1
|
Zhao Y, Wan J, Liao B, Qi M. The Neglected Internodal Tract-A Cardiac Conduction System Structure Homologous to the Development and Regulation of the Sinoatrial Node. Rev Cardiovasc Med 2025; 26:27882. [PMID: 40351691 PMCID: PMC12059794 DOI: 10.31083/rcm27882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 05/14/2025] Open
Abstract
The existence of internodal tracts (ITs) is controversial. Indeed, ITs in the cardiac conduction system (CCS), connected to the sinoatrial node (SAN), transmit electrical signals quickly to the left atrium and the atrioventricular node (AVN). Interestingly, research has suggested that the ITs and the tail of the SAN may share developmental homology. Additionally, many studies indicate that ITs blockage can lead to atrial conduction block and is associated with atrial fibrillation (AF). However, few studies have been reported on the morphogenesis, development, and function of ITs. Therefore, this paper aims to review the morphogenesis, development, and function of ITs, focusing on the regulatory mechanisms of transcription factors (TFs), such as NK2 homeobox 5 (NKX2.5), SHOX homeobox 2 (SHOX2), hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4), and T-box transcription factor 3 (TBX3) in the development and morphogenesis of ITs. This review also explores the causes of arrhythmias, especially atrial block, in order to provide new insights into the pathogenesis of CCS disorders.
Collapse
Affiliation(s)
- Yuanqin Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Man Qi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
- Chinese People’s Liberation Army (PLA) General Hospital, College of Pulmonary & Critical Care Medicine, 100091 Beijing, China
- Department of Cardiology, Chinese PLA General Hospital, 100853 Beijing, China
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120 Shanghai, China
| |
Collapse
|
2
|
Muncie-Vasic JM, Sinha T, Clark AP, Brower EF, Saucerman JJ, Black BL, Bruneau BG. MEF2C controls segment-specific gene regulatory networks that direct heart tube morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.01.621613. [PMID: 39554149 PMCID: PMC11566030 DOI: 10.1101/2024.11.01.621613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The gene regulatory networks (GRNs) that control early heart formation are beginning to be understood, but lineage-specific GRNs remain largely undefined. We investigated networks controlled by the vital transcription factor MEF2C, with a time course of single-nucleus RNA- and ATAC-sequencing in wild-type and Mef2c -null embryos. We identified a "posteriorized" cardiac gene signature and chromatin landscape in the absence of MEF2C. Integrating our multiomics data in a deep learning-based model, we constructed developmental trajectories for each of the outflow tract, ventricular, and inflow tract segments, and alterations of these in Mef2c -null embryos. We computationally identified segment-specific MEF2C-dependent enhancers, with activity in the developing zebrafish heart. Finally, using inferred GRNs we discovered that the Mef2c -null heart malformations are partly driven by increased activity of the nuclear hormone receptor NR2F2. Our results delineate lineage-specific GRNs in the early heart tube and provide a generalizable framework for dissecting transcriptional networks governing developmental processes.
Collapse
|
3
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
4
|
Pun R, Thapa A, Takafuji SR, Suzuki RM, Kay GF, Howard TD, Kim MH, North BJ. BubR1 Controls Heart Development by Promoting Expression of Cardiogenesis Regulators. J Am Heart Assoc 2025; 14:e038286. [PMID: 40055864 DOI: 10.1161/jaha.124.038286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Congenital heart defects are structural anomalies present at birth that can affect the function of the heart. Aneuploidy is a significant risk factor for congenital heart defects. Mosaic variegated aneuploidy syndrome, caused by mutations in Bub1b (encoding BubR1, a mitotic checkpoint protein), leads to congenital heart defects such as septal defects. However, the molecular rationale for how Bub1b mutations promote congenital heart defects associated with mosaic variegated aneuploidy syndrome remains unresolved. METHODS To study morphological, structural, and cellular consequences of BubR1 deletion in the heart, we crossed mice carrying conditional alleles of Bub1b with Nkx2.5-cre mice. Single-cell RNA sequencing was carried out to determine differentially expressed genes and biological processes in various cell types present in the developing heart. Trajectory analysis was carried out to determine the differentiation trajectory of BubR1 knockout embryonic hearts. Finally, CellChat analysis provided details on the major signaling interactions that were either absent or hyperactive in the BubR1 knockout heart. RESULTS Here, we show that cardiac-specific BubR1 deletion causes embryonic lethality due to developmental stalling after cardiac looping with defects in cardiac maturation including chamber wall thickness, septation, and trabeculation. Single-cell transcriptomic profiling further revealed that the differentiation trajectory of cardiomyocytes is severely impacted with suppression of critical cardiogenesis genes. Hyperactivation of Wnt signaling in BubR1 knockout hearts indicated a disturbed homeostasis in cellular pathways essential for proper tissue morphogenesis of the heart. CONCLUSIONS Taken together, these findings reveal that BubR1 is a crucial regulator of cardiac development in vivo, which ensures the proper timing of heart morphogenesis.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Aradhana Thapa
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Sylar R Takafuji
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Rexton M Suzuki
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Gabrielle F Kay
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Toni D Howard
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Michael H Kim
- CHI Heart Institute and Department of Medicine Creighton University School of Medicine Omaha NE USA
| | - Brian J North
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| |
Collapse
|
5
|
Sharma G, Vela RJ, Powell L, Deja S, Fu X, Burgess SC, Malloy CR, Jessen ME, Peltz M. Metabolic and transcriptomic insights into temperature controlled hypothermic preservation of human donor hearts. J Heart Lung Transplant 2025:S1053-2498(25)01836-4. [PMID: 40081628 DOI: 10.1016/j.healun.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Heart transplantation (HT) is the gold standard for end-stage heart disease. Donor heart preservation is an important factor that influences post-transplant success. Recently, temperature-controlled storage has demonstrated reduced primary graft dysfunction compared to standard cold storage though mechanisms are poorly understood. We hypothesized that alterations in gene expression and metabolomics offer insight into improved outcomes observed with temperature-controlled storage. METHODS We conducted a comprehensive study to investigate the metabolic and transcriptomic responses of donor hearts preserved for 6 hours using a temperature-controlled hypothermic preservation (TCHP) system compared to conventional static cold storage (SCS). Metabolic assessments were carried out using high-resolution 1H and 31P nuclear magnetic resonance (NMR), and liquid chromatography/mass spectrometry (LC-MS) analysis on tissues obtained from various cardiac regions. Lactate, alanine, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), phosphocreatine, and inorganic phosphate were measured, and metabolite ratios were calculated. Transcriptomic profiling was conducted using high throughput RNA sequencing followed by bioinformatic analysis to explore gene expression changes associated with different preservation methods. RESULTS Metabolic analyses revealed largely similar profiles between hearts preserved with TCHP and SCS. Energy metabolite ratios were comparable between preservation methods. Transcriptomic analysis unveiled a high correlation between preservation methods but also showed differential gene expression in energy metabolism and inflammation/immune-related pathways. CONCLUSIONS Our study demonstrates that TCHP maintains similar high-energy phosphate reserves to SCS but leads to alterations in gene expression of several metabolic and immunomodulatory pathways. These findings may offer important insight into reduced primary graft dysfunction observed in TCHP- hearts.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryan J Vela
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - LaShondra Powell
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
6
|
Feng Q, Qi L, Huang J, Dong Z, Yu F, Zhang J, Zhan J, Zhang H, Wang W, Zhou Y, Yang Z, Zhou Y, Kong W, Fu Y. Cardiovascular Mettl3 Deficiency Causes Congenital Cardiac Defects and Postnatal Lethality in Mice. Int J Biol Sci 2025; 21:2430-2445. [PMID: 40303284 PMCID: PMC12035893 DOI: 10.7150/ijbs.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
