1
|
Barnas DM, Zeff M, Silbiger NJ. Submarine groundwater discharge drives both direct and indirect effects on organismal and community metabolism on coral reefs. Proc Biol Sci 2025; 292:20241554. [PMID: 39837511 PMCID: PMC11750405 DOI: 10.1098/rspb.2024.1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae, Halimeda opuntia and Valonia fastigiata, by 67 and 200%, respectively, and one coral, Porites rus, by 20%. Community metabolic rates showed altered community production, respiration and calcification between naturally high and low exposure areas mostly due to differences in community identity (i.e. species composition), rather than a direct effect of SGD on physiology. Production and calcification were 1.5 and 6.5 times lower in assemblages representing high SGD communities regardless of environment. However, the compounding effect of community identity and SGD exposure on respiration resulted in the low SGD community exhibiting the highest respiration rates under higher SGD exposure. By demonstrating SGD's role in altering community composition and metabolism, this research highlights the critical need to consider compounding environmental gradients (i.e. nutrients, salinity and temperature) in the broader context of ecosystem functions.
Collapse
Affiliation(s)
- Danielle M. Barnas
- University of Hawai'i at Mānoa, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Maya Zeff
- Department of Biology, California State University Northridge, Northridge, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Nyssa J. Silbiger
- Department of Biology, California State University Northridge, Northridge, CA, USA
- Department of Oceanography, Uehiro Center for the Advancement of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
2
|
Orr JA, Piggott JJ, Jackson AL, Jackson MC, Arnoldi JF. Variability of functional and biodiversity responses to perturbations is predictable and informative. Nat Commun 2024; 15:10352. [PMID: 39609377 PMCID: PMC11604961 DOI: 10.1038/s41467-024-54540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Perturbations such as climate change, invasive species and pollution, impact the functioning and diversity of ecosystems. However diversity has many meanings, and ecosystems provide a plethora of functions. Thus, on top of the various perturbations that global change represents, there are also many ways to measure a perturbation's ecological impact. This leads to an overwhelming response variability, which undermines hopes of prediction. Here, we show that this variability can instead provide insights into hidden features of functions and of species responses to perturbations. By analysing a dataset of global change experiments in microbial soil systems we first show that the variability of functional and diversity responses to perturbations is not random; functions that are mechanistically similar tend to respond coherently. Furthermore, diversity metrics and broad functions (e.g. total biomass) systematically respond in opposite ways. We then formalise these observations to demonstrate, using geometrical arguments, simulations, and a theory-driven analysis of the empirical data, that the response variability of ecosystems is not only predictable, but can also be used to access useful information about species contributions to functions and population-level responses to perturbations. Our research offers a powerful framework for understanding the complexity of ecological responses to global change.
Collapse
Affiliation(s)
- James A Orr
- Department of Biology, University of Oxford, Oxford, UK.
- School of the Environment, University of Queensland, Brisbane, QLD, Australia.
| | - Jeremy J Piggott
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Andrew L Jackson
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Jean-François Arnoldi
- Centre National de la Recherche Scientifique, Experimental and Theoretical Ecology Station, Moulis, France
| |
Collapse
|
3
|
Li Y, Schuldt A, Ebeling A, Eisenhauer N, Huang Y, Albert G, Albracht C, Amyntas A, Bonkowski M, Bruelheide H, Bröcher M, Chesters D, Chen J, Chen Y, Chen JT, Ciobanu M, Deng X, Fornoff F, Gleixner G, Guo L, Guo PF, Heintz-Buschart A, Klein AM, Lange M, Li S, Li Q, Li Y, Luo A, Meyer ST, von Oheimb G, Rutten G, Scholten T, Solbach MD, Staab M, Wang MQ, Zhang N, Zhu CD, Schmid B, Ma K, Liu X. Plant diversity enhances ecosystem multifunctionality via multitrophic diversity. Nat Ecol Evol 2024; 8:2037-2047. [PMID: 39209981 DOI: 10.1038/s41559-024-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments-one representing temperate grasslands and the other subtropical forests-we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, University of Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Georg Albert
- Forest Nature Conservation, University of Göttingen, Göttingen, Germany
| | - Cynthia Albracht
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | | | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Ting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Romania
| | - Xianglu Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Felix Fornoff
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Gerd Gleixner
- Department of Biogeochemical Processes (BGP), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Liangdong Guo
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Guo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Markus Lange
- Department of Biogeochemical Processes (BGP), Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yingbin Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sebastian T Meyer
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany
| | - Gemma Rutten
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | | | - Michael Staab
- Ecological Networks, Technical University of Darmstadt, Darmstadt, Germany
| | - Ming-Qiang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation, Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Wallon S, Rigal F, Melo CD, Elias RB, Borges PAV. Unveiling Arthropod Responses to Climate Change: A Functional Trait Analysis in Intensive Pastures. INSECTS 2024; 15:677. [PMID: 39336645 PMCID: PMC11432249 DOI: 10.3390/insects15090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of ground dwelling arthropods were analyzed along a small elevation gradient (180-400 m) during winter and summer. Key findings include lower abundances of herbivores, coprophagous organisms, detritivores, and fungivores at high elevations in summer, with predators showing a peak at middle elevations. Larger-bodied arthropods were more prevalent at higher elevations during winter, while beetles exhibited distinct ecological traits, with larger species peaking at middle elevations. The OTCs significantly affected the arthropod communities, increasing the abundance of herbivores, predators, coprophagous organisms, and fungivores during winter by alleviating environmental stressors. Notably, iridescent beetles decreased with elevation and were more common inside OTCs at lower elevations, suggesting a thermoregulatory advantage. The study underscores the importance of considering functional traits in assessing the impacts of climate change on arthropod communities and highlights the complex, species-specific nature of their responses to environmental changes.
Collapse
Affiliation(s)
- Sophie Wallon
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
| | - François Rigal
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- Institut des Sciences Analytiques et de Physico Chimie Pour L'environnement et les Materiaux UMR 5254, Comité National de la Recherche Scientifque-University de Pau et des Pays de l'Adour-E2S UPPA, 64053 Pau, France
| | - Catarina D Melo
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- CFE-Centre for Functional Ecology, Universidade de Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui B Elias
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
| | - Paulo A V Borges
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- IUCN SSC Atlantic Islands Invertebrate Specialist Group, 9700-042 Angra do Heroísmo, Portugal
| |
Collapse
|
5
|
Li Z, Wei J, Zhou X, Tian Q, He W, Cao X. Dynamic restoration mechanism of plant community in the burned area of northeastern margin of Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1368814. [PMID: 39119492 PMCID: PMC11306190 DOI: 10.3389/fpls.2024.1368814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Forest fires play a pivotal role in influencing ecosystem evolution, exerting a profound impact on plant diversity and community stability. Understanding post-fire recovery strategies holds significant scientific importance for the ecological succession and restoration of forest ecosystems. This study utilized Partial Least Squares Path Modeling (PLS-PM) to investigate dynamic relationships among plant species diversity, phylogenetic diversity, soil properties, and community stability during various recovery stages (5-year, 15-year, and 23-year) following wildfires on the northeastern margin of the Qinghai-Tibet Plateau. The findings revealed: (1) Over time, species richness significantly decreased (p< 0.05 or p< 0.01), while species diversity and dominance increased, resulting in uniform species distribution. Community stability progressively improved, with increased species compositional similarity. (2) Throughout succession, phylogenetic diversity (PD) significantly decreased (p< 0.01), accompanied by rising Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD). Net Relatedness Index (NRI) shifted from positive to negative, indicating an increasing aggregation and dominance of plants with similar evolutionary traits in burned areas. Early succession witnessed simultaneous environmental filtering and competitive exclusion, shifting predominantly to competitive exclusion in later stages. (3) PLS-PM revealed that in the early recovery stage, soil properties mainly affected community stability, while species diversity metamorphosed into the primary factor in the mid-to-late stages. In summary, this study showed that plant diversity and phylogenetic variation were successful in revealing changes in community structure during the succession process. Soil characteristics functioned as selective barriers for plant communities during succession, and community stability underwent a multi-faceted and dynamic process. The soil-plant dynamic feedback continuously enhanced soil conditions and community vegetation structure thereby augmenting stability. Post-fire vegetation gradually transitioned towards the original native state, demonstrating inherent ecological self-recovery capabilities in the absence of secondary disturbances.
Collapse
Affiliation(s)
- Zizhen Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaolei Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Qing Tian
- Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wanpeng He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xueping Cao
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Maestre FT, Biancari L, Chen N, Corrochano-Monsalve M, Jenerette GD, Nelson C, Shilula KN, Shpilkina Y. Research needs on the biodiversity-ecosystem functioning relationship in drylands. NPJ BIODIVERSITY 2024; 3:12. [PMID: 39242863 PMCID: PMC11332164 DOI: 10.1038/s44185-024-00046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/05/2024] [Indexed: 09/09/2024]
Abstract
Research carried out in drylands over the last decade has provided major insights on the biodiversity-ecosystem functioning relationship (BEFr) and about how biodiversity interacts with other important factors, such as climate and soil properties, to determine ecosystem functioning and services. Despite this, there are important gaps in our understanding of the BEFr in drylands that should be addressed by future research. In this perspective we highlight some of these gaps, which include: 1) the need to study the BEFr in bare soils devoid of perennial vascular vegetation and biocrusts, a major feature of dryland ecosystems, 2) evaluating how intra-specific trait variability, a key but understudied facet of functional diversity, modulate the BEFr, 3) addressing the influence of biotic interactions on the BEFr, including plant-animal interactions and those between microorganisms associated to biocrusts, 4) studying how differences in species-area relationships and beta diversity are associated with ecosystem functioning, and 5) considering the role of temporal variability and human activities, both present and past, particularly those linked to land use (e.g., grazing) and urbanization. Tackling these gaps will not only advance our comprehension of the BEFr but will also bolster the effectiveness of management and ecological restoration strategies, crucial for safeguarding dryland ecosystems and the livelihoods of their inhabitants.
