1
|
Kou L, Wan Y, Nemoto YL, Tsujita K, Itoh T. Role of membrane proximal actin regulators in SARS-CoV-2 spike-induced cell-cell fusion. Biochem Biophys Res Commun 2025; 766:151846. [PMID: 40300332 DOI: 10.1016/j.bbrc.2025.151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein has the ability to induce multinucleated syncytia via cell-cell fusion, which is thought to be related to the pathogenesis of the coronavirus disease 2019 (COVID-19). However, the mechanism by which spike protein regulates cell fusion remains unclear. Given the close correlation between cell-cell fusion and membrane protrusions, we investigated the role of membrane-proximal actin regulators in spike-induced cell fusion. We found that while Rac-Arp2/3 dependent branched actin polymerization is required for spike-mediated cell fusion, RhoA dependent actomyosin contractility has an inhibitory effect on fusion. In addition, plasma membrane tension regulated by membrane-cortex attachment plays a negative role in spike-dependent cell fusion. Furthermore, we identified several BAR proteins, which couple membrane curvature with actin dynamics, involved in spike-induced syncytia formation. Our study suggests that these actin regulators could be promising targets for inhibiting SARS-CoV-2 spike protein-induced syncytia formation.
Collapse
Affiliation(s)
- Linting Kou
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yumeng Wan
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yuri L Nemoto
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Kazuya Tsujita
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Toshiki Itoh
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
2
|
Wang X, Bai Y, Zhang X, Li W, Yang J, Hu N. Hydrodynamic efficient cell capture and pairing method on microfluidic cell electrofusion chip. APL Bioeng 2025; 9:016111. [PMID: 40051781 PMCID: PMC11884867 DOI: 10.1063/5.0250472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Cell fusion is a widely employed process in various biological procedures, demonstrating significant application value in biotechnology. Cell pairing is a crucial manipulation for cell fusion. Standard fusion techniques, however, often provide poor and random cell contact, leading to low yields. In this study, we present a novel microfluidic device that utilizes a three-path symmetrical channel hydrodynamic capture method to achieve high-efficiency cell capture and pairing. The device contains several symmetrical channels and capture units, enabling three-path capture of two kinds of cells. To better understand the conditions necessary for effective cell pairing, we established a theoretical model of the three-path trapping flow field and conducted a qualitative force analysis on cells. Using K562 cells to explore the effect of different volumetric flow ratios of symmetric channels on cell capture and pairing efficiency, we finally got the optimized structure and obtained a single-cell capture efficiency of approximately 95.6 ± 2.0% and a cell pairing efficiency of approximately 83.3 ± 8.8%. Subsequently, electrofusion experiments were carried out on the paired cells, resulting in a fusion efficiency of approximately 77.8 ± 9.6%.
Collapse
Affiliation(s)
- Xuefeng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Wei Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Yang Y, Wang Y, Campbell DE, Lee HW, Beatty W, Wang L, Baldridge M, López CB. SLC35A2 gene product modulates paramyxovirus fusion events during infection. PLoS Pathog 2025; 21:e1012531. [PMID: 39792924 PMCID: PMC11756793 DOI: 10.1371/journal.ppat.1012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/23/2025] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. As expected, SLC35A1 knockout (KO) cells showed drastic reduction in infections with SeV, NDV and MuV due to the lack of cell surface sialic acids receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events for the different paramyxoviruses. While UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, UGT promoted the formation of syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yuchen Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heng-Wei Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
4
|
Bai Y, Yang C, Zhang X, Wu J, Yang J, Ju H, Hu N. Microfluidic Chip for Cell Fusion and In Situ Separation of Fused Cells. Anal Chem 2024. [PMID: 39560470 DOI: 10.1021/acs.analchem.4c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Electrofusion is an effective method for fusing two cells into a hybrid cell, and this method is widely used in immunomedicine, gene recombination, and other related fields. Although cell pairing and electrofusion techniques have been accomplished with microfluidic devices, the purification and isolation of fused cells remains limited due to expensive instruments and complex operations. In this study, through the optimization of microstructures and electrodes combined with buffer substitution, the entire cell electrofusion process, including cell capture, pairing, electrofusion, and precise separation of the targeted fused cells, is achieved on a single chip. The proposed microfluidic cell electrofusion achieves an efficiency of 80.2 ± 7.5%, and targeted cell separation could be conveniently performed through the strategic activation of individual microelectrodes via negative dielectrophoresis, which ensures accurate release of the fused cells with an efficiency of up to 91.1 ± 5.1%. Furthermore, the survival rates of the cells after electrofusion and release are as high as 94.7 ± 0.6% and 91.7 ± 1.2%, respectively. These results demonstrate that the in situ cell electrofusion and separation process did not affect the cell activity. This chip offers integrated multifunctional manipulation of cells in situ, and can be applied to multiple fields in the future, thus laying the foundation for the field of precise single-cell analysis.
Collapse
Affiliation(s)
- Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Chen Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
5
|
Lu Y, Walji T, Ravaux B, Pandey P, Yang C, Li B, Luvsanjav D, Lam KH, Zhang R, Luo Z, Zhou C, Habela CW, Snapper SB, Li R, Goldhamer DJ, Schmidtke DW, Pan D, Svitkina TM, Chen EH. Spatiotemporal coordination of actin regulators generates invasive protrusions in cell-cell fusion. Nat Cell Biol 2024; 26:1860-1877. [PMID: 39487253 DOI: 10.1038/s41556-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell-cell fusion.
Collapse
Affiliation(s)
- Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tezin Walji
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Ravaux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Delgermaa Luvsanjav
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christa W Habela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott B Snapper
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, Storrs, CT, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Allender DW, Schick M. Lipid redistribution due to a cell-cell fusion pore. Biophys J 2024; 123:3640-3645. [PMID: 39295143 PMCID: PMC11494640 DOI: 10.1016/j.bpj.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
We consider the redistribution of lipids comprising the plasma membranes during cell-cell fusion, particularly due to the presence of a fusion pore. Assuming the membranes are of constant thickness, we find that the mole fraction of cholesterol increases in the directly apposed exoplasmic leaflets, and is decreased in the cytoplasmic leaflets. The redistribution of the phospholipids is obtained as well.
Collapse
Affiliation(s)
- D W Allender
- Department of Physics, University of Washington, Seattle, Washington; Department of Physics, Kent State University, Kent, Ohio
| | - M Schick
- Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
7
|
Liu K, Wu S, Cui Y, Tao X, Li Y, Xiao X. Trophoblast fusion in fetal growth restriction is inhibited by CTGF in a cell-cycle-dependent manner. J Mol Histol 2024; 55:895-908. [PMID: 39122896 DOI: 10.1007/s10735-024-10239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Fetal growth restriction (FGR) is a relatively common complication of pregnancy, and insufficient syncytialization in the placenta may play an important role in the pathogenesis of FGR. However, the mechanism of impaired formation of the syncytiotrophoblast layer in FGR patients requires further exploration. In the present study, we demonstrated that the level of syncytialization was decreased in FGR patient placentas, while the expression of connective tissue growth factor (CTGF) was significantly upregulated. CTGF was found to inhibit trophoblast fusion via regulating cell cycle progress of BeWo cells. Furthermore, we found that CTGF negatively regulates cell cycle arrest in a p21-dependent manner as overexpression of p21 could rescue the impaired syncytialization induced by CTGF-overexpression. Besides, we also identified that CTGF inhibits the expression of p21 through ITGB4/PI3K/AKT signaling pathway. Our study provided a new insight for elucidating the pathogenic mechanism of FGR and a novel idea for the clinical therapy of FGR.
