1
|
Na Q, Zhang S, Shao P, Jia Y, Wang Y, Wei M, Chen Y, Chen C, Zhao L, Wang Z, Song Y, Wu B, Bao S, Li X. In vitro generation of trophoblast like stem cells from goat pluripotent stem cells. Theriogenology 2024; 226:120-129. [PMID: 38878464 DOI: 10.1016/j.theriogenology.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024]
Abstract
Since the first mouse induced pluripotent stem cells (iPSCs) was derived, the in vitro culture of domestic iPSCs functionally and molecularly comparable with mouse iPSCs has been a challenge. Here, we established dairy goat iPSCs (giPSCs) from goat ear fibroblast cells with mouse iPSCs morphology, the expression of pluripotent markers and differentiation ability in vitro delivered by piggyBac transposon with nine Dox-inducible exogenous reprogramming factors. These reprogramming factors were bOMSK (bovine OCT4, CMYC, SOX2, and KLF4), pNhL (porcine NANOG and human LIN28), hRL (human RARG and LRH1), and SV40 Large T. Notably, AF-giPSCs (induced in activin A and bFGF condition) were capable of differentiation in embryoid bodies in vitro and could contribute to interspecies chimerism in mouse E6.5 embryos in vitro, demonstrating that AF-giPSCs have the developmental capability to generate some embryonic cell lineages. Moreover, Wnt/β-catenin signaling has an important role in driving goat induced trophoblast-like stem cells (giTLSCs) from Dox-independent giPSCs. This study will support further establishment of the stable giPSC lines without any integration of exogenous genes.
Collapse
Affiliation(s)
- Qin Na
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Siyu Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Peng Shao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Yu Jia
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Mengyi Wei
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Lixia Zhao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Zixin Wang
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, 011517, Hohhot, China
| | - Yongli Song
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 010020, Hohhot, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, 010020, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, 011517, Hohhot, China.
| |
Collapse
|
2
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Yao Q, Duan S, Yang Q, Ma X, Li Z, Wu K, Chang P, Cao M, Chen X, Wang Z, Zhong X, Zhou Q, Zhao H. Mep50 is essential for embryonic development in medaka fish. Gene 2023; 868:147387. [PMID: 36963734 DOI: 10.1016/j.gene.2023.147387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Mep50 as a partner promotes the activity and substrate affinity of Prmt5. Prmt5 and Mep50 function together in multiple bioprocesses of the cells. Both Prmt5 and Mep50 are necessary for maintenance of the stem cells and are indispensable in the embryogenesis in the mammals. However, the role of Mep50 is rarely studied in fish. This study was to investigate the role of Mep50 in embryonic development of medaka. Medaka mep50 was mutated by genomic editing with CRISPR-Cas9 technology. Two mutants with a deletion of 22 and 46 bp separately in mep50 caused premature stopping of translation. The homozygotes of these mutant fish were obtained by self-crossing of the heterozygotes. These homozygotic mutants could reproduce embryos but the offspring were not viable. The apoptotic cells were significantly more in the mutant embryos than that in the wild type indicated by TUNEL assay. Quantitative RT-PCR showed that the expression of oct4 and sox2 were significantly decreased, but p53 was increased in the mutant embryos. These results suggest that disruption of mep50 severely interferes with embryogenesis and mep50 is necessary for embryonic development by maintaining stem cells and repression of apoptosis in medaka.
Collapse
Affiliation(s)
- Qiting Yao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shi Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qing Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiaoqin Ma
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhenyu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Kongyue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Pei Chang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zequn Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
4
|
Sharma P, Sharma N, Choudhary S, Luhach P, Choudhary RK. Understanding, Status, and Therapeutic Potentials of Stem Cells in Goat. Curr Stem Cell Res Ther 2023; 18:947-957. [PMID: 36443983 DOI: 10.2174/1574888x18666221128152831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
The utility of animal stem cells finds implications in enhancing milk, meat, and fiber production and serving animal models for human diseases. Stem cells are involved in tissue development, growth, and repair, and in regenerative therapy. Caprine embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and other tissue-specific adult stem cells (ASCs) have tremendous potential for their use in regenerative medicine. The application of goat ESCs, iPSCs, mammary stem cells (MaSC), mesenchymal stem cells (MSCs), spermatogonial stem cells (SSCs) and others can find their implication in increasing caprine production potential and human disease model. The onset of the disease and therapeutic effects of stem cells of many human diseases like sub-fertility, joint conditions, intervertebral disc defects, osteoarthritis, and chondrogenesis can be well studied in goats. Increasing evidence of MSCs and their secreted factors have drawn the attention of animal scientists in regenerative medicine. This review summarizes a comprehensive overview of research made on caprine stem cells and illustrates some potential applications of stem cells in caprine regenerative medicine and their utility as a model animal in understanding human diseases.
