical bone. More recently, investigators have developed invasive methods to thin the cortical bone or implant imaging windows to image cellular dynamics in weight-bearing long bones. Here, we provide a step-by-step procedure for the preparation of animals for minimally invasive, nondestructive, longitudinal intravital imaging of the murine tibia. This method involves the use of mixed bone marrow radiation chimeras to unambiguously double-label osteoclasts and osteomorphs. The tibia is exposed by a simple skin incision and an imaging chamber constructed using thermoconductive T-putty. Imaging sessions up to 12 h long can be repeated over multiple timepoints to provide a longitudinal time window into the endosteal and marrow niches. The approach can be used to investigate cellular dynamics in bone remodeling, cancer cell life cycle and hematopoiesis, as well as long-lived humoral and cellular immunity. The procedure requires an hour to complete and is suitable for users with minimal prior expertise in small animal surgery.
Collapse
Affiliation(s)
- Nayan Deger Bhattacharyya
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle M McDonald
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Abigail K Grootveld
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ya Xiao
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ryan Chai
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Linda C Danserau
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
| | - C Marcelo Sergio
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
| | - Woei Ming Lee
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, New South Wales, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
- ACRF INCITe Centre for Intravital Imaging of Niches for Cancer Immune Therapy, Sydney, New South Wales, Australia.
| |
Collapse
|
26
|
Schwertz H, Middleton EA. Autophagy and its consequences for platelet biology. Thromb Res 2023; 231:170-181. [PMID: 36058760 PMCID: PMC10286736 DOI: 10.1016/j.thromres.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT 59718, USA.
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Pulmonary Medicine and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Grodzielski M, Cidlowski JA. Glucocorticoids regulate thrombopoiesis by remodeling the megakaryocyte transcriptome. J Thromb Haemost 2023; 21:3207-3223. [PMID: 37336437 PMCID: PMC10592358 DOI: 10.1016/j.jtha.2023.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Glucocorticoids are widely known for their immunomodulatory action. Their synthetic analogs are used to treat several autoimmune diseases, including immune thrombocytopenia. However, their efficacy and mechanisms of action in immune thrombocytopenia are not fully understood. OBJECTIVES To investigate the mechanism of glucocorticoid actions on platelet production. METHODS The actions of glucocorticoids on platelet production were studied combining in vivo, ex vivo and in vitro approaches. RESULTS Dexamethasone reduced bleeding in mice and rapidly increased circulating young platelet counts. In vitro glucocorticoid treatment stimulated proplatelet formation by megakaryocytes and platelet-like particle release. This effect was blocked by glucocorticoid receptor antagonist RU486, indicating a glucocorticoid receptor-dependent mechanism. Genome-wide analysis revealed that dexamethasone regulates the expression of >1000 genes related to numerous cellular functions, including predominant cytoplasm and cytoskeleton reorganization. Dexamethasone and other glucocorticoids induced the expression of Gda (the gene encoding guanine deaminase), which has been reported to have a role in dendrite development. Inhibition of guanine deaminase enzymatic activity blocked dexamethasone stimulation of proplatelet formation, implicating a critical role for this enzyme in glucocorticoid-mediated platelet production. CONCLUSION Our findings identify glucocorticoids as new regulators of thrombopoiesis.
Collapse
Affiliation(s)
- Matías Grodzielski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
28
|
Hernández-Barrientos D, Pelayo R, Mayani H. The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 2023; 114:404-420. [PMID: 37386890 DOI: 10.1093/jleuko/qiad075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Blood cell formation (hematopoiesis) takes place mainly in the bone marrow, within the hematopoietic microenvironment, composed of a number of different cell types and their molecular products that together shape spatially organized and highly specialized microstructures called hematopoietic niches. From the earliest developmental stages and throughout the myeloid and lymphoid lineage differentiation pathways, hematopoietic niches play a crucial role in the preservation of cellular integrity and the regulation of proliferation and differentiation rates. Current evidence suggests that each blood cell lineage develops under specific, discrete niches that support committed progenitor and precursor cells and potentially cooperate with transcriptional programs determining the gradual lineage commitment and specification. This review aims to discuss recent advances on the cellular identity and structural organization of lymphoid, granulocytic, monocytic, megakaryocytic, and erythroid niches throughout the hematopoietic microenvironment and the mechanisms by which they interconnect and regulate viability, maintenance, maturation, and function of the developing blood cells.