Collapse
Affiliation(s)
- Ketong Liu
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430050, China
| | - Yutong Cui
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Xiang Tao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China
| | - Yanhong Li
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China.
| | - Xirong Xiao
- Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Shanghai, 200011, China.
- Kashi Prefecture Second People's Hospital, Jiankang Road 1, Kashgar, 844000, China.
| |
Collapse
|
8
|
Chen X, Guo Y, Wang R. Detecting 2'-5'-adenosine linked nucleic acids via acylation of secondary hydroxy functionality. Bioorg Med Chem Lett 2024; 109:129847. [PMID: 38857849 DOI: 10.1016/j.bmcl.2024.129847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
2'-5'-Adenosine linked nucleic acids are crucial components in living cells that play significant roles, including participating in antiviral defense mechanisms by facilitating the breakdown of viral genetic material. In this report, we present a chemical derivatization method employing 5-fluoro-2-pyridinoyl-imidazole as the acylation agent, a strategy that can be effectively combined with advanced analytical tools, including Nuclear Magnetic Resonance spectroscopy and Liquid Chromatography-Mass Spectrometry, to enhance the characterization and detection capabilities. This marks the first instance of a simple method designed to detect 2'-5'-adenosine linked nucleic acids. The new method is characterized by its time-saving nature, simplicity, and relative accuracy compared to previous methods.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
9
|
Zeng W, Meng Y, Nie L, Cheng C, Gao Z, Liu L, Zhu X, Chu W. The Regulatory Role of Myomaker in the Muscle Growth of the Chinese Perch ( Siniperca chuatsi). Animals (Basel) 2024; 14:2448. [PMID: 39272233 PMCID: PMC11394465 DOI: 10.3390/ani14172448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The fusion of myoblasts is a crucial stage in the growth and development of skeletal muscle. Myomaker is an important myoblast fusion factor that plays a crucial role in regulating myoblast fusion. However, the function of Myomaker in economic fish during posthatching has been poorly studied. In this study, we found that the expression of Myomaker in the fast muscle of Chinese perch (Siniperca chuatsi) was higher than that in other tissues. To determine the function of Myomaker in fast muscle, Myomaker-siRNA was used to knockdown Myomaker in Chinese perch and the effect on muscle growth was determined. The results showed that the growth of Chinese perch was significantly decreased in the Myomaker-siRNA group. Furthermore, both the diameter of muscle fibers and the number of nuclei in single muscle fibers were significantly reduced in the Myomaker-siRNA group, whereas there was no significant difference in the number of BrdU-positive cells (proliferating cells) between the control and the Myomaker-siRNA groups. Together, these findings indicate that Myomaker may regulate growth of fast muscle in Chinese perch juveniles by promoting myoblast fusion rather than proliferation.
Collapse
Affiliation(s)
- Wei Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Yangyang Meng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Lingtao Nie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Congyi Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Zexia Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan 430070, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lusha Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan 430070, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| |
Collapse
|
10
|
Han H, He T, Wu Y, He T, Zhou W. Multidimensional analysis of tumor stem cells: from biological properties, metabolic adaptations to immune escape mechanisms. Front Cell Dev Biol 2024; 12:1441081. [PMID: 39184916 PMCID: PMC11341543 DOI: 10.3389/fcell.2024.1441081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
As a key factor in tumorigenesis, progression, recurrence and metastasis, the biological properties, metabolic adaptations and immune escape mechanisms of CSCs are the focus of current oncological research. CSCs possess self-renewal, multidirectional differentiation and tumorigenicity, and their mechanisms of action can be elucidated by the clonal evolution, hierarchical model and the dynamic CSCs model, of which the dynamic model is widely recognized due to its better explanation of the function and origin of CSCs. The origin hypothesis of CSCs involves cell-cell fusion, horizontal gene transfer, genomic instability and microenvironmental regulation, which together shape the diversity of CSCs. In terms of classification, CSCs include primary CSCs (pri-CSCs), precancerous stem cells (pre-CSCs), migratory CSCs (mig-CSCs), and chemo-radiotherapy-resistant CSCs (cr-CSCs and rr-CSCs), with each type playing a specific role in tumor progression. Surface markers of CSCs, such as CD24, CD34, CD44, CD90, CD133, CD166, EpCAM, and LGR5, offer the possibility of identifying, isolating, and targeting CSCs, but the instability and heterogeneity of their expression increase the difficulty of treatment. CSCs have adapted to their survival needs through metabolic reprogramming, showing the ability to flexibly switch between glycolysis and oxidative phosphorylation (OXPHOS), as well as adjustments to amino acid and lipid metabolism. The Warburg effect typifies their metabolic profiles, and altered glutamine and fatty acid metabolism further contributes to the rapid proliferation and survival of CSCs. CSCs are able to maintain their stemness by regulating the metabolic networks to maintain their stemness characteristics, enhance antioxidant defences, and adapt to therapeutic stress. Immune escape is another strategy for CSCs to maintain their survival, and CSCs can effectively evade immune surveillance through mechanisms such as up-regulating PD-L1 expression and promoting the formation of an immunosuppressive microenvironment. Together, these properties reveal the multidimensional complexity of CSCs, underscoring the importance of a deeper understanding of the biology of CSCs for the development of more effective tumor therapeutic strategies. In the future, therapies targeting CSCs will focus on precise identification of surface markers, intervention of metabolic pathways, and overcoming immune escape, with the aim of improving the relevance and efficacy of cancer treatments, and ultimately improving patient prognosis.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| |
Collapse
|
11
|
Togo A, Mitsuzuka K, Hanawa S, Nakajima R, Izumi K, Sato K, Ishimoto H. Downregulation of SPARC Expression Enhances the Fusion of BeWo Choriocarcinoma Cells. Reprod Sci 2024; 31:2342-2353. [PMID: 38728000 DOI: 10.1007/s43032-024-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 07/31/2024]
Abstract
Syncytiotrophoblasts, which are formed by the fusion of villous cytotrophoblasts, play an essential role in maintaining a successful pregnancy. Secreted protein acidic and rich in cysteine (SPARC) is a non-structural Ca2+-binding extracellular matrix glycoprotein involved in tissue remodeling and cell proliferation, differentiation, and migration. Previous studies have revealed that SPARC is expressed in villous and extravillous cytotrophoblasts in the first trimester and that RNA interference targeted at SPARC significantly inhibited invasion of human extravillous trophoblast HTR8/SVneo cells. However, the involvement of SPARC in cytotrophoblast fusion remains unknown. This study aimed to investigate the role of SPARC in cytotrophoblast fusion, using the BeWo choriocarcinoma cell line as a model of villous cytotrophoblasts. Immunohistochemical analysis was conducted to assess SPARC expression in normal human placentas using placental tissues obtained during the first and third trimesters of pregnancy. We investigated the effects of SPARC knockdown on trophoblast differentiation markers and cell fusion in BeWo cells using small interfering RNA. Immunohistochemical analysis revealed that SPARC expression was high in the early gestational chorionic villi and low in the late gestational chorionic villi. SPARC knockdown increased the expressions of human chorionic gonadotropin and Ovo-like transcriptional repressor 1; however, glial cells missing transcription factor 1, syncytin-1, and syncytin-2 showed no significant changes. The assessment revealed that SPARC knockdown significantly enhanced cell fusion compared to the non-silencing control. Our data suggest that SPARC plays a vital role in regulating trophoblast fusion and differentiation during placental development.
