1
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
2
|
Ayten M, Straub T, Kaplan L, Hauck SM, Grosche A, Koch SF. CD44 signaling in Müller cells impacts photoreceptor function and survival in healthy and diseased retinas. J Neuroinflammation 2024; 21:190. [PMID: 39095775 PMCID: PMC11297696 DOI: 10.1186/s12974-024-03175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal disease, affects 1,5 million people worldwide. The initial mutation-driven photoreceptor degeneration leads to chronic inflammation, characterized by Müller cell activation and upregulation of CD44. CD44 is a cell surface transmembrane glycoprotein and the primary receptor for hyaluronic acid. It is involved in many pathological processes, but little is known about CD44's retinal functions. CD44 expression is also increased in Müller cells from our Pde6bSTOP/STOP RP mouse model. To gain a more detailed understanding of CD44's role in healthy and diseased retinas, we analyzed Cd44-/- and Cd44-/-Pde6bSTOP/STOP mice, respectively. The loss of CD44 led to enhanced photoreceptor degeneration, reduced retinal function, and increased inflammatory response. To understand the underlying mechanism, we performed proteomic analysis on isolated Müller cells from Cd44-/- and Cd44-/-Pde6bSTOP/STOP retinas and identified a significant downregulation of glutamate transporter 1 (SLC1A2). This downregulation was accompanied by higher glutamate levels, suggesting impaired glutamate homeostasis. These novel findings indicate that CD44 stimulates glutamate uptake via SLC1A2 in Müller cells, which in turn, supports photoreceptor survival and function.
Collapse
Affiliation(s)
- Monika Ayten
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Tobias Straub
- Bioinformatics Unit, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Susanne F Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377, Germany.
| |
Collapse
|
3
|
Zhang Y, Park YS, Kim IB. A Distinct Microglial Cell Population Expressing Both CD86 and CD206 Constitutes a Dominant Type and Executes Phagocytosis in Two Mouse Models of Retinal Degeneration. Int J Mol Sci 2023; 24:14236. [PMID: 37762541 PMCID: PMC10532260 DOI: 10.3390/ijms241814236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Microglial cells are the key regulators of inflammation during retinal degeneration (RD) and are conventionally classified as M1 or M2. However, whether the M1/M2 classification exactly reflects the functional classification of microglial cells in the retina remains debatable. We examined the spatiotemporal changes of microglial cells in the blue-LED and NaIO3-induced RD mice models using M1/M2 markers and functional genes. TUNEL assay was performed to detect photoreceptor cell death, and microglial cells were labeled with anti-IBA1, P2RY12, CD86, and CD206 antibodies. FACS was used to isolate microglial cells with anti-CD206 and CD86 antibodies, and qRT-PCR was performed to evaluate Il-10, Il-6, Trem-2, Apoe, and Lyz2 expression. TUNEL-positive cells were detected in the outer nuclear layer (ONL) from 24 h to 72 h post-RD induction. At 24 h, P2RY12 was decreased and CD86 was increased, and CD86/CD206 double-labeled cells occupied the dominant population at 72 h. And CD86/CD206 double-labeled cells showed a significant increase in Apoe, Trem2, and Lyz2 levels but not in those of Il-6 and Il-10. Our results demonstrate that microglial cells in active RD cannot be classified as M1 or M2, and the majority of microglia express both CD86 and CD206, which are involved in phagocytosis rather than inflammation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Kuribayashi H, Katahira M, Aihara M, Suzuki Y, Watanabe S. Loss-of-function approach using mouse retinal explants showed pivotal roles of Nmnat2 in early and middle stages of retinal development. Mol Biol Cell 2022; 34:ar4. [PMID: 36322391 PMCID: PMC9816650 DOI: 10.1091/mbc.e22-03-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (Nmnat) is a class of enzymes with three members (Nmnat1-3). Nmnat1 is in nucleus and associated with Leber congenital amaurosis, a form of early-onset retinal degeneration, while Nmnat2 is in cytoplasm and a well-characterized neuroprotective factor. The differences in their biological roles in the retina are unclear. We performed short hairpin RNA (shRNA)-based loss-of-function analysis of Nmnat2 during mouse retinal development in retinal explant cultures prepared from early (E14.5), middle (E17.5), or late (postnatal day [P]0.5) developmental stages. Nmnat2 has important roles in the survival of retinal cells in the early and middle stages of retinal development. Retinal cell death caused by Nmnat2 knockdown could be partially rescued by supplementation with NAD or nicotinamide mononucleotide (NMN). Survival of retinal cells in the late stage of retinal development was unaffected by Nmnat2, but differentiation of Müller glia was controlled by Nmnat2. RNA-Seq analyses showed perturbation of gene expression patterns by shRNAs specific for Nmnat1 or Nmnat2, but gene ontology analysis did not provide a rational explanation for the phenotype. This study showed that Nmnat2 has multiple developmental stage-dependent roles during mouse retinal development, which were clearly different from those of Nmnat1, suggesting specific roles for Nmnat1 and Nmnat2.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Department of Retinal Development and Pathophysiology, The University of Tokyo, Tokyo, Japan,Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan,*Address correspondence to: Hiroshi Kuribayashi (); Sumiko Watanabe ()
| | - Miku Katahira
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| | - Sumiko Watanabe
- Department of Retinal Development and Pathophysiology, The University of Tokyo, Tokyo, Japan,Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan,*Address correspondence to: Hiroshi Kuribayashi (); Sumiko Watanabe ()
| |
Collapse
|
5
|
High-Contrast Stimulation Potentiates the Neurotrophic Properties of Müller Cells and Suppresses Their Pro-Inflammatory Phenotype. Int J Mol Sci 2022; 23:ijms23158615. [PMID: 35955747 PMCID: PMC9369166 DOI: 10.3390/ijms23158615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
High-contrast visual stimulation promotes retinal regeneration and visual function, but the underlying mechanism is not fully understood. Here, we hypothesized that Müller cells (MCs), which express neurotrophins such as brain-derived neurotrophic factor (BDNF), could be key players in this retinal plasticity process. This hypothesis was tested by conducting in vivo and in vitro high-contrast stimulation of adult mice and MCs. Following stimulation, we examined the expression of BDNF and its inducible factor, VGF, in the retina and MCs. We also investigated the alterations in the expression of VGF, nuclear factor kappa B (NF-κB) and pro-inflammatory mediators in MCs, as well as their capacity to proliferate and develop a neurogenic or reactive gliosis phenotype after high-contrast stimulation and treatment with BDNF. Our results showed that high-contrast stimulation upregulated BDNF levels in MCs in vivo and in vitro. The additional BDNF treatment significantly augmented VGF production in MCs and their neuroprotective features, as evidenced by increased MC proliferation, neurodifferentiation, and decreased expression of the pro-inflammatory factors and the reactive gliosis marker GFAP. These results demonstrate that high-contrast stimulation activates the neurotrophic and neuroprotective properties of MCs, suggesting their possible direct involvement in retinal neuronal survival and improved functional outcomes in response to visual stimulation.