Collapse
Affiliation(s)
- Paramjeet Sharma
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & A.H., Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, J & K, India
| | - Shanti Choudhary
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Priyanka Luhach
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ratan K Choudhary
- Animal Stem Cells Lab, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
5
|
Tang W, Xu QH, Chen X, Guo W, Ao Z, Fu K, Ji T, Zou Y, Chen JJ, Zhang Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats. Front Vet Sci 2023; 10:1167758. [PMID: 37180060 PMCID: PMC10172654 DOI: 10.3389/fvets.2023.1167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.
Collapse
Affiliation(s)
- Wen Tang
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiang Hou Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qiang Hou Xu,
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen,
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jing Jia Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Weeratunga P, Harman RM, Van de Walle GR. Induced pluripotent stem cells from domesticated ruminants and their potential for enhancing livestock production. Front Vet Sci 2023; 10:1129287. [PMID: 36891466 PMCID: PMC9986305 DOI: 10.3389/fvets.2023.1129287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Ruminant livestock, including cattle, sheep, goat, and buffalo, are essential for global food security and serve valuable roles in sustainable agricultural systems. With the limited availability of embryonic stem cells (ESCs) from these species, ruminant induced pluripotent stem cells (iPSCs) and iPSC-like cells provide a valuable research tool for agricultural, veterinary, biomedical, and pharmaceutical applications, as well as for the prospect of translation to human medicine. iPSCs are generated by reprogramming of adult or fetal cells to an ESC-like state by ectopic expression of defined transcription factors. Despite the slow pace the field has evolved in livestock species compared to mice and humans, significant progress has been made over the past 15 years in using different cell sources and reprogramming protocols to generate iPSCs/iPSC-like cells from ruminants. This mini review summarizes the current literature related to the derivation of iPSCs/iPSC-like cells from domesticated ruminants with a focus on reprogramming protocols, characterization, associated limitations, and potential applications in ruminant basic science research and production.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Zhou R, Xiao X, He P, Zhao Y, Xu M, Zheng X, Yang R, Chen S, Zhou L, Zhang D, Yang Q, Song J, Tang C, Zhang Y, Lin JW, Cheng L, Chen L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e66. [PMID: 35288753 PMCID: PMC9226526 DOI: 10.1093/nar/gkac167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative polyadenylation increases transcript diversities at the 3’ end, regulating biological processes including cell differentiation, embryonic development and cancer progression. Here, we present a Bayesian method SCAPE, which enables de novo identification and quantification of polyadenylation (pA) sites at single-cell level by utilizing insert size information. We demonstrated its accuracy and robustness and identified 31 558 sites from 36 mouse organs, 43.8% (13 807) of which were novel. We illustrated that APA isoforms were associated with miRNAs binding and regulated in tissue-, cell type-and tumor-specific manners where no difference was found at gene expression level, providing an extra layer of information for cell clustering. Furthermore, we found genome-wide dynamic changes of APA usage during erythropoiesis and induced pluripotent stem cell (iPSC) differentiation, suggesting APA contributes to the functional flexibility and diversity of single cells. We expect SCAPE to aid the analyses of cellular dynamics and diversities in health and disease.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuran Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruirui Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shasha Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lifang Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chao Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-wen Lin
- To whom correspondence should be addressed. Tel: +86 028 8546 8389;
| | - Lu Cheng
- Correspondence may also be addressed to Lu Cheng.
| | - Lu Chen
- Correspondence may also be addressed to Lu Chen.