Collapse
Affiliation(s)
- Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Lucio Biancari
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
- Cátedra de Ecología, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Ning Chen
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, No.222, Tianshui South Road, Lanzhou, Gansu, 730000, China
| | - Mario Corrochano-Monsalve
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- Departamento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - G Darrel Jenerette
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Corey Nelson
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| | - Kaarina N Shilula
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| | - Yelyzaveta Shpilkina
- Instituto Multidisciplinar Para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain
| |
Collapse
|
7
|
Luan J, Li S, Liu S, Wang Y, Ding L, Lu H, Chen L, Zhang J, Zhou W, Han S, Zhang Y, Hättenschwiler S. Biodiversity mitigates drought effects in the decomposer system across biomes. Proc Natl Acad Sci U S A 2024; 121:e2313334121. [PMID: 38498717 PMCID: PMC10990129 DOI: 10.1073/pnas.2313334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.
Collapse
Affiliation(s)
- Junwei Luan
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya572022, People’s Republic of China
- Institute of Resources and Environment, Key Laboratory of Bamboo and Rattan Science and Technology of State Forestry and Grassland Administration, International Centre for Bamboo and Rattan, Beijing100102, People’s Republic of China
| | - Siyu Li
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya572022, People’s Republic of China
- Institute of Resources and Environment, Key Laboratory of Bamboo and Rattan Science and Technology of State Forestry and Grassland Administration, International Centre for Bamboo and Rattan, Beijing100102, People’s Republic of China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing100091, People’s Republic of China
| | - Yi Wang
- Institute of Resources and Environment, Key Laboratory of Bamboo and Rattan Science and Technology of State Forestry and Grassland Administration, International Centre for Bamboo and Rattan, Beijing100102, People’s Republic of China
| | - Liping Ding
- Institute of Resources and Environment, Key Laboratory of Bamboo and Rattan Science and Technology of State Forestry and Grassland Administration, International Centre for Bamboo and Rattan, Beijing100102, People’s Republic of China
| | - Haibo Lu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing100091, People’s Republic of China
- Department of Geography, Faculty of Arts and Sciences and Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai519087, People’s Republic of China
| | - Lin Chen
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang532600, People’s Republic of China
| | - Junhui Zhang
- School of Life Sciences, Qufu Normal University, Qufu273165, People’s Republic of China
| | - Wenjun Zhou
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan666303, People’s Republic of China
| | - Shijie Han
- School of Life Sciences, Qufu Normal University, Qufu273165, People’s Republic of China
| | - Yiping Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan666303, People’s Republic of China
| | - Stephan Hättenschwiler
- Centre d’Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier34293, France
| |
Collapse
|
8
|
Boron V, Deere NJ, Hyde M, Bardales R, Stasiukynas D, Payán E. Habitat modification destabilizes spatial associations and persistence of Neotropical carnivores. Curr Biol 2023; 33:3722-3731.e4. [PMID: 37625415 DOI: 10.1016/j.cub.2023.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Spatial relationships between sympatric species underpin biotic interactions, structure ecological communities, and maintain ecosystem health. However, the resilience of interspecific spatial associations to human habitat modification remains largely unknown, particularly in tropical regions where anthropogenic impacts are often greatest. We applied multi-state multi-species occurrence models to camera trap data across nine tropical landscapes in Colombia to understand how prominent threats to forest ecosystems influence Neotropical carnivore occurrence and interspecific spatial associations, with implications for biotic interactions. We show that carnivore occurrence represents a delicate balance between local environmental conditions and interspecific interactions that can be compromised in areas of extensive habitat modification. The stability of carnivore spatial associations depends on forest cover to mediate antagonistic encounters with apex predators and structurally intact forests to facilitate coexistence between competing mesocarnivores. Notably, we demonstrate that jaguars play an irreplaceable role in spatially structuring mesocarnivore communities, providing novel evidence on their role as keystone species. With increasing global change, conserving both the extent and quality of tropical forests is imperative to support carnivores and preserve the spatial associations that underpin ecosystem stability and resilience.
Collapse
Affiliation(s)
- Valeria Boron
- Panthera, 8W 40th Street, New York 10018, USA; World Wide Fund for Nature (WWF), The Living Planet Centre, Rufford House, Brewery Road, Woking, Surrey GU21 4LL, UK.
| | - Nicolas J Deere
- Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK.
| | - Matthew Hyde
- Panthera, 8W 40th Street, New York 10018, USA; Graduate Degree Program in Ecology, Center for Human-Carnivore Coexistence, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Esteban Payán
- Panthera, 8W 40th Street, New York 10018, USA; Wildlife Conservation Society, Bronx, New York 10460, USA
| |
Collapse
|
9
|
Roswell M, Harrison T, Genung MA. Biodiversity-ecosystem function relationships change in sign and magnitude across the Hill diversity spectrum. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220186. [PMID: 37246374 PMCID: PMC10225862 DOI: 10.1098/rstb.2022.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/07/2023] [Indexed: 05/30/2023] Open
Abstract
Motivated by accelerating anthropogenic extinctions, decades of biodiversity-ecosystem function (BEF) experiments show that ecosystem function declines with species loss from local communities. Yet, at the local scale, changes in species' total and relative abundances are more common than species loss. The consensus best biodiversity measures are Hill numbers, which use a scaling parameter, ℓ, to emphasize rarer versus more common species. Shifting that emphasis captures distinct, function-relevant biodiversity gradients beyond species richness. Here, we hypothesized that Hill numbers that emphasize rare species more than richness does may distinguish large, complex and presumably higher-functioning assemblages from smaller and simpler ones. In this study, we tested which values of ℓ produce the strongest BEF relationships in community datasets of ecosystem functions provided by wild, free-living organisms. We found that ℓ values that emphasized rare species more than richness does most often correlated most strongly with ecosystem functions. As emphasis shifted to more common species, BEF correlations were often weak and/or negative. We argue that unconventional Hill diversities that shift emphasis towards rarer species may be useful for describing biodiversity change, and that employing a wide spectrum of Hill numbers can clarify mechanisms underlying BEF relationships. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Michael Roswell
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Tina Harrison
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Mark A. Genung
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
10
|
Marjakangas EL, Bosco L, Versluijs M, Xu Y, Santangeli A, Holopainen S, Mäkeläinen S, Herrando S, Keller V, Voříšek P, Brotons L, Johnston A, Princé K, Willis S, Aghababyan K, Ajder V, Balmer D, Bino T, Boyla K, Chodkiewicz T, del Moral J, Mazal V, Ferrarini A, Godinho C, Gustin M, Kalyakin M, Knaus P, Kuzmenko T, Lindström Å, Maxhuni Q, Molina B, Nagy K, Radišić D, Rajkov S, Rajković D, Raudoniki L, Sjeničić J, Stoychev S, Szép T, Teufelbauer N, Ursul S, van Turnhout C, Velevski M, Vikstrøm T, Wilk T, Voltzit O, Øien I, Sudfeldt C, Gerlach B, Lehikoinen A. Ecological barriers mediate spatiotemporal shifts of bird communities at a continental scale. Proc Natl Acad Sci U S A 2023; 120:e2213330120. [PMID: 37252949 PMCID: PMC10266007 DOI: 10.1073/pnas.2213330120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Species' range shifts and local extinctions caused by climate change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, and elevation, can influence a community's ability to shift in response to climate change. Yet, ecological barriers are rarely considered in climate change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980s and their compositional best match in the 2010s and modeled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coastlines and elevation having the strongest influence. Our results underscore the relevance of combining ecological barriers and community shift projections for identifying the forces hindering community adjustments under global change. Notably, due to (macro)ecological barriers, communities are not able to track their climatic niches, which may lead to drastic changes, and potential losses, in community compositions in the future.
