1
|
Su Z, Dong H, Fang X, Zhang W, Duan H. Frontier progress and translational challenges of pluripotent differentiation of stem cells. Front Genet 2025; 16:1583391. [PMID: 40357368 PMCID: PMC12066753 DOI: 10.3389/fgene.2025.1583391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cell research has significantly transformed regenerative medicine, with pluripotent stem cells (PSCs) serving as the cornerstone for disease modeling, drug screening, and therapeutic applications. Embryonic stem cells (ESCs) exhibit unparalleled self-renewal and tri-lineage differentiation, while induced pluripotent stem cells (iPSCs) bypass ethical constraints through somatic cell reprogramming. Clinical trials highlight the potential of mesenchymal stem cells (MSCs) in osteoarthritis and graft-versus-host disease, which leverage their immunomodulatory and paracrine effects. Despite advancements, challenges persist: iPSCs face epigenetic instability and tumorigenic risks, and adult stem cells struggle with inefficient differentiation. This paper systematically reviews stem cell source classification, differentiation regulatory mechanisms, cutting-edge technologies such as CRISPR/Cas9, and explores field-specific controversies (e.g., epigenetic stability of iPSCs) and future directions (e.g., integration of organoids and biomaterials). By analyzing current progress and challenges, it provides a multidimensional perspective for stem cell research.
Collapse
Affiliation(s)
| | | | | | | | - Hong Duan
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
4
|
Ali HRW, Suliman S, Osman TAH, Carrasco M, Bruland O, Costea DE, Ræder H, Mustafa K. Xeno-free generation of human induced pluripotent stem cells from donor-matched fibroblasts isolated from dermal and oral tissues. Stem Cell Res Ther 2023; 14:199. [PMID: 37559144 PMCID: PMC10410907 DOI: 10.1186/s13287-023-03403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPS) can be generated from various somatic cells and can subsequently be differentiated to multiple cell types of the body. This makes them highly promising for cellular therapy in regenerative medicine. However, to facilitate their clinical use and to ensure safety, iPS culturing protocols must be compliant with good manufacturing practice guidelines and devoid of xenogenic products. Therefore, we aimed to compare the efficiency of using humanized culture conditions, specifically human platelet lysate to fetal bovine serum, for iPS generation from different sources, and to evaluate their stemness. METHODS iPS were generated via a platelet lysate or fetal bovine serum-based culturing protocol from matched dermal, buccal and gingival human fibroblasts, isolated from healthy donors (n = 2) after informed consent, via episomal plasmid transfection. Pluripotency, genotype and phenotype of iPS, generated by both protocols, were then assessed by various methods. RESULTS More attempts were generally required to successfully reprogram xeno-free fibroblasts to iPS, as compared to xenogenic cultured fibroblasts. Furthermore, oral fibroblasts generally required more attempts for successful iPS generation as opposed to dermal fibroblasts. Morphologically, all iPS generated from fibroblasts formed tight colonies surrounded by a reflective "whitish" outer rim, typical for iPS. They also expressed pluripotency markers at both gene (SOX2, OCT4, NANOG) and protein level (SOX2, OCT4). Upon stimulation, all iPS showed ability to differentiate into the three primary germ layers via expression of lineage-specific markers for mesoderm (MESP1, OSR1, HOPX), endoderm (GATA4) and ectoderm (PAX6, RAX). Genome analysis revealed several amplifications and deletions within the chromosomes of each iPS type. CONCLUSIONS The xeno-free protocol had a lower reprogramming efficiency compared to the standard xenogenic protocol. The oral fibroblasts generally proved to be more difficult to reprogram than dermal fibroblasts. Xeno-free dermal, buccal and gingival fibroblasts can successfully generate iPS with a comparable genotype/phenotype to their xenogenic counterparts.
Collapse
Affiliation(s)
- Hassan R W Ali
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway
| | - Tarig Al-Hadi Osman
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway
| | - Manuel Carrasco
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Daniela-Elena Costea
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Gade Laboratory for Pathology, Haukeland University Hospital, Bergen, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.
| | - Kamal Mustafa
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway.
| |
Collapse
|
5
|
Loss of Hes1 in embryonic stem cells caused developmental disorders in retinal pigment epithelium morphogenesis and specification. Biochem Biophys Res Commun 2022; 632:76-84. [DOI: 10.1016/j.bbrc.2022.09.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
|
6
|
Assis JLD, Fernandes AM, Aniceto BS, Fernandes da Costa PP, Banchio C, Girardini J, Vieyra A, Valverde RRHF, Einicker‐Lamas M. Sphingosine 1‐Phosphate Prevents Human Embryonic Stem Cell Death Following Ischemic Injury. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juliane L. de Assis
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Aline M. Fernandes
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Bárbara S. Aniceto
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro P. Fernandes da Costa
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Claudia Banchio
- Instituto de Biologia Molecular y Celular de Rosário Rosário Argentina
| | - Javier Girardini
- Instituto de Biologia Molecular y Celular de Rosário Rosário Argentina
| | - Adalberto Vieyra
- Laboratório de Físico‐Química Biológica Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rafael R. H. F. Valverde
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Marcelo Einicker‐Lamas
- Laboratório de Biomembranas Instituto de Biofísica Carlos Chagas Filho–Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
7
|
Sukowati CHC, Tiribelli C. Adult Stem Cell Therapy as Regenerative Medicine for End-Stage Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:57-72. [DOI: 10.1007/5584_2022_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Kusena JWT, Shariatzadeh M, Thomas RJ, Wilson SL. Understanding cell culture dynamics: a tool for defining protocol parameters for improved processes and efficient manufacturing using human embryonic stem cells. Bioengineered 2021; 12:979-996. [PMID: 33757391 PMCID: PMC8806349 DOI: 10.1080/21655979.2021.1902696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Standardization is crucial when culturing cells including human embryonic stem cells (hESCs) which are valuable for therapy development and disease modeling. Inherent issues regarding reproducibility of protocols are problematic as they hinder translation to good manufacturing practice (GMP), thus reducing clinical efficacy and uptake. Pluripotent cultures require standardization to ensure that input material is consistent prior to differentiation, as inconsistency of input cells creates end-product variation. To improve protocols, developers first must understand the cells they are working with and their related culture dynamics. This innovative work highlights key conditions required for optimized and cost-effective bioprocesses compared to generic protocols typically implemented. This entailed investigating conditions affecting growth, metabolism, and phenotype dynamics to ensure cell quality is appropriate for use. Results revealed critical process parameters (CPPs) including feeding regime and seeding density impact critical quality attributes (CQAs) including specific metabolic rate (SMR) and specific growth rate (SGR). This implied that process understanding, and control is essential to maintain key cell characteristics, reduce process variation and retain CQAs. Examination of cell dynamics and CPPs permitted the formation of a defined protocol for culturing H9 hESCs. The authors recommend that H9 seeding densities of 20,000 cells/cm2, four-day cultures or three-day cultures following a recovery passage from cryopreservation and 100% medium exchange after 48 hours are optimal. These parameters gave ~SGR of 0.018 hour-1 ± 1.5x10-3 over three days and cell viabilities ≥95%±0.4, while producing cells which highly expressed pluripotent and proliferation markers, Oct3/4 (>99% positive) and Ki-67 (>99% positive).