Collapse
Affiliation(s)
- Daniel Hernández-Barrientos
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| | - Rosana Pelayo
- Onco-Immunology Laboratory, Eastern Biomedical Research Center, IMSS, Km 4.5 Atlixco-Metepec, 74360, Puebla, Mexico
| | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| |
Collapse
|
29
|
Liu H, Ishikawa-Ankerhold H, Winterhalter J, Lorenz M, Vladymyrov M, Massberg S, Schulz C, Orban M. Multiphoton In Vivo Microscopy of Embryonic Thrombopoiesis Reveals the Generation of Platelets through Budding. Cells 2023; 12:2411. [PMID: 37830625 PMCID: PMC10572188 DOI: 10.3390/cells12192411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Julia Winterhalter
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Michael Lorenz
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Mykhailo Vladymyrov
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern, Switzerland;
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
- Data Science Lab, Mathematical Institute, University of Bern, 3012 Bern, Switzerland
| | - Steffen Massberg
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Mathias Orban
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
30
|
Kweon S, Kim S, Choi HS, Jo K, Park JM, Baek EJ. Current status of platelet manufacturing in 3D or bioreactors. Biotechnol Prog 2023; 39:e3364. [PMID: 37294031 DOI: 10.1002/btpr.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Blood shortages for transfusion are global issues of grave concern. As in vitro manufactured platelets are promising substitutes for blood donation, recent research has shown progresses including different cell sources, different bioreactors, and three-dimensional materials. The first-in-human clinical trial of cultured platelets using induced pluripotent stem cell-derived platelets began in Japan and demonstrated its quality, safety, and efficacy. A novel bioreactor with fluid motion for platelet production has been reported. Herein, we discuss various cell sources for blood cell production, recent advances in manufacturing processes, and clinical applications of cultured blood.
Collapse
Affiliation(s)
- Soonho Kweon
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Suyeon Kim
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Hye Sook Choi
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Kyeongwon Jo
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Ju Mi Park
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Eun Jung Baek
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Thompson W, Papoutsakis ET. Similar but distinct: The impact of biomechanical forces and culture age on the production, cargo loading, and biological efficacy of human megakaryocytic extracellular vesicles for applications in cell and gene therapies. Bioeng Transl Med 2023; 8:e10563. [PMID: 37693047 PMCID: PMC10486331 DOI: 10.1002/btm2.10563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/18/2023] [Accepted: 06/01/2023] [Indexed: 09/12/2023] Open
Abstract
Megakaryocytic extracellular vesicles (MkEVs) promote the growth and megakaryopoiesis of hematopoietic stem and progenitor cells (HSPCs) largely through endogenous miR-486-5p and miR-22-3p cargo. Here, we examine the impact of biomechanical force and culture age/differentiation on the formation, properties, and biological efficacy of MkEVs. We applied biomechanical force to Mks using two methods: shake flask cultures and a syringe pump system. Force increased MkEV production in a magnitude-dependent manner, with similar trends emerging regardless of whether flow cytometry or nanoparticle tracking analysis was used for MkEV counting. Both methods produced MkEVs that were relatively depleted of miR-486-5p and miR-22-3p cargo. However, while the shake flask-derived MkEVs were correspondingly less effective in promoting megakaryocytic differentiation of HSPCs, the syringe pump-derived MkEVs were more effective in doing so, suggesting the presence of unique, unidentified miRNA cargo components. Higher numbers of MkEVs were also produced by "older" Mk cultures, though miRNA cargo levels and MkEV bioactivity were unaffected by culture age. A reduction in MkEV production by Mks derived from late-differentiating HSPCs was also noted. Taken together, our results demonstrate that biomechanical force has an underappreciated and deeply influential role in MkEV biology, though that role may vary significantly depending on the nature of the force. Given the ubiquity of biomechanical force in vivo and in biomanufacturing, this phenomenon must be grappled with before MkEVs can attain clinical relevance.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | | |
Collapse
|
32
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
33
|
Zhao X, Alibhai D, Walsh TG, Tarassova N, Englert M, Birol SZ, Li Y, Williams CM, Neal CR, Burkard P, Cross SJ, Aitken EW, Waller AK, Beltrán JB, Gunning PW, Hardeman EC, Agbani EO, Nieswandt B, Hers I, Ghevaert C, Poole AW. Highly efficient platelet generation in lung vasculature reproduced by microfluidics. Nat Commun 2023; 14:4026. [PMID: 37419900 PMCID: PMC10329040 DOI: 10.1038/s41467-023-39598-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Dominic Alibhai
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Tony G Walsh
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Nathalie Tarassova
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Maximilian Englert
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Semra Z Birol
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Yong Li
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Chris R Neal
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Philipp Burkard
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Stephen J Cross
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elizabeth W Aitken
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Amie K Waller
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - José Ballester Beltrán
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ejaife O Agbani
- Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Cedric Ghevaert
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
34
|
Tang L, Liu C, Rosenberger P. Platelet formation and activation are influenced by neuronal guidance proteins. Front Immunol 2023; 14:1206906. [PMID: 37398659 PMCID: PMC10310924 DOI: 10.3389/fimmu.2023.1206906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Platelets are anucleate blood cells derived from megakaryocytes. They link the fundamental functions of hemostasis, inflammation and host defense. They undergo intracellular calcium flux, negatively charged phospholipid translocation, granule release and shape change to adhere to collagen, fibrin and each other, forming aggregates, which are key to several of their functions. In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal axon navigation and thus refine neuronal circuits. By binding to their target receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In recent decades, evidence has indicated that NGPs perform important immunomodulatory functions and influence platelet function. In this review, we highlight the roles of NGPs in platelet formation and activation.