Collapse
|
6
|
Ilochonwu BC, Mihajlovic M, Maas-Bakker RF, Rousou C, Tang M, Chen M, Hennink WE, Vermonden T. Hyaluronic Acid-PEG-Based Diels-Alder In Situ Forming Hydrogels for Sustained Intraocular Delivery of Bevacizumab. Biomacromolecules 2022; 23:2914-2929. [PMID: 35735135 PMCID: PMC9277588 DOI: 10.1021/acs.biomac.2c00383] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal diseases are the leading cause of visual impairment worldwide. The effectiveness of antibodies for the treatment of retinal diseases has been demonstrated. Despite the clinical success, achieving sufficiently high concentrations of these protein therapeutics at the target tissue for an extended period is challenging. Patients suffering from macular degeneration often receive injections once per month. Therefore, there is a growing need for suitable systems that can help reduce the number of injections and adverse effects while improving patient complacency. This study systematically characterized degradable "in situ" forming hydrogels that can be easily injected into the vitreous cavity using a small needle (29G). After intravitreal injection, the formulation is designed to undergo a sol-gel phase transition at the administration site to obtain an intraocular depot system for long-term sustained release of bioactives. A Diels-Alder reaction was exploited to crosslink hyaluronic acid-bearing furan groups (HAFU) with 4 arm-PEG10K-maleimide (4APM), yielding stable hydrogels. Here, a systematic investigation of the effects of polymer composition and the ratio between functional groups on the physicochemical properties of hydrogels was performed to select the most suitable formulation for protein delivery. Rheological analysis showed rapid hydrogel formation, with the fastest gel formation within 5 min after mixing the hydrogel precursors. In this study, the mechanical properties of an ex vivo intravitreally formed hydrogel were investigated and compared to the in vitro fabricated samples. Swelling and degradation studies showed that the hydrogels are biodegradable by the retro-Diels-Alder reaction under physiological conditions. The 4APM-HAFU (ratio 1:5) hydrogel formulation showed sustained release of bevacizumab > 400 days by a combination of diffusion, swelling, and degradation. A bioassay showed that the released bevacizumab remained bioactive. The hydrogel platform described in this study offers high potential for the sustained release of therapeutic antibodies to treat ocular diseases.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Roel F Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Charis Rousou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Miao Tang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast BT9 7BL, U.K
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast BT9 7BL, U.K
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
7
|
Bulirsch LM, Loeffler KU, Holz FG, Koinzer S, Nadal J, Müller AM, Herwig-Carl MC. Spatial and temporal immunoreaction of nestin, CD44, collagen IX and GFAP in human retinal Müller cells in the developing fetal eye. Exp Eye Res 2022; 217:108958. [DOI: 10.1016/j.exer.2022.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
8
|
Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:33. [PMID: 34719743 PMCID: PMC8557999 DOI: 10.1186/s13619-021-00097-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
The evolution of pluripotent stem cell-derived retinal organoids (ROs) has brought remarkable opportunities for developmental studies while also presenting new therapeutic avenues for retinal diseases. With a clear understanding of how well these models mimic native retinas, such preclinical models may be crucial tools that are widely used for the more efficient translation of studies into novel treatment strategies for retinal diseases. Genetic modifications or patient-derived ROs can allow these models to simulate the physical microenvironments of the actual disease process. However, we are currently at the beginning of the three-dimensional (3D) RO era, and a general quantitative technology for analyzing ROs derived from numerous differentiation protocols is still missing. Continued efforts to improve the efficiency and stability of differentiation, as well as understanding the disparity between the artificial retina and the native retina and advancing the current treatment strategies, will be essential in ensuring that these scientific advances can benefit patients with retinal disease. Herein, we briefly discuss RO differentiation protocols, the current applications of RO as a disease model and the treatments for retinal diseases by using RO modeling, to have a clear view of the role of current ROs in retinal development and diseases.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
9
|
A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater 2021; 134:605-620. [PMID: 34329781 DOI: 10.1016/j.actbio.2021.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023]
Abstract
Retinal diseases, including age-related macular degeneration (AMD), are a major cause of blindness. Efficient delivery of therapeutic genes to retinal cells to treat retinal disease is a formidable challenge. In this study, we developed a core-shell nanoplatform composed of a core and two external layers for targeted delivery of the gene to the retina. The inner core was composed of amino acid-functionalized dendrimers and a nuclear localization signal (NLS) for DNA complexation, nuclear transport and efficient transfection. The inner core was coated in a lipid bilayer that comprised pH-sensitive lipids as the inner shell layer. Hyaluronic acid (HA)-1,2-dioleoylphosphatidylethanolamine (DOPE) as the outermost shell layer was used for retinal cell targeting. This core-shell nanoplatform was developed so that the mobility in the vitreous body of these negatively charged carriers would not be affected by their surface charge, allowing diffusion into the retina, uptake into the retinal cells via CD44-mediated internalization, and finally transport into the nucleus by the NLS. The designed nanoparticles showed safety both in vitro and in vivo and inhibited the expression of VEGF under hypoxia-mimicking conditions. In vitro angiogenesis assays exhibited significant inhibitory effects on cell migration and tube formation. The in vivo assays indicated that this nanoplatform could be delivered to the retina. Taken together, this nanoplatform has the potential to transfer gene material into the retina for the treatment of retinal diseases, including AMD. STATEMENT OF SIGNIFICANCE: It remains a challenge to develop an efficient nonviral vector for gene therapy, especially retinal gene therapy. Various barriers exist in gene delivery and the unique ocular environment, making gene delivery to the retina difficult. In this study, we designed a negatively charged core-shell nanoplatform (HD-NPPND) for the targeted delivery of gene to the retina. The developed nanoplatform possessed excellent transfection efficiency and safety both in vitro and in vivo. It efficiently delivered a gene to the retina. The results of this study suggested that this core-shell nanoplatform has the potential to deliver genes to the retina to treat retinal diseases, including age-related macular degeneration (AMD).
Collapse
|
10
|
Laradji A, Karakocak BB, Kolesnikov AV, Kefalov VJ, Ravi N. Hyaluronic Acid-Based Gold Nanoparticles for the Topical Delivery of Therapeutics to the Retina and the Retinal Pigment Epithelium. Polymers (Basel) 2021; 13:3324. [PMID: 34641139 PMCID: PMC8512139 DOI: 10.3390/polym13193324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The ocular immune privilege is a phenomenon brought about by anatomical and physiological barriers to shield the eye from immune and inflammation responses. While this phenomenon is beneficial for eyes protection, it is, at the same time, a hindrance for drug delivery to the posterior segment of the eye to treat retinal diseases. Some ocular barriers can be bypassed by intravitreal injections, but these are associated with several side effects and patient noncompliance, especially when frequent injections are required. As an alternative, applying drugs as an eye drop is preferred due to the safety and ease. This study investigated the possible use of topically-applied hyaluronic acid-coated gold nanoparticles as drug delivery vehicles to the back of the eye. The coated gold nanoparticles were topically applied to mouse eyes, and results were compared to topically applied uncoated gold nanoparticles and phosphate-buffered saline (PBS) solution. Retina sections from these mice were then analyzed using fluorescence microscopy, inductively coupled plasma mass spectrometry (ICP-MS), and transmission electron microscopy (TEM). All characterization techniques used in this study suggest that hyaluronic acid-coated gold nanoparticles have higher distribution in the posterior segment of the eye than uncoated gold nanoparticles. Electroretinogram (ERG) analysis revealed that the visual function of mice receiving the coated gold nanoparticles was not affected, and these nanoparticles can, therefore, be applied safely. Together, our results suggest that hyaluronic acid-coated gold nanoparticles constitute potential drug delivery vehicles to the retina when applied noninvasively as an eye drop.
