1
|
Niklasson M, Dalmo E, Segerman A, Rendo V, Westermark B. p21-Dependent Senescence Induction by BMP4 Renders Glioblastoma Cells Vulnerable to Senolytics. Int J Mol Sci 2025; 26:3974. [PMID: 40362216 PMCID: PMC12071447 DOI: 10.3390/ijms26093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM) is a highly malignant brain tumor with extensive cellular heterogeneity and plasticity. Bone morphogenetic protein 4 (BMP4) has shown potential as a therapeutic agent by promoting differentiation, but its effects are complex and context dependent. While BMP4's role in differentiation is well established, its impact on senescence remains unclear. This study investigates BMP4's ability to induce senescence in GBM cells. Primary GBM cultures were treated with BMP4 and analyzed for senescence markers, including cell enlargement, p21 expression, senescence-related gene enrichment, and senescence-associated-β-galactosidase activity. A p21 knockout model was used to determine its role in BMP4-induced senescence, and sensitivity to the senolytic agent navitoclax was evaluated. BMP4 induced senescence in the GBM cultures, particularly in mesenchymal (MES)-like GBM cells with high baseline p21 levels. The knockout of p21 nearly abolished BMP4-induced senescence, maintaining cell size and proliferation. Furthermore, navitoclax effectively eliminated BMP4-induced senescent cells through apoptosis, while sparing cells with normal p21 expression. Our findings highlight BMP4 as an inducer of p21-dependent senescence in GBM, particularly in MES-like cells. This study clarifies BMP4's dual roles in differentiation and senescence, emphasizing their context dependence. Given the strong link between MES-like cells and therapy resistance, their heightened susceptibility to senescence may aid in developing targeted therapies for GBM and potentially other cancers with similar cellular dynamics.
Collapse
Affiliation(s)
- Mia Niklasson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| | - Erika Dalmo
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| | - Anna Segerman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Veronica Rendo
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| |
Collapse
|
2
|
Arnold SA, Low WC, Pluhar GE. Breed-Associated Differences in Differential Gene Expression Following Immunotherapy-Based Treatment of Canine High-Grade Glioma. Animals (Basel) 2024; 15:28. [PMID: 39794971 PMCID: PMC11718890 DOI: 10.3390/ani15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Canine high-grade glioma (HGG) is among the deadliest and most treatment-resistant forms of canine cancer. Successful, widespread treatment is challenged by heterogeneity in tumor cells and the tumor microenvironment and tumor evolution following treatment. Immunotherapy is theoretically a strong novel therapy, since HGG-generated immunosuppression is a substantial malignancy mechanism. Immunotherapy has improved survival times overall, but has been associated with extremely poor outcomes in French bulldogs. Given this breed-specific observation, we hypothesized that within the French bulldog breed, there are key transcriptomic differences when compared to other breeds, and that their tumors change differently in response to immunotherapy. Using bulk RNA sequencing, French bulldog tumors were confirmed to differ substantially from boxer and Boston terrier tumors, with only 15.9% overlap in significant differentially expressed genes (DEGs). In upregulated DEGs, the magnitude of changes in expression post-treatment compared to pre-treatment was markedly greater in French bulldogs. Gene set enrichment analysis confirmed that following treatment, French bulldog tumors showed enrichment of key immune-associated pathways previously correlated with poor prognosis. Overall, this study confirmed that French bulldog HGG transcriptomes differ from boxer and Boston terrier transcriptomes, further refining description of the canine glioma transcriptome and providing important information to guide novel therapy development, both for specific dog breeds and for possible correlative variants of human glioblastoma.