N6-methyladenosine (m6A) is the most common epigenetic modification of RNA, but whether m6A RNA methylation modulates cardiovascular development or congenital heart diseases (CHDs) has not been determined. The published high-throughput sequencing data suggested that transcripts of genes related to CHDs were prone to m6A modification, while the expression of methyltransferase-like 3 (METTL3)-involved methyltransferase complex was downregulated in mouse embryonic hearts following prenatal alcohol exposure as a critical CHD risk factor, indicating the association of insufficient m6A RNA methylation with CHDs. Using cardiovascular-specific Mettl3 knockout mice (Tagln-Cre; Mettl3flox/flox ), we observed that cardiovascular Mettl3 deficiency resulted in postnatal lethality and profound congenital cardiac defects, including left pulmonary stenosis, ventricular septal defects, and right ventricular hypoplasia. The m6A-specific methylated RNA-immunoprecipitation sequencing identified Sox4, Sox11, and Mef2a, the critical transcription factors involved in the right ventricle and outflow tract development, were the regulatory targets of METTL3-catalyzed m6A RNA methylation. Mettl3 deficiency-caused insufficient m6A RNA methylation downregulated the expression of SOX4, SOX11, and MEF2A in mouse embryonic hearts. In conclusion, cardiovascular Mettl3 deficiency directly led to congenital cardiac defects by downregulating the m6A-dependent expression of Mef2a, Sox4, and Sox11. METTL3-catalyzed m6A RNA methylation may become a potential target for preventing and treating CHDs.
Collapse
Affiliation(s)
- Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Lihua Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Zhigang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumors, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| |
Collapse
|
7
|
Phillips M, Nimmo M, Rugonyi S. Developmental and Evolutionary Heart Adaptations Through Structure-Function Relationships. J Cardiovasc Dev Dis 2025; 12:83. [PMID: 40137081 PMCID: PMC11942974 DOI: 10.3390/jcdd12030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
While the heart works as an efficient pump, it also has a high level of adaptivity by changing its structure to maintain function during healthy and diseased states. In this Review, we present examples of structure-function relationships across species and throughout embryonic development in mammals and birds. We also summarize current research on avian models aiming at understanding how biophysical and biological mechanisms closely interact during heart formation. We conclude by underscoring similarities between cardiac adaptations and structural changes over developmental and evolutionary time scales and how understanding the mechanisms behind these adaptations can help prevent or alleviate the effects of cardiac malformations and contribute to cardiac regeneration efforts.
Collapse
Affiliation(s)
| | | | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA; (M.P.); (M.N.)
| |
Collapse
|
8
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Hunter B, Li M, Parker BL, Koay YC, Harney DJ, Pearson E, Cao J, Chen GT, Guneratne O, Smyth GK, Larance M, O'Sullivan JF, Lal S. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun Biol 2024; 7:1666. [PMID: 39702518 DOI: 10.1038/s42003-024-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. To better understand ventricle-specific molecular changes influencing heart failure development, we first performed unbiased quantitative mass spectrometry on pre-mortem non-diseased human myocardium to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy, while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine-glutamate ratio, and down-regulation of contractile proteins, indicating a left ventricular pathological bias.
Collapse
Affiliation(s)
- Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Dylan J Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Evangeline Pearson
- Paediatric Oncology and Haematology, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England
| | - Jacob Cao
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gavin T Chen
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Oneka Guneratne
- Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Newtown, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Elhassan YH, Alahmadi F, Albadawi EA, Albarakati A, Aljohany AH, Alzaman NS, Albadrani M. The Relationship Between Maternal Exposure to Endocrine-Disrupting Chemicals and the Incidence of Congenital Heart Diseases: A Systematic Review and Meta-Analysis. Metabolites 2024; 14:709. [PMID: 39728490 DOI: 10.3390/metabo14120709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Congenital heart diseases are among the most common birth defects, significantly impacting infant health. Recent evidence suggests that exposure to endocrine-disrupting chemicals may contribute to the incidence of congenital heart diseases. This study systematically reviews and analyzes the association between maternal endocrine-disrupting chemicals exposure and congenital heart diseases. METHODOLOGY This systematic review and meta-analysis followed the Cochrane Handbook and PRISMA guidelines. We included studies assessing the link between maternal exposure to various endocrine-disrupting chemicals and the incidence of congenital heart diseases without restricting the study design or exposure assessment methods. Data were extracted from four databases, including PubMed, Scopus, Web of Science, and Cochrane Library, up to June 2024. Quality assessment of observational studies was conducted using the Newcastle-Ottawa Scale. Statistical analysis was performed using RevMan software version 5.3, presenting results as odds ratios with 95% confidence intervals. RESULTS Fifty-nine studies were included in the meta-analysis. The pooled analysis revealed a significant association between maternal endocrine-disrupting chemical exposure and the incidence of congenital heart diseases when measured using human samples (odds ratio = 1.63, 95% confidence interval [1.35-1.97], p < 0.00001). Notably, exposure to heavy metals, polycyclic aromatic hydrocarbons, and perfluoroalkyl compounds was strongly associated with congenital heart diseases. However, non-sample-based methods showed no significant overall correlation (odds ratio = 1.08, 95% confidence interval [0.93-1.26], p = 0.30), except for housing renovation compounds, which were linked to a higher incidence of congenital heart diseases. CONCLUSIONS Maternal exposure to specific endocrine-disrupting chemicals, particularly heavy metals and polycyclic aromatic hydrocarbons, significantly increases the risk of congenital heart diseases. These findings underscore the need for preventive measures to reduce endocrine-disrupting chemicals exposure during pregnancy and further research to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yasir Hassan Elhassan
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Fahad Alahmadi
- Department of Women and Child Health, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Emad Ali Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Abdullah Albarakati
- Department of Women and Child Health, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Azizah Hendi Aljohany
- Department of Women and Child Health, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | | | - Muayad Albadrani
- Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
11
|
Agrawal A, Thomann S, Basu S, Grün D. NiCo identifies extrinsic drivers of cell state modulation by niche covariation analysis. Nat Commun 2024; 15:10628. [PMID: 39639035 PMCID: PMC11621405 DOI: 10.1038/s41467-024-54973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Cell states are modulated by intrinsic driving forces such as gene expression noise and extrinsic signals from the tissue microenvironment. The distinction between intrinsic and extrinsic cell state determinants is essential for understanding the regulation of cell fate in tissues during development, homeostasis and disease. The rapidly growing availability of single-cell resolution spatial transcriptomics makes it possible to meet this challenge. However, available computational methods to infer topological tissue domains, spatially variable genes, or ligand-receptor interactions are limited in their capacity to capture cell state changes driven by crosstalk between individual cell types within the same niche. We present NiCo, a computational framework for integrating single-cell resolution spatial transcriptomics with matched single-cell RNA-sequencing reference data to infer the influence of the spatial niche on the cell state. By applying NiCo to mouse embryogenesis, adult small intestine and liver data, we demonstrate the ability to predict novel niche interactions that govern cell state variation underlying tissue development and homeostasis. In particular, NiCo predicts a feedback mechanism between Kupffer cells and neighboring stellate cells dampening stellate cell activation in the normal liver. NiCo provides a powerful tool to elucidate tissue architecture and to identify drivers of cellular states in local niches.