Collapse
|
35
|
Asgari A, Jurasz P. Role of Nitric Oxide in Megakaryocyte Function. Int J Mol Sci 2023; 24:ijms24098145. [PMID: 37175857 PMCID: PMC10179655 DOI: 10.3390/ijms24098145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Megakaryocytes are the main members of the hematopoietic system responsible for regulating vascular homeostasis through their progeny platelets, which are generally known for maintaining hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow but may also circulate in the vasculature. They are generated directly or through a multi-lineage commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process called "megakaryopoiesis". Immature megakaryocytes enter a complicated development process defined as "thrombopoiesis" that ultimately results in the release of extended protrusions called proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G-2H7, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G-2S2, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB T6G-2R7, Canada
| |
Collapse
|
36
|
Di Buduo CA, Miguel CP, Balduini A. Inside-to-outside and back to the future of megakaryopoiesis. Res Pract Thromb Haemost 2023; 7:100197. [PMID: 37416054 PMCID: PMC10320384 DOI: 10.1016/j.rpth.2023.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.
Collapse
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
37
|
Thompson W, Papoutsakis ET. The role of biomechanical stress in extracellular vesicle formation, composition and activity. Biotechnol Adv 2023; 66:108158. [PMID: 37105240 DOI: 10.1016/j.biotechadv.2023.108158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Extracellular vesicles (EVs) are cornerstones of intercellular communication with exciting fundamental, clinical, and more broadly biotechnological applications. However, variability in EV composition, which results from the culture conditions used to generate the EVs, poses significant fundamental and applied challenges and a hurdle for scalable bioprocessing. Thus, an understanding of the relationship between EV production (and for clinical applications, manufacturing) and EV composition is increasingly recognized as important and necessary. While chemical stimulation and culture conditions such as cell density are known to influence EV biology, the impact of biomechanical forces on the generation, properties, and biological activity of EVs remains poorly understood. Given the omnipresence of these forces in EV preparation and in biomanufacturing, expanding the understanding of their impact on EV composition-and thus, activity-is vital. Although several publications have examined EV preparation and bioprocessing and briefly discussed biomechanical stresses as variables of interest, this review represents the first comprehensive evaluation of the impact of such stresses on EV production, composition and biological activity. We review how EV biogenesis, cargo, efficacy, and uptake are uniquely affected by various types, magnitudes, and durations of biomechanical forces, identifying trends that emerge both generically and for individual cell types. We also describe implications for scalable bioprocessing, evaluating processes inherent in common EV production and isolation methods, and propose a path forward for rigorous EV quality control.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
38
|
Heazlewood SY, Ahmad T, Cao B, Cao H, Domingues M, Sun X, Heazlewood CK, Li S, Williams B, Fulton M, White JF, Nebl T, Nefzger CM, Polo JM, Kile BT, Kraus F, Ryan MT, Sun YB, Choong PFM, Ellis SL, Anko ML, Nilsson SK. High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production. Nat Commun 2023; 14:2099. [PMID: 37055407 PMCID: PMC10102126 DOI: 10.1038/s41467-023-37780-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Tanveer Ahmad
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Huimin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Melanie Domingues
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Songhui Li
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Jacinta F White
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Tom Nebl