Collapse
Affiliation(s)
- Amine Laradji
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Bedia B. Karakocak
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Alexander V. Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; (A.V.K.); (V.J.K.)
| | - Vladimir J. Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; (A.V.K.); (V.J.K.)
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Deng X, Iwagawa T, Fukushima M, Suzuki Y, Watanabe S. Setd1a Plays Pivotal Roles for the Survival and Proliferation of Retinal Progenitors via Histone Modifications of Uhrf1. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33938913 PMCID: PMC8107498 DOI: 10.1167/iovs.62.6.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The trimethylation of histone H3 at lysine 4 (H3K4me3) facilitates transcriptional gene activation, and Setd1a is the methyltransferase specific to H3K4. H3K4me3 has been reported to regulate rod photoreceptor differentiation; however, the roles H3K4me3 plays in retinal progenitor cell (RPC) proliferation and differentiation during early retinal development remain unclear. Methods Using an in vitro retinal explant culture system, we suppressed the expression of Setd1a by introducing shSetd1a. We examined the expression level and H3K4me3 level of genes by RNA Sequencing and ChIP assay, respectively. Results We found that Setd1a depletion resulted in increased apoptosis and proliferation failure in late RPCs. Expression of wild-type SETD1A, but not SETD1A that lacked the catalytic SET domain, reversed the shSetd1a-induced phenotype. RNA Sequencing revealed that proliferation-related genes were downregulated upon shSetd1a expression. Based on publicly available H3K4me3-ChIP sequencing data of retinal development, we identified Uhrf1 as a candidate target gene of Setd1a. The expression of shSetd1a led to a decrease in Uhrf1 transcript levels and reduced H3K4me3 levels at the Uhrf1 locus. Increased apoptosis and the suppression of proliferation in late RPCs were observed in retinal explants expressing shUhrf1, similar to the outcomes observed in shSetd1a-expressing retinas. The overexpression of UHRF1 did not rescue shSetd1a-induced apoptosis, but reversed the suppression of proliferation. Conclusions These results indicate that Setd1a contributes to the survival and proliferation of retinal cells by regulating histone methylation, Setd1a regulates Uhrf1 expression, and these two molecules cooperate to regulate RPC survival and proliferation.
Collapse
Affiliation(s)
- Xiaoyue Deng
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaya Fukushima
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Couturier A, Blot G, Vignaud L, Nanteau C, Slembrouck-Brec A, Fradot V, Acar N, Sahel JA, Tadayoni R, Thuret G, Sennlaub F, Roger JE, Goureau O, Guillonneau X, Reichman S. Reproducing diabetic retinopathy features using newly developed human induced-pluripotent stem cell-derived retinal Müller glial cells. Glia 2021; 69:1679-1693. [PMID: 33683746 PMCID: PMC8252429 DOI: 10.1002/glia.23983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Muller glial cells (MGCs) are responsible for the homeostatic and metabolic support of the retina. Despite the importance of MGCs in retinal disorders, reliable and accessible human cell sources to be used to model MGC-associated diseases are lacking. Although primary human MGCs (pMGCs) can be purified from post-mortem retinal tissues, the donor scarcity limits their use. To overcome this problem, we developed a protocol to generate and bank human induced pluripotent stem cell-derived MGCs (hiMGCs). Using a transcriptome analysis, we showed that the three genetically independent hiMGCs generated were homogeneous and showed phenotypic characteristics and transcriptomic profile of pMGCs. These cells expressed key MGC markers, including Vimentin, CLU, DKK3, SOX9, SOX2, S100A16, ITGB1, and CD44 and could be cultured up to passage 8. Under our culture conditions, hiMGCs and pMGCs expressed low transcript levels of RLPB1, AQP4, KCNJ1, KCJN10, and SLC1A3. Using a disease modeling approach, we showed that hiMGCs could be used to model the features of diabetic retinopathy (DR)-associated dyslipidemia. Indeed, palmitate, a major free fatty acid with elevated plasma levels in diabetic patients, induced the expression of inflammatory cytokines found in the ocular fluid of DR patients such as CXCL8 (IL-8) and ANGPTL4. Moreover, the analysis of palmitate-treated hiMGC secretome showed an upregulation of proangiogenic factors strongly related to DR, including ANG2, Endoglin, IL-1β, CXCL8, MMP-9, PDGF-AA, and VEGF. Thus, hiMGCs could be an alternative to pMGCs and an extremely valuable tool to help to understand and model glial cell involvement in retinal disorders, including DR.
Collapse
Affiliation(s)
- Aude Couturier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Ophthalmology, Hôpital Lariboisière, AP-HP, Université de Paris, Paris, France
| | - Guillaume Blot
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Lucile Vignaud
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Céline Nanteau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Valérie Fradot
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ramin Tadayoni
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Department of Ophthalmology, Hôpital Lariboisière, AP-HP, Université de Paris, Paris, France
| | - Gilles Thuret
- Biologie, Ingénierie et Imagerie de la Greffe de Cornée, EA2521, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France
| | - Florian Sennlaub
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Jerome E Roger
- Institut des Neurosciences Paris-Saclay, CERTO-Retina France, CNRS, Univ Paris-Saclay, Orsay, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
13
|
Laing ST, Tassew N, Tesar D, Wang Y, Crowell SR, Gray J, Kwong M, Loyet KM, Andaya R, Kusi A, Kelley RF. Retinal and Lens Degeneration in New Zealand White Rabbits Administered Intravitreal TSG-6 Link Domain-Rabbit FAb Fusion Proteins. Toxicol Pathol 2020; 49:634-646. [PMID: 33349160 DOI: 10.1177/0192623320969124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fusion of biologic therapeutics to hyaluronic acid binding proteins, such as the link domain (LD) of Tumor necrosis factor (TNF)-Stimulated Gene-6 (TSG-6), is expected to increase vitreous residence time following intravitreal injection and provide for long-acting delivery. The toxicity of a single intravitreal dose of free TSG-6-LD and fusion proteins of TSG-6-LD and a nonbinding rabbit antibody fragment (RabFab) were assessed in New Zealand White rabbits. Animals administered free TSG-6-LD exhibited extensive lens opacities and variable retinal vascular attenuation, correlated with microscopic findings of lens and retinal degeneration. Similar but less severe findings were present in animals dosed with the RabFab-TSG-6-LD fusion proteins. In-life ocular inflammation was noted in all animals from 7-days postdose and was associated with high anti-RabFab antibody titers in animals administered fusion proteins. Inflammation and retinal degeneration were multifocally associated with evidence of retinal detachment, and hypertrophy and migration of vimentin, glial fibrillary acidic protein, and glutamine synthetase positive Müller cells to the outer nuclear layer. Further assessment of alternative hyaluronic acid binding protein fusions should consider the potential for retinal degeneration and enhanced immune responses early in development.