Collapse
Affiliation(s)
| | - Laura Bosco
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
| | - Martijn Versluijs
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
| | - Yanjie Xu
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
| | - Andrea Santangeli
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
- Population Ecology Group, Institute for Mediterranean Studies, Consell Superior d’Investigacions Científiques and the University of the Balearic Islands, 07190Esporles, Spain
| | - Sari Holopainen
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
| | - Sanna Mäkeläinen
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
| | - Sergi Herrando
- European Bird Census Council, Beek-Ubbergen6573, Netherlands
- Catalan Ornithological Institute, Natural History Museum of Barcelona, 08019Barcelona, Catalonia, Spain
- Centre for Ecological Research and Forestry Applications, 08193Cerdanyola del Vallés, Spain
| | - Verena Keller
- European Bird Census Council, Beek-Ubbergen6573, Netherlands
- Swiss Ornithological Institute, 6204Sempach, Switzerland
| | - Petr Voříšek
- European Bird Census Council, Beek-Ubbergen6573, Netherlands
| | - Lluís Brotons
- Spanish National Research Council, 28006Madrid, Spain
- Forest Science and Technology Centre of Catalonia, 25280Solsona, Spain
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St AndrewsKY16 9AJ, United Kingdom
| | - Alison Johnston
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St AndrewsKY16 9AJ, United Kingdom
| | - Karine Princé
- Muséum national d’histoire naturelle, 7204 Centre d’Ecologie et des Sciences de la Conservation, 75005Paris, France
| | - Stephen G. Willis
- Department of Biosciences, Conservation Ecology Group, Durham University, DurhamDH1 3LE, United Kingdom
| | | | - Vitalie Ajder
- Society for Birds and Nature Protection, LeovaMD-6321, Republic of Moldova
- Institute of Ecology and Geography, Moldova State Universit, MD-2009Chișinău, Republic of Moldova
| | - Dawn E. Balmer
- British Trust for Ornithology, Thetford, NorfolkIP24 2PU, United Kingdom
| | - Taulant Bino
- Albanian Ornithological Society, Tirana1004, Albania
| | | | - Tomasz Chodkiewicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa00-679, Poland
- Polish Society for the Protection of Birds, 05-270Marki, Poland
| | | | - Vlatka Dumbović Mazal
- Institute for Environment and Nature, Ministry of Economy and Sustainable Development, 10000Zagreb, Croatia
| | | | - Carlos Godinho
- Mediterranean Institute for Agriculture, Environment and Development, Labor Laboratory of Ornithology, Universidade de Évora, Pólo da Mitra, 7002-554Évora, Portugal
| | | | | | - Peter Knaus
- Swiss Ornithological Institute, 6204Sempach, Switzerland
| | - Tatiana Kuzmenko
- Swiss Ornithological Institute, 6204Sempach, Switzerland
- Poliskiy Nature Reserve, 11196Ovruch, Ukraine
| | - Åke Lindström
- Department of Biology, Biodiversity Unit, Lund University, LundSE-22362, Sweden
| | - Qenan Maxhuni
- University of Gjakova “Fehmi Agani”, 50 000Gjakova, Kosova
| | - Blas Molina
- Sociedad Española de Ornitología/BirdLife, 28053Madrid, Spain
| | - Károly Nagy
- Magyar Madártani és Természetvédelmi Egyesület BirdLife Hungary, 1536Budapest, Hungary
| | - Dimitrije Radišić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000Novi Sad, Serbia
| | - Saša Rajkov
- Center for Biodiversity Research, 21000Novi Sad, Serbia
| | | | | | - Jovica Sjeničić
- Society for Research and Protection of Biodiversity, 78 000Banja Luka, Bosnia and Herzegovina
| | - Stoycho Stoychev
- Bulgarian Society for the Protection of Birds/BirdLife in Bulgaria, Sofia1111, Bulgaria
| | - Tibor Szép
- University of Nyíregyháza, Nyíregyháza4400, Hungary
| | | | - Silvia Ursul
- Society for Birds and Nature Protection, LeovaMD-6321, Republic of Moldova
| | - Chris A. M. van Turnhout
- Sovon Dutch Centre for Field Ornithology, 6503 GANijmegen, The Netherlands
- Department of Animal Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6500 GLNijmegen, The Netherlands
| | | | - Thomas Vikstrøm
- Zoological Museum of Lomonosov, Moscow State University, Moscow125009, Russia
| | - Tomasz Wilk
- Polish Society for the Protection of Birds, 05-270Marki, Poland
| | - Olga Voltzit
- Dansk Ornitologisk Forening - BirdLife Denmark, 1620Copenhagen V, Denmark
| | | | - Christoph Sudfeldt
- Dachverband Deutscher Avifaunisten - Federation of German Avifaunists, D-48157, Münster, Germany
| | - Bettina Gerlach
- Dachverband Deutscher Avifaunisten - Federation of German Avifaunists, D-48157, Münster, Germany
| | - Aleksi Lehikoinen
- Finnish Museum of Natural History, University of Helsinki, 00014Helsinki, Finland
- European Bird Census Council, Beek-Ubbergen6573, Netherlands
| |
Collapse
|
11
|
Nie S, Zheng J, Luo M, Loreau M, Gravel D, Wang S. Will a large complex system be productive? Ecol Lett 2023. [PMID: 37190868 DOI: 10.1111/ele.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
While the relationship between food web complexity and stability has been well documented, how complexity affects productivity remains elusive. In this study, we combine food web theory and a data set of 149 aquatic food webs to investigate the effect of complexity (i.e. species richness, connectance, and average interaction strength) on ecosystem productivity. We find that more complex ecosystems tend to be more productive, although different facets of complexity have contrasting effects. A higher species richness and/or average interaction strength increases productivity, whereas a higher connectance often decreases it. These patterns hold not only between realized complexity and productivity, but also characterize responses of productivity to simulated declines of complexity. Our model also predicts a negative association between productivity and stability along gradients of complexity. Empirical analyses support our predictions on positive complexity-productivity relationships and negative productivity-stability relationships. Our study provides a step forward towards reconciling ecosystem complexity, productivity and stability.
Collapse
Affiliation(s)
- Shipeng Nie
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Junjie Zheng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Institute of S&T Foresight and Statistics, Chinese Academy of Science and Technology for Development, Beijing, China
| | - Mingyu Luo
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
12
|
Dee LE, Ferraro PJ, Severen CN, Kimmel KA, Borer ET, Byrnes JEK, Clark AT, Hautier Y, Hector A, Raynaud X, Reich PB, Wright AJ, Arnillas CA, Davies KF, MacDougall A, Mori AS, Smith MD, Adler PB, Bakker JD, Brauman KA, Cowles J, Komatsu K, Knops JMH, McCulley RL, Moore JL, Morgan JW, Ohlert T, Power SA, Sullivan LL, Stevens C, Loreau M. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat Commun 2023; 14:2607. [PMID: 37147282 PMCID: PMC10163230 DOI: 10.1038/s41467-023-37194-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/03/2023] [Indexed: 05/07/2023] Open
Abstract
Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.
Collapse
Affiliation(s)
- Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Paul J Ferraro
- Department of Environmental Health and Engineering, Bloomberg School of Public Health & Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Carey Business School, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Kaitlin A Kimmel
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, 100 Morissey Blvd, Boston, MA, 02125, USA
| | - Adam Thomas Clark
- Institute of Biology, University of Graz, Holteigasse 6, 8010, Graz, Austria
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Xavier Raynaud
- Sorbonne Université, Université Paris Cité, UPEC, IRD, CNRS, INRA, Institute of Ecology and Environmental Sciences, iEES Paris, Paris, France
| | - Peter B Reich
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Carlos A Arnillas
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Toronto, 1265 Military Trail, ON, M1C 1A4, Canada
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, WA, 98195-4115, USA
| | - Kate A Brauman
- Global Water Security Center, The University of Alabama, Box 870206, Tuscaloosa, AL, 35487, US
| | - Jane Cowles
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Kimberly Komatsu
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xián Jiaotong-Liverpool University, Suzhou, China
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - John W Morgan
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Lauren L Sullivan
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, 09200, Moulis, France
| |
Collapse
|
13
|
Le Provost G, Schenk NV, Penone C, Thiele J, Westphal C, Allan E, Ayasse M, Blüthgen N, Boeddinghaus RS, Boesing AL, Bolliger R, Busch V, Fischer M, Gossner MM, Hölzel N, Jung K, Kandeler E, Klaus VH, Kleinebecker T, Leimer S, Marhan S, Morris K, Müller S, Neff F, Neyret M, Oelmann Y, Perović DJ, Peter S, Prati D, Rillig MC, Saiz H, Schäfer D, Scherer-Lorenzen M, Schloter M, Schöning I, Schrumpf M, Steckel J, Steffan-Dewenter I, Tschapka M, Vogt J, Weiner C, Weisser W, Wells K, Werner M, Wilcke W, Manning P. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat Ecol Evol 2023; 7:236-249. [PMID: 36376602 DOI: 10.1038/s41559-022-01918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.
Collapse
Affiliation(s)
- Gaëtane Le Provost
- Senckenberg Biodiversity and Climate Research Centre (SBIK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany.
