1
|
Xiao Y, Jin W, Ju L, Fu J, Wang G, Yu M, Chen F, Qian K, Wang X, Zhang Y. Tracking single-cell evolution using clock-like chromatin accessibility loci. Nat Biotechnol 2025; 43:784-798. [PMID: 38724668 DOI: 10.1038/s41587-024-02241-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 04/10/2024] [Indexed: 05/18/2025]
Abstract
Single-cell chromatin accessibility sequencing (scATAC-seq) reconstructs developmental trajectory by phenotypic similarity. However, inferring the exact developmental trajectory is challenging. Previous studies showed age-associated DNA methylation (DNAm) changes in specific genomic regions, termed clock-like differential methylation loci (ClockDML). Age-associated DNAm could either result from or result in chromatin accessibility changes at ClockDML. As cells undergo mitosis, the heterogeneity of chromatin accessibility on clock-like loci is reduced, providing a measure of mitotic age. In this study, we developed a method, called EpiTrace, that counts the fraction of opened clock-like loci from scATAC-seq data to determine cell age and perform lineage tracing in various cell lineages and animal species. It shows concordance with known developmental hierarchies, correlates well with DNAm-based clocks and is complementary with mutation-based lineage tracing, RNA velocity and stemness predictions. Applying EpiTrace to scATAC-seq data reveals biological insights with clinically relevant implications, ranging from hematopoiesis, organ development, tumor biology and immunity to cortical gyrification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Fu
- Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangjin Chen
- High Performance Computing Center, Peking-Tsinghua College of Life Sciences, Peking University, Beijing, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China.
| |
Collapse
|
2
|
Achinger-Kawecka J, Stirzaker C, Portman N, Campbell E, Chia KM, Du Q, Laven-Law G, Nair SS, Yong A, Wilkinson A, Clifton S, Milioli HH, Alexandrou S, Caldon CE, Song J, Khoury A, Meyer B, Chen W, Pidsley R, Qu W, Gee JMW, Schmitt A, Wong ES, Hickey TE, Lim E, Clark SJ. The potential of epigenetic therapy to target the 3D epigenome in endocrine-resistant breast cancer. Nat Struct Mol Biol 2024; 31:498-512. [PMID: 38182927 PMCID: PMC10948365 DOI: 10.1038/s41594-023-01181-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/15/2023] [Indexed: 01/07/2024]
Abstract
Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.
Collapse
Affiliation(s)
- Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elyssa Campbell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Kee-Ming Chia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Qian Du
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Shalima S Nair
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Aliza Yong
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ashleigh Wilkinson
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Samuel Clifton
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Heloisa H Milioli
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah Alexandrou
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jenny Song
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amanda Khoury
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Braydon Meyer
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Wenhan Chen
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ruth Pidsley
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wenjia Qu
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Julia M W Gee
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | | | - Emily S Wong
- Victor Chang Cardiac Institute, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Xu Z, Wu Y, Zhao G, Jin B, Jiang P. A novel DNA methylation signature revealed GDF6 and RCC1 as potential prognostic biomarkers correlated with cell proliferation in clear cell renal cell carcinoma. Mol Biol Rep 2023; 51:16. [PMID: 38087057 DOI: 10.1007/s11033-023-09003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) accounts for the majority (80%-90%) of renal cell carcinoma (RCC) patients at the time of diagnosis, and approximately 15% of ccRCC patients will develop distant metastasis or recurrence during their lifetime. Increasing number of studies have revealed that the aberrant DNA methylations is closely correlated with the tumorigenesis in ccRCC. RESULTS In this study, we utilized a LASSO (least absolute shrinkage and selection operator) model to identify a combination of 13 probes-based DNA methylation signature that associated with the progression-free survival (PFS) of ccRCC patients. First, differentially methylated regions (CpGs) related to PFS and phenotypes were identified. Next, prognostic DNA methylation probes were selected from the differentially methylated probes (DMPs) and calculated risk scores to stratify patients with ccRCC. The performance of this signature was validated in an independent testing set using various analyses, including Kaplan-Meier analysis for PFS and receiver operating characteristic (ROC) curve analysis. Based on our 13-DNA methylation probes signature, ccRCC patients were successfully stratified into high- and low-risk groups. Combining DNA methylation signature with clinical variables such as T stage, M stage and tumor grade could further improve the accuracy of prediction. Moreover, we highlight two molecular biomarkers (RCC1 and GDF6) corresponding to our probes. Invitro experiments showed that knockdown of RCC1 or GDF6 in ccRCC cell lines reduced cell proliferation, which indicated that both biomarkers are associated with tumorigenesis. CONCLUSIONS The 13-probes-based DNA methylation signature has the potential to serve as an independent tool for survival outcome improvement and treatment strategy selection for ccRCC patients. In addition, our findings suggest that RCC1 and GDF6 may serve as promising markers for ccRCC.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China
| | - Guanan Zhao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Urology, Lishui People's Hospital, Lishui, 323050, Zhejiang, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China
| | - Peng Jiang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Engineering Research Center for Bladder Tumor Innovation Diagnosis and Treatment, Hangzhou, 31003, Zhejiang, China.
| |
Collapse
|
4
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Greve G, Andrieux G, Schlosser P, Blagitko-Dorfs N, Rehman UU, Ma T, Pfeifer D, Heil G, Neubauer A, Krauter J, Heuser M, Salih HR, Döhner K, Döhner H, Hackanson B, Boerries M, Lübbert M. In vivo kinetics of early, non-random methylome and transcriptome changes induced by DNA-hypomethylating treatment in primary AML blasts. Leukemia 2023; 37:1018-1027. [PMID: 37024521 PMCID: PMC10169639 DOI: 10.1038/s41375-023-01876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Despite routine use of DNA-hypomethylating agents (HMAs) in AML/MDS therapy, their mechanisms of action are not yet unraveled. Pleiotropic effects of HMAs include global methylome and transcriptome changes. We asked whether in blasts and T-cells from AML patients HMA-induced in vivo demethylation and remethylation occur randomly or non-randomly, and whether gene demethylation is associated with gene induction. Peripheral blood AML blasts from patients receiving decitabine (20 mg/m2 day 1-5) were serially isolated for methylome analyses (days 0, 8 and 15, n = 28) and methylome-plus-transcriptome analyses (days 0 and 8, n = 23), respectively. T-cells were isolated for methylome analyses (days 0 and 8; n = 16). We noted massive, non-random demethylation at day 8, which was variable between patients. In contrast, T-cells disclosed a thousand-fold lesser, random demethylation, indicating selectivity of the demethylation for the malignant blasts. The integrative analysis of DNA demethylation and transcript induction revealed 87 genes displaying a significant inverse correlation, e.g. the tumor suppressor gene IFI27, whose derepression was validated in two AML cell lines. These results support HMA-induced, non-random early in vivo demethylation events in AML blasts associated with gene induction. Larger patient cohorts are needed to determine whether a demethylation signature may be predictive for response to this treatment.