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
| | - Christian M Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Felix Kraus
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michael T Ryan
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Yu B Sun
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Melbourne, VIC, Australia
| | - Peter F M Choong
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
- Bone and Soft Tissue Sarcoma Service, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Orthopaedics, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Sarah L Ellis
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Minna-Liisa Anko
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
39
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
40
|
Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10:1074878. [PMID: 36968817 PMCID: PMC10038213 DOI: 10.3389/fmed.2023.1074878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Platelets, anucleate blood components, represent the major cell type involved in the regulation of hemostasis and thrombosis. In addition to performing haemostatic roles, platelets can influence both innate and adaptive immune responses. In this review, we summarize the development of platelets and their functions in hemostasis. We also discuss the interactions between platelet products and innate or adaptive immune cells, including neutrophils, monocytes, macrophages, T cells, B cells and dendritic cells. Activated platelets and released molecules regulate the differentiation and function of these cells via platelet-derived receptors or secreting molecules. Platelets have dual effects on nearly all immune cells. Understanding the exact mechanisms underlying these effects will enable further application of platelet transfusion.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojie Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianchun Fang
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junji He
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhu
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Feng Zhu,
| |
Collapse
|
41
|
Nandhini B, Sureshraj Y, Kaviya M, Sangeetha T, Bharathi K, Balamuralikrishnan B, Manikantan P, Arun M, Haripriya KB, Karthika P, Kalidass S, Anand AV. Review on the Biogenesis of Platelets in Lungs and Its Alterations in SARS-CoV-2 Infection Patients. J Renin Angiotensin Aldosterone Syst 2023; 2023:7550197. [PMID: 36891250 PMCID: PMC9988383 DOI: 10.1155/2023/7550197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Thrombocytes (platelets) are the type of blood cells that are involved in hemostasis, thrombosis, etc. For the conversion of megakaryocytes into thrombocytes, the thrombopoietin (TPO) protein is essential which is encoded by the TPO gene. TPO gene is present in the long arm of chromosome number 3 (3q26). This TPO protein interacts with the c-Mpl receptor, which is present on the outer surface of megakaryocytes. As a result, megakaryocyte breaks into the production of functional thrombocytes. Some of the evidence shows that the megakaryocytes, the precursor of thrombocytes, are seen in the lung's interstitium. This review focuses on the involvement of the lungs in the production of thrombocytes and their mechanism. A lot of findings show that viral diseases, which affect the lungs, cause thrombocytopenia in human beings. One of the notable viral diseases is COVID-19 or severe acute respiratory syndrome caused by SARS-associated coronavirus 2 (SARS-CoV-2). SARS-CoV-2 caused a worldwide alarm in 2019 and a lot of people suffered because of this disease. It mainly targets the lung cells for its replication. To enter the cells, these virus targets the angiotensin-converting enzyme-2 (ACE-2) receptors that are abundantly seen on the surface of the lung cells. Recent reports of COVID-19-affected patients reveal the important fact that these peoples develop thrombocytopenia as a post-COVID condition. This review elaborates on the biogenesis of platelets in the lungs and the alterations of thrombocytes during the COVID-19 infection.