Collapse
Affiliation(s)
- J W T Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - M Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - R J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - S L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
9
|
Song YT, Liu PC, Tan J, Zou CY, Li QJ, Li-Ling J, Xie HQ. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Res Ther 2021; 12:556. [PMID: 34717746 PMCID: PMC8557001 DOI: 10.1186/s13287-021-02620-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Intrauterine adhesion refers to endometrial repair disorders which are usually caused by uterine injury and may lead to a series of complications such as abnormal menstrual bleeding, recurrent abortion and secondary infertility. At present, therapeutic approaches to intrauterine adhesion are limited due to the lack of effective methods to promote regeneration following severe endometrial injury. Therefore, to develop new methods to prevent endometrial injury and intrauterine adhesion has become an urgent need. For severely damaged endometrium, the loss of stem cells in the endometrium may affect its regeneration. This article aimed to discuss the characteristics of various stem cells and their applications for uterine tissue regeneration.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
West-Livingston LN, Park J, Lee SJ, Atala A, Yoo JJ. The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chem Rev 2020; 120:11056-11092. [PMID: 32558555 PMCID: PMC7676498 DOI: 10.1021/acs.chemrev.0c00126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering and regenerative medicine has made numerous advances in recent years in the arena of fabricating multifunctional, three-dimensional (3D) tissue constructs. This can be attributed to novel approaches in the bioprinting of stem cells. There are expansive options in bioprinting technology that have become more refined and specialized over the years, and stem cells address many limitations in cell source, expansion, and development of bioengineered tissue constructs. While bioprinted stem cells present an opportunity to replicate physiological microenvironments with precision, the future of this practice relies heavily on the optimization of the cellular microenvironment. To fabricate tissue constructs that are useful in replicating physiological conditions in laboratory settings, or in preparation for transplantation to a living host, the microenvironment must mimic conditions that allow bioprinted stem cells to proliferate, differentiate, and migrate. The advances of bioprinting stem cells and directing cell fate have the potential to provide feasible and translatable approach to creating complex tissues and organs. This review will examine the methods through which bioprinted stem cells are differentiated into desired cell lineages through biochemical, biological, and biomechanical techniques.
Collapse
Affiliation(s)
- Lauren N. West-Livingston
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Jihoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
11
|
Jonsdottir-Buch SM, Gunnarsdottir K, Sigurjonsson OE. Human Embryonic-Derived Mesenchymal Progenitor Cells (hES-MP Cells) are Fully Supported in Culture with Human Platelet Lysates. Bioengineering (Basel) 2020; 7:bioengineering7030075. [PMID: 32698321 PMCID: PMC7552691 DOI: 10.3390/bioengineering7030075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells are mesenchymal-like cells, derived from human embryonic stem cells without the aid of feeder cells. They have been suggested as a potential alternative to mesenchymal stromal cells (MSCs) in regenerative medicine due to their mesenchymal-like proliferation and differentiation characteristics. Cells and cell products intended for regenerative medicine in humans should be derived, expanded and differentiated using conditions free of animal-derived products to minimize risk of animal-transmitted disease and immune reactions to foreign proteins. Human platelets are rich in growth factors needed for cell culture and have been used successfully as an animal serum replacement for MSC expansion and differentiation. In this study, we compared the proliferation of hES-MP cells and MSCs; the hES-MP cell growth was sustained for longer than that of MSCs. Growth factors, gene expression, and surface marker expression in hES-MP cells cultured with either human platelet lysate (hPL) or fetal bovine serum (FBS) supplementation were compared, along with differentiation to osteogenic and chondrogenic lineages. Despite some differences between hES-MP cells grown in hPL- and FBS-supplemented media, hPL was found to be a suitable replacement for FBS. In this paper, we demonstrate for the first time that hES-MP cells can be grown using platelet lysates from expired platelet concentrates (hPL).
Collapse
Affiliation(s)
- Sandra M. Jonsdottir-Buch
- The Blood Bank, Landspitali—The National University Hospital of Iceland, Snorrabraut 60, 101 Reykjavik, Iceland; (S.M.J.-B.); (K.G.)
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
- Platome Biotechnology, Alfaskeid 27, 220 Hafnarfjordur, Iceland
| | - Kristbjorg Gunnarsdottir
- The Blood Bank, Landspitali—The National University Hospital of Iceland, Snorrabraut 60, 101 Reykjavik, Iceland; (S.M.J.-B.); (K.G.)
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Olafur E. Sigurjonsson
- The Blood Bank, Landspitali—The National University Hospital of Iceland, Snorrabraut 60, 101 Reykjavik, Iceland; (S.M.J.-B.); (K.G.)
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
- Platome Biotechnology, Alfaskeid 27, 220 Hafnarfjordur, Iceland
- School of Science and Engineering, University of Reykjavik, Menntavegur 1, 101 Reykjavik, Iceland
- Correspondence: ; Tel.: +354-543-5523 or +354-694-9427
| |
Collapse
|
12
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int J Mol Sci 2019; 20:ijms20092236. [PMID: 31067653 PMCID: PMC6539965 DOI: 10.3390/ijms20092236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, great interest has been devoted to finding alternative sources for human stem cells which can be easily isolated, ideally without raising ethical objections. These stem cells should furthermore have a high proliferation rate and the ability to differentiate into all three germ layers. Amniotic fluid, ordinarily discarded as medical waste, is potentially such a novel source of stem cells, and these amniotic fluid derived stem cells are currently gaining a lot of attention. However, further information will be required about the properties of these cells before they can be used for therapeutic purposes. For example, the risk of tumor formation after cell transplantation needs to be explored. The tumor suppressor protein p53, well known for its activity in controlling Cell Prolif.eration and cell death in differentiated cells, has more recently been found to be also active in amniotic fluid stem cells. In this review, we summarize the major findings about human amniotic fluid stem cells since their discovery, followed by a brief overview of the important role played by p53 in embryonic and adult stem cells. In addition, we explore what is known about p53 in amniotic fluid stem cells to date, and emphasize the need to investigate its role, particularly in the context of cell tumorigenicity.