Collapse
Affiliation(s)
- Steven T Laing
- Department of Safety Assessment, 7412Genentech Inc., South San Francisco, CA, USA
| | - Nardos Tassew
- Department of Safety Assessment, 7412Genentech Inc., South San Francisco, CA, USA
| | - Devin Tesar
- Department of Pharmaceutical Development, 7412Genentech Inc., South San Francisco, CA, USA
| | - Yue Wang
- Department of Pharmaceutical Development, 7412Genentech Inc., South San Francisco, CA, USA
| | - Susan R Crowell
- Department of Preclinical and Translational Pharmacokinetics & Pharmacodynamics, 7412Genentech Inc., South San Francisco, CA, USA
| | - Julia Gray
- Department of Biochemical and Cellular Pharmacology, 7412Genentech Inc., South San Francisco, CA, USA
| | - Mandy Kwong
- Department of Biochemical and Cellular Pharmacology, 7412Genentech Inc., South San Francisco, CA, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, 7412Genentech Inc., South San Francisco, CA, USA
| | - Roxanne Andaya
- Department of Safety Assessment, 7412Genentech Inc., South San Francisco, CA, USA
| | - Aija Kusi
- Department of Safety Assessment, 7412Genentech Inc., South San Francisco, CA, USA
| | - Robert F Kelley
- Department of Pharmaceutical Development, 7412Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
14
|
Freude KK, Saruhanian S, McCauley A, Paterson C, Odette M, Oostenink A, Hyttel P, Gillies M, Haukedal H, Kolko M. Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells - possibilities and current limitations. World J Stem Cells 2020; 12:1171-1183. [PMID: 33178399 PMCID: PMC7596448 DOI: 10.4252/wjsc.v12.i10.1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients. They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells (RGCs) and Müller glia.
AIM To refine human-induced pluripotent stem cells (hiPSCs) differentiated into three-dimensional (3D) retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.
METHODS In this study we described, evaluated, and refined methods with which to generate Müller glia and RGC progenitors, isolated them via magnetic-activated cell sorting, and assessed their lineage stability after prolonged 2D culture. Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry, and the ultrastructural composition of retinal organoid cells was investigated.
RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids. Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.
CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.
Collapse
Affiliation(s)
- Kristine Karla Freude
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Alanna McCauley
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Colton Paterson
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Madeleine Odette
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Annika Oostenink
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Mark Gillies
- Save Sight Institute, South Block, Sydney Eye Hospital, Sydney 2000, Australia
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup 2600, Denmark
| |
Collapse
|
15
|
Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q. The role of CD44 in pathological angiogenesis. FASEB J 2020; 34:13125-13139. [PMID: 32830349 DOI: 10.1096/fj.202000380rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required for normal development and occurs as a pathological step in a variety of disease settings, such as cancer, ocular diseases, and ischemia. Recent studies have revealed the role of CD44, a widely expressed cell surface adhesion molecule, in promoting pathological angiogenesis and the development of its associated diseases through its regulation of diverse function of endothelial cells, such as proliferation, migration, adhesion, invasion, and communication with the microenvironment. Conversely, the absence of CD44 expression or inhibition of its function impairs pathological angiogenesis and disease progression. Here, we summarize the current understanding of the roles of CD44 in pathological angiogenesis and the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
16
|
Ouasti S, Faroni A, Kingham PJ, Ghibaudi M, Reid AJ, Tirelli N. Hyaluronic Acid (HA) Receptors and the Motility of Schwann Cell(-Like) Phenotypes. Cells 2020; 9:E1477. [PMID: 32560323 PMCID: PMC7349078 DOI: 10.3390/cells9061477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
The cluster of differentiation 44 (CD44) and the hyaluronan-mediated motility receptor (RHAMM), also known as CD168, are perhaps the most studied receptors for hyaluronic acid (HA); among their various functions, both are known to play a role in the motility of a number of cell types. In peripheral nerve regeneration, the stimulation of glial cell motility has potential to lead to better therapeutic outcomes, thus this study aimed to ascertain the presence of these receptors in Schwann cells (rat adult aSCs and neonatal nSCs) and to confirm their influence on motility. We included also a Schwann-like phenotype (dAD-MSCs) derived from adipose-derived mesenchymal stem cells (uAD-MSCs), as a possible basis for an autologous cell therapy. CD44 was expressed similarly in all cell types. Interestingly, uAD-MSCs were RHAMM(low), whereas both Schwann cells and dASCs turned out to be similarly RHAMM(high), and indeed antibody blockage of RHAMM effectively immobilized (in vitro scratch wound assay) all the RHAMM(high) Schwann(-like) types, but not the RHAMM(low) uAD-MSCs. Blocking CD44, on the other hand, affected considerably more uAD-MSCs than the Schwann(-like) cells, while the combined blockage of the two receptors immobilized all cells. The results therefore indicate that Schwann-like cells have a specifically RHAMM-sensitive motility, where the motility of precursor cells such as uAD-MSCs is CD44- but not RHAMM-sensitive; our data also suggest that CD44 and RHAMM may be using complementary motility-controlling circuits.
Collapse
Affiliation(s)
- Sihem Ouasti
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (A.F.); (P.J.K.); (A.J.R.)
| | - Paul J. Kingham
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (A.F.); (P.J.K.); (A.J.R.)
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, 901 87 Umeå, Sweden
| | - Matilde Ghibaudi
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; (A.F.); (P.J.K.); (A.J.R.)
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK;
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| |
Collapse
|
17
|
Chung SH, Shen W, Davidson KC, Pébay A, Wong RCB, Yau B, Gillies M. Differentiation of Retinal Glial Cells From Human Embryonic Stem Cells by Promoting the Notch Signaling Pathway. Front Cell Neurosci 2019; 13:527. [PMID: 31849614 PMCID: PMC6901827 DOI: 10.3389/fncel.2019.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway. We first generated retinal progenitor cells (RPCs) from hESCs then promoted the Notch signaling pathway using Notch ligands, including Delta-like ligand 4 and Jagged-1. We validated glial cell differentiation with qRT-PCR, immunocytochemistry, western blots and fluorescence-activated cell sorting as we promoted Notch signaling in RPCs. We found that promoting Notch signaling in RPCs for 2 weeks led to upregulation of glial cell markers, including glial fibrillary acidic protein (GFAP), glutamine synthetase, vimentin and cellular retinaldehyde-binding protein (CRALBP). Of these markers, we found the greatest increase in expression of the pan glial cell marker, GFAP. Conversely, we also found that inhibition of Notch signaling in RPCs led to upregulation of retinal neuronal markers including cone-rod homeobox (CRX) and orthodenticle homeobox 2 (OTX2) but with little expression of GFAP. This retinal glial differentiation method will help advance the generation of stem cell disease models to study the pathogenesis of retinal diseases associated with glial dysfunction such as macular telangiectasia type 2. This method may also be useful for the development of future therapeutics such as drug screening and gene editing using patient-derived retinal glial cells.