Collapse
Affiliation(s)
- Balasundaram Nandhini
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Yacobu Sureshraj
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Mohandass Kaviya
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Thangavelu Sangeetha
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kathirvel Bharathi
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | | | - Meyyazhagan Arun
- Department of Life Sciences, Christ Deemed to be University, Bengaluru, India
| | | | - Pushparaj Karthika
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Subramaniam Kalidass
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
42
|
Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, Wen WX, Sousos N, Murphy LC, Grygielska B, Perrella G, Mahony CB, Ling RE, Elliott NE, Karali CS, Stone AP, Kemble S, Cutler EA, Fielding AK, Croft AP, Bassett D, Poologasundarampillai G, Roy A, Gooding S, Rayes J, Machlus KR, Psaila B. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov 2023; 13:364-385. [PMID: 36351055 PMCID: PMC9900323 DOI: 10.1158/2159-8290.cd-22-0199] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michela Colombo
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Guanlin Wang
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wei Xiong Wen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nikolaos Sousos
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lauren C. Murphy
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca E. Ling
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Natalina E. Elliott
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew P. Stone
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Emily A. Cutler
- University College London Cancer Institute, London, United Kingdom
| | | | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | | | - Anindita Roy
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
43
|
Yang S, Wang L, Wu Y, Wu A, Huang F, Tang X, Kantawong F, Anuchapreeda S, Qin D, Mei Q, Chen J, Huang X, Zhang C, Wu J. Apoptosis in megakaryocytes: Safeguard and threat for thrombopoiesis. Front Immunol 2023; 13:1025945. [PMID: 36685543 PMCID: PMC9845629 DOI: 10.3389/fimmu.2022.1025945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Platelets, generated from precursor megakaryocytes (MKs), are central mediators of hemostasis and thrombosis. The process of thrombopoiesis is extremely complex, regulated by multiple factors, and related to many cellular events including apoptosis. However, the role of apoptosis in thrombopoiesis has been controversial for many years. Some researchers believe that apoptosis is an ally of thrombopoiesis and platelets production is apoptosis-dependent, while others have suggested that apoptosis is dispensable for thrombopoiesis, and is even inhibited during this process. In this review, we will focus on this conflict, discuss the relationship between megakaryocytopoiesis, thrombopoiesis and apoptosis. In addition, we also consider why such a vast number of studies draw opposite conclusions of the role of apoptosis in thrombopoiesis, and try to figure out the truth behind the mystery. This review provides more comprehensive insights into the relationship between megakaryocytopoiesis, thrombopoiesis, and apoptosis and finds some clues for the possible pathological mechanisms of platelet disorders caused by abnormal apoptosis.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Chen SJ, Sugimoto N, Eto K. Ex vivo manufacturing of platelets: beyond the first-in-human clinical trial using autologous iPSC-platelets. Int J Hematol 2023; 117:349-355. [PMID: 36574167 PMCID: PMC9792917 DOI: 10.1007/s12185-022-03512-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Platelet transfusion is a common clinical approach to providing platelets to patients suffering from thrombocytopenia or other ailments that require an additional platelet source. However, a stable supply of platelet products is challenged by aging societies, pandemics, and other factors. Many groups have made extensive efforts toward the in vitro generation of platelets for clinical application. We established immortalized megakaryocyte progenitor cell lines (imMKCLs) from human induced pluripotent stem cells (iPSCs) and achieved clinical-scale manufacturing of iPSC-derived platelets (iPSC-PLTs) from them by identifying turbulent flow as a key physical condition. We later completed the iPLAT1 study, the first-in-human clinical trial using autologous iPSC-PLTs. This review summarizes current findings on the ex vivo generation of iPSC-PLTs that led to the iPLAT1 study and beyond. We also discuss new insights regarding the heterogeneity of megakaryocytes and the implications for the ex vivo generation of iPSC-PLTs.
Collapse
Affiliation(s)
- Si Jing Chen
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan. .,Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
45
|
Martin JF, D'Avino PP. A theory of rapid evolutionary change explaining the de novo appearance of megakaryocytes and platelets in mammals. J Cell Sci 2022; 135:285954. [PMID: 36515566 PMCID: PMC10112974 DOI: 10.1242/jcs.260286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Platelets are found only in mammals. Uniquely, they have a log Gaussian volume distribution and are produced from megakaryocytes, large cells that have polyploid nuclei. In this Hypothesis, we propose that a possible explanation for the origin of megakaryocytes and platelets is that, ∼220 million years ago, an inheritable change occurred in a mammalian ancestor that caused the haemostatic cell line of the animal to become polyploid. This inheritable change occurred specifically in the genetic programme of the cell lineage from which the haemostatic cell originated and led, because of increase in cell size, to its fragmentation into cytoplasmic particles (platelets) in the pulmonary circulatory system, as found in modern mammals. We hypothesize that these fragments originating from the new large haemostatic polyploid cells proved to be more efficient at stopping bleeding, and, therefore, the progeny of this ancestor prospered through natural selection. We also propose experimental strategies that could provide evidence to support this hypothesis.