Collapse
|
14
|
Afify SM, Seno M. Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation. Cancers (Basel) 2019; 11:E345. [PMID: 30862050 PMCID: PMC6468812 DOI: 10.3390/cancers11030345] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) also known as cancer-initiating cells (CIC), are responsible for the sustained and uncontrolled growth of malignant tumors and are proposed to play significant roles in metastasis and recurrence. Several hypotheses have proposed that the events in either stem and/or differentiated cells, such as genomic instability, inflammatory microenvironment, cell fusion, and lateral gene transfer, should be considered as the possible origin of CSCs. However, until now, the exact origin of CSC has been obscure. The development of induced pluripotent stem cells (iPSCs) in 2007, by Yamanaka's group, has been met with much fervency and hailed as a breakthrough discovery by the scientific and research communities, especially in regeneration therapy. The studies on the development of CSC from iPSCs should also open a new page of cancer research, which will help in designing new therapies applicable to CSCs. Currently most reviews have focused on CSCs and CSC niches. However, the insight into the niche before the CSC niche should also be of keen interest. This review introduces the novel concept of cancer initiation introducing the conversion of iPSCs to CSCs and proposes a relationship between the inflammatory microenvironment and cancer initiation as the key concept of the cancer-inducing niche responsible for the development of CSC.
Collapse
Affiliation(s)
- Said M Afify
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Division of Biochemistry, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia 32511, Egypt.
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
15
|
Agrawal M, Alexander A, Khan J, Giri TK, Siddique S, Dubey SK, Ajazuddin, Patel RJ, Gupta U, Saraf S, Saraf S. Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview. Curr Stem Cell Res Ther 2019; 14:127-136. [DOI: 10.2174/1574888x13666181002161700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/29/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022]
Abstract
Stem cells are the specialized cell population with unique self-renewal ability and act as the
precursor of all the body cells. Broadly, stem cells are of two types one is embryonic stem cells while
the other is adult or somatic stem cells. Embryonic stem cells are the cells of zygote of the blastocyst
which give rise to all kind of body cells including embryonic cells, and it can reconstruct a complete
organism. While the adult stem cells have limited differentiation ability in comparison with embryonic
stem cells and it proliferates into some specific kind of cells. This unique ability of the stem cell makes
it a compelling biomedical and therapeutic tool. Stem cells primarily serve as regenerative medicine for
particular tissue regeneration or the whole organ regeneration in any physical injury or disease condition
(like diabetes, cancer, periodontal disorder, etc.), tissue grafting and plastic surgery, etc. Along
with this, it is also used in various preclinical and clinical investigations, biomedical engineering and as
a potential diagnostic tool (such as the development of biomarkers) for non-invasive diagnosis of severe
disorders. In this review article, we have summarized the application of stem cell as regenerative
medicine and in the treatment of various chronic diseases.
Collapse
Affiliation(s)
- Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Junaid Khan
- University Teaching Department (Pharmacy), Sarguja University, Ambikapur, Chhattisgarh 497001, India
| | - Tapan K. Giri
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Sabahuddin Siddique
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal, Madhya Pradesh, India
| | - Sunil K. Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology (CHARUSAT), Gujarat 388 421, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer - 305817, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India
| |
Collapse
|
16
|
King E, Lyall C. What's in a name: are cultured red blood cells 'natural'? SOCIOLOGY OF HEALTH & ILLNESS 2018; 40:687-701. [PMID: 29498085 DOI: 10.1111/1467-9566.12717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The case of cultured red blood cells (RBCs) currently being grown in a laboratory for future use in human transfusion raises questions about the ontological status of such products of modern biotechnology. This paper presents results from a six-year ethnographic study involving interviews, focus groups and other forms of engagement with the scientific research team and other stakeholders, including public groups, which sought to understand respondents' reactions to cultured RBCs. These cells, derived from stem cell technology, have the potential to address the global shortage of donated blood. How these blood cells are situated within the spectrum of 'natural' to 'synthetic' will shape expectations and acceptance of this product, both within the scientific community and by wider publics: these blood cells are both novel and yet, at the same time, very familiar. Drawing on discussions related to classification and 'anchoring', we examine the contrasting discourses offered by our respondents on whether these blood cells are 'natural' or not and consider the impact that naming might have on both their future regulation and the eventual uptake of cultured RBCs by society.
Collapse
Affiliation(s)
- Emma King
- NMAHP Research, University of Stirling, UK
| | - Catherine Lyall
- School of Social and Political Science, University of Edinburgh, UK
| |
Collapse
|
17
|
Romani P, Ignesti M, Gargiulo G, Hsu T, Cavaliere V. Extracellular NME proteins: a player or a bystander? J Transl Med 2018; 98:248-257. [PMID: 29035383 DOI: 10.1038/labinvest.2017.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The Nm23/NME gene family has been under intensive study since Nm23H1/NME1 was identified as the first metastasis suppressor. Inverse correlation between the expression levels of NME1/2 and prognosis has indeed been demonstrated in different tumor cohorts. Interestingly, the presence of NME proteins in the extracellular environment in normal and tumoral conditions has also been noted. In many reported cases, however, these extracellular NME proteins exhibit anti-differentiation or oncogenic functions, contradicting their canonical anti-metastatic action. This emerging field thus warrants further investigation. In this review, we summarize the current understanding of extracellular NME proteins. A role in promoting stem cell pluripotency and inducing development of central nervous system as well as a neuroprotective function of extracellular NME have been suggested. Moreover, a tumor-promoting function of extracellular NME also emerged at least in some tumor cohorts. In this complex scenario, the secretory mechanism through which NME proteins exit cells is far from being understood. Recently, some evidence obtained in the Drosophila and cancer cell line models points to the involvement of Dynamin in controlling the balance between intra- and extracellular levels of NME. Further analyses on extracellular NME will lead to a better understanding of its physiological function and in turn will allow understanding of how its deregulation contributes to carcinogenesis.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Marilena Ignesti
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Tien Hsu
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA.,National Central University, Department of Biomedical Sciences and Technology, Jhongli, Taiwan
| | - Valeria Cavaliere
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| |
Collapse
|
18
|
Blood, meat, and upscaling tissue engineering: Promises, anticipated markets, and performativity in the biomedical and agri-food sectors. BIOSOCIETIES 2018; 13:368-388. [PMID: 34249140 PMCID: PMC7611148 DOI: 10.1057/s41292-017-0072-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tissue engineering is a set of biomedical technologies, including stem cell science, which seek to grow biological tissue for a diversity of applications. In this paper, we explore two emergent tissue engineering technologies that seek to cause a step change in the upscaling capacity of cell growth: cultured blood and cultured meat. Cultured blood technology seeks to replace blood transfusion with a safe and affordable bioengineered replacement. Cultured meat technology seeks to replace livestock-based food production with meat produced in a bioreactor. Importantly, cultured meat technology straddles the industrial contexts of biomedicine and agrifood. In this paper, we articulate (i) the shared and divergent promissory trajectories of the two technologies and (ii) the anticipated market, consumer, and regulatory contexts of each. Our analysis concludes by discussing how the sectoral ontologies of biomedicine and agri-food impact the performative capacity of each technology’s promissory trajectory.