Collapse
Affiliation(s)
- Sook Hyun Chung
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Weiyong Shen
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn C Davidson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Department of Surgery, The University of Melbourne, Parkville, VIC, Australia.,Shenzhen Eye Hospital, Shenzhen, China
| | - Belinda Yau
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark Gillies
- Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Devoldere J, Wels M, Peynshaert K, Dewitte H, De Smedt SC, Remaut K. The obstacle course to the inner retina: Hyaluronic acid-coated lipoplexes cross the vitreous but fail to overcome the inner limiting membrane. Eur J Pharm Biopharm 2019; 141:161-171. [PMID: 31150809 DOI: 10.1016/j.ejpb.2019.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Considerable research over the last few years has revealed dysregulation of growth factors in various retinal diseases, such as glaucoma, diabetic retinopathy and photoreceptor degenerations. The use of messengerRNA (mRNA) to transiently overexpress a specific factor could compensate for this imbalance. However, a critical challenge of this approach lies in the ability to efficiently deliver mRNA molecules to the retinal target cells. In this study we found that intravitreal (IVT) injection is an attractive approach to deliver mRNA to the retina, providing two critical barriers can be overcome: the vitreous and the inner limiting membrane (ILM). We demonstrated that the vitreous is indeed a major hurdle in the delivery of the cationic mRNA-complexes to retinal cells, both in terms of vitreal mobility and cellular uptake. To improve their intravitreal mobility and avoid unwanted extracellular interactions, we evaluated the use of hyaluronic acid (HA) as an electrostatic coating strategy. This HA-coating provided the complexes with a negative surface charge, markedly enhancing their mobility in the vitreous humor, without reducing their cellular internalization and transfection efficiency. However, although this coating strategy allows the mRNA-complexes to successfully overcome the vitreal barrier, the majority of the particles accumulated at the ILM. This study therefore underscores the crucial barrier function of the ILM toward non-viral retinal gene delivery and the need to smartly design mRNA-carriers able to surmount the vitreous as well as the ILM.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Mike Wels
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Qin Y, Tian Y, Liu Y, Li D, Zhang H, Yang Y, Qi J, Wang H, Gan L. Hyaluronic acid-modified cationic niosomes for ocular gene delivery: improving transfection efficiency in retinal pigment epithelium. ACTA ACUST UNITED AC 2018; 70:1139-1151. [PMID: 29931682 DOI: 10.1111/jphp.12940] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/19/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Recent years, gene therapy to treat retinal diseases has been paid much attention. The key to successful therapy is utilizing smart delivery system to achieve efficient gene delivery and transfection. In this study, hyaluronic acid (HA) modified cationic niosomes (HA-C-niosomes) have been designed in order to achieve retinal pigment epithelium (RPE) cells targeted gene delivery and efficient gene transfection. METHODS Cationic niosomes composed of tween 80/squalene/1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) were prepared by the ethanol injection method. After that, HA-DOPE was further added into cationic niosomes to form HA-C-niosomes. Cellular uptake and transfection have been investigated in ARPE-19 cells. In vivo pEGFP transfection efficiency was evaluated in rats. KEY FINDINGS Twenty percentage HA-C-niosomes were about 180 nm, with -30 mV, and showing spherical shape in TEM. 2 times higher transfection efficiency was found in the group of HA-C-niosomes with 20% HA modification. No toxicity was found in niosome preparations. In vivo evaluation in Sprague Dawley (SD) rats revealed that HA-C-niosomes could specifically target to the retina layer. In the group of pEGFP-loaded HA-C-niosomes, 6-6.5 times higher gene transfection has been achieved, compared with naked pEGFP. CONCLUSIONS Hyaluronic acid-C-niosomes might provide a promising gene delivery system for successful retinal gene therapy.
Collapse
Affiliation(s)
- Yanmei Qin
- Shanghai Institute of Technology, Shanghai, China
| | | | - Yang Liu
- Shanghai Institute of Technology, Shanghai, China
| | - Dong Li
- Shanghai Institute of Technology, Shanghai, China
| | - Hua Zhang
- Shanghai Institute of Technology, Shanghai, China
| | - Yeqian Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| | - Li Gan
- Shanghai Institute of Technology, Shanghai, China.,National Pharmaceutical Engineering Research Center (NPERC), Shanghai, China
| |
Collapse
|
20
|
Tokuda K, Baron B, Kuramitsu Y, Kitagawa T, Tokuda N, Morishige N, Kobayashi M, Kimura K, Nakamura K, Sonoda KH. Optimization of fixative solution for retinal morphology: a comparison with Davidson's fixative and other fixation solutions. Jpn J Ophthalmol 2018; 62:481-490. [PMID: 29691783 DOI: 10.1007/s10384-018-0592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/02/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Numerous fixative solutions are available but many are not amenable to the histomorphological preservation of retinae. The investigators specifically focused on retinal histological studies, which rather than 4% formaldehyde (FA), often use Davidson's fixative. However the latter has its limitations. The purpose of this study was to produce a new fixative which maintains retinae closer to the in vivo conditions. STUDY DESIGN Experimental design. METHODS Four fixative formulations (4% paraformaldehyde, Davidson's fixative, modified Davidson's fixative and an in-house fixative - TB-Fix) were tested on retinae and the outcomes on histomorphology and immunohistochemical staining for selected antigenic markers was compared. RESULTS TB-Fix markedly improved morphological detail following hematoxylin and eosin staining, most importantly eliminating the spongiform appearance in the plexiform layer and the swelling of somata (including Müller cells), when compared to FA, Davidson's fixative and its modified version. Retinal samples fixed with TB-Fix or FA showed comparable results in immunohistological staining for neurons and glia in the retina. Importantly, while the whole eye fixed with FA collapsed in shape and induced artificial retinal detachment, the eye fixed with TB-Fix avoided deformation and detachment. Furthermore, we found that TB-Fix also prevented detachment from the culture plate when used to fix HEK293 cells, which are known to detach from the plate easily. CONCLUSION It was demonstrated that TB-Fix provides an overall improvement in the preservation of retinal morphology and chemical composition.