Collapse
Affiliation(s)
- Gabriele Greve
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nadja Blagitko-Dorfs
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Usama-Ur Rehman
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Ma
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerhard Heil
- Department of Internal Medicine V, Klinikum Lüdenscheid, Lüdenscheid, Germany
| | - Andreas Neubauer
- Philipps University Marburg, and University Hospital Giessen and Marburg, Marburg, Germany
| | - Jürgen Krauter
- Department of Hematology and Oncology, Klinikum Braunschweig, Braunschweig, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625, Hannover, Germany
| | - Helmut R Salih
- Department of Hematology and Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Björn Hackanson
- Department of Hematology/Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), Partner site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Zhang L, Li HT, Shereda R, Lu Q, Weisenberger DJ, O'Connell C, Machida K, An W, Lenz HJ, El-Khoueiry A, Jones PA, Liu M, Liang G. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett 2022; 548:215899. [PMID: 36087682 PMCID: PMC9563073 DOI: 10.1016/j.canlet.2022.215899] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy. EZH2 is the member of PRC2 that catalyzes the placement of H3K27me3 marks. EZH2 overexpression is correlated with poor HCC patient survival. We tested the combination of a DNMTi (5-aza-2'-deoxycytidine, DAC) and the EZH2 inhibitor (EZH2i) GSK126 in human HCC cell lines on drug sensitivity, DNA methylation, nucleosome accessibility, and gene expression profiles. Compared with single agent treatments, all HCC cell lines studied showed increased sensitivity after receiving both drugs concomitant with prolonged anti-proliferative changes and sustained reactivation of nascently-silenced genes. The increased number of up-regulated genes after combination treatment correlated with prolonged anti-proliferation effects and increased nucleosome accessibility. Combination treatments also activate demethylated promoters that are repressed by PRC2 occupancy. Furthermore, 13-31% of genes down-regulated by DNA methylation in primary HCC tumors were reactivated through this combination treatment scheme in vitro. Finally, the combination treatment also exacerbates anti-tumor immune responses, while most of these genes were downregulated in over 50% of primary HCC tumors. We have linked the anti-tumor effects of DAC and GSK126 combination treatments to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets and provided a rationale for treatment efficacy for HCC patients.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rachel Shereda
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daniel J Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Casey O'Connell
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Keigo Machida
- Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Woojin An
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anthony El-Khoueiry
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter A Jones
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Minmin Liu
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
7
|
Li HT, Xu L, Weisenberger DJ, Li M, Zhou W, Peng CC, Stachelek K, Cobrinik D, Liang G, Berry JL. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat Commun 2022; 13:5523. [PMID: 36130950 PMCID: PMC9492718 DOI: 10.1038/s41467-022-33248-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (RB) is a cancer that forms in the developing retina of babies and toddlers. The goal of therapy is to cure the tumor, save the eye and maximize vision. However, it is difficult to predict which eyes are likely to respond to therapy. Predictive molecular biomarkers are needed to guide prognosis and optimize treatment decisions. Direct tumor biopsy is not an option for this cancer; however, the aqueous humor (AH) is an alternate source of tumor-derived cell-free DNA (cfDNA). Here we show that DNA methylation profiling of the AH is a valid method to identify the methylation status of RB tumors. We identify 294 genes directly regulated by methylation that are implicated in p53 tumor suppressor (RB1, p53, p21, and p16) and oncogenic (E2F) pathways. Finally, we use AH to characterize molecular subtypes that can potentially be used to predict the likelihood of treatment success for retinoblastoma patients.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
| | - Liya Xu
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wanding Zhou
- University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chen-Ching Peng
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Kevin Stachelek
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - David Cobrinik
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Jesse L Berry
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
8
|
Uddin MDM, Nguyen NQH, Yu B, Brody JA, Pampana A, Nakao T, Fornage M, Bressler J, Sotoodehnia N, Weinstock JS, Honigberg MC, Nachun D, Bhattacharya R, Griffin GK, Chander V, Gibbs RA, Rotter JI, Liu C, Baccarelli AA, Chasman DI, Whitsel EA, Kiel DP, Murabito JM, Boerwinkle E, Ebert BL, Jaiswal S, Floyd JS, Bick AG, Ballantyne CM, Psaty BM, Natarajan P, Conneely KN. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat Commun 2022; 13:5350. [PMID: 36097025 PMCID: PMC9468335 DOI: 10.1038/s41467-022-33093-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Age-related changes to the genome-wide DNA methylation (DNAm) pattern observed in blood are well-documented. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by the age-related acquisition and expansion of leukemogenic mutations in hematopoietic stem cells (HSCs), is associated with blood cancer and coronary artery disease (CAD). Epigenetic regulators DNMT3A and TET2 are the two most frequently mutated CHIP genes. Here, we present results from an epigenome-wide association study for CHIP in 582 Cardiovascular Health Study (CHS) participants, with replication in 2655 Atherosclerosis Risk in Communities (ARIC) Study participants. We show that DNMT3A and TET2 CHIP have distinct and directionally opposing genome-wide DNAm association patterns consistent with their regulatory roles, albeit both promoting self-renewal of HSCs. Mendelian randomization analyses indicate that a subset of DNAm alterations associated with these two leading CHIP genes may promote the risk for CAD.
Collapse
Affiliation(s)
- M D Mesbah Uddin
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ngoc Quynh H Nguyen
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Akhil Pampana
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Tetsushi Nakao
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Michael C Honigberg
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Romit Bhattacharya
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gabriel K Griffin
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Varuna Chander
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Boston University and NHLBI/NIH, Framingham, MA, 01702, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Daniel I Chasman
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27516, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Douglas P Kiel
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Joanne M Murabito
- Framingham Heart Study, Boston University and NHLBI/NIH, Framingham, MA, 01702, USA
- Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, 02118, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 20815, USA
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, 98101, USA
| | - Pradeep Natarajan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Meier R, Greve G, Zimmer D, Bresser H, Berberich B, Langova R, Stomper J, Rubarth A, Feuerbach L, Lipka DB, Hey J, Grüning B, Brors B, Duyster J, Plass C, Becker H, Lübbert M. The antileukemic activity of decitabine upon PML/RARA-negative AML blasts is supported by all-trans retinoic acid: in vitro and in vivo evidence for cooperation. Blood Cancer J 2022; 12:122. [PMID: 35995769 PMCID: PMC9395383 DOI: 10.1038/s41408-022-00715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672). The molecular mechanisms governing this in vivo synergism are unclear. We now demonstrate cooperative antileukemic effects of DAC and ATRA on AML cell lines U937 and MOLM-13. By RNA-sequencing, derepression of >1200 commonly regulated transcripts following the dual treatment was observed. Overall chromatin accessibility (interrogated by ATAC-seq) and, in particular, at motifs of retinoic acid response elements were affected by both single-agent DAC and ATRA, and enhanced by the dual treatment. Cooperativity regarding transcriptional induction and chromatin remodeling was demonstrated by interrogating the HIC1, CYP26A1, GBP4, and LYZ genes, in vivo gene derepression by expression studies on peripheral blood blasts from AML patients receiving DAC + ATRA. The two drugs also cooperated in derepression of transposable elements, more effectively in U937 (mutated TP53) than MOLM-13 (intact TP53), resulting in a “viral mimicry” response. In conclusion, we demonstrate that in vitro and in vivo, the antileukemic and gene-derepressive epigenetic activity of DAC is enhanced by ATRA.