Collapse
|
19
|
Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomed Pharmacother 2017; 97:38-44. [PMID: 29080456 DOI: 10.1016/j.biopha.2017.10.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023] Open
Abstract
The research in stem cells gives a proper information about basic mechanisms of human development and differentiation. The use of stem cells in new medicinal therapies includes treatment of different conditions such as spinal cord injury, diabetes mellitus, Parkinsonism, and cardiac disorders. These cells exhibit two unique properties: self-renewal and differentiation. The major stem cells been used for approximately about 10-14 years for cellular therapy are mesenchymal stem cells. Mesenchymal stem cells can individualize into many lineage, i.e. into both mesenchymal and non-mesenchymal lineage, such as into osteoblasts, chondrocytes, myocytes, adipocytes, neurons, etc. This review focuses on the history, types of stem cells and their targets and mechanisms of mesenchymal stem cells. Mesenchymal stem cells are the significant futuristic carrier for treating diseases associated not only with regeneration but also immunomodulation.
Collapse
|
20
|
Hanson C, Arnarsson A, Hardarson T, Lindgård A, Daneshvarnaeini M, Ellerström C, Bruun A, Stenevi U. Transplanting embryonic stem cells onto damaged human corneal endothelium. World J Stem Cells 2017; 9:127-132. [PMID: 28928909 PMCID: PMC5583531 DOI: 10.4252/wjsc.v9.i8.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/15/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether human embryonic stem cells (hESCs) could be made to attach, grow and differentiate on a human Descemet’s membrane (DM).
METHODS Spontaneously differentiated hESCs were transferred onto a human corneal button with the endothelial layer removed using ocular sticks. The cells were cultured on a DM for up to 15 d. The genetically engineered hESC line expressed green fluorescent protein, which facilitated identification during the culture experiments, tissue preparation, and analysis. To detect any differentiation into human corneal endothelial-like cells, we analysed the transplanted cells by immunohistochemistry using specific antibodies.
RESULTS We found transplanted cells form a single layer of cells with a hexagonal shape in the periphery of the DM. The majority of the cells were negative for octamer-binding transcription factor 4 but positive for paired box 6 protein, sodium potassium adenosine triphosphatase (NaKATPase), and Zona Occludens protein 1. In four of the 18 trials, the transplanted cells were found to express CK3, which indicates that the stem cells differentiated into corneal epithelial cells in these cases.
CONCLUSION It is possible to get cells originating from hESCs to become established on a human DM, where they grow and differentiate into corneal endothelial-like cells in vitro.
Collapse
Affiliation(s)
- Charles Hanson
- Unit of Reproductive Medicine, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Arsaell Arnarsson
- Neuroscience Laboratory, University of Akureyri, 600 Akureyri, Iceland
| | - Thorir Hardarson
- Fertility Centre Scandinavia, Carlanderska Hospital, 40229 Gothenburg, Sweden
| | - Ann Lindgård
- Department of Ophthalmology, Gothenburg University, 43180 Mölndal, Sweden
| | | | | | - Anita Bruun
- Department of Ophthalmology, Lund University Hospital, 22121 Lund, Sweden
| | - Ulf Stenevi
- Department of Ophthalmology, Gothenburg University, 43180 Mölndal, Sweden
| |
Collapse
|
21
|
Paterson YZ, Kafarnik C, Guest DJ. Characterization of companion animal pluripotent stem cells. Cytometry A 2017; 93:137-148. [PMID: 28678404 DOI: 10.1002/cyto.a.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells have the capacity to grow indefinitely in culture and differentiate into derivatives of the three germ layers. These properties underpin their potential to be used in regenerative medicine. Originally derived from early embryos, pluripotent stem cells can now be derived by reprogramming an adult cell back to a pluripotent state. Companion animals such as horses, dogs, and cats suffer from many injuries and diseases for which regenerative medicine may offer new treatments. As many of the injuries and diseases are similar to conditions in humans the use of companion animals for the experimental and clinical testing of stem cell and regenerative medicine products would provide relevant animal models for the translation of therapies to the human field. In order to fully utilize companion animal pluripotent stem cells robust, standardized methods of characterization must be developed to ensure that safe and effective treatments can be delivered. In this review we discuss the methods that are available for characterizing pluripotent stem cells and the techniques that have been applied in cells from companion animals. We describe characteristics which have been described consistently across reports as well as highlighting discrepant results. Significant steps have been made to define the in vitro culture requirements and drive lineage specific differentiation of pluripotent stem cells in companion animal species. However, additional basic research to compare pluripotent stem cell types and define characteristics of pluripotency in companion animal species is still required. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Y Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - C Kafarnik
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK.,Institute of Ophthalmology, University College London, London, UK
| | - D J Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK
| |
Collapse
|
22
|
You can go your own way: State regulation of oocyte donation in California and New York. BIOSOCIETIES 2016. [DOI: 10.1057/s41292-016-0026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Kim YY, Roubal I, Lee YS, Kim JS, Hoang M, Mathiyakom N, Kim Y. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells. PLoS One 2016; 11:e0163812. [PMID: 27682028 PMCID: PMC5040434 DOI: 10.1371/journal.pone.0163812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023] Open
Abstract
Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event associated with alcohol-related peripheral neuropathy of an enhanced nociceptive response.