Collapse
Affiliation(s)
- Ankit Agrawal
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Stefan Thomann
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sukanya Basu
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- CAIDAS - Center for Artificial Intelligence and Data Science, Würzburg, Germany.
| |
Collapse
|
12
|
Guijarro C, Song S, Aigouy B, Clément R, Villoutreix P, Kelly RG. Single-cell morphometrics reveals T-box gene-dependent patterns of epithelial tension in the Second Heart field. Nat Commun 2024; 15:9512. [PMID: 39496595 PMCID: PMC11535409 DOI: 10.1038/s41467-024-53612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
The vertebrate heart tube extends by progressive addition of epithelial second heart field (SHF) progenitor cells from the dorsal pericardial wall. The interplay between epithelial mechanics and genetic mechanisms during SHF deployment is unknown. Here, we present a quantitative single-cell morphometric analysis of SHF cells during heart tube extension, including force inference analysis of epithelial stress. Joint spatial Principal Component Analysis reveals that cell orientation and stress direction are the main parameters defining apical cell morphology and distinguishes cells adjacent to the arterial and venous poles. Cell shape and mechanical forces display a dynamic relationship during heart tube formation. Moreover, while the T-box transcription factor Tbx1 is necessary for cell orientation towards the arterial pole, activation of Tbx5 in the posterior SHF correlates with the establishment of epithelial stress and SHF deletion of Tbx5 relaxes the progenitor epithelium. Integrating findings from cell-scale feature patterning and mechanical stress provides new insights into cardiac morphogenesis.
Collapse
Affiliation(s)
- Clara Guijarro
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Solène Song
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Benoit Aigouy
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Raphaël Clément
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Paul Villoutreix
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France.
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France.
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
13
|
Simmons AD, Baumann C, Zhang X, Kamp TJ, De La Fuente R, Palecek SP. Integrated multi-omics analysis identifies features that predict human pluripotent stem cell-derived progenitor differentiation to cardiomyocytes. J Mol Cell Cardiol 2024; 196:52-70. [PMID: 39222876 PMCID: PMC11534572 DOI: 10.1016/j.yjmcc.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.
Collapse
Affiliation(s)
- Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Anderson RH, Kerwin J, Lamers WH, Hikspoors JPJM, Mohun TJ, Chaudhry B, Lisgo S, Henderson DJ. Cardiac development demystified by use of the HDBR atlas. J Anat 2024; 245:517-534. [PMID: 38783643 PMCID: PMC11424819 DOI: 10.1111/joa.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Much has been learned over the last half century regarding the molecular and genetic changes that take place during cardiac development. As yet, however, these advances have not been translated into knowledge regarding the marked changes that take place in the anatomical arrangements of the different cardiac components. As such, therefore, many aspects of cardiac development are still described on the basis of speculation rather than evidence. In this review, we show how controversial aspects of development can readily be arbitrated by the interested spectator by taking advantage of the material now gathered together in the Human Developmental Biology Resource; HDBR. We use the material to demonstrate the changes taking place during the formation of the ventricular loop, the expansion of the atrioventricular canal, the incorporation of the systemic venous sinus, the formation of the pulmonary vein, the process of atrial septation, the remodelling of the pharyngeal arches, the major changes occurring during formation of the outflow tract, the closure of the embryonic interventricular communication, and the formation of the ventricular walls. We suggest that access to the resource makes it possible for the interested observer to arbitrate, for themselves, the ongoing controversies that continue to plague the understanding of cardiac development.
Collapse
Affiliation(s)
| | - Janet Kerwin
- Human Developmental Biology Resource, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Wouter H. Lamers
- Department of Anatomy and EmbryologyMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Bill Chaudhry
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Steven Lisgo
- Human Developmental Biology Resource, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Deborah J. Henderson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology Resource, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
15
|
Feng H, Yang S, Zhang L, Zhu J, Li J, Yang Z. A new Prdm1-Cre line is suitable for studying the second heart field development. Dev Biol 2024; 514:78-86. [PMID: 38880275 DOI: 10.1016/j.ydbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.
Collapse
Affiliation(s)
- Haiyue Feng
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingai Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
16
|
Bolesani E, Bornhorst D, Iyer LM, Zawada D, Friese N, Morgan M, Lange L, Gonzalez DM, Schrode N, Leffler A, Wunder J, Franke A, Drakhlis L, Sebra R, Schambach A, Goedel A, Dubois NC, Dobreva G, Moretti A, Zelaráyan LC, Abdelilah-Seyfried S, Zweigerdt R. Transient stabilization of human cardiovascular progenitor cells from human pluripotent stem cells in vitro reflects stage-specific heart development in vivo. Cardiovasc Res 2024; 120:1295-1311. [PMID: 38836637 DOI: 10.1093/cvr/cvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Understanding the molecular identity of human pluripotent stem cell (hPSC)-derived cardiac progenitors and mechanisms controlling their proliferation and differentiation is valuable for developmental biology and regenerative medicine. METHODS AND RESULTS Here, we show that chemical modulation of histone acetyl transferases (by IQ-1) and WNT (by CHIR99021) synergistically enables the transient and reversible block of directed cardiac differentiation progression on hPSCs. The resulting stabilized cardiovascular progenitors (SCPs) are characterized by ISL1pos/KI-67pos/NKX2-5neg expression. In the presence of the chemical inhibitors, SCPs maintain a proliferation quiescent state. Upon small molecules, removal SCPs resume proliferation and concomitant NKX2-5 up-regulation triggers cell-autonomous differentiation into cardiomyocytes. Directed differentiation of SCPs into the endothelial and smooth muscle lineages confirms their full developmental potential typical of bona fide cardiovascular progenitors. Single-cell RNA-sequencing-based transcriptional profiling of our in vitro generated human SCPs notably reflects the dynamic cellular composition of E8.25-E9.25 posterior second heart field of mouse hearts, hallmarked by nuclear receptor sub-family 2 group F member 2 expression. Investigating molecular mechanisms of SCP stabilization, we found that the cell-autonomously regulated retinoic acid and BMP signalling is governing SCP transition from quiescence towards proliferation and cell-autonomous differentiation, reminiscent of a niche-like behaviour. CONCLUSION The chemically defined and reversible nature of our stabilization approach provides an unprecedented opportunity to dissect mechanisms of cardiovascular progenitors' specification and reveal their cellular and molecular properties.