Collapse
Affiliation(s)
- Ruth Meier
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Greve
- Institute of Genetic Epidemiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Zimmer
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helena Bresser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Berberich
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralitsa Langova
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Julia Stomper
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rubarth
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Becker
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Lee B, Cyrill SL, Lee W, Melchiotti R, Andiappan AK, Poidinger M, Rötzschke O. Analysis of archaic human haplotypes suggests that 5hmC acts as an epigenetic guide for NCO recombination. BMC Biol 2022; 20:173. [PMID: 35927700 PMCID: PMC9354366 DOI: 10.1186/s12915-022-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-crossover (NCO) refers to a mechanism of homologous recombination in which short tracks of DNA are copied between homologue chromatids. The allelic changes are typically restricted to one or few SNPs, which potentially allow for the gradual adaptation and maturation of haplotypes. It is assumed to be a stochastic process but the analysis of archaic and modern human haplotypes revealed a striking variability in local NCO recombination rates. Methods NCO recombination rates of 1.9 million archaic SNPs shared with Denisovan hominids were defined by a linkage study and correlated with functional and genomic annotations as well as ChIP-Seq data from modern humans. Results We detected a strong correlation between NCO recombination rates and the function of the respective region: low NCO rates were evident in introns and quiescent intergenic regions but high rates in splice sites, exons, 5′- and 3′-UTRs, as well as CpG islands. Correlations with ChIP-Seq data from ENCODE and other public sources further identified epigenetic modifications that associated directly with these recombination events. A particularly strong association was observed for 5-hydroxymethylcytosine marks (5hmC), which were enriched in virtually all of the functional regions associated with elevated NCO rates, including CpG islands and ‘poised’ bivalent regions. Conclusion Our results suggest that 5hmC marks may guide the NCO machinery specifically towards functionally relevant regions and, as an intermediate of oxidative demethylation, may open a pathway for environmental influence by specifically targeting recently opened gene loci. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01353-9.
Collapse
Affiliation(s)
- Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Samantha Leeanne Cyrill
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Cold Spring Harbor Laboratory, One Bungtown Road, NY, 11724, Cold Spring Harbor, USA
| | - Wendy Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, 3052, Australia
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.
| |
Collapse
|
11
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
12
|
FOXC1 Binds Enhancers and Promotes Cisplatin Resistance in Bladder Cancer. Cancers (Basel) 2022; 14:cancers14071717. [PMID: 35406487 PMCID: PMC8996937 DOI: 10.3390/cancers14071717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary In bladder cancer, cisplatin remains the front-line therapy, but drug resistance is common. Previously, we showed that cancer cells can spontaneously convert to an aggressive drug-resistant phenotype without mutational events. In the current work, we explored the epigenetic mechanism behind the conversion to the drug-resistant phenotype. We discovered that drug-resistant cells have differentially accessible enhancers, which are bound by FOXC1, a transcription factor that is overexpressed in these cells. Accordingly, FOXC1 knockout significantly attenuates the emergence of the drug-resistant phenotype and reduces cell survival upon cisplatin treatment. These findings suggest that FOXC1 binding at accessible enhancers promotes cisplatin drug resistance in bladder cancer cells. Therefore, FOXC1 targeting may be a new therapeutic avenue to mitigate cisplatin resistance and improve treatment efficacy in bladder cancer. Abstract Chemotherapy resistance is traditionally attributed to DNA mutations that confer a survival advantage under drug selection pressure. However, in bladder cancer and other malignancies, we and others have previously reported that cancer cells can convert spontaneously to an aggressive drug-resistant phenotype without prior drug selection or mutational events. In the current work, we explored possible epigenetic mechanisms behind this phenotypic plasticity. Using Hoechst dye exclusion and flow cytometry, we isolated the aggressive drug-resistant cells and analyzed their chromatin accessibility at regulatory elements. Compared to the rest of the cancer cell population, the aggressive drug-resistant cells exhibited enhancer accessibility changes. In particular, we found that differentially accessible enhancers were enriched for the FOXC1 transcription factor motif, and that FOXC1 was the most significantly overexpressed gene in aggressive drug-resistant cells. ChIP-seq analysis revealed that differentially accessible enhancers in aggressive drug-resistant cells had a higher FOXC1 binding, which regulated the expression of adjacent cancer-relevant genes like ABCB1 and ID3. Accordingly, cisplatin treatment of bladder cancer cells led to an increased FOXC1 expression, which mediated cell survival and conversion to a drug-resistant phenotype. Collectively, these findings suggest that FOXC1 contributes to phenotypic plasticity by binding enhancers and promoting a mutation-independent shift towards cisplatin resistance in bladder cancer.
Collapse
|
13
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
14
|
Du Q, Smith GC, Luu PL, Ferguson JM, Armstrong NJ, Caldon CE, Campbell EM, Nair SS, Zotenko E, Gould CM, Buckley M, Chia KM, Portman N, Lim E, Kaczorowski D, Chan CL, Barton K, Deveson IW, Smith MA, Powell JE, Skvortsova K, Stirzaker C, Achinger-Kawecka J, Clark SJ. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Rep 2021; 36:109722. [PMID: 34551299 DOI: 10.1016/j.celrep.2021.109722] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.
Collapse
Affiliation(s)
- Qian Du
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Grady C Smith
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Phuc Loi Luu
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - James M Ferguson
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | | | - Shalima S Nair
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Elena Zotenko
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cathryn M Gould
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Buckley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kee-Ming Chia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Dominik Kaczorowski
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Chia-Ling Chan
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kirston Barton
- The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ira W Deveson
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Martin A Smith
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia; The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Cellular Genomics Futures Institute, School of Medical Sciences, UNSW Sydney, NSW 2010, Australia
| | - Ksenia Skvortsova
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Susan J Clark
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
15
|
Gujar H, Mehta A, Li HT, Tsai YC, Qiu X, Weisenberger DJ, Jasiulionis MG, In GK, Liang G. Characterizing DNA methylation signatures and their potential functional roles in Merkel cell carcinoma. Genome Med 2021; 13:130. [PMID: 34399838 PMCID: PMC8365948 DOI: 10.1186/s13073-021-00946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare but aggressive skin cancer with limited treatment possibilities. Merkel cell tumors display with neuroendocrine features and Merkel cell polyomavirus (MCPyV) infection in the majority (80%) of patients. Although loss of histone H3 lysine 27 trimethylation (H3K27me3) has been shown during MCC tumorigenesis, epigenetic dysregulation has largely been overlooked. METHODS We conducted global DNA methylation profiling of clinically annotated MCC primary tumors, metastatic skin tumors, metastatic lymph node tumors, paired normal tissues, and two human MCC cell lines using the Illumina Infinium EPIC DNA methylation BeadArray platform. RESULTS Significant differential DNA methylation patterns across the genome are revealed between the four tissue types, as well as based on MCPyV status. Furthermore, 964 genes directly regulated by promoter or gene body DNA methylation were identified with high enrichment in neuro-related pathways. Finally, our findings suggest that loss of H3K27me3 occupancy in MCC is attributed to KDM6B and EZHIP overexpression as a consequence of promoter DNA hypomethylation. CONCLUSIONS We have demonstrated specific DNA methylation patterns for primary MCC tumors, metastatic MCCs, and adjacent-normal tissues. We have also identified DNA methylation markers that not only show potential diagnostic or prognostic utility in MCC management, but also correlate with MCC tumorigenesis, MCPyV expression, neuroendocrine features, and H3K27me3 status. The identification of DNA methylation alterations in MCC supports the need for further studies to understand the clinical implications of epigenetic dysregulation and potential therapeutic targets in MCC.