Collapse
Affiliation(s)
- Kazuhiro Tokuda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| | - Byron Baron
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
- Faculty of Medicine and Surgery, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
| | - Yasuhiro Kuramitsu
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
- Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Takao Kitagawa
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuko Tokuda
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Ube, 755-8505, Japan
| | - Naoyuki Morishige
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuyuki Nakamura
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
21
|
Ryoo NK, Lee J, Lee H, Hong HK, Kim H, Lee JB, Woo SJ, Park KH, Kim H. Therapeutic effects of a novel siRNA-based anti-VEGF (siVEGF) nanoball for the treatment of choroidal neovascularization. NANOSCALE 2017; 9:15461-15469. [PMID: 28976519 DOI: 10.1039/c7nr03142d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries and is characterized by the development of choroidal neovascularization (CNV). Therapies for AMD have focused on suppressing angiogenic factors, such as vascular endothelial growth factor (VEGF), mainly via conventional anti-VEGF antibody agents. However, additional efforts have been made to develop effective small-interfering RNA (siRNA)-based intracellular therapeutic agents. In this study, we have manufactured a novel siRNA-based anti-VEGF nanoball (siVEGF NB). The siVEGF NB was composed of a siRNA hydrogel with a core of anti-VEGF sequence siRNA coated with branched PEI (bPEI) and hyaluronic acid (HA) in order by applying an electrical force. The novel siVEGF NBs, which were employed in a laser-induced CNV mouse model, were optimized as a retinal and choroidal delivery system through the vitreous humor to the sub-retinal space via CD44 receptor endocytosis on the inner limiting membrane, and showed therapeutic effects via pathways bypassing the TLR3-induced siRNA-class effect. The therapeutic effects of siVEGF NBs lasted for 2 weeks after intravitreal injection showing high targeting efficiency to the sub-retinal space. Thus, the newly developed siVEGF NB may have great potential for the delivery of RNAi-based therapeutics for ocular diseases, including AMD.
Collapse
Affiliation(s)
- Na-Kyung Ryoo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao Z, Yang M, Azar SR, Soong L, Weaver SC, Sun J, Chen Y, Rossi SL, Cai J. Viral Retinopathy in Experimental Models of Zika Infection. Invest Ophthalmol Vis Sci 2017; 58:4355–4365. [PMID: 28810265 PMCID: PMC5558627 DOI: 10.1167/iovs.17-22016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Emerging evidence has shown that both congenital and adult Zika virus (ZIKV) infection can cause eye diseases. The goals of the current study were to explore mechanisms and pathophysiology of ZIKV-induced eye defects. Methods Wild-type or A129 interferon type I receptor–deficient mice were infected by either FSS13025 or Mex1-7 strain of ZIKV. Retinal histopathology was measured at different time points after infection. The presence of viral RNA and protein in the retina was determined by in situ hybridization and immunofluorescence staining, respectively. Growth curves of ZIKV in permissive retinal cells were assessed in cultured retinal pigment epithelial (RPE) and Müller glial cells. Results ZIKV-infected mice developed a spectrum of ocular pathologies that affected multiple layers of the retina. A primary target of ZIKV in the eye was Müller glial cells, which displayed decreased neurotrophic function and increased expression of proinflammatory cytokines after infection. ZIKV also infected RPE; and both the RPE and Müller cells expressed viral entry receptors TYRO3 and AXL. Retinitis, focal retinal degeneration, and ganglion cell loss were observed after the clearance of viral particles. Conclusions Our data suggest that ZIKV can infect infant eyes with immature blood–retinal barrier and cause structural damages to the retina. The ocular findings in microcephalic infants may not be solely caused by ZIKV-induced impairment of neurodevelopment.
Collapse
Affiliation(s)
- Zhenyang Zhao
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Matthew Yang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Lynn Soong
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jiaren Sun
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Yan Chen
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shannan L Rossi
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jiyang Cai
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
23
|
Huang D, Chen YS, Rupenthal ID. Hyaluronic Acid Coated Albumin Nanoparticles for Targeted Peptide Delivery to the Retina. Mol Pharm 2017; 14:533-545. [DOI: 10.1021/acs.molpharmaceut.6b01029] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Huang
- Buchanan Ocular Therapeutics
Unit, Department of Ophthalmology, New Zealand National Eye Centre,
Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ying-Shan Chen
- Buchanan Ocular Therapeutics
Unit, Department of Ophthalmology, New Zealand National Eye Centre,
Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics
Unit, Department of Ophthalmology, New Zealand National Eye Centre,
Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Guter M, Breunig M. Hyaluronan as a promising excipient for ocular drug delivery. Eur J Pharm Biopharm 2016; 113:34-49. [PMID: 27914235 DOI: 10.1016/j.ejpb.2016.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/11/2023]
Abstract
Hyaluronan (HA) is a naturally occurring polysaccharide and well known for its exceptional properties such as high biocompatibility and biodegradability, along with a low immunogenicity. Besides its use for various biomedical applications it recently came into focus as a favorable excipient for the formulation of various ocular therapeutics. This review article summarizes the ocular distribution of HA and its most heavily investigated binding protein "cluster of differentiation 44" (CD44) which is the rationale for the clinical use of HA, primarily as an additive in ocular applications ranging from eye drops to contact lenses. Moreover, examples will be given for using HA in various pre-clinical approaches to generate entirely new therapeutics, most notably in the field of nanotechnology.
Collapse
Affiliation(s)
- Michaela Guter
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93049 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93049 Regensburg, Germany.
| |
Collapse
|
25
|
Coulson-Thomas VJ, Lauer ME, Soleman S, Zhao C, Hascall VC, Day AJ, Fawcett JW. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury. J Biol Chem 2016; 291:19939-52. [PMID: 27435674 PMCID: PMC5025681 DOI: 10.1074/jbc.m115.710673] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP(+) and CD44(+) astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6(-/-) mice present a reduced number of GFAP(+) astrocytes when compared with the littermate TSG-6(+/-) mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| | - Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Sara Soleman
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, United Kingdom, and
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - James W Fawcett
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| |
Collapse
|
26
|
Expression of a hyaluronic acid-binding proteoglycan (versican) in the cynomolgus monkey eye. Int Ophthalmol 2016; 36:651-6. [PMID: 26780096 DOI: 10.1007/s10792-015-0167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
The expression of versican, a hyaluronic acid (HA)-binding protein, during the development and differentiation of the retina has been reported. In this study, we performed histochemical and immunohistological analysis of HA and versican from the ciliary body to the retina in cynomolgus monkey eyes. Paraffin-embedded sections of cynomolgus monkey eyes, including from the ciliary body to the macular region, were prepared. The distribution of versican and HA was examined by histochemical and immunohistochemical methods. The sites of HA expression and versican expression in the eye specimens were similar. Expression of HA and versican was observed in the peripheral retina and ciliary body, but not from the macular region to the mid-periphery of the retina. Versican was strongly expressed in the ciliary body, particularly in the non-pigmented ciliary epithelium. Expression in the retina from the periphery to posterior pole gradually decreased. Versican is expressed from the ciliary body to the peripheral retina, but this expression decreases toward the posterior pole. This suggests a physiological function for versican in the peripheral retina.