Collapse
Affiliation(s)
- Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nina Friese
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - David M Gonzalez
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadine Schrode
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Julian Wunder
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Robert Sebra
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole C Dubois
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Laura C Zelaráyan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
17
|
Combémorel N, Cavell N, Tyser RC. Early heart development: examining the dynamics of function-form emergence. Biochem Soc Trans 2024; 52:1579-1589. [PMID: 38979619 PMCID: PMC11668286 DOI: 10.1042/bst20230546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
During early embryonic development, the heart undergoes a remarkable and complex transformation, acquiring its iconic four-chamber structure whilst concomitantly contracting to maintain its essential function. The emergence of cardiac form and function involves intricate interplays between molecular, cellular, and biomechanical events, unfolding with precision in both space and time. The dynamic morphological remodelling of the developing heart renders it particularly vulnerable to congenital defects, with heart malformations being the most common type of congenital birth defect (∼35% of all congenital birth defects). This mini-review aims to give an overview of the morphogenetic processes which govern early heart formation as well as the dynamics and mechanisms of early cardiac function. Moreover, we aim to highlight some of the interplay between these two processes and discuss how recent findings and emerging techniques/models offer promising avenues for future exploration. In summary, the developing heart is an exciting model to gain fundamental insight into the dynamic relationship between form and function, which will augment our understanding of cardiac congenital defects and provide a blueprint for potential therapeutic strategies to treat disease.
Collapse
Affiliation(s)
- Noémie Combémorel
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| | - Natasha Cavell
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| | - Richard C.V. Tyser
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, U.K
| |
Collapse
|
18
|
Abraham E, Volmert B, Roule T, Huang L, Yu J, Williams AE, Cohen HM, Douglas A, Megill E, Morris A, Stronati E, Fueyo R, Zubillaga M, Elrod JW, Akizu N, Aguirre A, Estaras C. A Retinoic Acid:YAP1 signaling axis controls atrial lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602981. [PMID: 39026825 PMCID: PMC11257518 DOI: 10.1101/2024.07.11.602981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Vitamin A/Retinoic Acid (Vit A/RA) signaling is essential for heart development. In cardiac progenitor cells (CPCs), RA signaling induces the expression of atrial lineage genes while repressing ventricular genes, thereby promoting the acquisition of an atrial cardiomyocyte cell fate. To achieve this, RA coordinates a complex regulatory network of downstream effectors that is not fully identified. To address this gap, we applied a functional genomics approach (i.e scRNAseq and snATACseq) to untreated and RA-treated human embryonic stem cells (hESCs)-derived CPCs. Unbiased analysis revealed that the Hippo effectors YAP1 and TEAD4 are integrated with the atrial transcription factor enhancer network, and that YAP1 is necessary for activation of RA-enhancers in CPCs. Furthermore, in vivo analysis of control and conditionally YAP1 KO mouse embryos (Sox2-cre) revealed that the expression of atrial lineage genes, such as NR2F2, is compromised by YAP1 deletion in the CPCs of the second heart field. Accordingly, we found that YAP1 is required for the formation of an atrial chamber but is dispensable for the formation of a ventricle, in hESC-derived patterned cardiac organoids. Overall, our findings revealed that YAP1 is a non-canonical effector of RA signaling essential for the acquisition of atrial lineages during cardiogenesis.
Collapse
Affiliation(s)
- Elizabeth Abraham
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry M Cohen
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Aidan Douglas
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Emily Megill
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Alex Morris
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Eleonora Stronati
- Department of Child and Adolescence Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mikel Zubillaga
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - John W Elrod
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
| | - Conchi Estaras
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
21
|
Guijarro C, Kelly RG. On the involvement of the second heart field in congenital heart defects. C R Biol 2024; 347:9-18. [PMID: 38488639 DOI: 10.5802/crbiol.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.
Collapse
|
22
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
23
|
O’Sullivan JF, Li M, Koay YC, Wang XS, Guglielmi G, Marques FZ, Nanayakkara S, Mariani J, Slaughter E, Kaye DM. Cardiac Substrate Utilization and Relationship to Invasive Exercise Hemodynamic Parameters in HFpEF. JACC Basic Transl Sci 2024; 9:281-299. [PMID: 38559626 PMCID: PMC10978404 DOI: 10.1016/j.jacbts.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 04/04/2024]
Abstract
The authors conducted transcardiac blood sampling in healthy subjects and subjects with heart failure with preserved ejection fraction (HFpEF) to compare cardiac metabolite and lipid substrate use. We demonstrate that fatty acids are less used by HFpEF hearts and that lipid extraction is influenced by hemodynamic factors including pulmonary pressures and cardiac index. The release of many products of protein catabolism is apparent in HFpEF compared to healthy myocardium. In subgroup analyses, differences in energy substrate use between female and male hearts were identified.