Collapse
Affiliation(s)
- Susan A. Arnold
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Grace Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
3
|
Verploegh ISC, Conidi A, El Hassnaoui H, Verhoeven FAM, Korporaal AL, Ntafoulis I, van den Hout MCGN, Brouwer RWW, Lamfers MLM, van IJcken WFJ, Huylebroeck D, Leenstra S. BMP4 and Temozolomide Synergize in the Majority of Patient-Derived Glioblastoma Cultures. Int J Mol Sci 2024; 25:10176. [PMID: 39337661 PMCID: PMC11432198 DOI: 10.3390/ijms251810176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
One of the main causes of poor prognoses in patient with glioblastoma (GBM) is drug resistance to current standard treatment, which includes chemoradiation and adjuvant temozolomide (TMZ). In addition, the concept of cancer stem cells provides new insights into therapy resistance and management also in GBM and glioblastoma stem cell-like cells (GSCs), which might contribute to therapy resistance. Bone morphogenetic protein-4 (BMP4) stimulates astroglial differentiation of GSCs and thereby reduces their self-renewal capacity. Exposure of GSCs to BMP4 may also sensitize these cells to TMZ. A recent phase I trial has shown that local delivery of BMP4 is safe, but a large variation in survival is seen in these treated patients and in features of their cultured tumors. We wanted to combine TMZ and BMP4 (TMZ + BMP4) therapy and assess the inter-tumoral variability in response to TMZ + BMP4 in patient-derived GBM cultures. A phase II trial could then benefit a larger group of patients than those treated with BMP4 only. We first show that simultaneous treatment with TMZ + BMP4 is more effective than sequential treatment. Second, when applying our optimized treatment protocol, 70% of a total of 20 GBM cultures displayed TMZ + BMP4 synergy. This combination induces cellular apoptosis and does not inhibit cell proliferation. Comparative bulk RNA-sequencing indicates that treatment with TMZ + BMP4 eventually results in decreased MAPK signaling, in line with previous evidence that increased MAPK signaling is associated with resistance to TMZ. Based on these results, we advocate further clinical trial research to test patient benefit and validate pathophysiological hypothesis.
Collapse
Affiliation(s)
- Iris S. C. Verploegh
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hoesna El Hassnaoui
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Floor A. M. Verhoeven
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Mirjam C. G. N. van den Hout
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (I.S.C.V.)
| |
Collapse
|
4
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
5
|
Fabro F, Kers TV, Feller KJ, Beerens C, Ntafoulis I, Idbaih A, Verreault M, Connor K, Biswas A, Salvucci M, Prehn JHM, Byrne AT, O’Farrell AC, Lambrechts D, Dilcan G, Lodi F, Arijs I, Kremer A, Tching Chi Yen R, Chien MP, Lamfers MLM, Leenstra S. Genomic Exploration of Distinct Molecular Phenotypes Steering Temozolomide Resistance Development in Patient-Derived Glioblastoma Cells. Int J Mol Sci 2023; 24:15678. [PMID: 37958662 PMCID: PMC10647455 DOI: 10.3390/ijms242115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.
Collapse
Affiliation(s)
- Federica Fabro
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Trisha V. Kers
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Kate J. Feller
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Cecile Beerens
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, University Hospital La Pitié Salpêtrière—Charles Foix, Inserm, F-75013 Paris, France
| | - Maite Verreault
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, AP-HP, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, University Hospital La Pitié Salpêtrière—Charles Foix, Inserm, F-75013 Paris, France
| | - Kate Connor
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Archita Biswas
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Annette T. Byrne
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Alice C. O’Farrell
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Gonca Dilcan
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Francesca Lodi
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory for Translational Genetics, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Andreas Kremer
- Information Technologies for Translational Medicine, L-4354 Esch-Sur-Alzette, Luxembourg
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine, L-4354 Esch-Sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval Esch-Sur-Alzette, Luxembourg
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Martine L. M. Lamfers
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| | - Sieger Leenstra
- Department of Neurosurgery Rotterdam, Brain Tumor Center, Erasmus Medical Center Cancer Institute, Erasmus Medical Center, Wytemaweg 80, Ee2236, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
6
|
Zottel A, Jovčevska I, Šamec N. Non-animal glioblastoma models for personalized treatment. Heliyon 2023; 9:e21070. [PMID: 37928397 PMCID: PMC10622609 DOI: 10.1016/j.heliyon.2023.e21070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Glioblastoma is an extremely lethal cancer characterized by great heterogeneity at different molecular and cellular levels. As a result, treatment options have moved far from systemic and universal therapies toward targeted treatments and personalized medicine. However, for successful translation from preclinical studies to clinical trials, experiments must be performed on reliable disease models. Numerous experimental models have been developed for glioblastoma, ranging from simple 2D cell cultures to study the nature of the disease to complex 3D models such as neurospheres, organoids, tissue-slice cultures, bioprinted models, and tumor on chip, as perfect prototypes to evaluate the therapeutic potential of different drugs. The presence of multiple research models is consistent with the complexity and molecular diversity of glioblastoma. The advantage of such models is the recapitulation of the tumor environment, and in some cases the preservation of immune system components as well as the creation of simple vessels. There are also two case studies translating in vitro studies on glioblastoma organoids to patients as well as four ongoing clinical trials using glioblastoma models, indicating high clinical potential of glioblastoma models.