Collapse
Affiliation(s)
- Atsuko Togo
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan.
| | - Kanako Mitsuzuka
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Sachiko Hanawa
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Rie Nakajima
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Kenji Izumi
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Kenji Sato
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Specialized Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara-Shi, Kanagawa, 259-1143, Japan
| |
Collapse
|
12
|
Kushida Y, Oguma Y, Abe K, Deguchi T, Barbera FG, Nishimura N, Fujioka K, Iwatani S, Dezawa M. Human post-implantation blastocyst-like characteristics of Muse cells isolated from human umbilical cord. Cell Mol Life Sci 2024; 81:297. [PMID: 38992309 PMCID: PMC11335221 DOI: 10.1007/s00018-024-05339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.
Collapse
Affiliation(s)
- Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Kana Abe
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Taichi Deguchi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Federico Girolamo Barbera
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sota Iwatani
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
13
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
14
|
Chan CWF, Wang B, Nan L, Huang X, Mao T, Chu HY, Luo C, Chu H, Choi GCG, Shum HC, Wong ASL. High-throughput screening of genetic and cellular drivers of syncytium formation induced by the spike protein of SARS-CoV-2. Nat Biomed Eng 2024; 8:291-309. [PMID: 37996617 PMCID: PMC10963270 DOI: 10.1038/s41551-023-01140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Mapping mutations and discovering cellular determinants that cause the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce infected cells to form syncytia would facilitate the development of strategies for blocking the formation of such cell-cell fusion. Here we describe high-throughput screening methods based on droplet microfluidics and the size-exclusion selection of syncytia, coupled with large-scale mutagenesis and genome-wide knockout screening via clustered regularly interspaced short palindromic repeats (CRISPR), for the large-scale identification of determinants of cell-cell fusion. We used the methods to perform deep mutational scans in spike-presenting cells to pinpoint mutable syncytium-enhancing substitutions in two regions of the spike protein (the fusion peptide proximal region and the furin-cleavage site). We also used a genome-wide CRISPR screen in cells expressing the receptor angiotensin-converting enzyme 2 to identify inhibitors of clathrin-mediated endocytosis that impede syncytium formation, which we validated in hamsters infected with SARS-CoV-2. Finding genetic and cellular determinants of the formation of syncytia may reveal insights into the physiological and pathological consequences of cell-cell fusion.
Collapse
Affiliation(s)
- Charles W F Chan
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Bei Wang
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tianjiao Mao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Hoi Yee Chu
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.
| | - Gigi C G Choi
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| | - Alan S L Wong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| |
Collapse
|
15
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
16
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Shimode S. Acquisition and Exaptation of Endogenous Retroviruses in Mammalian Placenta. Biomolecules 2023; 13:1482. [PMID: 37892164 PMCID: PMC10604696 DOI: 10.3390/biom13101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are retrovirus-like sequences that were previously integrated into the host genome. Although most ERVs are inactivated by mutations, deletions, or epigenetic regulation, some remain transcriptionally active and impact host physiology. Several ERV-encoded proteins, such as Syncytins and Suppressyn, contribute to placenta acquisition, a crucial adaptation in mammals that protects the fetus from external threats and other risks while enabling the maternal supply of oxygen, nutrients, and antibodies. In primates, Syncytin-1 and Syncytin-2 facilitate cell-cell fusion for placental formation. Suppressyn is the first ERV-derived protein that inhibits cell fusion by binding to ASCT2, the receptor for Syncytin-1. Furthermore, Syncytin-2 likely inserted into the genome of the common ancestor of Anthropoidea, whereas Syncytin-1 and Suppressyn likely inserted into the ancestor of catarrhines; however, they were inactivated in some lineages, suggesting that multiple exaptation events had occurred. This review discusses the role of ERV-encoded proteins, particularly Syncytins and Suppressyn, in placental development and function, focusing on the integration of ERVs into the host genome and their contribution to the genetic mechanisms underlying placentogenesis. This review provides valuable insights into the molecular and genetic aspects of placentation, potentially shedding light on broader evolutionary and physiological processes in mammals.
Collapse
Affiliation(s)
- Sayumi Shimode
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
18
|
Han D, He X, Huang Y, Gao M, Guo T, Ren X, Liao X, Chen X, Pang X, Cheng S. A Multifunctional Delivery System for Remodulating Cell Behaviors of Circulating Malignant Cells to Prevent Cell Fusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303309. [PMID: 37590231 PMCID: PMC10582411 DOI: 10.1002/advs.202303309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Indexed: 08/19/2023]
Abstract
Cell fusion plays a critical role in cancer progression and metastasis. However, effective modulation of the cell fusion behavior and timely evaluation on the cell fusion to provide accurate information for personalized therapy are facing challenges. Here, it demonstrates that the cancer cell fusion behavior can be efficiently modulated and precisely detected through employing a multifunctional delivery vector to realize cancer targeting delivery of a genome editing plasmid and a molecular beacon-based AND logic gate. The multifunctional delivery vector decorated by AS1411 conjugated hyaluronic acid and NLS-GE11 peptide conjugated hyaluronic acid can specifically target circulating malignant cells (CMCs) of cancer patients to deliver the genome editing plasmid for epidermal growth factor receptor (EGFR) knockout. The cell fusion between CMCs and endothelial cells can be detected by the AND logic gate delivered by the multifunctional vector. After EGFR knockout, the edited CMCs exhibit dramatically inhibited cell fusion capability, while unedited CMCs can easily fuse with human umbilical vein endothelial cells (HUVEC) to form hybrid cells. This study provides a new therapeutic strategy for preventing cancer progression and a reliable tool for evaluating cancer cell fusion for precise personalized therapy.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhanHubei430072China
| | - Xiao‐Yan He
- School of Life SciencesAnhui Medical UniversityHefeiAnhui230011China
| | - Yun Huang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhui Public Health Clinical CenterHefeiAnhui230011China
| | - Min Gao
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhui Public Health Clinical CenterHefeiAnhui230011China
| | - Tao Guo
- Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Anhui Medical UniversityAnhui Public Health Clinical CenterHefeiAnhui230011China
| | - Xiao‐He Ren
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhanHubei430072China
| | - Xin‐Ru Liao
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhanHubei430072China
| | - Xue‐Si Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Xuan Pang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Si‐Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhanHubei430072China
| |
Collapse
|
19
|
Yin Y, Chen G, Lin Z, Zhang D, Lin W, Luo W. Natural antisense transcript of MYOG regulates development and regeneration in skeletal muscle by shielding the binding sites of MicroRNAs of MYOG mRNA 3'UTR. Biochem Biophys Res Commun 2023; 662:93-103. [PMID: 37104884 DOI: 10.1016/j.bbrc.2023.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Natural antisense transcripts (NATs) are endogenous RNAs opposite to sense transcripts, and they can significantly contribute to regulating various biological processes through multiple epigenetic mechanisms. NATs can affect their sense transcripts to regulate the growth and development of skeletal muscle. Our analysis of third-generation full-length transcriptome sequencing data revealed that NATs represented a significant portion of the lncRNA, accounting for up to 30.19%-33.35%. The expression of NATs correlated with myoblast differentiation, and genes expressing NATs were mainly involved in RNA synthesis, protein transport, and cell cycle. We found a NAT of MYOG (MYOG-NAT) in the data. We found that the MYOG-NAT could promote the differentiation of myoblasts in vitro. Additionally, knockdown of MYOG-NAT in vivo led to muscle fiber atrophy and muscle regeneration retardation. Molecular biology experiments demonstrated that MYOG-NAT enhances the stability of MYOG mRNA by competing with miR-128-2-5p, miR-19a-5p, and miR-19b-5p for binding to MYOG mRNA 3'UTR. These findings suggest that MYOG-NAT plays a critical role in skeletal muscle development and provides insights into the post-transcriptional regulation of NATs.