Collapse
Affiliation(s)
- John F Martin
- Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Paolo Pier D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
46
|
Petzold T, Zhang Z, Ballesteros I, Saleh I, Polzin A, Thienel M, Liu L, Ul Ain Q, Ehreiser V, Weber C, Kilani B, Mertsch P, Götschke J, Cremer S, Fu W, Lorenz M, Ishikawa-Ankerhold H, Raatz E, El-Nemr S, Görlach A, Marhuenda E, Stark K, Pircher J, Stegner D, Gieger C, Schmidt-Supprian M, Gaertner F, Almendros I, Kelm M, Schulz C, Hidalgo A, Massberg S. Neutrophil "plucking" on megakaryocytes drives platelet production and boosts cardiovascular disease. Immunity 2022; 55:2285-2299.e7. [PMID: 36272416 PMCID: PMC9767676 DOI: 10.1016/j.immuni.2022.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.
Collapse
Affiliation(s)
- Tobias Petzold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Corresponding author
| | - Zhe Zhang
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Iván Ballesteros
- Program of Cardiovascular Regeneration, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Inas Saleh
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonology and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty of the Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuela Thienel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Lulu Liu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Qurrat Ul Ain
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Vincent Ehreiser
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Christian Weber
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Jeremias Götschke
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Sophie Cremer
- Department of Cardiology, Pulmonology and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty of the Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wenwen Fu
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Elisabeth Raatz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Shaza El-Nemr
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University of Munich, 80636 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany
| | - Esther Marhuenda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, 97070 Würzburg, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, 80333 Munich, Germany,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69117 Heidelberg, Germany
| | - Florian Gaertner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Isaac Almendros
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08007 Barcelona, Spain,CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty of the Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain,Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, Klinikum der Universität München, Ludwig-Maximilians- University Munich, 81377 Munich, Germany,Corresponding author
| |
Collapse
|
47
|
Gelon L, Fromont L, Lefrançais E. Occurrence and role of lung megakaryocytes in infection and inflammation. Front Immunol 2022; 13:1029223. [PMID: 36524131 PMCID: PMC9745136 DOI: 10.3389/fimmu.2022.1029223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Megakaryocytes (MKs) are large cells giving rise to platelets. It is well established that in adults, MKs develop from hematopoietic stem cells and reside in the bone marrow. MKs are also rare but normal constituents of the venous blood returning to the lungs, and MKs are found in the lung vasculature (MKcirc), suggesting that these cells are migrants from the bone marrow and get trapped in lung capillaries where the final steps of platelet production can occur. An unprecedented increase in the number of lung and circulating MKs was described in coronavirus disease 2019 (COVID-19) patients, suggesting that lung thrombopoiesis may be increased during lung infection and/or thromboinflammation. In addition to the population of platelet-producing intravascular MKs in the lung, a population of lung-resident megakaryocytes (MKL) has been identified and presents a specific immune signature compared to its bone marrow counterparts. Recent single-cell analysis and intravital imaging have helped us gain a better understanding of these populations in mouse and human. This review aims at summarizing the recent data on increased occurrence of lung MKs and discusses their origin, specificities, and potential role in homeostasis and inflammatory and infectious lung diseases. Here, we address remaining questions, controversies, and methodologic challenges for further studies of both MKcirc and MKL.
Collapse
|
48
|
Freitag M, Schwertz H. A New Role of NAP1L1 in Megakaryocytes and Human Platelets. Int J Mol Sci 2022; 23:ijms232314694. [PMID: 36499021 PMCID: PMC9737020 DOI: 10.3390/ijms232314694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Platelets (PLTs) are anucleate and considered incapable of nuclear functions. Contrastingly, nuclear proteins were detected in human PLTs. For most of these proteins, it is unclear if nuclear or alternatively assigned functions are performed, a question we wanted to address for nuclear assembly protein 1like 1 (NAP1L1). Using a wide array of molecular methods, including RNAseq, co-IP, overexpression and functional assays, we explored expression pattern and functionality of NAP1L1 in PLTs, and CD34+-derived megakaryocytes (MKs). NAP1L1 is expressed in PLTs and MKs. Co-IP experiments revealed that dihydrolipolylysine-residue acetyltransferase (DLAT encoded protein PDC-E2, ODP2) dynamically interacts with NAP1L1. PDC-E2 is part of the mitochondrial pyruvate-dehydrogenase (PDH) multi-enzyme complex, playing a crucial role in maintaining cellular respiration, and promoting ATP-synthesis via the respiratory chain. Since altered mitochondrial function is a hallmark of infectious syndromes, we analyzed PDH activity in PLTs from septic patients demonstrating increased activity, paralleling NAP1L1 expression levels. MKs PDH activity decreased following an LPS-challenge. Furthermore, overexpression of NAP1L1 significantly altered the ability of MKs to form proplatelet extensions, diminishing thrombopoiesis. These results indicate that NAP1L1 performs in other than nucleosome-assembly functions in PTLs and MKs, binding a key mitochondrial protein as a potential chaperone, and gatekeeper, influencing PDH activity and thrombopoiesis.