Collapse
Affiliation(s)
- Yi Young Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Ivan Roubal
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Youn Soo Lee
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Jin Seok Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Michael Hoang
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Nathan Mathiyakom
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, University of California Los Angeles, 10833 Le Conte Avenue, 73–041 CHS, Los Angeles, CA, 90095, United States of America
- Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, 73–022 CHS, Los Angeles, CA, 90095, United States of America
- UCLA’s Jonsson Comprehensive Cancer Center, 8–684 Factor Building, Box 951781, Los Angeles, CA, 90095, United States of America
- UCLA Broad Stem Cell Research Center, Box 957357, Los Angeles, CA, 90095, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ghiasi M, Kalhor N, Tabatabaei Qomi R, Sheykhhasan M. The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. FRONTIERS IN LIFE SCIENCE 2016; 9:32-43. [DOI: 10.1080/21553769.2015.1077477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Ribeiro Neto WA, de Paula ACC, Martins TM, Goes AM, Averous L, Schlatter G, Suman Bretas RE. Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Yu W, Niu W, Wang S, Chen X, Sun BO, Wang F, Sun Y. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells. Exp Ther Med 2015; 10:43-50. [PMID: 26170910 DOI: 10.3892/etm.2015.2490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/08/2015] [Indexed: 11/06/2022] Open
Abstract
In vitro differentiation of human embryonic stem cells (hESCs) into endometrium-like cells may provide a useful tool for clinical treatment. The aim of the present study was to investigate the differentiation potential of hESCs into endometrium-like cells using three methods, which included induction by feeder cells, co-culture with endometrial stromal cells and induction with embryoid bodies. Following differentiation, the majority of cells positively expressed cytokeratin and epithelial cell adhesion molecule (EPCAM). Factors associated with endometrium cell function, namely the estrogen and progesterone receptors (ER and PR), were also detected. At day 21 following the induction of differentiation, the expression levels of cytokeratin, EPCAM, ER and PR were significantly increased in the co-culture method group, as compared with the other two methods. Furthermore, these cells became decidualized in response to progesterone and prolactin. In addition, the number of cytokeratin-positive or EPCAM-positive cells significantly increased following the induction of differentiation using the co-culture method, as compared with the other two methods. The mRNA expression levels of Wnt members that are associated with endometrial development were subsequently examined, and Wnt5a was found to be significantly upregulated in the differentiated cells induced by feeder cells and co-culture with endometrial stromal cells; however, Wnt4 and Wnt7a expression levels were unaffected. Additionally, the mRNA expression levels of Wnt5a in the differentiated cells co-cultured with endometrial stromal cells were higher when compared with those induced by feeder cells. In conclusion, the present findings indicated that the co-culture system is the optimal protocol for the induction of hESC differentiation into endometrium-like cells, and Wnt5a signaling may be involved in this process.
Collapse
Affiliation(s)
- Wenzhu Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuna Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - B O Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
27
|
Silencing and overexpression of human blood group antigens in transfusion: Paving the way for the next steps. Blood Rev 2015; 29:163-9. [DOI: 10.1016/j.blre.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 01/25/2023]
|
28
|
Holmgren G, Ghosheh N, Zeng X, Bogestål Y, Sartipy P, Synnergren J. Identification of stable reference genes in differentiating human pluripotent stem cells. Physiol Genomics 2015; 47:232-9. [PMID: 25852171 DOI: 10.1152/physiolgenomics.00130.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.
Collapse
Affiliation(s)
- Gustav Holmgren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nidal Ghosheh
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Buck Institute, Novato, California; and
| | - Yalda Bogestål
- Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Peter Sartipy
- Systems Biology Research Center, University of Skövde, Skövde, Sweden; AstraZeneca Research and Development, Global Medicines Development, Cardiovascular and Metabolic Diseases Global Medicines Development Unit, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden;
| |
Collapse
|
29
|
Scheerlinck E, Van Steendam K, Vandewoestyne M, Lepez T, Gobin V, Meert P, Vossaert L, Van Nieuwerburgh F, Van Soom A, Peelman L, Heindryckx B, De Sutter P, Dhaenens M, Deforce D. Detailed method description for noninvasive monitoring of differentiation status of human embryonic stem cells. Anal Biochem 2014; 461:60-6. [PMID: 24909445 DOI: 10.1016/j.ab.2014.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/20/2014] [Accepted: 05/28/2014] [Indexed: 11/27/2022]
Abstract
The (non)differentiation status of human embryonic stem cells (hESCs) is usually analyzed by determination of key pluripotency defining markers (e.g., OCT4, Nanog, SOX2) by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry (FC), and immunostaining. Despite proven usefulness of these techniques, their destructive nature makes it impossible to follow up on the same hESC colonies for several days, leading to a loss of information. In 2003, an OCT4-eGFP knock-in hESC line to monitor OCT4 expression was developed and commercialized. However, to the best of our knowledge, the use of fluorescence microscopy (FM) for monitoring the OCT4-eGFP expression of these cells without sacrificing them has not been described to date. Here, we describe such a method in detail, emphasizing both its resolving power and its complementary nature to FC as well as the potential pitfalls in standardizing the output of the FM measurements. The potential of the method is demonstrated by comparison of hESCs cultured in several conditions, both feeder free (vitronectin, VN) and grown on feeder cells (mouse embryonic fibroblasts, MEFs).
Collapse
Affiliation(s)
- Ellen Scheerlinck
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Katleen Van Steendam
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Mado Vandewoestyne
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Trees Lepez
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Veerle Gobin
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Paulien Meert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Liesbeth Vossaert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | | | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Petra De Sutter
- Department for Reproductive Medicine, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
30
|
New Innovations: Therapies for Genetic Conditions. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Lee JE, Lee DR. Human embryonic stem cells: derivation, maintenance and cryopreservation. Int J Stem Cells 2014; 4:9-17. [PMID: 24298329 DOI: 10.15283/ijsc.2011.4.1.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2011] [Indexed: 12/29/2022] Open
Abstract
Human embryonic stem cells (hESCs) are the most powerful candidate for the treatment of incurable diseases through the replacement of damaged cells and/or tissues in patients, although there are some obstacles to overcome for the clinical application of hESCs such as the assurance of guided differentiation and control of the immune response following cell therapy or tissue grafting. To obtain genetically stable hESCs and use them clinically, it is important to develop appropriate culture conditions. Additionally, the establishment of a hESC bank with a large number of hESC lines will be required for their clinical application because each hESC line is directed to have a different differentiation ability and immune characteristics such as HLA type. In this review, we describe the derivation and culture conditions of hESCs based on recent advances. Then, we will introduce several cryopreservation methods for hESCs, which is important for the development of cell bank.