Collapse
Affiliation(s)
- John F. O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia
- Department of Medicine, TU Dresden, Dresden, Germany
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia
| | - Xiao Suo Wang
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Giovanni Guglielmi
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - Shane Nanayakkara
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, Australia
| | - Justin Mariani
- Victorian Heart Institute, Monash University, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, Australia
| | - Eugene Slaughter
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - David M. Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
- Monash-Alfred-Baker Centre for Cardiovascular Research, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Rehmani T, Dias AP, Kamal M, Salih M, Tuana BS. Deletion of Sarcolemmal Membrane-Associated Protein Isoform 3 (SLMAP3) in Cardiac Progenitors Delays Embryonic Growth of Myocardium without Affecting Hippo Pathway. Int J Mol Sci 2024; 25:2888. [PMID: 38474134 DOI: 10.3390/ijms25052888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The slmap gene is alternatively spliced to generate many isoforms that are abundant in developing myocardium. The largest protein isoform SLMAP3 is ubiquitously expressed and has been linked to cardiomyopathy, Brugada syndrome and Hippo signaling. To examine any role in cardiogenesis, mice homozygous for floxed slmap allele were crossed with Nkx2.5-cre mice to nullify its expression in cardiac progenitors. Targeted deletion of the slmap gene resulted in the specific knockout (KO) of the SLMAP3 (~91 KDa) isoform without any changes in the expression of the SLMAP2 (~43 kDa) or the SLMAP1 (~35 kDa) isoforms which continued to accumulate to similar levels as seen in Wt embryonic hearts. The loss of SLMAP3 from cardiac progenitors resulted in decreased size of the developing embryonic hearts evident at E9.5 to E16.5 with four small chambers and significantly thinner left ventricles. The proliferative capacity assessed with the phosphorylation of histone 3 or with Ki67 in E12.5 hearts was not significantly altered due to SLMAP3 deficiency. The size of embryonic cardiomyocytes, marked with anti-Troponin C, revealed significantly smaller cells, but their hypertrophic response (AKT1 and MTOR1) was not significantly affected by the specific loss of SLMAP3 protein. Further, no changes in phosphorylation of MST1/2 or YAP were detected in SLMAP3-KO embryonic myocardium, ruling out any impact on Hippo signaling. Rat embryonic cardiomyocytes express the three SLMAP isoforms and their knockdown (KD) with sh-RNA, resulted in decreased proliferation and enhanced senescence but without any impact on Hippo signaling. Collectively, these data show that SLMAP is critical for normal cardiac development with potential for the various isoforms to serve compensatory roles. Our data imply novel mechanisms for SLMAP action in cardiac growth independent of Hippo signaling.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Marsel Kamal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
25
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
26
|
Racedo SE, Liu Y, Shi L, Zheng D, Morrow BE. Dgcr8 functions in the secondary heart field for outflow tract and right ventricle development in mammals. Dev Biol 2024; 506:72-84. [PMID: 38110169 PMCID: PMC10793380 DOI: 10.1016/j.ydbio.2023.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
The DGCR8 gene, encoding a critical miRNA processing protein, maps within the hemizygous region in patients with 22q11.2 deletion syndrome. Most patients have malformations of the cardiac outflow tract that is derived in part from the anterior second heart field (aSHF) mesoderm. To understand the function of Dgcr8 in the aSHF, we inactivated it in mice using Mef2c-AHF-Cre. Inactivation resulted in a fully penetrant persistent truncus arteriosus and a hypoplastic right ventricle leading to lethality by E14.5. To understand the molecular mechanism for this phenotype, we performed gene expression profiling of the aSHF and the cardiac outflow tract with right ventricle in conditional null versus normal mouse littermates at stage E9.5 prior to morphology changes. We identified dysregulation of mRNA gene expression, of which some are relevant to cardiogenesis. Many pri-miRNA genes were strongly increased in expression in mutant embryos along with reduced expression of mature miRNA genes. We further examined the individual, mature miRNAs that were decreased in expression along with pri-miRNAs that were accumulated that could be direct effects due to loss of Dgcr8. Among these genes, were miR-1a, miR-133a, miR-134, miR143 and miR145a, which have known functions in heart development. These early mRNA and miRNA changes may in part, explain the first steps that lead to the resulting phenotype in Dgcr8 aSHF conditional mutant embryos.
Collapse
Affiliation(s)
- Silvia E Racedo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Bell Buckle, TN, USA
| | - Lijie Shi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics and Ob/Gyn & Population Health, USA.
| |
Collapse
|
27
|
van der Maarel LE, Christoffels VM. Development of the Cardiac Conduction System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:185-200. [PMID: 38884712 DOI: 10.1007/978-3-031-44087-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.
Collapse
Affiliation(s)
- Lieve E van der Maarel
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
29
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
30
|
Cao C, Li L, Zhang Q, Li H, Wang Z, Wang A, Liu J. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases. Front Cardiovasc Med 2023; 10:1270951. [PMID: 38124890 PMCID: PMC10732152 DOI: 10.3389/fcvm.2023.1270951] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiomyocytes fail to regenerate after birth and respond to mitotic signals through cellular hypertrophy rather than cellular proliferation. Necrotic cardiomyocytes in the infarcted ventricular tissue are eventually replaced by fibroblasts, generating scar tissue. Cardiomyocyte loss causes localized systolic dysfunction. Therefore, achieving the regeneration of cardiomyocytes is of great significance for cardiac function and development. Heart development is a complex biological process. An integral cardiac developmental network plays a decisive role in the regeneration of cardiomyocytes. During this process, genetic epigenetic factors, transcription factors, signaling pathways and small RNAs are involved in regulating the developmental process of the heart. Cardiomyocyte-specific genes largely promote myocardial regeneration, among which the Nkx2.5 transcription factor is one of the earliest markers of cardiac progenitor cells, and the loss or overexpression of Nkx2.5 affects cardiac development and is a promising candidate factor. Nkx2.5 affects the development and function of the heart through its multiple functional domains. However, until now, the specific mechanism of Nkx2.5 in cardiac development and regeneration is not been fully understood. Therefore, this article will review the molecular structure, function and interaction regulation of Nkx2.5 to provide a new direction for cardiac development and the treatment of heart regeneration.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Qian Zhang
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Aoao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
31
|
Steimle JD, Martin JF. Sweet and sour story of maternal diabetes and birth defects. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1107-1108. [PMID: 39196143 DOI: 10.1038/s44161-023-00380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA.
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, USA.
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Forderer N, Akintürk H, Jux C. Idiopathic enlargement of the right atrium masking left atrial aneurysm in a neonate. Cardiol Young 2023; 33:2446-2448. [PMID: 37492020 DOI: 10.1017/s104795112300255x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
An idiopathic enlargement of the right atrium is an extremely rare cardiac malformation. There are no established guidelines for the management of this disease, especially concerning medical versus surgical therapeutic approach and the timing for an operation. We report in this case about a neonate that first was treated conservatively until the age of 5 month and finally got an operative resection of the aneurysm. After surgery, unexpected complications occurred. A second aneurysm in the left atrium was demasked. Furthermore, a progressive dilatation of both atrial chambers after resection required regular follow-up and ongoing evaluation of treatment.
Collapse
Affiliation(s)
- N Forderer
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, Pediatric Heart Center, University of Giessen, Giessen, HE, Germany
| | - H Akintürk
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, Pediatric Heart Center, University of Giessen, Giessen, HE, Germany
| | - C Jux
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, Pediatric Heart Center, University of Giessen, Giessen, HE, Germany
| |
Collapse
|
33
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Harvey DC, Verma R, Sedaghat B, Hjelm BE, Morton SU, Seidman JG, Kumar SR. Mutations in genes related to myocyte contraction and ventricular septum development in non-syndromic tetralogy of Fallot. Front Cardiovasc Med 2023; 10:1249605. [PMID: 37840956 PMCID: PMC10569225 DOI: 10.3389/fcvm.2023.1249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Eighty percent of patients with a diagnosis of tetralogy of Fallot (TOF) do not have a known genetic etiology or syndrome. We sought to identify key molecular pathways and biological processes that are enriched in non-syndromic TOF, the most common form of cyanotic congenital heart disease, rather than single driver genes to elucidate the pathogenesis of this disease. Methods We undertook exome sequencing of 362 probands with non-syndromic TOF and their parents within the Pediatric Cardiac Genomics Consortium (PCGC). We identified rare (minor allele frequency <1 × 10-4), de novo variants to ascertain pathways and processes affected in this population to better understand TOF pathogenesis. Pathways and biological processes enriched in the PCGC TOF cohort were compared to 317 controls without heart defects (and their parents) from the Simons Foundation Autism Research Initiative (SFARI). Results A total of 120 variants in 117 genes were identified as most likely to be deleterious, with CHD7, CLUH, UNC13C, and WASHC5 identified in two probands each. Gene ontology analyses of these variants using multiple bioinformatic tools demonstrated significant enrichment in processes including cell cycle progression, chromatin remodeling, myocyte contraction and calcium transport, and development of the ventricular septum and ventricle. There was also a significant enrichment of target genes of SOX9, which is critical in second heart field development and whose loss results in membranous ventricular septal defects related to disruption of the proximal outlet septum. None of these processes was significantly enriched in the SFARI control cohort. Conclusion Innate molecular defects in cardiac progenitor cells and genes related to their viability and contractile function appear central to non-syndromic TOF pathogenesis. Future research utilizing our results is likely to have significant implications in stratification of TOF patients and delivery of personalized clinical care.