| |
Collapse
|
8
|
Liu M, Zhao L, Wang Z, Su H, Wang T, Yang G, Chen L, Wu B, Zhao G, Guo J, Yang Z, Zhang J, Hao C, Ma T, Song Y, Bao S, Zuo Y, Li X, Cao G. Generation of Sheep Induced Pluripotent Stem Cells With Defined DOX-Inducible Transcription Factors via piggyBac Transposition. Front Cell Dev Biol 2021; 9:785055. [PMID: 34977028 PMCID: PMC8716767 DOI: 10.3389/fcell.2021.785055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Pluripotent stem cells (PSCs) have the potential to differentiate to all cell types of an adult individual and are useful for studying mammalian development. Establishing induced pluripotent stem cells (iPSCs) capable of expressing pluripotent genes and differentiating to three germ layers will not only help to explain the mechanisms underlying somatic reprogramming but also lay the foundation for the establishment of sheep embryonic stem cells (ESCs) in vitro. In this study, sheep somatic cells were reprogrammed in vitro into sheep iPSCs with stable morphology, pluripotent marker expression, and differentiation ability, delivered by piggyBac transposon system with eight doxycycline (DOX)-inducible exogenous reprogramming factors: bovine OCT4, SOX2, KLF4, cMYC, porcine NANOG, human LIN28, SV40 large T antigen, and human TERT. Sheep iPSCs exhibited a chimeric contribution to the early blastocysts of sheep and mice and E6.5 mouse embryos in vitro. A transcriptome analysis revealed the pluripotent characteristics of somatic reprogramming and insights into sheep iPSCs. This study provides an ideal experimental material for further study of the construction of totipotent ESCs in sheep.
Collapse
Affiliation(s)
- Moning Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Hohhot, China
| | - Lixia Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot, China
| | - Zixin Wang
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Hohhot, China
| | - Tong Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Hohhot, China
| | - Guang Yang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lu Chen
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Hohhot, China
| | - Baojiang Wu
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot, China
| | - Jitong Guo
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot, China
| | - Zhiqing Yang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jia Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunxia Hao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- China State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Saikexing Institutes of Breeding and Reproductive Biotechnologies in Domestic Animal, Hohhot, China
- *Correspondence: Guifang Cao, ; Xihe Li,
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Guifang Cao, ; Xihe Li,
| |
Collapse
|
9
|
Yang M, Lin X, Segers F, Suganthan R, Hildrestrand GA, Rinholm JE, Aas PA, Sousa MML, Holm S, Bolstad N, Warren D, Berge RK, Johansen RF, Yndestad A, Kristiansen E, Klungland A, Luna L, Eide L, Halvorsen B, Aukrust P, Bjørås M. OXR1A, a Coactivator of PRMT5 Regulating Histone Arginine Methylation. Cell Rep 2021; 30:4165-4178.e7. [PMID: 32209476 DOI: 10.1016/j.celrep.2020.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Filip Segers
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway; Proteomics and Metabolomics Core Facility-PROMEC, Norwegian University of Science and Technology, the Central Norway Regional Health Authority, Trondheim, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - David Warren
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rune F Johansen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
10
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
11
|
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16:477. [PMID: 33292200 PMCID: PMC7722595 DOI: 10.1186/s12917-020-02696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.
Collapse
Affiliation(s)
- Rachel A Scarfone
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Samantha M Pena
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
12
|
Abe Y, Tanaka N. Fine-Tuning of GLI Activity through Arginine Methylation: Its Mechanisms and Function. Cells 2020; 9:cells9091973. [PMID: 32859041 PMCID: PMC7565022 DOI: 10.3390/cells9091973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma-associated oncogene (GLI) family consists of GLI1, GLI2, and GLI3 in mammals. This family has important roles in development and homeostasis. To achieve these roles, the GLI family has widespread outputs. GLI activity is therefore strictly regulated at multiple levels, including via post-translational modifications for context-dependent GLI target gene expression. The protein arginine methyl transferase (PRMT) family is also associated with embryogenesis, homeostasis, and cancer mainly via epigenetic modifications. In the PRMT family, PRMT1, PRMT5, and PRMT7 reportedly regulate GLI1 and GLI2 activity. PRMT1 methylates GLI1 to upregulate its activity and target gene expression. Cytoplasmic PRMT5 methylates GLI1 and promotes GLI1 protein stabilization. Conversely, nucleic PRMT5 interacts with MENIN to suppress growth arrest-specific protein 1 expression, which assists Hedgehog ligand binding to Patched, indirectly resulting in downregulated GLI1 activity. PRMT7-mediated GLI2 methylation upregulates its activity through the dissociation of GLI2 and Suppressor of Fused. Together, PRMT1, PRMT5, and PRMT7 regulate GLI activity at multiple revels. Furthermore, the GLI and PRMT families have strong links with various cancers through cancer stem cell maintenance. Therefore, PRMT-mediated regulation of GLI activity would have important roles in cancer stem cell maintenance.