Collapse
Affiliation(s)
- Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Arjun Mehta
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Yvonne C. Tsai
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Xiangning Qiu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669 5 andar, Vila Clementino, São Paulo, SP 04039032 Brazil
| | - Gino K. In
- Department of Dermatology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
16
|
Xu Z, Gujar H, Fu G, Ahmadi H, Bhanvadia S, Weisenberger DJ, Jin B, Gill PS, Gill I, Daneshmand S, Siegmund KD, Liang G. A Novel DNA Methylation Signature as an Independent Prognostic Factor in Muscle-Invasive Bladder Cancer. Front Oncol 2021; 11:614927. [PMID: 33659216 PMCID: PMC7917237 DOI: 10.3389/fonc.2021.614927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Muscle-invasive bladder cancer (MIBC) accounts for approximately 20% of all urothelial bladder carcinomas (UBC) at time of diagnosis, and up to 30% of patients with non-muscle invasive UBC will progress to MIBC over time. An increasing body of evidence has revealed a strong correlation between aberrant DNA methylation and tumorigenesis in MIBC. Results Using The Cancer Genome Atlas (TCGA) molecular data for 413 patients, we described a DNA methylation-based signature as a prognostic factor for overall survival (OS) in MIBC patients. By using a least absolute shrinkage and selection operator (LASSO) model, differentially methylated regions were first identified using multiple criteria followed by survival and LASSO analyses to identify DNA methylation probes related to OS and build a classifier to stratify patients with MIBC. The prognostic value of the classifier, referred to as risk score (RS), was validated in a held-out testing set from the TCGA MIBC cohort. Finally, receiver operating characteristic (ROC) analysis was used to compare the prognostic accuracy of the models built with RS alone, RS plus clinicopathologic features, and clinicopathologic features alone. We found that our seven-probe classifier-based RS stratifies patients into high- and low-risk groups for overall survival (OS) in the testing set (n = 137) (AUC at 3 years, 0.65; AUC at 5 years, 0.65). In addition, RS significantly improved the prognostic model when it was combined with clinical information including age, smoking status, Tumor (T) stage, and Lymph node metastasis (N) stage. Conclusions The DNA methylation-based RS can be a useful tool to predict the accuracy of preoperative and/or post-cystectomy models of OS in MIBC patients.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hemant Gujar
- USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Ahmadi
- USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sumeet Bhanvadia
- USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Parkash S Gill
- Division of Hematology in Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Inderbir Gill
- USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Siamak Daneshmand
- USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Gangning Liang
- USC Institute of Urology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun 2021; 12:409. [PMID: 33462245 PMCID: PMC7814040 DOI: 10.1038/s41467-020-20696-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Insufficient eradication capacity and dysfunction are common occurrences in T cells that characterize cancer immunotherapy failure. De novo DNA methylation promotes T cell exhaustion, whereas methylation inhibition enhances T cell rejuvenation in vivo. Decitabine, a DNA methyltransferase inhibitor approved for clinical use, may provide a means of modifying exhaustion-associated DNA methylation programmes. Herein, anti-tumour activities, cytokine production, and proliferation are enhanced in decitabine-treated chimeric antigen receptor T (dCAR T) cells both in vitro and in vivo. Additionally, dCAR T cells can eradicate bulky tumours at a low-dose and establish effective recall responses upon tumour rechallenge. Antigen-expressing tumour cells trigger higher expression levels of memory-, proliferation- and cytokine production-associated genes in dCAR T cells. Tumour-infiltrating dCAR T cells retain a relatively high expression of memory-related genes and low expression of exhaustion-related genes in vivo. In vitro administration of decitabine may represent an option for the generation of CAR T cells with improved anti-tumour properties.
Collapse
|
18
|
Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188454. [PMID: 33075468 DOI: 10.1016/j.bbcan.2020.188454] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
DNA methylation abnormalities are regarded as critical event for cancer initiation and development. Tumor-associated genes encompassing aberrant DNA methylation alterations at specific locus are correlated with chromatin remodeling and dysregulation of gene expression in various malignancies. Thus, technologies designed to manipulate DNA methylation at specific loci of genome are necessary for the functional study and therapeutic application in the context of cancer management. Traditionally, the method for DNA methylation modifications demonstrates an unspecific feature, adversely causing global-genome epigenetic alterations and confusing the function of desired gene. Novel approaches for targeted DNA methylation regulation have a great advantage of manipulating gene epigenetic alterations in a more specific and efficient method. In this review, we described different targeting DNA methylation techniques, including both their advantages and limitations. Through a comprehensive understanding of these targeting tools, we hope to open a new perspective for cancer treatment.
Collapse
Affiliation(s)
- Jie Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing Yang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
19
|
Lee HJ, Hou Y, Chen Y, Dailey ZZ, Riddihough A, Jang HS, Wang T, Johnson SL. Regenerating zebrafish fin epigenome is characterized by stable lineage-specific DNA methylation and dynamic chromatin accessibility. Genome Biol 2020; 21:52. [PMID: 32106888 PMCID: PMC7047409 DOI: 10.1186/s13059-020-1948-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Zebrafish can faithfully regenerate injured fins through the formation of a blastema, a mass of proliferative cells that can grow and develop into the lost body part. After amputation, various cell types contribute to blastema formation, where each cell type retains fate restriction and exclusively contributes to regeneration of its own lineage. Epigenetic changes that are associated with lineage restriction during regeneration remain underexplored. RESULTS We produce epigenome maps, including DNA methylation and chromatin accessibility, as well as transcriptomes, of osteoblasts and other cells in uninjured and regenerating fins. This effort reveals regeneration as a process of highly dynamic and orchestrated transcriptomic and chromatin accessibility changes, coupled with stably maintained lineage-specific DNA methylation. The epigenetic signatures also reveal many novel regeneration-specific enhancers, which are experimentally validated. Regulatory networks important for regeneration are constructed through integrative analysis of the epigenome map, and a knockout of a predicted upstream regulator disrupts normal regeneration, validating our prediction. CONCLUSION Our study shows that lineage-specific DNA methylation signatures are stably maintained during regeneration, and regeneration enhancers are preset as hypomethylated before injury. In contrast, chromatin accessibility is dynamically changed during regeneration. Many enhancers driving regeneration gene expression as well as upstream regulators of regeneration are identified and validated through integrative epigenome analysis.