Collapse
Affiliation(s)
- Drayton C. Harvey
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Riya Verma
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Sedaghat
- Department of Medicine, Rosalind Franklin University School of Medicine and Science, Chicago, IL, United States
| | - Brooke E. Hjelm
- Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah U. Morton
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Jon G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - S. Ram Kumar
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
35
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
36
|
Lam YY, Chan CH, Geng L, Wong N, Keung W, Cheung YF. APLNR marks a cardiac progenitor derived with human induced pluripotent stem cells. Heliyon 2023; 9:e18243. [PMID: 37539315 PMCID: PMC10395470 DOI: 10.1016/j.heliyon.2023.e18243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Cardiomyocytes can be readily derived from human induced pluripotent stem cell (hiPSC) lines, yet its efficacy varies across different batches of the same and different hiPSC lines. To unravel the inconsistencies of in vitro cardiac differentiation, we utilized single cell transcriptomics on hiPSCs undergoing cardiac differentiation and identified cardiac and extra-cardiac lineages throughout differentiation. We further identified APLNR as a surface marker for in vitro cardiac progenitors and immunomagnetically isolated them. Differentiation of isolated in vitro APLNR+ cardiac progenitors derived from multiple hiPSC lines resulted in predominantly cardiomyocytes accompanied with cardiac mesenchyme. Transcriptomic analysis of differentiating in vitro APLNR+ cardiac progenitors revealed transient expression of cardiac progenitor markers before further commitment into cardiomyocyte and cardiac mesenchyme. Analysis of in vivo human and mouse embryo single cell transcriptomic datasets have identified APLNR expression in early cardiac progenitors of multiple lineages. This platform enables generation of in vitro cardiac progenitors from multiple hiPSC lines without genetic manipulation, which has potential applications in studying cardiac development, disease modelling and cardiac regeneration.
Collapse
Affiliation(s)
- Yin-Yu Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Chun-Ho Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Lin Geng
- – Dr. Li Dak-Sum Research Centre, HKU-KI Collaboration in Regenerative Medicine, The University of Hong Kong, China
| | - Nicodemus Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Wendy Keung
- – Dr. Li Dak-Sum Research Centre, HKU-KI Collaboration in Regenerative Medicine, The University of Hong Kong, China
| | - Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
- – Dr. Li Dak-Sum Research Centre, HKU-KI Collaboration in Regenerative Medicine, The University of Hong Kong, China
| |
Collapse
|
37
|
Edwards W, Greco TM, Miner GE, Barker NK, Herring L, Cohen S, Cristea IM, Conlon FL. Quantitative proteomic profiling identifies global protein network dynamics in murine embryonic heart development. Dev Cell 2023; 58:1087-1105.e4. [PMID: 37148880 PMCID: PMC10330608 DOI: 10.1016/j.devcel.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Defining the mechanisms that govern heart development is essential for identifying the etiology of congenital heart disease. Here, quantitative proteomics was used to measure temporal changes in the proteome at critical stages of murine embryonic heart development. Global temporal profiles of the over 7,300 proteins uncovered signature cardiac protein interaction networks that linked protein dynamics with molecular pathways. Using this integrated dataset, we identified and demonstrated a functional role for the mevalonate pathway in regulating the cell cycle of embryonic cardiomyocytes. Overall, our proteomic datasets are a resource for studying events that regulate embryonic heart development and contribute to congenital heart disease.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregory E Miner
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K Barker
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA.
| |
Collapse
|
38
|
Tyser RCV. Formation of the Heart: Defining Cardiomyocyte Progenitors at Single-Cell Resolution. Curr Cardiol Rep 2023; 25:495-503. [PMID: 37119451 PMCID: PMC10188409 DOI: 10.1007/s11886-023-01880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE OF REVIEW Formation of the heart requires the coordinated addition of multiple progenitor sources which have undergone different pathways of specification and differentiation. In this review, I aim to put into context how recent studies defining cardiac progenitor heterogeneity build on our understanding of early heart development and also discuss the questions raised by this new insight. RECENT FINDINGS With the development of sequencing technologies and imaging approaches, it has been possible to define, at high temporal resolution, the molecular profile and anatomical location of cardiac progenitors at the single-cell level, during the formation of the mammalian heart. Given the recent progress in our understanding of early heart development and technical advances in high-resolution time-lapse imaging and lineage analysis, we are now in a position of great potential, allowing us to resolve heart formation at previously impossible levels of detail. Understanding how this essential organ forms not only addresses questions of fundamental biological significance but also provides a blueprint for strategies to both treat and model heart disease.
Collapse
Affiliation(s)
- Richard C V Tyser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| |
Collapse
|
39
|
Vitrinel B, Vogel C, Christiaen L. Ring Finger 149-Related Is an FGF/MAPK-Independent Regulator of Pharyngeal Muscle Fate Specification. Int J Mol Sci 2023; 24:8865. [PMID: 37240211 PMCID: PMC10219245 DOI: 10.3390/ijms24108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, cell-fate specification gives rise to dedicated lineages that underlie tissue formation. In olfactores, which comprise tunicates and vertebrates, the cardiopharyngeal field is formed by multipotent progenitors of both cardiac and branchiomeric muscles. The ascidian Ciona is a powerful model to study cardiopharyngeal fate specification with cellular resolution, as only two bilateral pairs of multipotent cardiopharyngeal progenitors give rise to the heart and to the pharyngeal muscles (also known as atrial siphon muscles, ASM). These progenitors are multilineage primed, in as much as they express a combination of early ASM- and heart-specific transcripts that become restricted to their corresponding precursors, following oriented and asymmetric divisions. Here, we identify the primed gene ring finger 149 related (Rnf149-r), which later becomes restricted to the heart progenitors, but appears to regulate pharyngeal muscle fate specification in the cardiopharyngeal lineage. CRISPR/Cas9-mediated loss of Rnf149-r function impairs atrial siphon muscle morphogenesis, and downregulates Tbx1/10 and Ebf, two key determinants of pharyngeal muscle fate, while upregulating heart-specific gene expression. These phenotypes are reminiscent of the loss of FGF/MAPK signaling in the cardiopharyngeal lineage, and an integrated analysis of lineage-specific bulk RNA-seq profiling of loss-of-function perturbations has identified a significant overlap between candidate FGF/MAPK and Rnf149-r target genes. However, functional interaction assays suggest that Rnf149-r does not directly modulate the activity of the FGF/MAPK/Ets1/2 pathway. Instead, we propose that Rnf149-r acts both in parallel to the FGF/MAPK signaling on shared targets, as well as on FGF/MAPK-independent targets through (a) separate pathway(s).