Collapse
|
13
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
14
|
Pessôa LVDF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J Stem Cells 2019; 11:491-505. [PMID: 31523369 PMCID: PMC6716087 DOI: 10.4252/wjsc.v11.i8.491] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating “custom-made” pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.
Collapse
Affiliation(s)
- Laís Vicari de Figueiredo Pessôa
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-000, São Paulo, Brazil
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| |
Collapse
|
15
|
Chu Z, Gao X, Liu H, Ma J, Wang C, Lu K, Han Q, Wang Y, Wang C, Adam FEA, Wang X, Xiao S, Yang Z. Newcastle disease virus selectively infects dividing cells and promotes viral proliferation. Vet Res 2019; 50:27. [PMID: 30999941 PMCID: PMC6472075 DOI: 10.1186/s13567-019-0644-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Newcastle disease virus (NDV) can select cells to infect, but the mechanism of its cell selectivity has not been comprehensively investigated. Here, we use HeLa cells to establish that NDV can selectively infect cells at the single-cell level. We labeled proliferating cells with 5′-bromo-2-deoxyuridine (BrdU) and examined the colocalization of BrdU with NDV in cells to clarify the relationships between NDV infection and cell proliferation. Receptors at the plasma membrane mediate NDV entry into host cells. We labeled sialic acid receptor isoforms, compared their densities between different cell types and measured the sialic acid receptor densities in different cell phases. Our results suggest that NDV displays host tropism to HeLa cells compared to BHK cells and that the differences in the receptor isoform expression patterns between cell types contribute to the selection of HeLa by NDV. At the single-cell level, the dynamics of receptor expression changes during different cell phases contributing to the selection of cells in S/G2 phase for NDV infection. Furthermore, cell proliferation benefits viral replication, and enhanced virus replication leads to increased damage to cells. The elucidation of the mechanisms underlying host cell selection by NDV may help in the screening and characterizing of additional candidate oncolytic virus strains.
Collapse
Affiliation(s)
- Zhili Chu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Xiaolong Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Caiying Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kejia Lu
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingsong Han
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yanhong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chongyang Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fathalrhman E A Adam
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.,Department of Preventive Medicine and Public Health, Faculty of Veterinary Science, University of Nyala, P.O Box: 155, Nyala, Sudan
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Wang H, Zhao S, Barton M, Rosengart T, Cooney AJ. Reciprocity of Action of Increasing Oct4 and Repressing p53 in Transdifferentiation of Mouse Embryonic Fibroblasts into Cardiac Myocytes. Cell Reprogram 2019; 20:27-37. [PMID: 29412738 DOI: 10.1089/cell.2017.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
p53 is a barrier to somatic cell reprogramming. Deletion or transient suppression of p53 increases the efficiency of reprogramming of somatic cells into induced pluripotent stem cells. Whether p53 represents an obstacle to a similar process transdifferentiation of somatic cells is unknown. However, it is predicted that inhibition of p53 would promote transdifferentiation of fibroblasts into cardiomyocytes. In this study, the effect of p53 on the capacity of cardiogenic transdifferentiation is evaluated using p53 wild-type (p53+/+), p53 heterozygous mutant (p53+/-), and p53 homozygous mutant (p53-/-) mouse embryonic fibroblasts (MEFs). Repression of p53 in MEFs increases the expression level of mesoderm transcription factors Brachyury (T) and MESP1. The cardiac-specific markers, Myh6 (Myosin, Heavy Chain 6), Myh7 (Myosin, Heavy Chain 7), and cTnI (cardiac muscle troponin I), show elevated expression in p53+/- and p53-/- MEFs compared with wild-type MEFs, but cardiac muscle troponin T (cTnT) showed a lower expression level when p53 was inhibited. After induction to cardiac differentiation, cTnT expression increased and markers of endoderm and ectoderm decreased in p53+/- and p53-/- MEFs. The effect of an important reprogramming factor Oct4 on cardiac transdifferentiation was also evaluated in the allelic series of p53 MEFs. We found that overexpression of Oct4 significantly enhanced Mesp1, Tbx5, and Isl1 expression in p53+/+ and p53+/- MEFs. Oct4 also enhanced cTnT expression in all three cell lines, especially in p53+/- MEFs. Thus, inhibition of p53 expression and viral expression of Oct4 both promote transdifferentiation of MEFs into cardiomyocytes, establishing reciprocity of action in the process.