Collapse
Affiliation(s)
- Yunqian Yin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Zetong Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Danlu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Li Z, Tian M, Wang G, Cui X, Ma J, Liu S, Shen B, Liu F, Wu K, Xiao X, Zhu C. Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Front Cell Infect Microbiol 2023; 13:1098712. [PMID: 37065192 PMCID: PMC10094634 DOI: 10.3389/fcimb.2023.1098712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality. The underlying mechanisms may involve mitochondrial dysfunction, abnormal activation of the cGAS-STING pathway and NLRP3 inflammasome, the role of pre-activated macrophages and over-recruited immune cells, and accumulation of immune cells with trained immunity. Thus, senescence-targeted drugs were shown to have positive effects on the treatment of viral infectious diseases in the elderly, which has received great attention and extensive research. Therefore, this review focused on the relationship between senescence and viral infection, as well as the significance of senotherapeutics for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| |
Collapse
|
21
|
Ghosh R, Mukherjee D, Ghosh G, Nur Hasan M, Chattopadhyay A, Das R, Kumar Pal S. Mimicking Cellular Fusion in A Microfluidic Channel Via Time-Resolved Chemiluminescence. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Jangid P, Rai U, Bakshi A, Singh R. Significance of Complement Regulatory Protein Tetraspanins in the Male Reproductive System and Fertilization. Curr Protein Pept Sci 2023; 24:240-246. [PMID: 36718968 DOI: 10.2174/1389203724666230131110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 02/01/2023]
Abstract
Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.
Collapse
Affiliation(s)
- Pooja Jangid
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, New Delhi 110052, India
- Department of Environmental Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
23
|
Xu C, Ren XH, Han D, Peng Y, Lei JJ, Yu LX, Liu LJ, Xu WC, Cheng SX. Precise Detection on Cell-Cell Fusion by a Facile Molecular Beacon-Based Method. Anal Chem 2022; 94:17334-17340. [PMID: 36456915 DOI: 10.1021/acs.analchem.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jin-Ju Lei
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Luo-Xiao Yu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Ling-Juan Liu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Wei-Chao Xu
- Cancer Center, The Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
24
|
Abstract
In sexually reproducing organisms, the genetic information is transmitted from one generation to the next via the merger of male and female gametes. Gamete fusion is a two-step process involving membrane recognition and apposition through ligand-receptor interactions and lipid mixing mediated by fusion proteins. HAP2 (also known as GCS1) is a bona fide gamete fusogen in flowering plants and protists. In vertebrates, a multitude of surface proteins have been demonstrated to be pivotal for sperm-egg fusion, yet none of them exhibit typical fusogenic features. In this Cell Science at a Glance article and the accompanying poster, we summarize recent advances in the mechanistic understanding of gamete fusion in eukaryotes, with a particular focus on mammalian species.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Hatamie A, He X, Zhang XW, Oomen PE, Ewing AG. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens Bioelectron 2022; 220:114899. [DOI: 10.1016/j.bios.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
26
|
Sinha S, Elbaz‐Alon Y, Avinoam O. Ca 2+ as a coordinator of skeletal muscle differentiation, fusion and contraction. FEBS J 2022; 289:6531-6542. [PMID: 35689496 PMCID: PMC9795905 DOI: 10.1111/febs.16552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Muscle regeneration is essential for vertebrate muscle homeostasis and recovery after injury. During regeneration, muscle stem cells differentiate into myocytes, which then fuse with pre-existing muscle fibres. Hence, differentiation, fusion and contraction must be tightly regulated during regeneration to avoid the disastrous consequences of premature fusion of myocytes to actively contracting fibres. Cytosolic calcium (Ca2+ ), which is coupled to both induction of myogenic differentiation and contraction, has more recently been implicated in the regulation of myocyte-to-myotube fusion. In this viewpoint, we propose that Ca2+ -mediated coordination of differentiation, fusion and contraction is a feature selected in the amniotes to facilitate muscle regeneration.
Collapse
Affiliation(s)
- Sansrity Sinha
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yael Elbaz‐Alon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
27
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
28
|
Dai X, Shao Y, Tian X, Cao X, Ye L, Gao P, Cheng H, Wang X. Fusion between Glioma Stem Cells and Mesenchymal Stem Cells Promotes Malignant Progression in 3D-Bioprinted Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35344-35356. [PMID: 35881920 DOI: 10.1021/acsami.2c06658] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interaction between glioma stem cells (GSCs) and mesenchymal stem cells (MSCs) in the glioma microenvironment is considered to be an important factor in promoting tumor progression, but the mechanism is still not fully elucidated. To further elucidate the interaction between GSCs and MSCs, two 3D-bioprinted tumor models (low-temperature molding and coaxial bioprinting) were used to simulate the tumor growth microenvironment. Cell fusion between GSCs and MSCs was found by the method of Cre-LoxP switch gene and RFP/GFP dual-color fluorescence tracing. The fused cells coexpressed biomarkers of GSCs and MSCs, showing stronger proliferation, cloning, and invasion abilities than GSCs and MSCs. In addition, the fused cells have stronger tumorigenic properties in nude mice, showing the pathological features of malignant tumors. In conclusion, GSCs and MSCs undergo cell fusion in 3D-bioprinted models, and the fused cells have a higher degree of malignancy than parental cells, which promotes the progression of glioma.