Collapse
|
32
|
Abstract
The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nikhil Thapar
- 1] Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. [2] Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
33
|
Jensen PL, Grøndahl ML, Beck HC, Petersen J, Stroebech L, Christensen ST, Yding Andersen C. Proteomic analysis of bovine blastocoel fluid and blastocyst cells. Syst Biol Reprod Med 2014; 60:127-35. [DOI: 10.3109/19396368.2014.894152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Makridakis M, Roubelakis MG, Vlahou A. Stem cells: Insights into the secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2380-4. [DOI: 10.1016/j.bbapap.2013.01.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 01/06/2023]
|
35
|
Vossaert L, O'Leary T, Van Neste C, Heindryckx B, Vandesompele J, De Sutter P, Deforce D. Reference loci for RT-qPCR analysis of differentiating human embryonic stem cells. BMC Mol Biol 2013; 14:21. [PMID: 24028740 PMCID: PMC3848990 DOI: 10.1186/1471-2199-14-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selecting stably expressed reference genes is essential for proper reverse transcription quantitative polymerase chain reaction gene expression analysis. However, this choice is not always straightforward. In the case of differentiating human embryonic stem (hES) cells, differentiation itself introduces changes whereby reference gene stability may be influenced. RESULTS In this study, we evaluated the stability of various references during retinoic acid-induced (2 microM) differentiation of hES cells. Out of 12 candidate references, beta-2-microglobulin, ribosomal protein L13A and Alu repeats are found to be the most stable for this experimental set-up. CONCLUSIONS Our results show that some of the commonly used reference genes are actually not amongst the most stable loci during hES cell differentiation promoted by retinoic acid. Moreover, a novel normalization strategy based on expressed Alu repeats is validated for use in hES cell experiments.
Collapse
Affiliation(s)
- Liesbeth Vossaert
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Harelbekestraat 72, Ghent 9000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tesori V, Puglisi MA, Lattanzi W, Gasbarrini GB, Gasbarrini A. Update on small intestinal stem cells. World J Gastroenterol 2013; 19:4671-8. [PMID: 23922464 PMCID: PMC3732839 DOI: 10.3748/wjg.v19.i29.4671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023] Open
Abstract
Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration.
Collapse
|
37
|
Murphy SV, Atala A. Cell therapy for cystic fibrosis. J Tissue Eng Regen Med 2013; 9:210-23. [DOI: 10.1002/term.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| |
Collapse
|
38
|
Silva ARP, Paula ACC, Martins TMM, Goes AM, Pereria MM. Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A 2013; 102:818-27. [PMID: 23625853 DOI: 10.1002/jbm.a.34758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/08/2013] [Accepted: 04/17/2013] [Indexed: 01/22/2023]
Abstract
Tissue engineering is a multidisciplinary science that combines a structural scaffold and cells to form a construct able to promote regeneration of injured tissue. Bioactive glass foam produced by sol-gel is an osteoinductive material with a network of interconnected macropores necessary for cell colonization. The use of human adipose-derived stem cell (hASC) presents advantages as the potential for a large number of cells, rapid expansion in vitro and the capability of differentiating into osteoblasts. The use of a bioreactor in three-dimensional cell culture enables greater efficiency for cell nutrition and application of mechanical forces, important modulators of bone physiology. The hASC seeded in a bioactive glass scaffold and cultured in osteogenic Leibovitz L-15 medium in a bioreactor with a flow rate of 0.1 mL min(-1) demonstrated a significant increase in cell proliferation and viability and alkaline phosphatase (ALP) activity peak after 14 days. The immunofluorescence assay revealed an expression of osteopontin, osteocalcin and type I collagen from 7 to 21 days after culture. The cells changed from a spindle shape to a cuboidal morphology characteristic of osteoblasts. The polymerase chain reaction assay confirmed that osteopontin, osteocalcin, and ALP genes were expressed. These results indicate that hASCs differentiated into an osteogenic phenotype when cultured in bioactive glass scaffold, osteogenic Leibovitz L-15 medium and a perfusion bioreactor. Therefore, these results highlight the synergism between a bioactive glass scaffold and the effect of perfusion on cells and indicate the differentiation into an osteogenic phenotype.
Collapse
Affiliation(s)
- A R P Silva
- Department of Metallurgical and Material Engineering, Laboratory of Biomaterials, Engineering School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biochemistry and Immunology, Laboratory of Cellular and Molecular Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
39
|
Ismadi MZ, Higgins S, Samarage CR, Paganin D, Hourigan K, Fouras A. Optimisation of a stirred bioreactor through the use of a novel holographic correlation velocimetry flow measurement technique. PLoS One 2013; 8:e65714. [PMID: 23776534 PMCID: PMC3679106 DOI: 10.1371/journal.pone.0065714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
We describe a method for measuring three dimensional (3D) velocity fields of a fluid at high speed, by combining a correlation-based approach with in-line holography. While this method utilizes tracer particles contained within the flow, our method does not require the holographic reconstruction of 3D images. The direct flow reconstruction approach developed here allows for measurements at seeding densities in excess of the allowable levels for techniques based on image or particle reconstruction, thus making it suited for biological flow measurement, such as the flow in bioreactor. We outline the theory behind our method, which we term Holographic Correlation Velocimetry (HCV), and subsequently apply it to both synthetic and laboratory data. Moreover, because the system is based on in-line holography, it is very efficient with regard to the use of light, as it does not rely on side scattering. This efficiency could be utilized to create a very high quality system at a modest cost. Alternatively, this efficiency makes the system appropriate for high-speed flows and low exposure times, which is essential for imaging dynamic systems.