Collapse
|
27
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
28
|
Hosoki A, Oku H, Horie T, Kida T, Sugiyama T, Nakamura K, Ikeda T. Changes in Expression of Nestin, CD44, Vascular Endothelial Growth Factor, and Glutamine Synthetase by Mature Müller Cells After Dedifferentiation. J Ocul Pharmacol Ther 2015; 31:476-81. [PMID: 26091086 DOI: 10.1089/jop.2014.0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Müller cells are dedifferentiated after retinal injuries and are transformed into nestin-positive progenitor cells that play crucial roles in remodeling. The purpose of this study was to determine the changes in the expression of nestin, CD44 (a receptor of hyaluronan), vascular endothelial growth factor (VEGF), and glutamine sythetase in cultured Müller cells after dedifferentiation by basic fibroblast growth factor (bFGF) and insulin. METHODS Cells from a rat retinal Müller cell line (TR-MUL5) and from primary rat retinal Müller cells were grown in culture. The cells were incubated in various concentrations of bFGF (1.0, 10, 100 ng/mL) with or without insulin (5 μM) for 48 h. Changes in the expression of nestin, CD44, VEGF, and glutamine synthetase were determined by immunoblot and immunohistochemistry. RESULTS Exposure of TR-MUL5 cells to 10 ng/mL of bFGF led to the maximum increase in nestin by 1.5-fold, whereas the exposure had no effects on the expression of CD44. Addition of insulin (5 μM) to the bFGF significantly increased the CD44 level in TR-MUL5 cells by 1.4-fold. Immunohistochemistry showed that the combined treatments also upregulated the expression of nestin and CD44 in primary retinal Müller cells. Immunoblot analyses showed that exposure to bFGF and insulin caused significant increases of nestin (4.9-fold), CD44 (3.4-fold), and VEGF (1.44-fold) and decreases in glutamine synthetase (0.7-fold). CONCLUSIONS The inflammation and angiogenesis that develop after retinal injuries may be due to an upregulation of CD44 and VEGF by the dedifferentiated Müller cells.
Collapse
Affiliation(s)
- Akiko Hosoki
- 1 Department of Ophthalmology, Osaka Medical College , Takatsuki, Osaka, Japan
| | - Hidehiro Oku
- 1 Department of Ophthalmology, Osaka Medical College , Takatsuki, Osaka, Japan
| | - Taeko Horie
- 1 Department of Ophthalmology, Osaka Medical College , Takatsuki, Osaka, Japan
| | - Teruyo Kida
- 1 Department of Ophthalmology, Osaka Medical College , Takatsuki, Osaka, Japan
| | - Tetsuya Sugiyama
- 1 Department of Ophthalmology, Osaka Medical College , Takatsuki, Osaka, Japan
| | | | - Tsunehiko Ikeda
- 1 Department of Ophthalmology, Osaka Medical College , Takatsuki, Osaka, Japan
| |
Collapse
|
29
|
|
30
|
Martens TF, Remaut K, Deschout H, Engbersen JF, Hennink WE, van Steenbergen MJ, Demeester J, De Smedt SC, Braeckmans K. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release 2015; 202:83-92. [DOI: 10.1016/j.jconrel.2015.01.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 01/01/2023]
|
31
|
Raber J, Olsen RHJ, Su W, Foster S, Xing R, Acevedo SF, Sherman LS. CD44 is required for spatial memory retention and sensorimotor functions. Behav Brain Res 2014; 275:146-9. [PMID: 25219362 PMCID: PMC4253558 DOI: 10.1016/j.bbr.2014.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023]
Abstract
CD44 is a transmembrane receptor for the glycosaminoglycan hyaluronan, a component of the extracellular matrix. CD44 is expressed by neural stem/progenitor cells, astrocytes, and some neurons but its function in the central nervous system is unknown. To determine the role of CD44 in brain function, we behaviorally analyzed CD44-null (KO) and wild-type (WT) mice. KO mice showed increased activity levels in the light-dark test and a trend toward increased activity in the open field. In addition, KO mice showed impaired hippocampus-dependent spatial memory retention in the probe trial following the first hidden-platform training day in the Morris water maze: WT mice showed spatial memory retention and spent more time in the target quadrant than any other quadrant, while KO mice did not. Although there were no genotype differences in swim speeds during the water maze training sessions with the visible or hidden platform, sensorimotor impairments were seen in other behavioral tests. In the inclined screen and balance beam tests, KO mice moved less than WT mice. In the wire hang test, KO mice also fell off of the wire faster than WT mice. In contrast, there was no genotype difference when emotional learning and memory were assessed in the passive avoidance test. These data support an important role for CD44 in locomotor and sensorimotor functions, and in spatial memory retention.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Scott Foster
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Rubing Xing
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Summer F Acevedo
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA; Department of Cell and Developmental Biology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
32
|
Xu XL, Singh HP, Wang L, Qi DL, Poulos BK, Abramson DH, Jhanwar SC, Cobrinik D. Rb suppresses human cone-precursor-derived retinoblastoma tumours. Nature 2014; 514:385-8. [PMID: 25252974 PMCID: PMC4232224 DOI: 10.1038/nature13813] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 09/01/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoliang L Xu
- 1] Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA [2] Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | - Hardeep P Singh
- 1] The Vision Center, Division of Ophthalmology, Department of Surgery, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA [2] The Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA
| | - Lu Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | - Dong-Lai Qi
- 1] The Vision Center, Division of Ophthalmology, Department of Surgery, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA [2] The Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA
| | - Bradford K Poulos
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | - Suresh C Jhanwar
- 1] Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA [2] Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA
| | - David Cobrinik
- 1] The Vision Center, Division of Ophthalmology, Department of Surgery, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA [2] The Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, California 90027, USA [3] USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, 1450 San Pablo Street, Los Angeles, California 90033, USA [4] Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
33
|
Kuribayashi H, Baba Y, Watanabe S. BMP signaling participates in late phase differentiation of the retina, partly via upregulation of Hey2. Dev Neurobiol 2014; 74:1172-83. [PMID: 24890415 DOI: 10.1002/dneu.22196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/25/2014] [Accepted: 05/24/2014] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic protein (BMP) plays pivotal roles in early retinal development. However, its roles in the late phase of retinal development remain unclear. We found that BMP receptors and ligands were expressed in the postnatal mouse retina. Furthermore, immunostaining revealed that phosphorylated Smads were enriched in various cells types in the inner nuclear layer postnatally. However, phosphorylated Smads were not detected in photoreceptors, suggesting that BMP may play roles in retinal cells in the inner nuclear layer. Forced expression of constitutively active BMP receptors during retinal development resulted in an increased number of bipolar cells and Müller glia and a decreased number of rod photoreceptors; however, proliferation was not perturbed. The expression of dominant negative BMP receptors resulted in a decreased number of Müller glia and bipolar cells. In addition, inhibiting BMP signaling in retinal monolayer cultures abrogated Müller glial process extension, suggesting that BMP signaling also plays a role in the maturation of Müller glia. The expression of the basic helix-loop-helix transcription factor Hey2 was induced by BMP signaling in retinas. The coexpression of sh-Hey2 with constitutively active BMP receptors suggested that the effects of BMP signaling on retinal differentiation could be attributed partly to the induction of Hey2 by BMP. We propose that BMP signaling plays pivotal roles in the differentiation of retinal progenitor cells into late differentiating retinal cell types and in the maturation of Müller glia; these effects were mediated, at least in part, by Hey2.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Mochizuki Y, Iida A, Lyons E, Kageyama R, Nakauchi H, Murakami A, Watanabe S. Use of cell type-specific transcriptome to identify genes specifically involved in Müller glia differentiation during retinal development. Dev Neurobiol 2013; 74:426-37. [PMID: 24124169 DOI: 10.1002/dneu.22131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 11/11/2022]