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave d'Ornon, France.
| | - Noëlle V Schenk
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Caterina Penone
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jan Thiele
- Thünen Institute of Biodiversity, Braunschweig, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservations Genomics, University of Ulm, Ulm, Germany
| | - Nico Blüthgen
- Ecological Networks, Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Runa S Boeddinghaus
- Institute of Soil Science and Land Evalution, Department of Soil Biology, University of Hohenheim, Stuttgart, Germany
- Center for Agricultural Technology Augustenberg (LTZ), Section Agroecology, Karlsruhe, Germany
| | - Andrea Larissa Boesing
- Senckenberg Biodiversity and Climate Research Centre (SBIK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | - Ralph Bolliger
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Verena Busch
- Department of Landscape Ecology and Resources Management, Justus Liebig University Giessen, Gießen, Germany
| | - Markus Fischer
- Senckenberg Biodiversity and Climate Research Centre (SBIK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Martin M Gossner
- Forest Entomology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Kirsten Jung
- Institute of Evolutionary Ecology and Conservations Genomics, University of Ulm, Ulm, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evalution, Department of Soil Biology, University of Hohenheim, Stuttgart, Germany
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Till Kleinebecker
- Department of Landscape Ecology and Resources Management, Justus Liebig University Giessen, Gießen, Germany
| | - Sophia Leimer
- Research Data Services, University Library, University of Duisburg-Essen, Duisburg, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evalution, Department of Soil Biology, University of Hohenheim, Stuttgart, Germany
| | - Kathryn Morris
- Department of Biology, Xavier University, Cincinnati, OH, USA
| | - Sandra Müller
- University of Freiburg, Faculty of Biology, Geobotany, Freiburg, Germany
| | - Felix Neff
- Forest Entomology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
- Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Margot Neyret
- Senckenberg Biodiversity and Climate Research Centre (SBIK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
| | | | - David J Perović
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Sophie Peter
- Senckenberg Biodiversity and Climate Research Centre (SBIK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- ISOE-Institute for Social-Ecological Research, Biodiversity and People, Frankfurt am Main, Germany
| | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Hugo Saiz
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain
| | - Deborah Schäfer
- Botanical Garden of the University of Bern, Bern, Switzerland
| | | | - Michael Schloter
- Helmholtz Munich, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany
- Chair for Soil Science, Technical University of Munich, Freising, Germany
| | - Ingo Schöning
- Max-Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Juliane Steckel
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservations Genomics, University of Ulm, Ulm, Germany
| | - Juliane Vogt
- Natura 2000-Station 'Unstrut-Hainich/Eichsfeld', Wildtierland Hainich gGmbH, Hörselberg-Hainich, Germany
| | - Christiane Weiner
- Ecological Networks, Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Wolfgang Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| | - Konstans Wells
- Department of Biosciences, Swansea University, Swansea, UK
| | - Michael Werner
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre (SBIK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
O'Brien DA, Gal G, Thackeray SJ, Matsuzaki SS, Clements CF. Planktonic functional diversity changes in synchrony with lake ecosystem state. GLOBAL CHANGE BIOLOGY 2023; 29:686-701. [PMID: 36370051 PMCID: PMC10100413 DOI: 10.1111/gcb.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Managing ecosystems to effectively preserve function and services requires reliable tools that can infer changes in the stability and dynamics of a system. Conceptually, functional diversity (FD) appears as a sensitive and viable monitoring metric stemming from suggestions that FD is a universally important measure of biodiversity and has a mechanistic influence on ecological processes. It is however unclear whether changes in FD consistently occur prior to state responses or vice versa, with no current work on the temporal relationship between FD and state to support a transition towards trait-based indicators. There is consequently a knowledge gap regarding when functioning changes relative to biodiversity change and where FD change falls in that sequence. We therefore examine the lagged relationship between planktonic FD and abundance-based metrics of system state (e.g. biomass) across five highly monitored lake communities using both correlation and cutting edge non-linear empirical dynamic modelling approaches. Overall, phytoplankton and zooplankton FD display synchrony with lake state but each lake is idiosyncratic in the strength of relationship. It is therefore unlikely that changes in plankton FD are identifiable before changes in more easily collected abundance metrics. These results highlight the power of empirical dynamic modelling in disentangling time lagged relationships in complex multivariate ecosystems, but suggest that FD cannot be generically viable as an early indicator. Individual lakes therefore require consideration of their specific context and any interpretation of FD across systems requires caution. However, FD still retains value as an alternative state measure or a trait representation of biodiversity when considered at the system level.
Collapse
Affiliation(s)
| | - Gideon Gal
- Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological ResearchMigdalIsrael
| | | | | | | |
Collapse
|
15
|
Wood-pasture abandonment changes bird functional diversity and composition with potential drawbacks to pest regulation. COMMUNITY ECOL 2023. [DOI: 10.1007/s42974-022-00129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
The relationship between the functional diversity, functional redundancy and community stability in mountain rangelands. COMMUNITY ECOL 2022. [DOI: 10.1007/s42974-022-00128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Vagnon C, Rohr RP, Bersier LF, Cattanéo F, Guillard J, Frossard V. Combining food web theory and population dynamics to assess the impact of invasive species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.913954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The impacts of invasive species on resident communities are driven by a tangle of ecological interactions difficult to quantify empirically. Combining a niche model with a population dynamic model, both allometrically parametrized, may represent a consistent framework to investigate invasive species impacts on resident communities in a food web context when empirical data are scarce. We used this framework to assess the ecological consequences of an invasive apex predator (Silurus glanis) in peri-Alpine lake food webs. Both increases and decreases of resident species abundances were highlighted and differed when accounting for different S. glanis body sizes. Complementarily, the prominence of indirect effects, such as trophic cascades, suggested that common approaches may only capture a restricted fraction of invasion consequences through direct predation or competition. By leveraging widely available biodiversity data, our approach may provide relevant insights for a comprehensive assessment and management of invasive species impacts on aquatic ecosystems.
Collapse
|
18
|
Hamza F, Kahli A, Almalki M, Chokri MA. Distance from industrial complex, urban area cover, and habitat structure combine to predict richness of breeding birds in southeastern Tunisian oases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33191-33204. [PMID: 35022972 DOI: 10.1007/s11356-021-18051-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The rapid expansion of urban areas and industrial units has put much strain on natural environments and biodiversity. Quantifying the impact of human pressures on avian biodiversity is vital for the identification, preservation, and restoration of important areas. Here, data collected in 11 coastal Mediterranean oases were used to assess the impact of urban and industrial landscapes and habitat structure on the richness of breeding birds. Results of generalized linear mixed models analyses showed a quadratic effect of distance to the industrial complex on breeding bird richness, being optimal (6.41 ± 0.89) at 24 km. The results also showed a negative effect of the cover of urban areas. Our analysis also emphasized the importance of southern oases for breeding bird richness mostly because of their remoteness from the industrial complex and their significant coverage of fruit trees and natural ground cover. Variation partitioning analysis revealed that the shared fraction of industrial landscape, oasis habitat structure, and space was relevant in explaining the richness of breeding birds. It is highly recommended to (i) uninstall the Gabès industrial complex from this Mediterranean area, (ii) enhance the habitat quality in southern oases by planting other fruit trees, such as pomegranate and olive, and (iii) pursue scientific research in these Mediterranean coastal oases, as they offer a good opportunity for assessment and improvement of knowledge on both the impact of industrialization on quality of habitats and the richness of bird species.
Collapse
Affiliation(s)
- Foued Hamza
- Département Des Sciences de La Vie, Faculté Des Sciences de Gabés, Université de Gabés, 6072, Zrig, Gabés, Tunisia.
- Association Sauvegarde Des Zones Humides du Sud Tunisien, BP 86, Avenue Tayeb Mhiri, 6001, ,Gabés, Tunisia.
| | - Asma Kahli
- Laboratoire Écologie Fonctionnelle Et Évolutive, University of Chadli Bendedid, El Tarf, Algeria
| | - Mohammed Almalki
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed-Ali Chokri
- Département Des Sciences de La Vie, Faculté Des Sciences de Gabés, Université de Gabés, 6072, Zrig, Gabés, Tunisia
| |
Collapse
|
19
|
Harrison T, Winfree R, Genung M. Price equations for understanding the response of ecosystem function to community change. Am Nat 2022; 200:181-192. [DOI: 10.1086/720284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Li Y, Ma S, Fu C, Li J, Tian Y, Sun P, Ju P, Liu S. Seasonal differences in the relationship between biodiversity and ecosystem functioning in an overexploited shelf sea ecosystem. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yuru Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shuyang Ma
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Caihong Fu
- Pacific Biological Station, Fisheries and Oceans Canada Nanaimo British Columbia Canada
| | - Jianchao Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Yongjun Tian
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Pilot National Laboratory for Marine Science and Technology Qingdao China
| | - Peng Sun
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Peilong Ju
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shude Liu
- Shandong Hydrobios Resources Conservation and Management Center Yantai China
| |
Collapse
|
21
|
DeCock E, Moeneclaey I, Schelfhout S, Vanhellemont M, De Schrijver A, Baeten L. Ecosystem multifunctionality lowers as grasslands under restoration approach their target habitat type. Restor Ecol 2022. [DOI: 10.1111/rec.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Eva DeCock
- Forest & Nature Lab, Department Environment Faculty of Bioscience Engineering, Ghent University Gontrode (Melle) Belgium
| | - Iris Moeneclaey
- Forest & Nature Lab, Department Environment Faculty of Bioscience Engineering, Ghent University Gontrode (Melle) Belgium
| | - Stephanie Schelfhout
- Forest & Nature Lab, Department Environment Faculty of Bioscience Engineering, Ghent University Gontrode (Melle) Belgium
| | - Margot Vanhellemont
- Research Centre AgroFoodNature HOGENT University of Applied Sciences and Arts Melle Belgium
| | - An De Schrijver
- Research Centre AgroFoodNature HOGENT University of Applied Sciences and Arts Melle Belgium
| | - Lander Baeten
- Forest & Nature Lab, Department Environment Faculty of Bioscience Engineering, Ghent University Gontrode (Melle) Belgium
| |
Collapse
|
22
|
Weeks BC, Naeem S, Lasky JR, Tobias JA. Diversity and extinction risk are inversely related at a global scale. Ecol Lett 2022; 25:697-707. [PMID: 35199919 PMCID: PMC9303290 DOI: 10.1111/ele.13860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
Increases in biodiversity often lead to greater, and less variable, levels of ecosystem functioning. However, whether species are less likely to go extinct in more diverse ecosystems is unclear. We use comprehensive estimates of avian taxonomic, phylogenetic and functional diversity to characterise the global relationship between multiple dimensions of diversity and extinction risk in birds, focusing on contemporary threat status and latent extinction risk. We find that more diverse assemblages have lower mean IUCN threat status despite being composed of species with attributes that make them more vulnerable to extinction, such as large body size or small range size. Indeed, the reduction in current threat status associated with greater diversity far outweighs the increased risk associated with the accumulation of extinction‐prone species in more diverse assemblages. Our results suggest that high diversity reduces extinction risk, and that species conservation targets may therefore best be achieved by maintaining high levels of overall biodiversity in natural ecosystems.