Collapse
Affiliation(s)
- Hongran Wang
- 1 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School , Austin, Texas
| | - Shuying Zhao
- 1 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School , Austin, Texas
| | - Michelle Barton
- 2 Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Developmental Biology, UT MD Anderson Cancer Center , Houston, Texas
| | - Todd Rosengart
- 3 Department of Surgery, Baylor College of Medicine , Houston, Texas
| | - Austin J Cooney
- 1 Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School , Austin, Texas
| |
Collapse
|
17
|
Kim SM, Jeon Y, Kim D, Jang H, Bae JS, Park MK, Kim H, Kim S, Lee H. AIMP3 depletion causes genome instability and loss of stemness in mouse embryonic stem cells. Cell Death Dis 2018; 9:972. [PMID: 30250065 PMCID: PMC6155375 DOI: 10.1038/s41419-018-1037-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/04/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a component of the multi-aminoacyl-tRNA synthetase complex and is involved in diverse cellular processes. Given that AIMP3 deficiency causes early embryonic lethality in mice, AIMP3 is expected to play a critical role in early mouse development. To elucidate a functional role of AIMP3 in early mouse development, we induced AIMP3 depletion in mouse embryonic stem cells (mESCs) derived from blastocysts of AIMP3f/f; CreERT2 mice. In the present study, AIMP3 depletion resulted in loss of self-renewal and ability to differentiate to three germ layers in mESCs. AIMP3 depletion led to accumulation of DNA damage by blocking double-strand break repair, in particular homologous recombination. Through microarray analysis, the p53 signaling pathway was identified as being activated in AIMP3-depleted mESCs. Knockdown of p53 rescued loss of stem cell characteristics by AIMP3 depletion in mESCs. These results imply that AIMP3 depletion in mESCs leads to accumulation of DNA damage and p53 transactivation, resulting in loss of stemness. We propose that AIMP3 is involved in maintenance of genome stability and stemness in mESCs.
Collapse
Affiliation(s)
- Sun Mi Kim
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Yoon Jeon
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Department of Pharmacology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - June Sung Bae
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Mi Kyung Park
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Hongtae Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Pharmacology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Lee
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
18
|
Blanc RS, Richard S. Arginine Methylation: The Coming of Age. Mol Cell 2017; 65:8-24. [PMID: 28061334 DOI: 10.1016/j.molcel.2016.11.003] [Citation(s) in RCA: 735] [Impact Index Per Article: 91.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Arginine methylation is a common post-translational modification functioning as an epigenetic regulator of transcription and playing key roles in pre-mRNA splicing, DNA damage signaling, mRNA translation, cell signaling, and cell fate decision. Recently, a wealth of studies using transgenic mouse models and selective PRMT inhibitors helped define physiological roles for protein arginine methyltransferases (PRMTs) linking them to diseases such as cancer and metabolic, neurodegenerative, and muscular disorders. This review describes the recent molecular advances that have been uncovered in normal and diseased mammalian cells.
Collapse
Affiliation(s)
- Roméo S Blanc
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H2W 1S6, Canada.
| |
Collapse
|
19
|
Li XY, Geng LY, Zhou XX, Wei N, Fang XS, Li Y, Wang X. Krüppel-like factor 4 contributes to the pathogenesis of mantle cell lymphoma. Leuk Lymphoma 2017; 58:2460-2469. [PMID: 28278702 DOI: 10.1080/10428194.2017.1292354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive subtype of B-cell non-Hodgkin lymphoma (NHL) with poor prognosis. Krüppel-like factor 4 (KLF4) has been reported as a bi-regulator in malignancies, but little is known about its role in MCL. Here, we showed that KLF4 was downregulated in three MCL cell lines and lymph nodes from MCL patients, which resulted in a negative prognosis. We also found that the regulation of KLF4 could inhibit the proliferation and induce apoptosis of Jeko-1 cells. The lentivirally over-expressed KLF4 protein was found bind to β-catenin and could inhibit downstream molecules such as cyclinD1 and c-Myc. Furthermore, 5-azacytidine could decrease the expression of methyltransferase-1 (DNMT-1) and restore the KLF4 expression in MCL cell lines, indicating that methylation might play an important role in the downregulation of KLF4. KLF4 may be a potential therapeutic target as a tumor suppressor in MCL.