Collapse
Affiliation(s)
- Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zea Z Dailey
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aiyana Riddihough
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hyo Sik Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA.
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
20
|
Xu T, Li HT, Wei J, Li M, Hsieh TC, Lu YT, Lakshminarasimhan R, Xu R, Hodara E, Morrison G, Gujar H, Rhie SK, Siegmund K, Liang G, Goldkorn A. Epigenetic plasticity potentiates a rapid cyclical shift to and from an aggressive cancer phenotype. Int J Cancer 2020; 146:3065-3076. [PMID: 32017074 DOI: 10.1002/ijc.32904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
Abstract
Highly tumorigenic, drug-resistant cancer stem-like cells drive cancer progression. These aggressive cells can arise repeatedly from bulk tumor cells independently of mutational events, suggesting an epigenetic mechanism. To test this possibility, we studied bladder cancer cells as they cyclically shifted to and from a cancer stem-like phenotype, and we discovered that these two states exhibit distinct DNA methylation and chromatin accessibility. Most differential chromatin accessibility was independent of methylation and affected the expression of driver genes such as E2F3, a cell cycle regulator associated with aggressive bladder cancer. Cancer stem-like cells exhibited increased E2F3 promoter accessibility and increased E2F3 expression that drove cell migration, invasiveness and drug resistance. Epigenetic interference using a DNA methylation inhibitor blocked the transition to a cancer stem-like state and reduced E2F3 expression. Our findings indicate that epigenetic plasticity plays a key role in the transition to and from an aggressive, drug-resistant phenotype.
Collapse
Affiliation(s)
- Tong Xu
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jenny Wei
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Meng Li
- Norris Bioinformatics Core, Health Sciences Libraries, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Tien-Chan Hsieh
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Yi-Tsung Lu
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| | | | - Rong Xu
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Emmanuelle Hodara
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Gareth Morrison
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Hemant Gujar
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kimberly Siegmund
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Internal Medicine, University of Southern California Keck School of Medicine and Norris Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
21
|
Putative promoters within gene bodies control exon expression via TET1‐mediated H3K36 methylation. J Cell Physiol 2020; 235:6711-6724. [DOI: 10.1002/jcp.29566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
|
22
|
Porter LF, Saptarshi N, Fang Y, Rathi S, den Hollander AI, de Jong EK, Clark SJ, Bishop PN, Olsen TW, Liloglou T, Chavali VRM, Paraoan L. Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin Epigenetics 2019; 11:6. [PMID: 30642396 PMCID: PMC6332695 DOI: 10.1186/s13148-019-0608-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a degenerative disorder of the central retina and the foremost cause of blindness. The retinal pigment epithelium (RPE) is a primary site of disease pathogenesis. The genetic basis of AMD is relatively well understood; however, this knowledge is yet to yield a treatment for the most prevalent non-neovascular disease forms. Therefore, tissue-specific epigenetic mechanisms of gene regulation are of considerable interest in AMD. We aimed to identify differentially methylated genes associated with AMD in the RPE and differentiate local DNA methylation aberrations from global DNA methylation changes, as local DNA methylation changes may be more amenable to therapeutic manipulation. Methods Epigenome-wide association study and targeted gene expression profiling were carried out in RPE cells from eyes of human donors. We performed genome-wide DNA methylation profiling (Illumina 450k BeadChip array) on RPE cells from 44 human donor eyes (25 AMD and 19 normal controls). We validated the findings using bisulfite pyrosequencing in 55 RPE samples (30 AMD and 25 normal controls) including technical (n = 38) and independent replicate samples (n = 17). Long interspersed nucleotide element 1 (LINE-1) analysis was then applied to assess global DNA methylation changes in the RPE. RT-qPCR on independent donor RPE samples was performed to assess gene expression changes. Results Genome-wide DNA methylation profiling identified differential methylation of multiple loci including the SKI proto-oncogene (SKI) (p = 1.18 × 10−9), general transcription factor IIH subunit H4 (GTF2H4) (p = 7.03 × 10−7), and Tenascin X (TNXB) (p = 6.30 × 10−6) genes in AMD. Bisulfite pyrosequencing validated the differentially methylated locus cg18934822 in SKI, and cg22508626 within GTF2H4, and excluded global DNA methylation changes in the RPE in AMD. We further demonstrated the differential expression of SKI, GTF2H4, and TNXB in the RPE of independent AMD donors. Conclusions We report the largest genome-wide methylation analysis of RPE in AMD along with associated gene expression changes to date, for the first-time reaching genome-wide significance, and identified novel targets for functional and future therapeutic intervention studies. The novel differentially methylated genes SKI and GTF2H4 have not been previously associated with AMD, and regulate disease pathways implicated in AMD, including TGF beta signaling (SKI) and transcription-dependent DNA repair mechanisms (GTF2H4). Electronic supplementary material The online version of this article (10.1186/s13148-019-0608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise F Porter
- St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK. .,Department of Eye and Vision Science, William Duncan Building, University of Liverpool, Liverpool, UK.
| | - Neil Saptarshi
- Department of Eye and Vision Science, William Duncan Building, University of Liverpool, Liverpool, UK
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Sonika Rathi
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eiko K de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon J Clark
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul N Bishop
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | - Venkata R M Chavali
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Luminita Paraoan
- Department of Eye and Vision Science, William Duncan Building, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation. Leukemia 2018; 33:945-956. [PMID: 30470836 DOI: 10.1038/s41375-018-0293-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/21/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
DNA methyltransferase inhibitors (DNMTi) approved for older AML patients are clinically tested in combination with histone deacetylase inhibitors (HDACi). The mechanism of action of these drugs is still under debate. In colon cancer cells, 5-aza-2'-deoxycytidine (DAC) can downregulate oncogenes and metabolic genes by reversing gene body DNA methylation, thus implicating gene body methylation as a novel drug target. We asked whether DAC-induced gene body demethylation in AML cells is also associated with gene repression, and whether the latter is enhanced by HDACi.Transcriptome analyses revealed that a combined treatment with DAC and the HDACi panobinostat or valproic acid affected significantly more transcripts than the sum of the genes regulated by either treatment alone, demonstrating a quantitative synergistic effect on genome-wide expression in U937 cells. This effect was particularly striking for downregulated genes. Integrative methylome and transcriptome analyses showed that a massive downregulation of genes, including oncogenes (e.g., MYC) and epigenetic modifiers (e.g., KDM2B, SUV39H1) often overexpressed in cancer, was associated predominantly with gene body DNA demethylation and changes in acH3K9/27. These findings have implications for the mechanism of action of combined epigenetic treatments, and for a better understanding of responses in trials where this approach is clinically tested.