Collapse
Affiliation(s)
- Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Shahid Naeem
- Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, UK
| |
Collapse
|
23
|
Albert G, Gauzens B, Loreau M, Wang S, Brose U. The hidden role of multi-trophic interactions in driving diversity-productivity relationships. Ecol Lett 2021; 25:405-415. [PMID: 34846785 DOI: 10.1111/ele.13935] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Resource-use complementarity of producer species is often invoked to explain the generally positive diversity-productivity relationships. Additionally, multi-trophic interactions that link processes across trophic levels have received increasing attention as a possible key driver. Given that both are integral to natural ecosystems, their interactive effect should be evident but has remained hidden. We address this issue by analysing diversity-productivity relationships in a simulation experiment of producer communities nested within complex food-webs, manipulating resource-use complementarity and multi-trophic animal richness. We show that these two mechanisms interactively create diverse communities of complementary producer species. This shapes diversity-productivity relationships such that their joint contribution generally exceeds their individual effects. Specifically, multi-trophic interactions in animal-rich ecosystems facilitate producer coexistence by preventing competitive exclusion despite overlaps in resource-use, which increases the realised complementarity. The interdependence of food-webs and producer complementarity in creating biodiversity-productivity relationships highlights the importance to adopt a multi-trophic perspective on biodiversity-ecosystem functioning relationships.
Collapse
Affiliation(s)
- Georg Albert
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
24
|
A novel monitoring protocol to evaluate large-scale forest restoration projects in the tropics. Trop Ecol 2021. [DOI: 10.1007/s42965-021-00194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Ghedini G, Marshall DJ, Loreau M. Phytoplankton diversity affects biomass and energy production differently during community development. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Giulia Ghedini
- Centre for Geometric Biology School of Biological Sciences Monash University Melbourne Vic Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology School of Biological Sciences Monash University Melbourne Vic Australia
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station CNRS Moulis France
| |
Collapse
|
26
|
Ashford OS, Guan S, Capone D, Rigney K, Rowley K, Cordes EE, Cortés J, Rouse GW, Mendoza GF, Sweetman AK, Levin LA. Relationships between biodiversity and ecosystem functioning proxies strengthen when approaching chemosynthetic deep-sea methane seeps. Proc Biol Sci 2021; 288:20210950. [PMID: 34403635 PMCID: PMC8370799 DOI: 10.1098/rspb.2021.0950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As biodiversity loss accelerates globally, understanding environmental influence over biodiversity-ecosystem functioning (BEF) relationships becomes crucial for ecosystem management. Theory suggests that resource supply affects the shape of BEF relationships, but this awaits detailed investigation in marine ecosystems. Here, we use deep-sea chemosynthetic methane seeps and surrounding sediments as natural laboratories in which to contrast relationships between BEF proxies along with a gradient of trophic resource availability (higher resource methane seep, to lower resource photosynthetically fuelled deep-sea habitats). We determined sediment fauna taxonomic and functional trait biodiversity, and quantified bioturbation potential (BPc), calcification degree, standing stock and density as ecosystem functioning proxies. Relationships were strongly unimodal in chemosynthetic seep habitats, but were undetectable in transitional 'chemotone' habitats and photosynthetically dependent deep-sea habitats. In seep habitats, ecosystem functioning proxies peaked below maximum biodiversity, perhaps suggesting that a small number of specialized species are important in shaping this relationship. This suggests that absolute biodiversity is not a good metric of ecosystem 'value' at methane seeps, and that these deep-sea environments may require special management to maintain ecosystem functioning under human disturbance. We promote further investigation of BEF relationships in non-traditional resource environments and emphasize that deep-sea conservation should consider 'functioning hotspots' alongside biodiversity hotspots.
Collapse
Affiliation(s)
- Oliver S Ashford
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Shuzhe Guan
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Dante Capone
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA.,University of California, Santa Cruz, CA 95064, USA
| | - Katherine Rigney
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA.,Carleton College, Northfield, MN 55057, USA
| | - Katelynn Rowley
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Erik E Cordes
- Department of Biology, Temple University, Temple, PA 19122, USA
| | - Jorge Cortés
- CIMAR, Universidad de Costa Rica, San José, Costa Rica
| | - Greg W Rouse
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Guillermo F Mendoza
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA
| | - Andrew K Sweetman
- The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Edinburgh, UK
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92007, USA.,Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
27
|
Emery KA, Dugan JE, Bailey RA, Miller RJ. Species identity drives ecosystem function in a subsidy-dependent coastal ecosystem. Oecologia 2021; 196:1195-1206. [PMID: 34324077 DOI: 10.1007/s00442-021-05002-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Declines in species diversity carry profound implications for ecosystem functioning. Communities of primary producers and consumers interact on evolutionary as well as ecological time scales, shaping complex relationships between biodiversity and ecosystem functioning. In subsidized ecosystems, resource inputs are independent of consumer actions, offering a simplified view of the relationship between species diversity and function for higher trophic levels. With food webs supported by substantial but variable inputs of detritus from adjacent marine ecosystems, sandy beaches are classic examples of subsidized ecosystems. We investigated effects of consumer species diversity and identity on a key ecological function, consumption of kelp wrack from nearshore giant kelp (Macrocystis pyrifera) forests. We assessed effects of species richness on kelp consumption by experimentally manipulating richness of six common species of invertebrate detritivores in laboratory mesocosms and conducting field assays of kelp consumption on beaches. Consumer richness had no effect on kelp consumption in the field and a slight negative effect in laboratory experiments. Kelp consumption was most strongly affected by the species composition of the detritivore community. Species identity and body size of intertidal detritivores drove variation in kelp consumption rates in both experiments and field assays. Our results provide further evidence that species traits, rather than richness per se, influence ecosystem function most, particularly in detrital-based food webs with high functional redundancy across species. On sandy beaches, where biodiversity is threatened by rising sea levels and expanding development, our findings suggest that loss of large-bodied consumer species could disproportionally impact ecosystem function.
Collapse
Affiliation(s)
- Kyle A Emery
- Marine Science Institute, University of California, Santa Barbara, CA, USA.
| | - Jenifer E Dugan
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - R A Bailey
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, Fife, UK
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
28
|
Two Decades Progress on the Application of Remote Sensing for Monitoring Tropical and Sub-Tropical Natural Forests: A Review. FORESTS 2021. [DOI: 10.3390/f12060739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest covers about a third of terrestrial land surface, with tropical and subtropical zones being a major part. Remote sensing applications constitute a significant approach to monitoring forests. Thus, this paper reviews the progress made by remote sensing data applications to tropical and sub-tropical natural forest monitoring over the last two decades (2000–2020). The review focuses on the thematic areas of aboveground biomass and carbon estimations, tree species identification, tree species diversity, and forest cover and change mapping. A systematic search of articles was performed on Web of Science, Science Direct, and Google Scholar by applying a Boolean operator and using keywords related to the thematic areas. We identified 50 peer-reviewed articles that studied tropical and subtropical natural forests using remote sensing data. Asian and South American natural forests are the most highly researched natural forests, while African natural forests are the least studied. Medium spatial resolution imagery was extensively utilized for forest cover and change mapping as well as aboveground biomass and carbon estimation. In the latest studies, high spatial resolution imagery and machine learning algorithms, such as Random Forest and Support Vector Machine, were jointly utilized for tree species identification. In this review, we noted the promising potential of the emerging high spatial resolution satellite imagery for the monitoring of natural forests. We recommend more research to identify approaches to overcome the challenges of remote sensing applications to these thematic areas so that further and sustainable progress can be made to effectively monitor and manage sustainable forest benefits.