Collapse
Affiliation(s)
- Mohd-Zulhilmi Ismadi
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
de Araújo Farias V, López-Peñalver JJ, Sirés-Campos J, López-Ramón MV, Moreno-Castilla C, Oliver FJ, Ruiz de Almodóvar JM. Growth and spontaneous differentiation of umbilical-cord stromal stem cells on activated carbon cloth. J Mater Chem B 2013; 1:3359-3368. [PMID: 32260926 DOI: 10.1039/c3tb20305k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have investigated the capacity of activated carbon cloth to support the growth and differentiation of human mesenchymal umbilical-cord stromal stem cells. Our results demonstrate that this scaffold provides suitable conditions for the development of cell-derived matrix proteins and facilitates the growth of undifferentiated stem cells with the ability to induce osteogenic and chondrogenic differentiation. Immunoflourescence staining revealed extensive expression of collagen in all the samples, and collagen type II and osteopontin within the samples cultivated in specific differentiation-inducing media. Cell growth and the formation of natural collagen, calcium-magnesium carbonate and hydroxyapatite crystals, together with the self-assemblage of collagen to produce suprafibrillar arrangements of fibrils all occur simultaneously and can be studied together ex vivo under physiological conditions. Furthermore, the spontaneous differentiation of stem cells cultured on activated carbon cloth with no osteogenic supplements opens up new possibilities for bone-tumour engineering and treatment of traumatic and degenerative bone diseases.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. del Conocimiento 2, 18016, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Hanson C, Hardarson T, Ellerström C, Nordberg M, Caisander G, Rao M, Hyllner J, Stenevi U. Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro. Acta Ophthalmol 2013; 91:127-30. [PMID: 22280565 PMCID: PMC3660785 DOI: 10.1111/j.1755-3768.2011.02358.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The aim of this study was to investigate whether cells originating from human embryonic stem cells (hESCs) could be successfully transplanted onto a partially wounded human cornea. A second aim was to study the ability of the transplanted cells to differentiate into corneal epithelial-like cells. METHODS Spontaneously, differentiated hESCs were transplanted onto a human corneal button (without limbus) with the epithelial layer partially removed. The cells were cultured on Bowman's membrane for up to 9 days, and the culture dynamics documented in a time-lapse system. As the transplanted cells originated from a genetically engineered hESC line, they all expressed green fluorescent protein, which facilitated their identification during the culture experiments, tissue preparation and analysis. To detect any differentiation into human corneal epithelial-like cells, we analysed the transplanted cells by immunohistochemistry using antibodies specific for CK3, CK15 and PAX6. RESULTS The transplanted cells established and expanded on Bowman's membrane, forming a 1-4 cell layer surrounded by host corneal epithelial cells. Expression of the corneal marker PAX6 appeared 3 days after transplantation, and after 6 days, the cells were expressing both PAX6 and CK3. CONCLUSION This shows that it is possible to transplant cells originating from hESCs onto Bowman's membrane with the epithelial layer partially removed and to get these cells to establish, grow and differentiate into corneal epithelial-like cells in vitro.
Collapse
Affiliation(s)
- Charles Hanson
- Unit of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, University of Gothenburg, Göteborg, Sweden
| | | | | | | | | | | | | | - Ulf Stenevi
- Department of Ophthalmology, Sahlgrenska University Hospital/Mölndal, Mölndal, Sweden
| |
Collapse
|
43
|
de Paula ACC, Zonari AAC, Martins TMDM, Novikoff S, da Silva ARP, Correlo VM, Reis RL, Gomes DA, Goes AM. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds. Tissue Eng Part A 2012; 19:277-89. [PMID: 22920790 DOI: 10.1089/ten.tea.2012.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) are currently a point of focus for bone tissue engineering applications. However, the ex vivo expansion of stem cells before clinical application remains a challenge. Fetal bovine serum (FBS) is largely used as a medium supplement and exposes the recipient to infections and immunological reactions. In this study, we evaluated the osteogenic differentiation process of hASCs in poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) scaffolds with the osteogenic medium supplemented with pooled allogeneic human serum (aHS). The hASCs grown in the presence of FBS or aHS did not show remarkable differences in morphology or immunophenotype. The PHB-HV scaffolds, which were developed by the freeze-drying technique, showed an adequate porous structure and mechanical performance as observed by micro-computed tomography, scanning electron microscopy (SEM), and compression test. The three-dimensional structure was suitable for allowing cell colonization, which was revealed by SEM micrographs. Moreover, these scaffolds were not toxic to cells as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation capacity of hASCs seeded on scaffolds was confirmed by the reduction of the proliferation, the alkaline phosphatase (AP) activity, expression of osteogenic gene markers (AP, collagen type I, Runx2, and osteocalcin), and the expression of bone markers, such as osteopontin, osteocalcin, and collagen type I. The osteogenic capacity of hASCs seeded on PHB-HV scaffolds indicates that this scaffold is adequate for cell growth and differentiation and that aHS is a promising supplement for the in vitro expansion of hASCs. In conclusion, this strategy seems to be useful and safe for application in bone tissue engineering.
Collapse
Affiliation(s)
- Ana Cláudia Chagas de Paula
- Laboratory of Cellular and Molecular Immunology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Marinho PAN, Vareschini DT, Gomes IC, Paulsen BDS, Furtado DR, Castilho LDR, Rehen SK. Xeno-free production of human embryonic stem cells in stirred microcarrier systems using a novel animal/human-component-free medium. Tissue Eng Part C Methods 2012; 19:146-55. [PMID: 22834864 DOI: 10.1089/ten.tec.2012.0141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Currently, stem cell research faces a major bottleneck related to the low efficiency of methods to produce large quantities of human embryonic stem cells (ESC) for use in clinical trials. Most culture media currently employed for human ESC cultivation contain animal compounds, and cells are grown in static flasks. Besides the immediate contamination with nonhuman compounds, cell expansion in flasks tends to be laborious and nonefficient. Here we cultured human ESC in stirred microcarrier (MC) systems using an animal/human-component-free medium, to overcome both issues. The method developed to culture cells on suspended beads combined the use of polymeric MCs in stirred vessels with an optimized culture medium free of supplements of animal and human origin. This approach generated approximately 160 million cells within 6 days, which were shown to remain pluripotent. The process developed herein provides a step forward toward therapy due to the economic advantages in the production of human ESC and to their consequent low immunogenic potential.