Collapse
|
24
|
Liu M, Zhang L, Li H, Hinoue T, Zhou W, Ohtani H, El-Khoueiry A, Daniels J, O’Connell C, Dorff TB, Lu Q, Weisenberger DJ, Liang G. Integrative Epigenetic Analysis Reveals Therapeutic Targets to the DNA Methyltransferase Inhibitor Guadecitabine (SGI-110) in Hepatocellular Carcinoma. Hepatology 2018; 68:1412-1428. [PMID: 29774579 PMCID: PMC6173644 DOI: 10.1002/hep.30091] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/28/2018] [Indexed: 12/14/2022]
Abstract
UNLABELLED There is an urgent need to develop more effective therapies for hepatocellular carcinoma (HCC) because of its aggressiveness. Guadecitabine (SGI-110) is a second-generation DNA methyltransferase inhibitor (DNMTi), which is currently in clinical trials for HCC and shows greater stability and performance over first-generation DNMTis. In order to identify potential therapeutic targets of SGI-110 for clinical trials, HCC cell lines (SNU398, HepG2, and SNU475) were used to evaluate the effects of transient SGI-110 treatment by an integrative analysis of DNA methylation, nucleosome accessibility, gene expression profiles, and its clinical relevance by comparison to The Cancer Genome Atlas (TCGA) HCC clinical data. Each HCC cell line represents a different DNA methylation subtype of primary HCC tumors based on TCGA data. After SGI-110 treatment, all cell lines were sensitive to SGI-110 with prolonged antiproliferation effects. Expression of up-regulated genes, including tumor suppressors, was positively correlated with nucleosome accessibility and negatively correlated with gene promoter DNA methylation. Alternatively, expression of down-regulated genes, such as oncogenes, was negatively correlated with nucleosome accessibility and positively correlated with gene body DNA methylation. SGI-110 can also act as a dual inhibitor to down-regulate polycomb repressive complex 2 (PRC2) genes by demethylating their gene bodies, resulting in reactivation of PRC2 repressed genes without involvement of DNA methylation. Furthermore, it can up-regulate endogenous retroviruses to reactivate immune pathways. Finally, about 48% of frequently altered genes in primary HCC tumors can be reversed by SGI-110 treatment. CONCLUSION Our integrative analysis has successfully linked the antitumor effects of SGI-110 to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets, and provided a rationale for combination treatments of SGI-110 with immune checkpoint therapies.
Collapse
Affiliation(s)
- Minmin Liu
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Lian Zhang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongtao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Wanding Zhou
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Hitoshi Ohtani
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Anthony El-Khoueiry
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - John Daniels
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Casey O’Connell
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tanya B. Dorff
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daniel J. Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Gangning Liang, , 1441 Eastlake Ave. NOR7344, Los Angeles, CA 90089, Tel: 323-865-0470
| |
Collapse
|
25
|
Yeon A, You S, Kim M, Gupta A, Park MH, Weisenberger DJ, Liang G, Kim J. Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics 2018; 8:4520-4534. [PMID: 30214636 PMCID: PMC6134931 DOI: 10.7150/thno.25130] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
Alterations in DNA methylation are important epigenetic markers in bladder cancer (BC). These epigenome modifications may drive the mechanisms of aggressive chemo-resistant BC. Clinicopathological biomarkers that indicate chemotherapeutic resistance are critical for better assessing treatment strategies for individual patients. Thus, in this study, we aimed to determine whether DNA methylation of certain metabolic enzymes is significantly altered in cisplatin-resistant BC cells. Methods: To characterize CpG methylation and nucleosome accessibility in cisplatin-resistant BC cells, the Illumina Infinium HM450 DNA methylation assay was performed. Perturbed gene expression was found to be associated with cisplatin resistance, and the biological roles of spermidine/spermine N1-acetyltransferase (SAT1) and argininosuccinate synthase 1 (ASS1) were further studied using qRT-PCR analysis and various cell biology assays, including western blot. Results:ASS1 and SAT1, genes for amino acid and polyamine metabolism catalysts, respectively, were found to be vastly hypermethylated, resulting in greatly downregulated expression. ASS1 expression is of particular interest because prior studies have demonstrated its potential association with BC stage and recurrence. In regard to chemoresistance, we found that aberrant expression or induced stimulation of SAT1 restored cisplatin sensitivity in the cell culture system. We also found that the addition of exogenous arginine deiminase through administration of ADI-PEG 20 (pegylated arginine deiminase) increased ASS1 expression and enhanced cisplatin's apoptotic effects. Conclusions: Our study demonstrates a novel mechanistic link between the epigenetic perturbation of SAT1 and ASS1 and cancer metabolism in cisplatin-resistant bladder cancer cells. These findings suggest potential utility of SAT1 and ASS1 as predictive biomarkers in re-sensitizing bladder cancer to chemotherapy and personalizing therapy.
Collapse
Affiliation(s)
- Austin Yeon
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amit Gupta
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, CA, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
26
|
Mackin SJ, O'Neill KM, Walsh CP. Comparison of DNMT1 inhibitors by methylome profiling identifies unique signature of 5-aza-2'deoxycytidine. Epigenomics 2018; 10:1085-1101. [PMID: 30070602 DOI: 10.2217/epi-2017-0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM 5-aza-2'deoxycytidine (Aza) is used to treat myelodysplastic syndrome and is in trials for other cancers. It acts chiefly as a hypomethylating agent inhibiting DNMT1. A lack of understanding of off-target effects in normal cells hinders wider usage. MATERIALS & METHODS We compared treatment of the same normosomic, nontransformed fibroblast cell line with Aza and SMARTpool siRNA against DNMT1. Methylation and transcription were assayed using Illumina 450k and HT12 arrays. RESULTS Both Aza and DNMT1 siRNA caused overall hypomethylation, with siRNA more efficient at demethylating gene bodies. Hypomethylation at the promoters of many histones, and hypermethylation at multiple sites genome wide, were unique to Aza treatment. CONCLUSION Aza had important unique effects and targets compared with DNMT1 inhibition via siRNA.
Collapse
Affiliation(s)
- Sarah-Jayne Mackin
- Genomic Medicine Research Group, Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK
| | - Karla M O'Neill
- Genomic Medicine Research Group, Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK.,Current address: The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK
| |
Collapse
|
27
|
Liu G, Liu B, Zheng S, Dong K, Dong R. Aberrant RASSF5 gene transcribed region hypermethylation in pediatric hepatoblastomas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3612-3617. [PMID: 31949741 PMCID: PMC6962826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/18/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aberrant DNA methylation plays an important role in cancer and has been recognized to contribute to the activity of oncogenes and inactivity of tumor suppressor genes. RAS association domain family (RASSF) members have been shown to be epigenetically silenced by promoter methylation in cancers, including hepatoblastoma. METHODS We assessed the methylation patterns in the gene of RASSF5 from hepatoblastoma tissue samples harvested from patients using high-throughput mass spectrometry on a matrix-assisted laser desorption/ionization time-of-flight mass array. RESULTS Hypermethylation was found in the RASSF5 gene transcribed regionand was correlated with downregulation of RASSF5 RNA expression levels in the hepatoblastoma samples. CONCLUSIONS The results indicate that aberrant methylation of RASSF5 may contribute to its downregulated mRNA expression in hepatoblastoma.