Collapse
Affiliation(s)
- Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| | - Yuxuan Shao
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei 230032, P. R. China
| | - Xuefeng Tian
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Xiaoyan Cao
- Department of Clinical Medicine, the First Clinical College of Anhui Medical University, Hefei 230032, P. R. China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
29
|
Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth. Nat Commun 2022; 13:4174. [PMID: 35854007 PMCID: PMC9296665 DOI: 10.1038/s41467-022-31825-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist. Stomatin is a component of lipid rafts. Here, Wu et al. show that stomatin modulates the differentiation and functions of adipocytes by regulating adipogenesis signaling and fatty acid influx such that with excessive calorie intake, increased stomatin induces adiposity.
Collapse
|
30
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Zhang Y, Liang P, Yang L, Shan KZ, Feng L, Chen Y, Liedtke W, Coyne CB, Yang H. Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. eLife 2022; 11:e78840. [PMID: 35670667 PMCID: PMC9236608 DOI: 10.7554/elife.78840] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), is critical for placental trophoblast syncytialization, HIV infection, and SARS-CoV2-mediated syncytialization, however, how TMEM16F is activated during cell fusion is unclear. Here, using trophoblasts as a model for cell fusion, we demonstrate that Ca2+ influx through the Ca2+ permeable transient receptor potential vanilloid channel TRPV4 is critical for TMEM16F activation and plays a role in subsequent human trophoblast fusion. GSK1016790A, a TRPV4 specific agonist, robustly activates TMEM16F in trophoblasts. We also show that TRPV4 and TMEM16F are functionally coupled within Ca2+ microdomains in a human trophoblast cell line using patch-clamp electrophysiology. Pharmacological inhibition or gene silencing of TRPV4 hinders TMEM16F activation and subsequent trophoblast syncytialization. Our study uncovers the functional expression of TRPV4 and one of the physiological activation mechanisms of TMEM16F in human trophoblasts, thus providing us with novel strategies to regulate CaPLSase activity as a critical checkpoint of physiologically and disease-relevant cell fusion events.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Pengfei Liang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liheng Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Ke Zoe Shan
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical CentreDurhamUnited States
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua HospitalShanghaiChina
| | - Yong Chen
- Department of Neurology, Duke University Medical CenterDurhamUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical CenterDurhamUnited States
- Department of Anesthesiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- College of Dentistry, Department of Molecular Pathobiology, NYUNew YorkUnited States
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke UniversityDurhamUnited States
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
32
|
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M, Zhang S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front Cell Dev Biol 2022; 9:809668. [PMID: 35178400 PMCID: PMC8846309 DOI: 10.3389/fcell.2021.809668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
33
|
Zhang KS, Nadkarni AV, Paul R, Martin AM, Tang SKY. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem Rev 2022; 122:7097-7141. [PMID: 35049287 DOI: 10.1021/acs.chemrev.1c00616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
35
|
Mi R, Ji J, Zhang M, Zhang J, Li M, Hu Y, Liu F. Establishment of the glioma polyploid giant cancer cell model by a modified PHA-DMSO-PEG fusion method following dual drug-fluorescence screening in vitro. J Neurosci Methods 2021; 368:109462. [PMID: 34968625 DOI: 10.1016/j.jneumeth.2021.109462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In glioma, cell fusion and the number of the polyploid giant cancer cells (PGCC) were found to be augmented with tumor grades (WHO Ⅰ-Ⅳ) and closely related to poor prognosis. However, the pathological and molecular characteristics of glioma PGCCs remain unclear due to the lack of cell model in vitro and in vivo. NEW METHOD Here, we reported a novel approach to obtain the glioma PGCCs by the PHA-DMSO-PEG fusion method following dual drug-fluorescence screening in vitro. Glioma cells were labelled by lentiviruses infection and fusion hybrids were obtained by puromycin screening and fluorescence-activated cell sorting (FACS). RESULTS Glioma tumor-tumor cell fusion efficiency was significantly improved by PHA and DMSO. Glioma PGCCs were successfully obtained after puromycin screening and FACS. Cell size, DNA content and chromosome numbers of the glioma PGCCs were almost twice than that of the parental glioma cells. Moreover, glioma PGCCs showed a decreased proliferation rate but enhanced temozolomide resistance potential compared to the parental cells. COMPARISON WITH EXISTING METHODS We firstly obtained the glioma PGCCs by a modified fusion method in vitro. The fusion efficiency of the PHA-DMSO-PEG fusion method was much higher compared to PEG fusion method. Moreover, the dual drug-fluorescence screening method was more convenient and effective compared to the single one. CONCLUSIONS We successfully established the glioma PGCC model through a modified PHA-DMSO-PEG fusion method following dual drug-fluorescence screening in vitro. Glioma PGCCs showed a deceased proliferation rate but increased TMZ resistance capacity.
Collapse
Affiliation(s)
- Ruifang Mi
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China
| | - Jiayu Ji
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Mengmeng Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China
| | - Yuedong Hu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, P.R. China; Beijing Laboratory of Biomedical Materials, Beijing 100070, P.R.China.
| |
Collapse
|
36
|
Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y, Zaritsky A, Shakked A, Umansky KB, Schejter ED, Millay DP, Tzahor E, Avinoam O. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell 2021; 56:3349-3363.e6. [PMID: 34932950 PMCID: PMC8693863 DOI: 10.1016/j.devcel.2021.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/28/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.
Collapse
Affiliation(s)
- Tamar Eigler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Zarfati
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel Amzallag
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sansrity Sinha
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Segev
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yishaia Zabary
- Department of Software & Information Systems Engineering, Ben Gurion University, Be'er Sheva, Israel
| | - Assaf Zaritsky
- Department of Software & Information Systems Engineering, Ben Gurion University, Be'er Sheva, Israel
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir-Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
37
|
Goswami R, Arya RK, Sharma S, Dutta B, Stamov DR, Zhu X, Rahaman SO. Mechanosensing by TRPV4 mediates stiffness-induced foreign body response and giant cell formation. Sci Signal 2021; 14:eabd4077. [PMID: 34726952 PMCID: PMC9976933 DOI: 10.1126/scisignal.abd4077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Implantation of biomaterials or devices into soft tissue often leads to the development of the foreign body response (FBR), an inflammatory condition that can cause implant failure, tissue injury, and death of the patient. Macrophages accumulate and fuse to generate destructive foreign body giant cells (FBGCs) at the tissue-implant interface, leading to the development of fibrous scar tissue around the implant that is generated by myofibroblasts. We previously showed that the FBR in vivo and FBGC formation in vitro require transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel. Here, we report that TRPV4 was required specifically for the FBR induced by implant stiffness independently of biochemical cues and for intracellular stiffening that promotes FBGC formation in vitro. TRPV4 deficiency reduced collagen deposition and the accumulation of macrophages, FBGCs, and myofibroblasts at stiff, but not soft, implants in vivo and inhibited macrophage-induced differentiation of wild-type fibroblasts into myofibroblasts in vitro. Atomic force microscopy demonstrated that TRPV4 was required for implant-adjacent tissue stiffening in vivo and for cytoskeletal remodeling and intracellular stiffening induced by fusogenic cytokines in vitro. Together, these data suggest a mechanism whereby a reciprocal functional interaction between TRPV4 and substrate stiffness leads to cytoskeletal remodeling and cellular force generation to promote FBGC formation during the FBR.