Collapse
|
29
|
Laigle I, Moretti M, Rousseau L, Gravel D, Venier L, Handa IT, Messier C, Morris D, Hazlett P, Fleming R, Webster K, Shipley B, Aubin I. Direct and Indirect Effects of Forest Anthropogenic Disturbance on Above and Below Ground Communities and Litter Decomposition. Ecosystems 2021. [DOI: 10.1007/s10021-021-00613-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
31
|
Benkendorf DJ, Whiteman HH. Omnivore density affects community structure through multiple trophic cascades. Oecologia 2021; 195:397-407. [PMID: 33392792 DOI: 10.1007/s00442-020-04836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Omnivores can dampen trophic cascades by feeding at multiple trophic levels, yet few studies have evaluated how intraspecific variation of omnivores influences community structure. The speckled dace (Rhinichthys osculus) is a common and omnivorous minnow that consumes algae and invertebrates. We studied effects of size and size structure on top-down control by dace and how effects scaled with density. Dace were manipulated in a mesocosm experiment and changes in invertebrate and algal communities and ecosystem function were monitored. Omnivores affected experimental communities via two distinct trophic pathways (benthic and pelagic). In the benthic pathway, dace reduced macroinvertebrate biomass, thereby causing density-mediated indirect effects that led to increased benthic algal biomass. Dace also reduced pelagic predatory macroinvertebrate biomass (hemipterans), thereby increasing the abundance of emerging insects. The effect of dace and hemipterans on emerging insects was mediated by a non-linear response to dace with peak emergence at intermediate dace density. In contrast with recent studies, omnivore size and size structure had no clear effect, indicating that small and large dace in our experiment shared similar functional roles. Our results support that the degree to which omnivores dampen trophic cascades depends on their relative effect on multiple trophic levels, such that the more omnivorous a predator is, the more likely cascades will be dampened. Availability of abundant macroinvertebrates, and the absence of top predators, may have shifted dace diets from primary to secondary consumption, strengthening density-dependent trophic cascades. Both omnivore density and dietary shifts are important factors influencing omnivore-mediated communities.
Collapse
Affiliation(s)
- Donald J Benkendorf
- Watershed Studies Institute, Murray State University, Murray, KY, 42071, USA. .,Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA. .,High Lonesome Institute, De Beque, CO, 81630, USA. .,Department of Watershed Sciences, Utah State University, 5210 Old Main Hill, Logan, UT, 84322-5210, USA.
| | - Howard H Whiteman
- Watershed Studies Institute, Murray State University, Murray, KY, 42071, USA.,Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.,High Lonesome Institute, De Beque, CO, 81630, USA
| |
Collapse
|
32
|
Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes. LAND 2020. [DOI: 10.3390/land9120530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Landscape connectivity is a critical component of dynamic processes that link the structure and function of networks at the landscape scale. In the Anthropocene, connectivity across a landscape-scale network is influenced not only by biophysical land use features, but also by characteristics and patterns of the social landscape. This is particularly apparent in urban landscapes, which are highly dynamic in land use and often in social composition. Thus, landscape connectivity, especially in cities, must be thought of in a social-ecological framework. This is relevant when considering ecosystem services—the benefits that people derive from ecological processes and properties. As relevant actors move through a connected landscape-scale network, particular services may “flow” better across space and time. For this special issue on dynamic landscape connectivity, we discuss the concept of social-ecological networks using urban landscapes as a focal system to highlight the importance of social-ecological connectivity to understand dynamic urban landscapes, particularly in regards to the provision of urban ecosystem services.
Collapse
|
33
|
Jones AG, Denis L, Fournier J, Desroy N, Duong G, Dubois SF. Linking multiple facets of biodiversity and ecosystem functions in a coastal reef habitat. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105092. [PMID: 32892150 DOI: 10.1016/j.marenvres.2020.105092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Reef-building species play key roles in promoting local species richness and regulating ecosystem functions like biogeochemical fluxes. We evaluated the functioning of a habitat engineered by the reef-building polychaete Sabellaria alveolata, by measuring oxygen and nutrient fluxes in the reef structures and in the soft-sediments nearby. Then, we investigated the relative importance of temperature, the engineer S. alveolata, and different facets of macrofauna diversity (taxonomic, functional diversity and identity), on the reef biogeochemical fluxes using multiple linear regressions and effect sizes. The reef fluxes were more intense than the soft-sediment fluxes and mainly driven by the engineer biomass and abundance, stressing the importance of these biogenic structures. Higher water temperatures and an intermediate level of associated macrofauna functional dispersion weighted only by abundance (i.e. intermediate biological trait variability) maximized the reef's global biogeochemical functioning. Ultimately, the physical degradation of the reefs could lead to lower levels of functioning.
Collapse
Affiliation(s)
- Auriane G Jones
- IFREMER, Laboratoire Centre de Bretagne, DYNECO, Laboratoire d'Ecologie Benthique Côtière (LEBCO), 29280, Plouzané, France; IFREMER, Laboratoire Environnement et Ressources Bretagne nord, BP 80108, 35801, Dinard cedex, France; ESE, Ecology and Ecosystem Health, AGROCAMPUS OUEST, INRA, 65 rue de Saint-Brieuc, 35042, Rennes, France.
| | - Lionel Denis
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930, Wimereux, France
| | - Jérôme Fournier
- CNRS, UMR 7204 CESCO, 75005, Paris, France; MNHN, Station de Biologie Marine, BP 225, 29182, Concarneau cedex, France
| | - Nicolas Desroy
- IFREMER, Laboratoire Environnement et Ressources Bretagne nord, BP 80108, 35801, Dinard cedex, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930, Wimereux, France
| | - Stanislas F Dubois
- IFREMER, Laboratoire Centre de Bretagne, DYNECO, Laboratoire d'Ecologie Benthique Côtière (LEBCO), 29280, Plouzané, France
| |
Collapse
|
34
|
Neumann C. Habitat sampler—A sampling algorithm for habitat type delineation in remote sensing imagery. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Carsten Neumann
- Helmholtz Centre Potsdam German Research Centre for Geosciences Potsdam Germany
| |
Collapse
|
35
|
Qiu J, Cardinale BJ. Scaling up biodiversity-ecosystem function relationships across space and over time. Ecology 2020; 101:e03166. [PMID: 32854134 DOI: 10.1002/ecy.3166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Understanding how to scale up effects of biological diversity on ecosystem functioning and services remains challenging. There is a general consensus that biodiversity loss alters ecosystem processes underpinning the goods and services upon which humanity depends. Yet most of that consensus stems from experiments performed at small spatial scales for short time frames, which limits transferability of conclusions to longer-term, landscape-scale conservation policies and management. Here we develop quantitative scaling relationships linking 374 experiments that tested plant diversity effects on biomass production across a range of scales. We show that biodiversity effects increase by factors of 1.68 and 1.10 for each 10-fold increase in experiment temporal and spatial scales, respectively. Contrary to prior studies, our analyses suggest that the time scale of experiments, rather than their spatial scale, is the primary source of variation in biodiversity effects. But consistent with earlier research, our analyses reveal that complementarity effects, rather than selection effects, drive the positive space-time interactions for plant diversity effects. Importantly, we also demonstrate complex space-time interactions and nonlinear responses that emphasize how simple extrapolations from small-scale experiments are likely to underestimate biodiversity effects in real-world ecosystems. Quantitative scaling relationships from this research are a crucial step towards bridging controlled experiments that identify biological mechanisms across a range of scales. Predictions from scaling relationships like these could then be compared with observations for fine-tuning the relationships and ultimately improving their capacities to predict consequences of biodiversity loss for ecosystem functioning and services over longer time frames across real-world landscapes.
Collapse
Affiliation(s)
- Jiangxiao Qiu
- School of Forest Resources and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, Florida, 33314, USA
| | - Bradley J Cardinale
- Cooperative Institute of Great Lakes Research, School for Environment and Sustainability, University of Michigan-Ann Arbor, 440 Church Street, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
36
|
Godoy O, Gómez-Aparicio L, Matías L, Pérez-Ramos IM, Allan E. An excess of niche differences maximizes ecosystem functioning. Nat Commun 2020; 11:4180. [PMID: 32826915 PMCID: PMC7442808 DOI: 10.1038/s41467-020-17960-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
Ecologists have long argued that higher functioning in diverse communities arises from the niche differences stabilizing species coexistence and from the fitness differences driving competitive dominance. However, rigorous tests are lacking. We couple field-parameterized models of competition between 10 annual plant species with a biodiversity-functioning experiment under two contrasting environmental conditions, to study how coexistence determinants link to biodiversity effects (selection and complementarity). We find that complementarity effects positively correlate with niche differences and selection effects differences correlate with fitness differences. However, niche differences also contribute to selection effects and fitness differences to complementarity effects. Despite this complexity, communities with an excess of niche differences (where niche differences exceeded those needed for coexistence) produce more biomass and have faster decomposition rates under drought, but do not take up nutrients more rapidly. We provide empirical evidence that the mechanisms determining coexistence correlate with those maximizing ecosystem functioning. It is unclear how biodiversity-ecosystem functioning and species coexistence mechanisms are linked. Here, Godoy and colleagues combine field-parameterised competition models with a BEF experiment to show that mechanisms leading to more stable species coexistence lead to greater productivity, but not necessarily to enhanced functions other than primary production.