Collapse
Affiliation(s)
- Burcu Vitrinel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
- Michael Sars Centre, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| |
Collapse
|
40
|
Rawat H, Kornherr J, Zawada D, Bakhshiyeva S, Kupatt C, Laugwitz KL, Bähr A, Dorn T, Moretti A, Nowak-Imialek M. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models. Front Cell Dev Biol 2023; 11:1111684. [PMID: 37261075 PMCID: PMC10227949 DOI: 10.3389/fcell.2023.1111684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.
Collapse
Affiliation(s)
- Hilansi Rawat
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sara Bakhshiyeva
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
41
|
Lei YQ, Ye ZJ, Wei YL, Zhu LP, Zhuang XD, Wang XR, Cao H. Nono deficiency impedes the proliferation and adhesion of H9c2 cardiomyocytes through Pi3k/Akt signaling pathway. Sci Rep 2023; 13:7134. [PMID: 37130848 PMCID: PMC10154399 DOI: 10.1038/s41598-023-32572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect and the main noninfectious cause of death during the neonatal stage. The non-POU domain containing, octamer-binding gene, NONO, performs a variety of roles involved in DNA repair, RNA synthesis, transcriptional and post-transcriptional regulation. Currently, hemizygous loss-of-function mutation of NONO have been described as the genetic origin of CHD. However, essential effects of NONO during cardiac development have not been fully elucidated. In this study, we aim to understand role of Nono in cardiomyocytes during development by utilizing the CRISPR/Cas9 gene editing system to deplete Nono in the rat cardiomyocytes H9c2. Functional comparison of H9c2 control and knockout cells showed that Nono deficiency suppressed cell proliferation and adhesion. Furthermore, Nono depletion significantly affected the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis, resulting in H9c2 overall metabolic deficits. Mechanistically we demonstrated that the Nono knockout impeded the cardiomyocyte function by attenuating phosphatidyl inositol 3 kinase-serine/threonine kinase (Pi3k/Akt) signaling via the assay for transposase-accessible chromatin using sequencing in combination with RNA sequencing. From these results we propose a novel molecular mechanism of Nono to influence cardiomyocytes differentiation and proliferation during the development of embryonic heart. We conclude that NONO may represent an emerging possible biomarkers and targets for the diagnosis and treatment of human cardiac development defects.
Collapse
Affiliation(s)
- Yu-Qing Lei
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China
| | - Zhou-Jie Ye
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Ya-Lan Wei
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Li-Ping Zhu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Xu-Dong Zhuang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China
| | - Xin-Rui Wang
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China.
| | - Hua Cao
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350000, China.
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, 350000, China.
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350011, China.
| |
Collapse
|
42
|
Krup AL, Winchester SAB, Ranade SS, Agrawal A, Devine WP, Sinha T, Choudhary K, Dominguez MH, Thomas R, Black BL, Srivastava D, Bruneau BG. A Mesp1-dependent developmental breakpoint in transcriptional and epigenomic specification of early cardiac precursors. Development 2023; 150:dev201229. [PMID: 36994838 PMCID: PMC10259516 DOI: 10.1242/dev.201229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood owing, in part, to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single-cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1, a transiently expressed mesodermal transcription factor, is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mislocalized, prompting us to investigate the scope of the role of Mesp1 in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and crucial cardiac transcription factors, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single-cell chromatin accessibility analysis defined a Mesp1-dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1-independent aspects of early CPC specification and underscore a Mesp1-dependent regulatory landscape required for progression through cardiogenesis.
Collapse
Affiliation(s)
- Alexis Leigh Krup
- Biomedical Sciences Program, University of California, San Francisco, CA 94158, USA
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sarah A. B. Winchester
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sanjeev S. Ranade
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ayushi Agrawal
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - W. Patrick Devine
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Krishna Choudhary
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Martin H. Dominguez
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
- Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94158, USA
- Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reuben Thomas
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institutes of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA
- Institute of Human Genetics, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Parker LE, Kurzlechner LM, Landstrom AP. Induced Pluripotent Stem Cell-Based Modeling of Single-Ventricle Congenital Heart Diseases. Curr Cardiol Rep 2023; 25:295-305. [PMID: 36930454 PMCID: PMC10726018 DOI: 10.1007/s11886-023-01852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Congenital heart disease includes a wide variety of structural cardiac defects, the most severe of which are single ventricle defects (SVD). These patients suffer from significant morbidity and mortality; however, our understanding of the developmental etiology of these conditions is limited. Model organisms offer a window into normal and abnormal cardiogenesis yet often fail to recapitulate complex congenital heart defects seen in patients. The use of induced pluripotent stem cells (iPSCs) derived from patients with single-ventricle defects opens the door to studying SVD in patient-derived cardiomyocytes (iPSC-CMs) in a variety of different contexts, including organoids and chamber-specific cardiomyocytes. As the genetic and cellular causes of SVD are not well defined, patient-derived iPSC-CMs hold promise for uncovering mechanisms of disease development and serve as a platform for testing therapies. The purpose of this review is to highlight recent advances in iPSC-based models of SVD. RECENT FINDINGS Recent advances in patient-derived iPSC-CM differentiation, as well as the development of both chamber-specific and non-myocyte cardiac cell types, make it possible to model the complex genetic and molecular architecture involved in SVD development. Moreover, iPSC models have become increasingly complex with the generation of 3D organoids and engineered cardiac tissues which open the door to new mechanistic insight into SVD development. Finally, iPSC-CMs have been used in proof-of-concept studies that the molecular underpinnings of SVD may be targetable for future therapies. While each platform has its advantages and disadvantages, the use of patient-derived iPSC-CMs offers a window into patient-specific cardiogenesis and SVD development. Advancement in stem-cell based modeling of SVD promises to revolutionize our understanding of the developmental etiology of SVD and provides a tool for developing and testing new therapies.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Leonie M Kurzlechner
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke University Medical Center, Box 2652, Durham, NC, 27710, USA.
| |
Collapse
|
44
|
Raiola M, Sendra M, Torres M. Imaging Approaches and the Quantitative Analysis of Heart Development. J Cardiovasc Dev Dis 2023; 10:145. [PMID: 37103024 PMCID: PMC10144158 DOI: 10.3390/jcdd10040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Heart morphogenesis is a complex and dynamic process that has captivated researchers for almost a century. This process involves three main stages, during which the heart undergoes growth and folding on itself to form its common chambered shape. However, imaging heart development presents significant challenges due to the rapid and dynamic changes in heart morphology. Researchers have used different model organisms and developed various imaging techniques to obtain high-resolution images of heart development. Advanced imaging techniques have allowed the integration of multiscale live imaging approaches with genetic labeling, enabling the quantitative analysis of cardiac morphogenesis. Here, we discuss the various imaging techniques used to obtain high-resolution images of whole-heart development. We also review the mathematical approaches used to quantify cardiac morphogenesis from 3D and 3D+time images and to model its dynamics at the tissue and cellular levels.