Collapse
Affiliation(s)
- Gongbao Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Key Laboratory of Neonatal Disease, Ministry of Health 399 Wan Yuan Road, Shanghai 201102, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Key Laboratory of Neonatal Disease, Ministry of Health 399 Wan Yuan Road, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Key Laboratory of Neonatal Disease, Ministry of Health 399 Wan Yuan Road, Shanghai 201102, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Key Laboratory of Neonatal Disease, Ministry of Health 399 Wan Yuan Road, Shanghai 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Key Laboratory of Neonatal Disease, Ministry of Health 399 Wan Yuan Road, Shanghai 201102, China
| |
Collapse
|
28
|
Dong X, Chen J, Li T, Li E, Zhang X, Zhang M, Song W, Zhao H, Lai J. Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize. Genome Res 2018; 28:1020-1028. [PMID: 29903724 PMCID: PMC6028132 DOI: 10.1101/gr.230201.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fundamental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ∼2.3% of nucleosomes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes) were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucleosomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modification. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a mechanistic connection between chromatin organization and genomic imprinting.
Collapse
Affiliation(s)
- Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - En Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
29
|
Tobiasson M, Abdulkadir H, Lennartsson A, Katayama S, Marabita F, De Paepe A, Karimi M, Krjutskov K, Einarsdottir E, Grövdal M, Jansson M, Ben Azenkoud A, Corddedu L, Lehmann S, Ekwall K, Kere J, Hellström-Lindberg E, Ungerstedt J. Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget 2018; 8:28812-28825. [PMID: 28427179 PMCID: PMC5438694 DOI: 10.18632/oncotarget.15807] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/01/2017] [Indexed: 02/07/2023] Open
Abstract
Azacitidine (Aza) is first-line treatment for patients with high-risk myelodysplastic syndromes (MDS), although its precise mechanism of action is unknown. We performed the first study to globally evaluate the epigenetic effects of Aza on MDS bone marrow progenitor cells assessing gene expression (RNA seq), DNA methylation (Illumina 450k) and the histone modifications H3K18ac and H3K9me3 (ChIP seq). Aza induced a general increase in gene expression with 924 significantly upregulated genes but this increase showed no correlation with changes in DNA methylation or H3K18ac, and only a weak association with changes in H3K9me3. Interestingly, we observed activation of transcripts containing 15 endogenous retroviruses (ERVs) confirming previous cell line studies. DNA methylation decreased moderately in 99% of all genes, with a median β-value reduction of 0.018; the most pronounced effects seen in heterochromatin. Aza-induced hypomethylation correlated significantly with change in H3K9me3. The pattern of H3K18ac and H3K9me3 displayed large differences between patients and healthy controls without any consistent pattern induced by Aza. We conclude that the marked induction of gene expression only partly could be explained by epigenetic changes, and propose that activation of ERVs may contribute to the clinical effects of Aza in MDS.
Collapse
Affiliation(s)
- Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Hani Abdulkadir
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Francesco Marabita
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, Stockholm, Sweden
| | - Ayla De Paepe
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Kaarel Krjutskov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Michael Grövdal
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Monika Jansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Asmaa Ben Azenkoud
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lina Corddedu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| |
Collapse
|
30
|
Dimopoulos K, Søgaard Helbo A, Fibiger Munch-Petersen H, Sjö L, Christensen J, Sommer Kristensen L, Asmar F, Hermansen NEU, O'Connel C, Gimsing P, Liang G, Grønbaek K. Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner. Mol Oncol 2017; 12:180-195. [PMID: 29130642 PMCID: PMC5792743 DOI: 10.1002/1878-0261.12157] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Thalidomide and its derivatives, lenalidomide and pomalidomide (also known as IMiDs), have significantly changed the treatment landscape of multiple myeloma, and the recent discovery of cereblon (CRBN) as their direct biological target has led to a deeper understanding of their complex mechanism of action. In an effort to comprehend the precise mechanisms behind the development of IMiD resistance and examine whether it is potentially reversible, we established lenalidomide‐resistant (‐LR) and pomalidomide‐resistant (‐PR) human myeloma cell lines from two IMiD‐sensitive cell lines, OPM2 and NCI‐H929, by continuous culture in the presence of lenalidomide or pomalidomide for 4–6 months, until acquirement of stable resistance. By assessing genome‐wide DNA methylation and chromatin accessibility in these cell lines, we found that acquired IMiD resistance is associated with an increase in genome‐wide DNA methylation and an even greater reduction in chromatin accessibility. Transcriptome analysis confirmed that resistant cell lines are mainly characterized by a reduction in gene expression, identifying SMAD3 as a commonly downregulated gene in IMiD‐resistant cell lines. Moreover, we show that these changes are potentially reversible, as combination of 5‐azacytidine and EPZ‐6438 not only restored the observed accessibility changes and the expression of SMAD3, but also resensitized the resistant cells to both lenalidomide and pomalidomide. Interestingly, the resensitization process was independent of CRBN. Our data suggest that simultaneous inhibition of DNA methyl transferases and EZH2 leads to an extensive epigenetic reprogramming which allows myeloma cells to (re)gain sensitivity to IMiDs.
Collapse
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | | - Lene Sjö
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | | | - Casey O'Connel
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Gangning Liang
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
31
|
Choi SK, Pandiyan K, Eun JW, Yang X, Hong SH, Nam SW, Jones PA, Liang G, You JS. Epigenetic landscape change analysis during human EMT sheds light on a key EMT mediator TRIM29. Oncotarget 2017; 8:98322-98335. [PMID: 29228692 PMCID: PMC5716732 DOI: 10.18632/oncotarget.21681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a key trans-differentiation process, which plays a critical role in physiology and pathology. Although gene expression changes in EMT have been scrutinized, study of epigenome is in its infancy. To understand epigenetic changes during TWIST-driven EMT, we used the AcceSssIble assay to study DNA methylation and chromatin accessibility in human mammary epithelial cells (HMECs). The DNA methylation changes were found to have functional significance in EMT - i.e. methylated genes were enriched for E-box motifs that can be recognized by TWIST, at the promoters suggesting a potential targeting phenomenon, whereas the demethylated regions were enriched for pro-metastatic genes, supporting the role of EMT in metastasis. TWIST-induced EMT triggers alterations in chromatin accessibility both independent of and dependent on DNA methylation changes, primarily resulting in closed chromatin conformation. By overlapping the genes, whose chromatin structure is changed during early EMT and a known "core EMT signature", we identified 18 driver candidate genes during EMT, 14 upregulated and 4 downregulated genes with corresponding chromatin structure changes. Among 18 genes, we focused on TRIM29 as a novel marker of EMT. Although loss of TRIM29 is insufficient to suppress CDH, it is enough to induce CDH2 and VIM. Gene functional annotation analysis shows the involvement of TRIM29 in epidermal development, cell differentiation and cell migration. Taken together, our results provide a robust snapshot of chromatin state during human EMT and identify TRIM29 as a core mediator of EMT.