Collapse
Affiliation(s)
- Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, E-11510, Puerto Real, Spain.
| | - Lorena Gómez-Aparicio
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), LINC-Global, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Luis Matías
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Av. Reina Mercedes 10, E-41080, Sevilla, Spain
| | - Ignacio M Pérez-Ramos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), LINC-Global, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
37
|
Carrick PJ, Forsythe KJ. The species composition-ecosystem function relationship: A global meta-analysis using data from intact and recovering ecosystems. PLoS One 2020; 15:e0236550. [PMID: 32730290 PMCID: PMC7392319 DOI: 10.1371/journal.pone.0236550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
The idea that biodiversity is necessary in order for ecosystems to function properly has long been used as a basic argument for the conservation of species, and has led to an abundance of research exploring the relationships between species richness and ecosystem function. Here we present a meta-analysis of global ecosystems using the Bray-Curtis index to explore more complex changes in the species composition of natural ecosystems, and their relationship with ecosystem functions. By using data recorded, firstly in reference sites and secondly in recovering sites, captured in restoration ecology studies, we pose the following questions: Firstly, how much variation is there in species composition and in ecosystem function in an intact ecosystem? Secondly, once an ecosystem has become degraded, is there a general relationship between its recovery in species composition and its recovery in ecosystem function? Thirdly, is this relationship the same for all types of ecosystem functions? Data from 21 studies yielded 478 comparisons of mean values for ecosystems. On Average, sites within the same intact natural ecosystems shared only a 48% similarity in species composition but were 69% similar in ecosystem functioning. In recovering ecosystems the relationship between species composition and ecosystem function was weak and saturating (directly accounting for only 2% of the variation). Only two of the six types of ecosystem function examined, biomass and biotic structure, showed a significant relationship with species composition, and the three types that measured soil functions showed no significant relationship. To date, most biodiversity-ecosystem function (BEF) research has been conducted in simplified ecosystems using the simple species richness metric. This study encourages a broader examination of the drivers of ecosystem functions under realistic scenarios of biodiversity change, and highlights the need to properly account for the extensive natural variation.
Collapse
Affiliation(s)
- Peter J. Carrick
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Katherine J. Forsythe
- Percy FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
38
|
Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat Ecol Evol 2020; 4:919-926. [PMID: 32424279 DOI: 10.1038/s41559-020-1203-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022]
Abstract
Positive relationships between biodiversity and ecosystem functioning (BEF) highlight the importance of conserving biodiversity to maintain key ecosystem functions and associated services. Although natural systems are rapidly losing biodiversity due to numerous human-caused stressors, our understanding of how multiple stressors influence BEF relationships comes largely from small, experimental studies. Here, using remote assemblages of coral reef fishes, we demonstrate strong, non-saturating relationships of biodiversity with two ecosystem functions: biomass and productivity. These positive relationships were robust both to an extreme heatwave that triggered coral bleaching and to invasive rats which disrupt nutrient subsidies from native seabirds. Despite having only minor effects on BEF relationships, both stressors still decreased ecosystem functioning via other pathways. The extreme heatwave reduced biodiversity, which, due to the strong BEF relationships, ultimately diminished both ecosystem functions. Conversely, the loss of cross-system nutrient subsidies directly decreased biomass. These results demonstrate multiple ways by which human-caused stressors can reduce ecosystem functioning, despite robust BEF relationships, in natural high-diversity assemblages.
Collapse
|
39
|
Oehri J, Bürgin M, Schmid B, Niklaus PA. Local and landscape-level diversity effects on forest functioning. PLoS One 2020; 15:e0233104. [PMID: 32407371 PMCID: PMC7224498 DOI: 10.1371/journal.pone.0233104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
Research of the past decades has shown that biodiversity is a fundamental driver of ecosystem functioning. However, most of this biodiversity-ecosystem functioning (BEF) research focused on experimental communities on small areas where environmental context was held constant. Whether the established BEF relationships also apply to natural or managed ecosystems that are embedded in variable landscape contexts remains unclear. In this study, we therefore investigated biodiversity effects on ecosystem functions in 36 forest stands that were located across a vast range of environmental conditions in managed landscapes of Central Europe (Switzerland). Specifically, we approximated forest productivity by leaf area index and forest phenology by growing-season length and tested effects of tree species richness and land-cover richness on these variables. We then examined the correlation and the confounding of these local and landscape-level diversity effects with environmental context variables related to forest stand structure (number of trees), landscape structure (land-cover edge density), climate (annual precipitation) and topography (mean altitude). We found that of all tested variables tree species richness was among the most important determinants of forest leaf area index and growing-season length. The positive effects of tree species richness on these two ecosystem variables were remarkably consistent across the different environmental conditions we investigated and we found little evidence of a context-dependent change in these biodiversity effects. Land-cover richness was not directly related to local forest functions but could nevertheless play a role via a positive effect on tree species richness.
Collapse
Affiliation(s)
- Jacqueline Oehri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Marvin Bürgin
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Pascal A. Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Socio-ecological connectivity differs in magnitude and direction across urban landscapes. Sci Rep 2020; 10:4252. [PMID: 32144391 PMCID: PMC7060339 DOI: 10.1038/s41598-020-61230-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/24/2020] [Indexed: 11/08/2022] Open
Abstract
Connectivity of social-ecological systems promotes resilience across urban landscapes. Community gardens are social-ecological systems that support food production, social interactions, and biodiversity conservation. We investigate how these hubs of ecosystem services facilitate socio-ecological connectivity and service flows as a network across complex urban landscapes. In three US cities (Baltimore, Chicago, New York City), we use community garden networks as a model system to demonstrate how biophysical and social features of urban landscapes control the pattern and magnitude of ecosystem service flows through these systems. We show that community gardens within a city are connected through biological and social mechanisms, and connectivity levels and spatial arrangement differ across cities. We found that biophysical connectivity was higher than social connectivity in one case study, while they were nearly equal in the other two. This higher social connectivity can be attributed to clustered distributions of gardens within neighborhoods (network modularity), which promotes neighborhood-scale connectivity hotspots, but produces landscape-scale connectivity coldspots. The particular patterns illustrate how urban form and social amenities largely shape ecosystem service flows among garden networks. Such socio-ecological analyses can be applied to enhance and stabilize landscape connectedness to improve life and resilience in cities.
Collapse
|
41
|
Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00945-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Banitz T, Chatzinotas A, Worrich A. Prospects for Integrating Disturbances, Biodiversity and Ecosystem Functioning Using Microbial Systems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. SUSTAINABILITY 2020. [DOI: 10.3390/su12041442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The degradation of wetland ecosystems is currently recognized as one of the main threats to global biodiversity. As a means of compensation, constructed wetlands (CWs), which are built to treat agricultural runoff and municipal wastewater, have become important for maintaining biodiversity. Here, we review studies on the relationships between CWs and their associated biodiversity published over the past three decades. In doing so, we provide an overview of how wildlife utilizes CWs, and the effects of biodiversity on pollutant transformation and removal. Beyond their primary aim (to purify various kinds of wastewater), CWs provide sub-optimal habitat for many species and, in turn, their purification function can be strongly influenced by the biodiversity that they support. However, there are some difficulties when using CWs to conserve biodiversity because some key characteristics of these engineered ecosystems vary from natural wetlands, including some fundamental ecological processes. Without proper management intervention, these features of CWs can promote biological invasion, as well as form an ‘ecological trap’ for native species. Management options, such as basin-wide integrative management and building in more natural wetland components, can partially offset these adverse impacts. Overall, the awareness of managers and the public regarding the potential value of CWs in biodiversity conservation remains superficial. More in-depth research, especially on how to balance different stakeholder values between wastewater managers and conservationists, is now required.
Collapse
|
44
|
Gonzalez A, Germain RM, Srivastava DS, Filotas E, Dee LE, Gravel D, Thompson PL, Isbell F, Wang S, Kéfi S, Montoya J, Zelnik YR, Loreau M. Scaling-up biodiversity-ecosystem functioning research. Ecol Lett 2020; 23:757-776. [PMID: 31997566 PMCID: PMC7497049 DOI: 10.1111/ele.13456] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022]
Abstract
A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.
Collapse
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada
| | - Rachel M Germain
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Elise Filotas
- Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada
| | - Patrick L Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Jose Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Yuval R Zelnik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
45
|
Wetherbee R, Birkemoe T, Skarpaas O, Sverdrup‐Thygeson A. Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecol Evol 2020; 10:819-831. [PMID: 32015846 PMCID: PMC6988526 DOI: 10.1002/ece3.5940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/29/2019] [Accepted: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
Veteran hollow oaks (Quercus spp.) are keystone structures hosting high insect diversity but are declining in numbers due to intensification of land use and the abandonment of traditional management. The loss of this vital habitat is resulting in a reduction of biodiversity, and this likely has consequences for ecosystem functioning, especially if functional diversity is reduced. A considerable amount of research has been done on predictors of beetle taxonomic diversity in veteran oaks, but predictors of functional diversity have remained largely unexplored. The aim of this study was to establish whether the features and surroundings of veteran oaks are related to functional diversity within three functional groups of beetles (decomposers, predators, and flower visitors) and determine whether species richness and functional diversity within the groups are dependent on the same predictors. Sampling was carried out intermittently between 2004 and 2011 on 61 veteran oaks in Southern Norway. Of the 876 beetle species that were collected, 359 were determined to be decomposers, 284 were predators, and 85 were flower visitors. Species richness and functional diversity in all groups were consistently higher in traps mounted on veteran oaks in forests than in open landscapes. However, additional predictors differed between groups, and for species richness and functional diversity. Decomposer species richness responded to tree vitality, while functional diversity responded to habitat connectivity, predator species richness responded to regrowth of shrubs while functional diversity responded to tree circumference, and flower visitor richness and functional diversity did not respond to any additional predictors. Previous studies have found that the features and surroundings of veteran oaks are important for conservation of taxonomic diversity, and the results from this study indicate that they are also important for functional diversity within multiple functional groups.