Collapse
Affiliation(s)
- Xin-Yu Li
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Ling-Yun Geng
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Xiang-Xiang Zhou
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Na Wei
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Xiao-Sheng Fang
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Ying Li
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Xin Wang
- a Department of Hematology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| |
Collapse
|
20
|
Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 2017; 106:598-612. [PMID: 26572807 DOI: 10.1002/bip.22772] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 01/10/2023]
Abstract
Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yu Toguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takao Nomura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Toshiaki Imagawa
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
21
|
Xu Y, Zhang M, Li W, Zhu X, Bao X, Qin B, Hutchins AP, Esteban MA. Transcriptional Control of Somatic Cell Reprogramming. Trends Cell Biol 2016; 26:272-288. [DOI: 10.1016/j.tcb.2015.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
|
22
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
23
|
Yang D, Liang T, Gu Y, Zhao Y, Shi Y, Zuo X, Cao Q, Yang Y, Kan Q. Protein N-arginine methyltransferase 5 promotes the tumor progression and radioresistance of nasopharyngeal carcinoma. Oncol Rep 2015; 35:1703-10. [PMID: 26708443 DOI: 10.3892/or.2015.4513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy resistance is the main cause of the the poor prognosis of some nasopharyngeal carcinoma (NPC) patients. Yet, the exact mechanism is still elusive. In the present study, we explored the clinical and biological role of protein arginine methyltransferase 5 (PRMT5) in NPC. Our results revealed that PRMT5 was overexpressed in NPC tissues when compared with that in adjacent non-tumor tissues by quantitative RT-PCR and immunoblotting. High expression of PRMT5 was correlated with adverse outcomes of NPC patients as determined by the scoring of a tissue microarray. Silencing of PRMT5 promoted the radiosensitivity of 5-8F and CNE2 cells as determined by cell proliferation and colony formation assays. Furthermore, fibroblast growth factor receptor 3 (FGFR3) was identified as one of the downstream targets of PRMT5, and the silencing of PRMT5 decreased the mRNA and protein levels of FGFR3 in the 5-8F and CNE2 cells. Silencing of FGFR3 induced similar phenotypes as the inhibition of PRMT5, and re-expression of FGFR3 in 5-8F/shPRMT5 and CNE2/shPRMT5 cells restored the proliferation and colony formation ability induced by irradiation exposure. Our results indicate that PRMT5 is a marker of poor prognosis in NPC patients. PRMT5 promoted the radioresistance of NPC cells via targeting FGFR3, at least partly if not totally. PRMT5 and its downstream effector FGFR3 may be potential targets for anticancer strategy.
Collapse
Affiliation(s)
- Daoke Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Tiansong Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yue Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yulin Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yonggang Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoxiao Zuo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Qinchen Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Ya Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Quancheng Kan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University School of Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
24
|
Two Effective Routes for Removing Lineage Restriction Roadblocks: From Somatic Cells to Hepatocytes. Int J Mol Sci 2015; 16:20873-95. [PMID: 26340624 PMCID: PMC4613233 DOI: 10.3390/ijms160920873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
The conversion of somatic cells to hepatocytes has fundamentally re-shaped traditional concepts regarding the limited resources for hepatocyte therapy. With the various induced pluripotent stem cell (iPSC) generation routes, most somatic cells can be effectively directed to functional stem cells, and this strategy will supply enough pluripotent material to generate promising functional hepatocytes. However, the major challenges and potential applications of reprogrammed hepatocytes remain under investigation. In this review, we provide a summary of two effective routes including direct reprogramming and indirect reprogramming from somatic cells to hepatocytes and the general potential applications of the resulting hepatocytes. Through these approaches, we are striving toward the goal of achieving a robust, mature source of clinically relevant lineages.
Collapse
|
25
|
Sandmaier SES, Nandal A, Powell A, Garrett W, Blomberg L, Donovan DM, Talbot N, Telugu BP. Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 2015; 82:709-21. [PMID: 26118622 DOI: 10.1002/mrd.22512] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2022]
Abstract
The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shelley E S Sandmaier
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland.,Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Anjali Nandal
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland.,Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Anne Powell
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland
| | - Wesley Garrett
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland
| | - Leann Blomberg
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland
| | - David M Donovan
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland
| | - Neil Talbot
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland
| | - Bhanu P Telugu
- Animal Bioscience and Biotechnology Laboratory, USDA, ARS, Beltsville, Maryland.,Animal and Avian Sciences, University of Maryland, College Park, Maryland
| |
Collapse
|