Collapse
Affiliation(s)
- Alja Zottel
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000, Ljubljana, Slovenia
| | - Ivana Jovčevska
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000, Ljubljana, Slovenia
| | - Neja Šamec
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Guyot B, Clément F, Drouet Y, Schmidt X, Lefort S, Delay E, Treilleux I, Foy JP, Jeanpierre S, Thomas E, Kielbassa J, Tonon L, Zhu HH, Saintigny P, Gao WQ, de la Fouchardiere A, Tirode F, Viari A, Blay JY, Maguer-Satta V. An Early Neoplasia Index (ENI10), Based on Molecular Identity of CD10 Cells and Associated Stemness Biomarkers, is a Predictor of Patient Outcome in Many Cancers. CANCER RESEARCH COMMUNICATIONS 2023; 3:1966-1980. [PMID: 37707389 PMCID: PMC10540743 DOI: 10.1158/2767-9764.crc-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An accurate estimate of patient survival at diagnosis is critical to plan efficient therapeutic options. A simple and multiapplication tool is needed to move forward the precision medicine era. Taking advantage of the broad and high CD10 expression in stem and cancers cells, we evaluated the molecular identity of aggressive cancer cells. We used epithelial primary cells and developed a breast cancer stem cell–based progressive model. The superiority of the early-transformed isolated molecular index was evaluated by large-scale analysis in solid cancers. BMP2-driven cell transformation increases CD10 expression which preserves stemness properties. Our model identified a unique set of 159 genes enriched in G2–M cell-cycle phases and spindle assembly complex. Using samples predisposed to transformation, we confirmed the value of an early neoplasia index associated to CD10 (ENI10) to discriminate premalignant status of a human tissue. Using a stratified Cox model, a large-scale analysis (>10,000 samples, The Cancer Genome Atlas Pan-Cancer) validated a strong risk gradient (HRs reaching HR = 5.15; 95% confidence interval: 4.00–6.64) for high ENI10 levels. Through different databases, Cox regression model analyses highlighted an association between ENI10 and poor progression-free intervals for more than 50% of cancer subtypes tested, and the potential of ENI10 to predict drug efficacy. The ENI10 index constitutes a robust tool to detect pretransformed tissues and identify high-risk patients at diagnosis. Owing to its biological link with refractory cancer stem cells, the ENI10 index constitutes a unique way of identifying effective treatments to improve clinical care. SIGNIFICANCE We identified a molecular signature called ENI10 which, owing to its biological link with stem cell properties, predicts patient outcome and drugs efficiency in breast and several other cancers. ENI10 should allow early and optimized clinical management of a broad number of cancers, regardless of the stage of tumor progression.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Flora Clément
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | | | - Xenia Schmidt
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
| | - Emmanuel Delay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | | | - Jean-Philippe Foy
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Janice Kielbassa
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Laurie Tonon
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute and Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pierre Saintigny
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute and Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Arnaud de la Fouchardiere
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Franck Tirode
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Bioinformatics Platform, Synergie Lyon Cancer Foundation, Lyon, France
| | - Jean-Yves Blay
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
- Department of Tumor Escape Resistance and Immunity, CRCL, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor cell Identity, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Universite Claude Bernard Lyon 1, CRCL, Lyon, France
- Centre Léon Bérard, Lyon, France
| |
Collapse
|
8
|