Collapse
Affiliation(s)
- Ross Wetherbee
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | - Tone Birkemoe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | - Olav Skarpaas
- Natural History MuseumUniversity of OsloOsloNorway
- Norwegian Institute for Nature Research (NINA)OsloNorway
| | - Anne Sverdrup‐Thygeson
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| |
Collapse
|
46
|
Meyer J, Kröncke I. Shifts in trait-based and taxonomic macrofauna community structure along a 27-year time-series in the south-eastern North Sea. PLoS One 2019; 14:e0226410. [PMID: 31851700 PMCID: PMC6919609 DOI: 10.1371/journal.pone.0226410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Current research revealed distinct changes in ecosystem functions, and thus in ecosystem stability and resilience, caused by changes in community structure and diversity loss. Benthic species play an important role in benthic-pelagic coupling, such as through the remineralization of deposited organic material, and changes to benthic community structure and diversity have associated with changes in ecosystem functioning, ecosystem stability and resilience. However, the long-term variability of traits and functions in benthic communities is largely unknown. By using abundance and bioturbation potential of macrofauna samples, taken along a transect from the German Bight towards the Dogger Bank in May 1990 and annually from 1995 to 2017, we analysed the taxonomic and trait-based macrofauna long-term community variability and diversity. Taxonomic and trait-based diversity remained stable over time, while three different regimes were found, characterised by changes in taxonomic and trait-based community structure. Min/max autocorrelation factor analysis revealed the climatic variables sea surface temperature (SST) and North Atlantic Oscillation Index (NAOI), nitrite, and epibenthic abundance as most important environmental drivers for taxonomic and trait-based community changes.
Collapse
Affiliation(s)
- Julia Meyer
- Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Benthic Ecology, Oldenburg, Germany
- * E-mail:
| | - Ingrid Kröncke
- Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Benthic Ecology, Oldenburg, Germany
| |
Collapse
|
47
|
Geng Y, Ge Y, Luo B, Chen Z, Min Y, Schmid B, Gu B, Chang J. Plant diversity increases N removal in constructed wetlands when multiple rather than single N processes are considered. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01965. [PMID: 31243824 DOI: 10.1002/eap.1965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Biodiversity has a close relationship with ecosystem functioning. For most biodiversity-ecosystem-functioning studies, biodiversity has been linked to a single indicator variable of ecosystem functioning. However, there are generally multiple ecosystem processes contributing to ecosystem functioning and they differ in their dependence on biodiversity. Thus, the relationship between biodiversity and ecosystem functioning can be stronger when multiple rather than single ecosystem processes are considered. Using both mass-balance and stable-isotope approaches, we explored the effects of plant diversity on nitrogen (N) removal sustained by multiple N-cycling processes in experimental microcosms simulating constructed wetlands, an ecosystem treating wastewater with high N loading. Four species were used to assemble different plant communities, ranging in richness from one to four species. The removal of N, indicated by low levels of total inorganic N concentration (TIN) present in the effluent, was considered as an integrated measure of ecosystem functioning, combining three constituent N-cycling processes: plant uptake, denitrification, and substrate adsorption. Our results showed that (1) species richness had a positive effect on N removal, in particular, the four-species mixture reduced effluent TIN to a lower level than any monoculture; however, polycultures (two-, three-, and four-species mixtures) did not outperform the most efficient monoculture when each of the three constituent N-cycling processes was considered by itself; (2) species identity had significant impacts on single processes. Communities with the species Coix lacryma-jobi showed the greatest capacity for N uptake and communities with Phragmites australis had the highest denitrification rates; (3) isotope fractionation in the rhizosphere of Coix lacryma-jobi was primarily due to microbial denitrification while multistep isotope fractionation was detected for Phragmites australis and Acorus calamus (indicating recycling of N), suggesting that species differed in the way they transformed N; (4) the enhanced N removal at high diversity may be due to mutualistic interactions among species belonging to different functional types. Our findings demonstrated that although plant species richness had negligible effects on individual N-cycling processes, it enhanced the overall ecosystem functioning (N removal) when these processes were considered collectively. Our study thus contributes to improve the treatment efficiency of constructed wetlands through proper vegetation management.
Collapse
Affiliation(s)
- Yan Geng
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ying Ge
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Bin Luo
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhengxin Chen
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yong Min
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Binhe Gu
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, 32603, USA
| | - Jie Chang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
48
|
Arnan X, Molowny-Horas R, Blüthgen N. Food resource exploitation and functional resilience in ant communities found in common Mediterranean habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:126-135. [PMID: 31153062 DOI: 10.1016/j.scitotenv.2019.05.260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Understanding how ecosystems may cope with future environmental change is a key challenge in modern ecology. Ecosystem resilience depends on both functional redundancy (the number of species making a similar contribution to a given ecosystem function) and response diversity (variability in the responses of functionally similar species to disturbance). Ants provide numerous important ecosystem functions that are rooted in their dietary ecology. We focused on food resource exploitation and analyzed how functional redundancy and response diversity changed across common habitats for Mediterranean ant communities. Our aim was to assess the vulnerability of ant-furnished ecosystem functions to future environmental change. We used cafeteria experiments to identify ant functional groups: we offered ants a variety of seeds, insects, and liquid sugars. Then, using more general baits, we estimated ant species richness and abundance. We also examined 12 ant traits (morphological, social, ecobehavioral, and physiological) thought to reflect responses to disturbance. We found that most Mediterranean ant species are dietary generalists. Functional redundancy was highest and lowest for sugar and seed consumers, respectively, a consistent trend across habitats that was unrelated to species richness. Response diversity did not depend on ant functional group. Interestingly, both functional redundancy and response diversity were higher in pine forests and shrublands than in oak forests, a pattern that was consistent regardless of whether the functional groups were examined collectively or individually. Variation in functional redundancy and response diversity was strongly driven by site-specific species richness. Response diversity also varied based on trait type. Ecosystem functions mediated by seed-consuming ants should be the most vulnerable to environmental change, and habitat type and local species richness should affect the vulnerability of any ecosystem functions mediated by ant dietary ecology. Species-poor communities in forests should be the most vulnerable, while species-rich communities in open habitats should be the most resilient.
Collapse
Affiliation(s)
| | | | - Nico Blüthgen
- Faculty of Biology, TU Darmstadt, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany
| |
Collapse
|
49
|
Mills DR, Do Linh San E, Robinson H, Isoke S, Slotow R, Hunter L. Competition and specialization in an African forest carnivore community. Ecol Evol 2019; 9:10092-10108. [PMID: 31624540 PMCID: PMC6787825 DOI: 10.1002/ece3.5391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 11/12/2022] Open
Abstract
Globally, human activities have led to the impoverishment of species assemblages and the disruption of ecosystem function. Determining whether this poses a threat to future ecosystem stability necessitates a thorough understanding of mechanisms underpinning community assembly and niche selection. Here, we tested for niche segregation within an African small carnivore community in Kibale National Park, Uganda. We used occupancy modeling based on systematic camera trap surveys and fine-scale habitat measures, to identify opposing preferences between closely related species (cats, genets, and mongooses). We modeled diel activity patterns using kernel density functions and calculated the overlap of activity periods between related species. We also used co-occupancy modeling and activity overlap analyses to test whether African golden cats Caracal aurata influenced the smaller carnivores along the spatial and/or temporal axes. There was some evidence that related species segregated habitat and activity patterns. Specialization was particularly strong among forest species. The cats and genets partitioned habitat, while the mongooses partitioned both habitat and activity period. We found little evidence for interference competition between African golden cats and other small carnivores, although weak interference competition was suggested by lower detection probabilities of some species at stations where African golden cats were present. This suggests that community assembly and coexistence in this ecosystem are primarily driven by more complex processes. The studied carnivore community contains several forest specialists, which are typically more prone to localized extinction. Preserving the observed community assemblage will therefore require the maintenance of a large variety of habitats, with a particular focus on those required by the more specialized carnivores.
Collapse
Affiliation(s)
- David R. Mills
- School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
- PantheraNew YorkNew YorkUSA
| | | | - Hugh Robinson
- PantheraNew YorkNew YorkUSA
- Wildlife Biology Program, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMontanaUSA
| | - Sam Isoke
- Wildlife Conservation SocietyKampalaUganda
| | - Rob Slotow
- School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Luke Hunter
- School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
- PantheraNew YorkNew YorkUSA
| |
Collapse
|
50
|
Eisenhauer N, Schielzeth H, Barnes AD, Barry K, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M. A multitrophic perspective on biodiversity-ecosystem functioning research. ADV ECOL RES 2019; 61:1-54. [PMID: 31908360 PMCID: PMC6944504 DOI: 10.1016/bs.aecr.2019.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstr. 2, 8092 Zurich, Switzerland
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle Saale, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Darren P Giling
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Helmut Hillebrand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eva Koller-France
- Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Friedrich Schiller Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Hans de Kroon
- Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Service 3248, Campus Baillarguet, Montferrier-sur-Lez, France
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Canada, T6G 2H1
| | - Jana S Petermann
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | | | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Buesgenweg 3, 37077 Goettingen, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Fons van der Plas
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, E3B 8B7, Fredericton, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|