Collapse
Affiliation(s)
- Martin Freitag
- Department of Cardiac Surgery, Heart Center Leipzig-University Hospital, 04289 Leipzig, Germany
| | - Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Occupational Medicine at Billings Clinic Bozeman, Bozeman, MT 59715, USA
- Correspondence: or
| |
Collapse
|
49
|
Kumar B, Afshar-Kharghan V, Mendt M, Sackstein R, Tanner MR, Popat U, Ramdial J, Daher M, Jimenez J, Basar R, Melo Garcia L, Shanley M, Kaplan M, Wan X, Nandivada V, Reyes Silva F, Woods V, Gilbert A, Gonzalez-Delgado R, Acharya S, Lin P, Rafei H, Banerjee PP, Shpall EJ. Engineered cord blood megakaryocytes evade killing by allogeneic T-cells for refractory thrombocytopenia. Front Immunol 2022; 13:1018047. [PMID: 36203567 PMCID: PMC9530569 DOI: 10.3389/fimmu.2022.1018047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
The current global platelet supply is often insufficient to meet all the transfusion needs of patients, in particular for those with alloimmune thrombocytopenia. To address this issue, we have developed a strategy employing a combination of approaches to achieve more efficient production of functional megakaryocytes (MKs) and platelets collected from cord blood (CB)-derived CD34+ hematopoietic cells. This strategy is based on ex-vivo expansion and differentiation of MKs in the presence of bone marrow niche-mimicking mesenchymal stem cells (MSCs), together with two other key components: (1) To enhance MK polyploidization, we used the potent pharmacological Rho-associated coiled-coil kinase (ROCK) inhibitor, KD045, resulting in liberation of increased numbers of functional platelets both in-vitro and in-vivo; (2) To evade HLA class I T-cell-driven killing of these expanded MKs, we employed CRISPR-Cas9-mediated β-2 microglobulin (β2M) gene knockout (KO). We found that coculturing with MSCs and MK-lineage-specific cytokines significantly increased MK expansion. This was further increased by ROCK inhibition, which induced MK polyploidization and platelet production. Additionally, ex-vivo treatment of MKs with KD045 resulted in significantly higher levels of engraftment and donor chimerism in a mouse model of thrombocytopenia. Finally, β2M KO allowed MKs to evade killing by allogeneic T-cells. Overall, our approaches offer a novel, readily translatable roadmap for producing adult donor-independent platelet products for a variety of clinical indications.
Collapse
Affiliation(s)
- Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Section of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mark R. Tanner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Juan Jimenez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xinhai Wan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vandana Nandivada
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vernikka Woods
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - April Gilbert
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ricardo Gonzalez-Delgado
- Section of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pinaki Prosad Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Elizabeth J. Shpall,
| |
Collapse
|
50
|
Kim OV, Litvinov RI, Mordakhanova ER, Bi E, Vagin O, Weisel JW. Contribution of septins to human platelet structure and function. iScience 2022; 25:104654. [PMID: 35832887 PMCID: PMC9272382 DOI: 10.1016/j.isci.2022.104654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although septins have been well-studied in nucleated cells, their role in anucleate blood platelets remains obscure. Here, we elucidate the contribution of septins to human platelet structure and functionality. We show that Septin-2 and Septin-9 are predominantly distributed at the periphery of resting platelets and co-localize strongly with microtubules. Activation of platelets by thrombin causes clustering of septins and impairs their association with microtubules. Inhibition of septin dynamics with forchlorfenuron (FCF) reduces thrombin-induced densification of septins and lessens their colocalization with microtubules in resting and activated platelets. Exposure to FCF alters platelet shape, suggesting that septins stabilize platelet cytoskeleton. FCF suppresses platelet integrin αIIbβ3 activation, promotes phosphatidylserine exposure on activated platelets, and induces P-selectin expression on resting platelets, suggesting septin involvement in these processes. Inhibition of septin dynamics substantially reduces platelet contractility and abrogates their spreading on fibrinogen-coated surfaces. Overall, septins strongly contribute to platelet structure, activation and biomechanics.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira R. Mordakhanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Vagin
- Department of Pediatrics, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|