Bos EM, Binda E, Verploegh ISC, Wembacher E, Hoefnagel D, Balvers RK, Korporaal AL, Conidi A, Warnert EAH, Trivieri N, Visioli A, Zaccarini P, Caiola L, van Wijck R, van der Spek P, Huylebroeck D, Leenstra S, Lamfers MLM, Ram Z, Westphal M, Noske D, Legnani F, DiMeco F, Vescovi AL, Dirven CMF. Local delivery of hrBMP4 as an anticancer therapy in patients with recurrent glioblastoma: a first-in-human phase 1 dose escalation trial. Mol Cancer 2023; 22:129. [PMID: 37563568 PMCID: PMC10413694 DOI: 10.1186/s12943-023-01835-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND This Phase 1 study evaluates the intra- and peritumoral administration by convection enhanced delivery (CED) of human recombinant Bone Morphogenetic Protein 4 (hrBMP4) - an inhibitory regulator of cancer stem cells (CSCs) - in recurrent glioblastoma. METHODS In a 3 + 3 dose escalation design, over four to six days, fifteen recurrent glioblastoma patients received, by CED, one of five doses of hrBMP4 ranging from 0·5 to 18 mg. Patients were followed by periodic physical, neurological, blood testing, magnetic resonance imaging (MRI) and quality of life evaluations. The primary objective of this first-in-human study was to determine the safety, dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) of hrBMP4. Secondary objectives were to assess potential efficacy and systemic exposure to hrBMP4 upon intracerebral infusion. RESULTS Intra- and peritumoral infusion of hrBMP4 was safe and well-tolerated. We observed no serious adverse events related to this drug. Neither MTD nor DLT were reached. Three patients had increased hrBMP4 serum levels at the end of infusion, which normalized within 4 weeks, without sign of toxicity. One patient showed partial response and two patients a complete (local) tumor response, which was maintained until the most recent follow-up, 57 and 30 months post-hrBMP4. Tumor growth was inhibited in areas permeated by hrBMP4. CONCLUSION Local delivery of hrBMP4 in and around recurring glioblastoma is safe and well-tolerated. Three patients responded to the treatment. A complete response and long-term survival occurred in two of them. This warrants further clinical studies on this novel treatment targeting glioblastoma CSCs. TRIAL REGISTRATION ClinicaTrials.gov identifier: NCT02869243.
Collapse
Affiliation(s)
- Eelke M Bos
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elena Binda
- Unit of Cancer Stem Cells, ISBReMIT, IRCCS CasaSollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Iris S C Verploegh
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Daphna Hoefnagel
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rutger K Balvers
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anne L Korporaal
- Department of Cell Biology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrea Conidi
- Department of Cell Biology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Trivieri
- Unit of Cancer Stem Cells, ISBReMIT, IRCCS CasaSollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | | | | | - Laura Caiola
- StemGen SpA, Milan, Italy
- HyperStem SA, Lugano, Switzerland
| | - Rogier van Wijck
- Department of Clinical Bioinformatics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter van der Spek
- Department of Clinical Bioinformatics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Manfred Westphal
- Department of Neurosurgery, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - David Noske
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Angelo Luigi Vescovi
- Unit of Cancer Stem Cells, ISBReMIT, IRCCS CasaSollievo della Sofferenza, San Giovanni Rotondo (FG), Italy.
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating the glioblastoma stemness by genes involved in cytoskeletal rearrangements and metabolic alterations. World J Stem Cells 2023; 15:302-322. [PMID: 37342224 PMCID: PMC10277965 DOI: 10.4252/wjsc.v15.i5.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 03/08/2023] [Indexed: 05/26/2023] Open
Abstract
Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness, the latter is one responsible for potentiating the resistance to treatment, inter alia due to increased invasiveness. In recent years, glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements, whereas the impact of the cytoskeleton on invasiveness is well known. Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells. This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism, as they may provide new invasion-related insights. Previously, we proved that interplay between metabolism and cytoskeleton existed in glioblastoma. Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved, not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness. Thus, dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future. Herein, we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.
Collapse
Affiliation(s)
- Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland.
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| |
Collapse
|