Collapse
Affiliation(s)
- Paulo André Nobrega Marinho
- National Laboratory for Embryonic Stem Cell Research, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
T'Joen V, Cornelissen R. Xeno-free plant-derived hydrolysate-based freezing of human embryonic stem cells. Stem Cells Dev 2012; 21:1716-25. [PMID: 21867427 DOI: 10.1089/scd.2011.0374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem cells (hESCs) are one of the most interesting cell types for tissue engineering and cell therapy. The large-scale banking of hESCs for research and future clinical application requires economic, defined, and xeno-free cryopreservation protocols. In this study, the possibility to substitute knockout serum replacement (KO-SR) in the cryopreservation process with vegetal and synthetic hydrolysates was investigated. To our knowledge, the use of hydrolysates in hESC cryopreservation has not been yet explored. Initially, 3 different hydrolysates (Ultrapep Soy, Hypep 4601 and EX-CELL(®) CD Hydrolysate Fusion) were tested in the cryopreservation solution. A concentration of 8 mg/mL EX-CELL CD Hydrolysate Fusion in the cryopreservation solution leads to the highest recovery ratio; thus, this solution was selected for additional cryopreservation experiments. To ensure reproducibility of the results, 3 hESC lines (HS181, H9, and BG01) were used. The hESCs were collected prefreezing by application of collagenase IV and cell dissociation solution. Experiments showed that it was feasible to substitute the KO-SR in both the cryopreservation solution as the thawing solution. The obtained recovery ratios were comparable to those obtained with KO-SR (no statistical significant difference; Student's t-test, P<0.05). Further optimization protocols showed a doubling of the obtained recovery ratio after addition of Rock-inhibitor Y-27632 post-thawing. The expansion profile and pluripotency analysis revealed no changes in normal hESC behavior. We conclude that the application of vegetal or synthetic hydrolysates is suitable for xeno-free hESC cryopreservation.
Collapse
Affiliation(s)
- Veronique T'Joen
- Department of Basic Medical Science, Faculty of Medicine and Health Science, Ghent University-UGent, Gent, Belgium.
| | | |
Collapse
|
46
|
Zonari A, Novikoff S, Electo NRP, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL, Goes AM. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One 2012; 7:e35422. [PMID: 22523594 PMCID: PMC3327675 DOI: 10.1371/journal.pone.0035422] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/15/2012] [Indexed: 01/26/2023] Open
Abstract
Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues.
Collapse
Affiliation(s)
- Alessandra Zonari
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silviene Novikoff
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Naira R. P. Electo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natália M. Breyner
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson A. Gomes
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Albino Martins
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Alfredo M. Goes
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
47
|
Cerqueira MT, Marques AP, Reis RL. Using stem cells in skin regeneration: possibilities and reality. Stem Cells Dev 2012; 21:1201-14. [PMID: 22188597 DOI: 10.1089/scd.2011.0539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered skin has a long history of clinical applications, yet current treatments are not capable of completely regenerating normal, uninjured skin. Nonetheless, the field has experienced a tremendous development in the past 10 years, encountering the summit of tissue engineering (TE) and the arising of stem cell research. Since then, unique features of these cells such as self-renewal capacity, multi-lineage differentiation potential, and wound healing properties have been highlighted. However, a realistic perspective of their outcome in skin regenerative medicine applications is still absent. This review intends to discuss the directions that adult and embryonic stem cells (ESCs) can take, strengthening the skin regeneration field. Distinctively, a critical overview of stem cells' differentiation potential onto skin main lineages, along with a highlight of their participation in wound healing mechanisms, is herein provided. We aim to compile and review significant work to allow a better understanding of the best skin TE approaches, enabling the embodiment of the materialization of a new era in skin regeneration to come, with a conscious overview of the current limitations.
Collapse
Affiliation(s)
- Mariana Teixeira Cerqueira
- 3B's Research Group--Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | |
Collapse
|
48
|
Gomide VS, Zonari A, Ocarino NM, Goes AM, Serakides R, Pereira MM. In vitro
and
in vivo
osteogenic potential of bioactive glass–PVA hybrid scaffolds colonized by mesenchymal stem cells. Biomed Mater 2012; 7:015004. [DOI: 10.1088/1748-6041/7/1/015004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
T'joen V, Declercq H, Cornelissen M. Expansion of human embryonic stem cells: a comparative study. Cell Prolif 2011; 44:462-76. [PMID: 21951289 DOI: 10.1111/j.1365-2184.2011.00773.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Human embryonic stem cells (hESC) are promising for tissue engineering (TE) purposes due to their unique properties. However, current standard mechanical passaging techniques limit rates of possible TE experiments, as it is difficult to obtain high enough numbers of the cells for experimentation. In this study, several dissociative solutions and application methods are tested for their applicability to, and influence on, hESC culture and expansion. MATERIALS AND METHODS Expansion of two hESC lines, H1 and VUB01, subjected to different passaging techniques, was evaluated. Four dissociative solutions - TrypLE™ Express, Trypsin-EDTA, Cell Dissociation Solution and Accutase™- were combined with two application protocols. As reference conditions, manual and bead-based passaging techniques were used. RESULTS Results showed that use of Cell Dissociation Solution in combination with a slow adaptation protocol, generated the best expansion profile for both cell lines. The hESC single cell lines remained pluripotent, had good expansion profiles and were capable of differentiation into representatives of all three germ layers. Reproducibility of the results was confirmed by adaptation for three other hESC lines. CONCLUSION Use of Cell Dissociation Solution, combined with slow adaptation protocol, allows a fast switch from the mechanical passaging technique to a single-cell split technique, generating stable and robust hESC cell lines, which allow for large scale expansion of hESC for TE purposes.
Collapse
Affiliation(s)
- V T'joen
- Department of Basic Medical Science - Tissue Engineering Group, Faculty of Medicine and Health Science, Ghent University - UGent, Gent, Belgium.
| | | | | |
Collapse
|
50
|
Abstract
Stem cells are defined as precursor cells that have the capacity to self-renew and to generate multiple mature cell types. Only after collecting and culturing tissues is it possible to classify cells according to this operational concept. This difficulty in identifying stem cells in situ, without any manipulation, limits the understanding of their true nature. This review aims at presenting, to health professionals interested in this area, an overview on the biology of embryonic and adult stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Pedro C Chagastelles
- Department of Genetics, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil
| | - Nance B Nardi
- Department of Genetics, Universidade Federal do Rio Grande do Sul , Porto Alegre, Brazil ; Postgraduation Program in Genetic and Molecular Diagnosis, Universidade Luterana do Brasil , Canoas, Brazil
| |
Collapse
|