Collapse
Affiliation(s)
- Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Rakesh K. Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Dimitar R. Stamov
- JPK BioAFM Business, Nano Surfaces Division, Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.,Corresponding author.:
| |
Collapse
|
38
|
Hatamie A, Ren L, Zhang X, Ewing AG. Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles. Anal Chem 2021; 93:13161-13168. [PMID: 34499839 PMCID: PMC8495673 DOI: 10.1021/acs.analchem.1c01462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon nanotube (CNT)-modified electrodes are used to obtain new measurements of vesicle content via amperometry. We have investigated the interaction between CNTs and isolated adrenal chromaffin vesicles (as a model) by vesicle impact electrochemical cytometry. Our data show that the presence of CNTs not only significantly increased the vesicular catecholamine number from 2,250,000 ± 112,766 molecules on a bare electrode to 3,880,000 ± 686,573 molecules on CNT/carbon fiber electrodes but also caused an enhancement in the maximum intensity of the current, which implies the existence of strong interactions between vesicle biolayers and CNTs and an altered electroporation process. We suggest that CNTs might perturb and destabilize the membrane structure of intracellular vesicles and cause the aggregation or fusion of vesicles into new vesicles with larger size and higher content. Our findings are consistent with previous computational and experimental results and support the hypothesis that CNTs as a mediator can rearrange the phospholipid bilayer membrane and trigger homotypic fusion of intracellular vesicles.
Collapse
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Lin Ren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Xinwei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
39
|
Talló K, Pons R, González C, López O. Monitoring the formation of a colloidal lipid gel at the nanoscale: vesicle aggregation driven by a temperature-induced mechanism. J Mater Chem B 2021; 9:7472-7481. [PMID: 34551044 DOI: 10.1039/d1tb01020d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Colloidal gels made of lipid vesicles at highly diluted conditions have been recently described. The structure and composition of this type of material could be especially relevant for studies that combine model lipid membranes with proteins, peptides, or enzymes to replicate biological conditions. Details about the nanoscale events that occur during the formation of such gels would motivate their future application. Thus, in this work we investigate the gelation mechanism, which consists of a lipid dispersion of vesicles going through a process that involves freezing and heating. The appropriate combination of techniques (transmission electron microscopy, differential scanning calorimetry and synchrotron small angle X-ray scattering) allowed in-depth analysis of the different events that give rise to the formation of the gel. Results showed how freezing damaged the lipid dispersion, causing a polydisperse suspension of membrane fragments and vesicles upon melting. Heating above the lipids' main phase transition temperature promoted the formation of elongated tubular structures. After cooling, these lipid tubes broke down into vesicles that formed branched aggregates across the aqueous phase, obtaining a material with gel characteristics. These mechanistic insights may also allow finding new ways to interact with lipid vesicles to form structured materials. Future works might complement the presented results with molecular dynamics or nuclear magnetic resonance experiments.
Collapse
Affiliation(s)
- Kirian Talló
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Ramon Pons
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - César González
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Olga López
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
40
|
Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, Wu J, Wu S, Liu X, Zheng Y, Cheung KMC, Yeung KWK. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials 2021; 276:121038. [PMID: 34339925 DOI: 10.1016/j.biomaterials.2021.121038] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Macrophage has been gradually recognized as a central regulator in tissue regeneration, and the study of how macrophage mediates biomaterials-induced bone regeneration through immunomodulatory pathway becomes popular. However, the current understanding on the roles of different macrophage phenotypes in regulating bone tissue regeneration remains controversial. In this study, we demonstrate that sequential infiltration of heterogeneous phenotypes of macrophages triggered by bio-metal ions effectively facilitates bone healing in bone defect. Indeed, M1 macrophages promote the recruitment and early commitment of osteogenic and angiogenic progenitors, while M2 macrophages and osteoclasts support the deposition and mineralization of the bone matrix, as well as the maturation of blood vessels. Moreover, we have identified a group of bone biomaterial-related multinucleated cells that behave similarly to M2 macrophages with wound-healing features rather than participate in the bone resorption cascade similarly to osteoclasts. Our study shows how sequential activation of macrophage-osteoclast lineage contribute to a highly orchestrated immune response in the bone tissue microenvironment around biomaterials to regulate the complex biological process of bone healing. Therefore, we believe that the temporal activation pattern of heterogeneous macrophage phenotypes should be considered when the next generation of biomaterials for bone regeneration is engineered.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Huizhi Xie
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jinghan Fang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jie Shen
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Wenting Li
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Danni Shen
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China.
| |
Collapse
|
41
|
Belansky J, Yelin D. Formation of Large Intracellular Actin Networks Following Plasmonic Cell Fusion. IEEE Trans Nanobioscience 2021; 20:271-277. [PMID: 33950843 DOI: 10.1109/tnb.2021.3077638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Following fusion between two or more individual cells, the resulting cellular entity must undergo extensive restructuring of its plasma membrane and cytoskeleton in order to maintain its mechanical and physiological function. In artificial cell fusion that is executed by external triggering, such restructuring could be problematic due to the absence of preconditioning biological signals. In this work we study the reorganization of the actin filaments in adenocarcinoma cells that were fused using plasmonic triggering, i.e. the irradiation by resonant femtosecond laser pulses of cells specifically targeted by gold nanoparticles. Time-lapse confocal microscopy of the fusing cells has revealed the formation of large-scale actin networks that preserve the local orientations of the original actin cytoskeletons. The results confirm the local nature of the plasmonic interactions that were confined to the cells' plasma membranes and would help studying the development and dynamics of actin networks by offering a relatively stable, living cellular environment that supports large-scale actin growth.