Abstract
Retinal progenitor cells alter their properties over the course of development, and sequentially produce different sub-populations of retinal cells. We had previously found that early and late retinal progenitor cell populations can be distinguished by their surface antigens, SSEA-1 and c-kit, respectively. Using DNA microarray analysis, we examined the transcriptomes of SSEA-1 positive cells at E14, and c-kit positive, and c-kit negative cells at P1. By comparing data, we identified genes specifically expressed in c-kit positive late retinal progenitor cells. The previous literature suggests that most of the c-kit positive cell-specific genes are related to glia differentiation in brain or are expressed in Müller glia. Since Notch signaling promotes Müller glia differentiation in retina, we examined the effects of gain- and loss-of-Notch signaling on expression of these genes and found that all the genes were positively affected by Notch signaling. Finally, we screened the genes for their function in retinal development by shRNA-based suppression in retinal explants. In about half the genes, Müller glia differentiation was perturbed when their expression was suppressed. Taken together, these results show that at P1, c-kit positive retinal progenitor cells, which include Müller glia precursor cells, are enriched for genes related to glial differentiation. We propose analysis of purified subsets of retinal cells as a powerful tool to elucidate the molecular basis of retinal development.
Collapse
Affiliation(s)
- Yujin Mochizuki
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Wahl V, Vogler S, Grosche A, Pannicke T, Ueffing M, Wiedemann P, Reichenbach A, Hauck S, Bringmann A. Osteopontin inhibits osmotic swelling of retinal glial (Müller) cells by inducing release of VEGF. Neuroscience 2013; 246:59-72. [DOI: 10.1016/j.neuroscience.2013.04.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022]
|
36
|
Prion replication elicits cytopathic changes in differentiated neurosphere cultures. J Virol 2013; 87:8745-55. [PMID: 23740992 DOI: 10.1128/jvi.00572-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level.
Collapse
|
37
|
Usui A, Iwagawa T, Mochizuki Y, Iida A, Wegner M, Murakami A, Watanabe S. Expression of Sox4 and Sox11 is regulated by multiple mechanisms during retinal development. FEBS Lett 2013; 587:358-63. [PMID: 23313252 DOI: 10.1016/j.febslet.2012.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
Abstract
Sox11 and Sox4 play critical roles in retinal development, during which they display specific and unique expression patterns. The expression of Sox11 and Sox4 is temporally sequential, albeit spatially overlapping in some retinal subtypes. Gain-of-function and loss-of-function analyses suggested that Notch signaling suppresses Sox4 expression in the early developing retina but not during the later period of development. The levels of histone H3-acetylation and H3-lysine 4 tri-methylation at the Sox11 locus declined during development, as did the levels of Sox11. A similar but less marked change was seen for Sox4. For both genes, histone H3-lysine 27 methylation was low during development and increased markedly in the adult.
Collapse
Affiliation(s)
- Ayumi Usui
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Naruse M, Shibasaki K, Yokoyama S, Kurachi M, Ishizaki Y. Dynamic changes of CD44 expression from progenitors to subpopulations of astrocytes and neurons in developing cerebellum. PLoS One 2013; 8:e53109. [PMID: 23308146 PMCID: PMC3537769 DOI: 10.1371/journal.pone.0053109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/26/2012] [Indexed: 12/19/2022] Open
Abstract
We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used immunohistochemistry, in situ hybridization, and FACS to analyze the spatial and temporal expression of CD44 and characterize the CD44-positive cells in the mouse cerebellum during development. CD44 expression was observed not only in astrocyte precursor cells but also in neural stem cells and oligodendrocyte precursor cells (OPCs) at early postnatal stages. CD44 expression in OPCs was shut off during oligodendrocyte differentiation. Interestingly, during development, CD44 expression was limited specifically to Bergmann glia and fibrous astrocytes among three types of astrocytes in cerebellum, and expression in astrocytes was shut off during postnatal development. CD44 expression was also detected in developing Purkinje and granule neurons but was limited to granule neurons in the adult cerebellum. Thus, at early developmental stages of the cerebellum, CD44 was widely expressed in several types of precursor cells, and over the course of development, the expression of CD44 became restricted to granule neurons in the adult.
Collapse
Affiliation(s)
- Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- * E-mail: (KS); (YS)
| | - Shuichi Yokoyama
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masashi Kurachi
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
- * E-mail: (KS); (YS)
| |
Collapse
|
39
|
Takahashi RU, Takeshita F, Fujiwara T, Ono M, Ochiya T. Cancer stem cells in breast cancer. Cancers (Basel) 2011; 3:1311-28. [PMID: 24212663 PMCID: PMC3756415 DOI: 10.3390/cancers3011311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 01/06/2023] Open
Abstract
The cancer stem cell (CSC) theory is generally acknowledged as an important field of cancer research, not only as an academic matter but also as a crucial aspect of clinical practice. CSCs share a variety of biological properties with normal somatic stem cells in self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cells in their chemoresistance and their tumorigenic and metastatic activities. In this review, we focus on recent reports regarding the identification of CSC markers and the molecular mechanism of CSC phenotypes to understand the basic properties and molecular target of CSCs. In addition, we especially focus on the CSCs of breast cancer since the use of neoadjuvant chemotherapy can lead to the enrichment of CSCs in patients with that disease. The identification of CSC markers and an improved understanding of the molecular mechanism of CSC phenotypes should lead to progress in cancer therapy and improved prognoses for patients with cancer.
Collapse
Affiliation(s)
- Ryou-u Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: (R.T.); (F.T.); (T.F.); (M.O.)
| | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: (R.T.); (F.T.); (T.F.); (M.O.)
| | - Tomohiro Fujiwara
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: (R.T.); (F.T.); (T.F.); (M.O.)
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| | - Makiko Ono
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: (R.T.); (F.T.); (T.F.); (M.O.)
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan; E-Mails: (R.T.); (F.T.); (T.F.); (M.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3542-2511 ext. 4800; Fax: +81-3-5565-0727
| |
Collapse
|