Collapse
Affiliation(s)
- Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Departamento de Ingeniería Biomedica, ETSI de Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miquel Sendra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
45
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
46
|
Inácio JM, Nunes MM, Almeida M, Cristo F, Anjos R, Belo JA. Gene-Edited Human-Induced Pluripotent Stem Cell Lines to Elucidate DAND5 Function throughout Cardiac Differentiation. Cells 2023; 12:520. [PMID: 36831187 PMCID: PMC9954670 DOI: 10.3390/cells12040520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
(1) Background: The contribution of gene-specific variants for congenital heart disease, one of the most common congenital disabilities, is still far from our complete understanding. Here, we applied a disease model using human-induced pluripotent stem cells (hiPSCs) to evaluate the function of DAND5 on human cardiomyocyte (CM) differentiation and proliferation. (2) Methods: Taking advantage of our DAND5 patient-derived iPSC line, we used CRISPR-Cas9 gene-editing to generate a set of isogenic hiPSCs (DAND5-corrected and DAND5 full-mutant). The hiPSCs were differentiated into CMs, and RT-qPCR and immunofluorescence profiled the expression of cardiac markers. Cardiomyocyte proliferation was analysed by flow cytometry. Furthermore, we used a multi-electrode array (MEA) to study the functional electrophysiology of DAND5 hiPSC-CMs. (3) Results: The results indicated that hiPSC-CM proliferation is affected by DAND5 levels. Cardiomyocytes derived from a DAND5 full-mutant hiPSC line are more proliferative when compared with gene-corrected hiPSC-CMs. Moreover, parallel cardiac differentiations showed a differential cardiac gene expression profile, with upregulated cardiac progenitor markers in DAND5-KO hiPSC-CMs. Microelectrode array (MEA) measurements demonstrated that DAND5-KO hiPSC-CMs showed prolonged field potential duration and increased spontaneous beating rates. In addition, conduction velocity is reduced in the monolayers of hiPSC-CMs with full-mutant genotype. (4) Conclusions: The absence of DAND5 sustains the proliferation of hiPSC-CMs, which alters their electrophysiological maturation properties. These results using DAND5 hiPSC-CMs consolidate the findings of the in vitro and in vivo mouse models, now in a translational perspective. Altogether, the data will help elucidate the molecular mechanism underlying this human heart disease and potentiates new therapies for treating adult CHD.
Collapse
Affiliation(s)
- José M. Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Mafalda M. Nunes
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Micael Almeida
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Fernando Cristo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Rui Anjos
- Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, 1449-005 Lisboa, Portugal
| | - José A. Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| |
Collapse
|
47
|
Dominguez MH, Krup AL, Muncie JM, Bruneau BG. Graded mesoderm assembly governs cell fate and morphogenesis of the early mammalian heart. Cell 2023; 186:479-496.e23. [PMID: 36736300 PMCID: PMC10091855 DOI: 10.1016/j.cell.2023.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023]
Abstract
Using four-dimensional whole-embryo light sheet imaging with improved and accessible computational tools, we longitudinally reconstruct early murine cardiac development at single-cell resolution. Nascent mesoderm progenitors form opposing density and motility gradients, converting the temporal birth sequence of gastrulation into a spatial anterolateral-to-posteromedial arrangement. Migrating precardiac mesoderm does not strictly preserve cellular neighbor relationships, and spatial patterns only become solidified as the cardiac crescent emerges. Progenitors undergo a mesenchymal-to-epithelial transition, with a first heart field (FHF) ridge apposing a motile juxta-cardiac field (JCF). Anchored along the ridge, the FHF epithelium rotates the JCF forward to form the initial heart tube, along with push-pull morphodynamics of the second heart field. In Mesp1 mutants that fail to make a cardiac crescent, mesoderm remains highly motile but directionally incoherent, resulting in density gradient inversion. Our practicable live embryo imaging approach defines spatial origins and behaviors of cardiac progenitors and identifies their unanticipated morphological transitions.
Collapse
Affiliation(s)
- Martin H Dominguez
- Gladstone Institutes, San Francisco, CA, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexis Leigh Krup
- Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
48
|
Mesquita FCP, Morrissey J, Monnerat G, Domont GB, Nogueira FCS, Hochman-Mendez C. Decellularized Extracellular Matrix Powder Accelerates Metabolic Maturation at Early Stages of Cardiac Differentiation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells Tissues Organs 2023; 212:32-44. [PMID: 34933302 DOI: 10.1159/000521580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
During fetal development, cardiomyocytes switch from glycolysis to oxidative metabolism to sustain the energy requirements of functional cells. State-of-the-art cardiac differentiation protocols yield phenotypically immature cardiomyocytes, and common methods to improve metabolic maturation require multistep protocols to induce maturation only after cardiac specification is completed. Here, we describe a maturation method using ventricle-derived decellularized extracellular matrix (dECM) that promoted early-stage metabolic maturation of cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs). Chemically and architecturally preserved particles (45-500 μm) of pig ventricular dECM were added to hiPSCs at the start of differentiation. At the end of our maturation protocol (day 15 of cardiac differentiation), we observed an intimate interaction between cardiomyocytes and dECM particles without impairment of cardiac differentiation efficiency (approx. 70% of cTNT+). Compared with control cells (those cultured without pig dECM), 15-day-old dECM-treated cardiomyocytes demonstrated increased expression of markers related to cardiac metabolic maturation, MAPK1, FOXO1, and FOXO3, and a switch from ITGA6 (the immature integrin isoform) to ITGA3 and ITGA7 (those present in adult cardiomyocytes). Electrical parameters and responsiveness to dobutamine also improved in pig ventricular dECM-treated cells. Extending the culture time to 30 days, we observed a switch from glucose to fatty acid metabolism, indicated by decreased glucose uptake and increased fatty acid consumption in cells cultured with dECM. Together, these data suggest that dECM contains endogenous cues that enable metabolic maturation of hiPSC-CMs at early stages of cardiac differentiation.
Collapse
Affiliation(s)
| | | | - Gustavo Monnerat
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C S Nogueira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
49
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
50
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|