Collapse
|
42
|
Queval CJ, Fearns A, Botella L, Smyth A, Schnettger L, Mitermite M, Wooff E, Villarreal-Ramos B, Garcia-Jimenez W, Heunis T, Trost M, Werling D, Salguero FJ, Gordon SV, Gutierrez MG. Macrophage-specific responses to human- and animal-adapted tubercle bacilli reveal pathogen and host factors driving multinucleated cell formation. PLoS Pathog 2021; 17:e1009410. [PMID: 33720986 PMCID: PMC7993774 DOI: 10.1371/journal.ppat.1009410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process. The identification of host and pathogen factors contributing to host-pathogen interaction is crucial to understand the pathogenesis and dissemination of tuberculosis. This is particularly the case in deciphering the mechanistic basis for host-tropism across the MTBC. Here, we show that in vitro, M. bovis but not M. tuberculosis induces multinucleated cell formation in bovine macrophages. We identified host and pathogen mechanistic drivers of multinucleated cell formation: MPB70 as the M. bovis factor and bovine macrophage extracellular vesicles. Using a cattle experimental infection model, we confirmed differential multinucleated cell formation in vivo. Thus, we have identified host and pathogen factors that contribute to host tropism in human/bovine tuberculosis. Additionally, this work provides an explanation for the long-standing association of multinucleated cells with tuberculosis pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Alicia Smyth
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Morgane Mitermite
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Esen Wooff
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Bernardo Villarreal-Ramos
- Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Waldo Garcia-Jimenez
- Department of Pathology an Infectious Diseases. School of Veterinary Medicine. University of Surrey, Guildford, United Kingdom
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield Hertfordshire, United Kingdom
| | - Francisco J. Salguero
- Department of Pathology an Infectious Diseases. School of Veterinary Medicine. University of Surrey, Guildford, United Kingdom
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, United Kingdom
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
43
|
Ray R, Sinha S, Aidinis V, Rai V. Atx regulates skeletal muscle regeneration via LPAR1 and promotes hypertrophy. Cell Rep 2021; 34:108809. [PMID: 33657371 DOI: 10.1016/j.celrep.2021.108809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Muscle differentiation is a multifaceted and tightly controlled process required for the formation of skeletal muscle fibers. Satellite cells are the direct cellular contributors to muscle repair in injuries or disorders. Here, we show that autotaxin (Atx) expression and activity is required for satellite cell differentiation. Conditional ablation of Atx or its pharmacological inhibition impairs muscle repair. Mechanistically, we identify LPAR1 as the key receptor in Atx-LPA signaling. Myogenic gene array and pathway analysis identified that Atx-LPA signaling activates ribosomal protein S6 kinase (S6K), an mTOR-dependent master regulator of muscle cell growth via LPAR1. Furthermore, Atx transgenic mice show muscle hypertrophic effects and accelerated regeneration. Intramuscular injections of Atx/LPA show muscle hypertrophy. In addition, the regulatory effects of Atx on differentiation are conserved in human myoblasts. This study identifies Atx as a critical master regulator in murine and human muscles, identifying a promising extracellular ligand in muscle formation, regeneration, and hypertrophy.
Collapse
Affiliation(s)
- Rashmi Ray
- Institute of Life Sciences (An Autonomous Institute of Department of Biotechnology), Bhubaneswar 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunita Sinha
- Institute of Life Sciences (An Autonomous Institute of Department of Biotechnology), Bhubaneswar 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vassilis Aidinis
- Biomedical Sciences Research Center "Alexander Fleming," 16672 Athens, Greece
| | - Vivek Rai
- Institute of Life Sciences (An Autonomous Institute of Department of Biotechnology), Bhubaneswar 751023, India.
| |
Collapse
|
44
|
Grothe T, Nowak J, Jahn R, Walla PJ. Selected tools to visualize membrane interactions. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:211-222. [PMID: 33787948 PMCID: PMC8071796 DOI: 10.1007/s00249-021-01516-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
In the past decade, we developed various fluorescence-based methods for monitoring membrane fusion, membrane docking, distances between membranes, and membrane curvature. These tools were mainly developed using liposomes as model systems, which allows for the dissection of specific interactions mediated by, for example, fusion proteins. Here, we provide an overview of these methods, including two-photon fluorescence cross-correlation spectroscopy and intramembrane Förster energy transfer, with asymmetric labelling of inner and outer membrane leaflets and the calibrated use of transmembrane energy transfer to determine membrane distances below 10 nm. We discuss their application range and their limitations using examples from our work on protein-mediated vesicle docking and fusion.
Collapse
Affiliation(s)
- Tobias Grothe
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, 38106, Braunschweig, Germany
| | - Julia Nowak
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Peter Jomo Walla
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
45
|
Arya RK, Goswami R, Rahaman SO. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation. J Biol Chem 2021; 296:100129. [PMID: 33262217 PMCID: PMC7948992 DOI: 10.1074/jbc.ra120.014597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Multinucleated giant cells are formed by the fusion of macrophages and are a characteristic feature in numerous pathophysiological conditions including the foreign body response (FBR). Foreign body giant cells (FBGCs) are inflammatory and destructive multinucleated macrophages and may cause damage and/or rejection of implants. However, while these features of FBGCs are well established, the molecular mechanisms underlying their formation remain elusive. Improved understanding of the molecular mechanisms underlying the formation of FBGCs may permit the development of novel implants that eliminate or reduce the FBR. Our previous study showed that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel/receptor, is required for FBGC formation and FBR to biomaterials. Here, we have determined that (a) TRPV4 is directly involved in fusogenic cytokine (interleukin-4 plus granulocyte macrophage-colony stimulating factor)-induced activation of Rac1, in bone marrow-derived macrophages; (b) TRPV4 directly interacts with Rac1, and their interaction is further augmented in the presence of fusogenic cytokines; (c) TRPV4-dependent activation of Rac1 is essential for the augmentation of intracellular stiffness and regulation of cytoskeletal remodeling; and (d) TRPV4-Rac1 signaling axis is critical in fusogenic cytokine-induced FBGC formation. Together, these data suggest a novel mechanism whereby a functional interaction between TRPV4 and Rac1 leads to cytoskeletal remodeling and intracellular stiffness generation to modulate FBGC formation.
Collapse
Affiliation(s)
- Rakesh K Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
46
|
Pham A, Zhang J, Feng L. Exposure to perfluorobutane sulfonate and perfluorooctanesulfonic acid disrupts the production of angiogenesis factors and stress responses in human placental syncytiotrophoblast. Reprod Toxicol 2020; 98:269-277. [PMID: 33144174 DOI: 10.1016/j.reprotox.2020.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Poly- and per-fluoroalkyl substances (PFAS) have attracted widespread attention in recent years due to their bioaccumulation, toxicity, and ubiquitous nature. We and others have reported that maternal exposure to PFAS is associated with adverse birth outcomes due to altered placental functions. In this study, we investigated the effects of two major PFAS compounds, perfluorobutane sulfonate (PFBS) and perfluorooctanesulfonic acid (PFOS), on the regulation of the production of angiogenic factors and stress response in placental multinucleated syncytial BeWo cells using qRT-PCR and ELISA. Using this in vitro model, we showed that 1) PFOS or PFBS treatment did not seem to interrupt BeWo cell fusion through syncytins; 2) Exposure to PFOS at 10 μM decreased a potent angiogenic factor PlGF gene expression, which is implicated in preeclampsia; 3) Exposure to either PFOS or PFBS significantly decreased the production of CGB7 and hCG except hCG secretion in PFOS (10 nM) and PFBS (100 nM) treatment groups; 4) Exposure to PFOS (10 μM) increased the gene expression of the stress response molecules CRH while neither PFOS nor PFBS treatment affected a stress mitigation factor 11β-HSD2 expression. Our results demonstrate that exposure to PFOS or PFBS impacts several key pathways involved in placental cell functions. PFOS seems more potent than PFBS. These novel findings provide a potential explanation for the adverse reproductive complications associated with prenatal exposure to PFOS or PFBS, including preeclampsia and contribute to our knowledge of the reproductive toxicity of PFAS, specifically PFOS and PFBS.
Collapse
Affiliation(s)
- Angela Pham
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Zhou M, Kamarshi V, Arvin AM, Oliver SL. Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. PLoS Pathog 2020; 16:e1009022. [PMID: 33216797 PMCID: PMC7717522 DOI: 10.1371/journal.ppat.1009022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Cell-cell fusion (abbreviated as cell fusion) is a characteristic pathology of medically important viruses, including varicella-zoster virus (VZV), the causative agent of chickenpox and shingles. Cell fusion is mediated by a complex of VZV glycoproteins, gB and gH-gL, and must be tightly regulated to enable skin pathogenesis based on studies with gB and gH hyperfusogenic VZV mutants. Although the function of gB and gH-gL in the regulation of cell fusion has been explored, whether host factors are directly involved in this regulation process is unknown. Here, we discovered host factors that modulated VZV gB/gH-gL mediated cell fusion via high-throughput screening of bioactive compounds with known cellular targets. Two structurally related non-antibiotic macrolides, tacrolimus and pimecrolimus, both significantly increased VZV gB/gH-gL mediated cell fusion. These compounds form a drug-protein complex with FKBP1A, which binds to calcineurin and specifically inhibits calcineurin phosphatase activity. Inhibition of calcineurin phosphatase activity also enhanced both herpes simplex virus-1 fusion complex and syncytin-1 mediated cell fusion, indicating a broad role of calcineurin in modulating this process. To characterize the role of calcineurin phosphatase activity in VZV gB/gH-gL mediated fusion, a series of biochemical, biological and infectivity assays was performed. Pimecrolimus-induced, enhanced cell fusion was significantly reduced by shRNA knockdown of FKBP1A, further supporting the role of calcineurin phosphatase activity in fusion regulation. Importantly, inhibition of calcineurin phosphatase activity during VZV infection caused exaggerated syncytia formation and suppressed virus propagation, which was consistent with the previously reported phenotypes of gB and gH hyperfusogenic VZV mutants. Seven host cell proteins that remained uniquely phosphorylated when calcineurin phosphatase activity was inhibited were identified as potential downstream factors involved in fusion regulation. These findings demonstrate that calcineurin is a critical host cell factor pivotal in the regulation of VZV induced cell fusion, which is essential for VZV pathogenesis.
Collapse
Affiliation(s)
- Momei Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vivek Kamarshi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann M. Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
48
|
Li X, Wang L, Huang B, Gu Y, Luo Y, Zhi X, Hu Y, Zhang H, Gu Z, Cui J, Cao L, Guo J, Wang Y, Zhou Q, Jiang H, Fang C, Weng W, Chen X, Chen X, Su J. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. SCIENCE ADVANCES 2020; 6:6/47/eabb7135. [PMID: 33208358 PMCID: PMC7673802 DOI: 10.1126/sciadv.abb7135] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
The actin-bundling protein L-plastin (LPL) mediates the resorption activity of osteoclasts, but its therapeutic potential in pathological bone loss remains unexplored. Here, we report that LPL knockout mice show increased bone mass and cortical thickness with more mononuclear tartrate-resistant acid phosphatase-positive cells, osteoblasts, CD31hiEmcnhi endothelial vessels, and fewer multinuclear osteoclasts in the bone marrow and periosteum. LPL deletion impeded preosteoclasts fusion by inhibiting filopodia formation and increased the number of preosteoclasts, which release platelet-derived growth factor-BB to promote CD31hiEmcnhi vessel growth and bone formation. LPL expression is regulated by the phosphatidylinositol 3-kinase/AKT/specific protein 1 axis in response to receptor activator of nuclear factor-κB ligand. Furthermore, we identified an LPL inhibitor, oroxylin A, that could maintain bone mass in ovariectomy-induced osteoporosis and accelerate bone fracture healing in mice. In conclusion, we showed that LPL regulates osteoclasts fusion, and targeting LPL serves as a novel anabolic therapy for pathological bone loss.
Collapse
Affiliation(s)
- Xiaoqun Li
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopedics, No. 929 Hospital, Naval Medical University, Shanghai 200433, China
| | - Lipeng Wang
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Biaotong Huang
- Institute of translational medicine, Shanghai University, Shanghai 201900, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine of Shanghai Jiao Tong University, Shanghai 201999, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Ying Luo
- Central Laboratory, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xin Zhi
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Hu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai 201900, China
| | - Jin Cui
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai 201900, China
| | - Jiawei Guo
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yajun Wang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qirong Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Jiang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chao Fang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Weizong Weng
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiacan Su
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Institute of translational medicine, Shanghai University, Shanghai 201900, China
| |
Collapse
|
49
|
Zhang LN, Zhang DD, Yang L, Gu YX, Zuo QP, Wang HY, Xu J, Liu DX. Roles of cell fusion between mesenchymal stromal/stem cells and malignant cells in tumor growth and metastasis. FEBS J 2020; 288:1447-1456. [PMID: 33070450 DOI: 10.1111/febs.15483] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
Abstract
Invasion and metastasis are the basic characteristics and important markers of malignant tumors, which are also the main cause of death in cancer patients. Epithelial-mesenchymal transition (EMT) is recognized as the first step of tumor invasion and metastasis. Many studies have demonstrated that cell fusion is a common phenomenon and plays a critical role in cancer development and progression. At present, cancer stem cell fusion has been considered as a new mechanism of cancer metastasis. Mesenchymal stromal/stem cell (MSC) is a kind of adult stem cells with high self-renewal ability and multidifferentiation potential, which is used as a very promising fusogenic candidate in the tumor microenvironment and has a crucial role in cancer progression. Many research results have shown that MSCs are involved in the regulation of tumor growth and metastasis through cell fusion. However, the role of cell fusion between MSCs and malignant cells in tumor growth and metastasis is still controversial. Several studies have demonstrated that MSCs can enhance malignant characteristics, promoting tumor growth and metastasis by fusing with malignant cells, while other conflicting reports believe that MSCs can reduce tumorigenicity upon fusion with malignant cells. In this review, we summarize the recent research on cell fusion events between MSCs and malignant cells in tumor growth and metastasis. The elucidation of the molecular mechanisms between MSC fusion and tumor metastasis may provide an effective strategy for tumor biotherapy.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Di-Di Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Lei Yang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yu-Xuan Gu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Qiu-Ping Zuo
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Hao-Yi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jia Xu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Dian-Xin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
50
|
Tao X, Du P, Li L, Lin J, Shi Y, Wang PY. Human Platelet Lysate Supports Mouse Skeletal Myoblast Growth but Suppresses Cell Fusion on Nanogrooves. ACS APPLIED BIO MATERIALS 2020; 3:3594-3604. [DOI: 10.1021/acsabm.0c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|