Collapse
Affiliation(s)
- Sung Kyung Choi
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Kurinji Pandiyan
- Departments of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jung Woo Eun
- Department of Pathology, College of Medicine, The Catholic University, Seoul, Korea
| | - Xiaojing Yang
- Departments of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seong Hwi Hong
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University, Seoul, Korea
| | | | - Gangning Liang
- Departments of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, KonKuk University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Luo H, Xi Y, Li W, Li J, Li Y, Dong S, Peng L, Liu Y, Yu W. Cell identity bookmarking through heterogeneous chromatin landscape maintenance during the cell cycle. Hum Mol Genet 2017; 26:4231-4243. [DOI: 10.1093/hmg/ddx312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
|
33
|
Ponnaluri VKC, Zhang G, Estève PO, Spracklin G, Sian S, Xu SY, Benoukraf T, Pradhan S. NicE-seq: high resolution open chromatin profiling. Genome Biol 2017; 18:122. [PMID: 28655330 PMCID: PMC5488340 DOI: 10.1186/s13059-017-1247-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Open chromatin profiling integrates information across diverse regulatory elements to reveal the transcriptionally active genome. Tn5 transposase and DNase I sequencing-based methods prefer native or high cell numbers. Here, we describe NicE-seq (nicking enzyme assisted sequencing) for high-resolution open chromatin profiling on both native and formaldehyde-fixed cells. NicE-seq captures and reveals open chromatin sites (OCSs) and transcription factor occupancy at single nucleotide resolution, coincident with DNase hypersensitive and ATAC-seq sites at a low sequencing burden. OCSs correlate with RNA polymerase II occupancy and active chromatin marks, while displaying a contrasting pattern to CpG methylation. Decitabine-mediated hypomethylation of HCT116 displays higher numbers of OCSs.
Collapse
Affiliation(s)
| | - Guoqiang Zhang
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | - George Spracklin
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Stephanie Sian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Shuang-Yong Xu
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Sriharsa Pradhan
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
34
|
Halby L, Menon Y, Rilova E, Pechalrieu D, Masson V, Faux C, Bouhlel MA, David-Cordonnier MH, Novosad N, Aussagues Y, Samson A, Lacroix L, Ausseil F, Fleury L, Guianvarc'h D, Ferroud C, Arimondo PB. Rational Design of Bisubstrate-Type Analogues as Inhibitors of DNA Methyltransferases in Cancer Cells. J Med Chem 2017; 60:4665-4679. [PMID: 28463515 DOI: 10.1021/acs.jmedchem.7b00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant DNA hypermethylation of promoter of tumor suppressor genes is commonly observed in cancer, and its inhibition by small molecules is promising for their reactivation. Here we designed bisubstrate analogues-based inhibitors, by mimicking each substrate, the S-adenosyl-l-methionine and the deoxycytidine, and linking them together. This approach resulted in quinazoline-quinoline derivatives as potent inhibitors of DNMT3A and DNMT1, some showing certain isoform selectivity. We highlighted the importance of (i) the nature and rigidity of the linker between the two moieties for inhibition, as (ii) the presence of the nitrogen on the quinoline group, and (iii) of a hydrophobic group on the quinazoline. The most potent inhibitors induced demethylation of CDKN2A promoter in colon carcinoma HCT116 cells and its reactivation after 7 days of treatment. Furthermore, in a leukemia cell model system, we found a correlation between demethylation of the promoter induced by the treatment, chromatin opening at the promoter, and the reactivation of a reporter gene.
Collapse
Affiliation(s)
- Ludovic Halby
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yoann Menon
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Elodie Rilova
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dany Pechalrieu
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Véronique Masson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Celine Faux
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Mohamed Amine Bouhlel
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Natacha Novosad
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yannick Aussagues
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Arnaud Samson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | | | - Fréderic Ausseil
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Laurence Fleury
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dominique Guianvarc'h
- Laboratoire des BioMolécules, UMR 7203, Université Pierre et Marie Curie-Paris 6-ENS-CNRS , 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Clotilde Ferroud
- Laboratoire de Chimie Moléculaire, CMGPCE, EA7341, Conservatoire National des Arts et Métiers , 2 rue Conté, 75003 Paris, France
| | - Paola B Arimondo
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France.,Churchill College , CB3 0DS Cambridge, U.K
| |
Collapse
|
35
|
Sato T, Issa JPJ, Kropf P. DNA Hypomethylating Drugs in Cancer Therapy. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026948. [PMID: 28159832 DOI: 10.1101/cshperspect.a026948] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant DNA methylation is a critically important modification in cancer cells, which, through promoter and enhancer DNA methylation changes, use this mechanism to activate oncogenes and silence of tumor-suppressor genes. Targeting DNA methylation in cancer using DNA hypomethylating drugs reprograms tumor cells to a more normal-like state by affecting multiple pathways, and also sensitizes these cells to chemotherapy and immunotherapy. The first generation hypomethylating drugs azacitidine and decitabine are routinely used for the treatment of myeloid leukemias and a next-generation drug (guadecitabine) is currently in clinical trials. This review will summarize preclinical and clinical data on DNA hypomethylating drugs as a cancer therapy.
Collapse
Affiliation(s)
- Takahiro Sato
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.,Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania 19111
| | - Patricia Kropf
- Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania 19111
| |
Collapse
|
36
|
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12:416-432. [PMID: 28358281 DOI: 10.1080/15592294.2017.1311434] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival.
Collapse
Affiliation(s)
- Gangning Liang
- a Department of Urology , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Daniel J Weisenberger
- b Department of Biochemistry and Molecular Medicine , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
37
|
Huang D, Ovcharenko I. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia. BMC Genomics 2017; 18:236. [PMID: 28302063 PMCID: PMC5353786 DOI: 10.1186/s12864-017-3617-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/10/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To understand the changes of gene regulation in carcinogenesis, we explored signals of DNA methylation - a stable epigenetic mark of gene regulatory elements - and designed a computational model to profile loss and gain of regulatory elements (REs) during carcinogenesis. We also utilized sequencing data to analyze the allele frequency of single nucleotide polymorphisms (SNPs) and detected the cancer-associated SNPs, i.e., the SNPs displaying the significant allele frequency difference between cancer and normal samples. RESULTS After applying this model to chronic lymphocytic leukemia (CLL) data, we identified REs differentially activated (dREs) between normal and CLL cells, consisting of 6,802 dREs gained and 4,606 dREs lost in CLL. The identified regulatory perturbations coincide with changes in the expression of target genes. In particular, the genes encoding DNA methyltransferases harbor multiple lost-in-cancer dREs and zero gained-in-cancer dREs, indicating that the damaged regulation of these genes might be one of the key causes of tumor formation. dREs display a significantly elevated density of the genome-wide association study (GWAS) SNPs associated with CLL and CLL-related traits. We observed that most of dRE GWAS SNPs associated with CLL and CLL-related traits (83%) display a significant haplotype association among the identified cancer-associated alleles and the risk alleles that have been reported in GWAS. Also dREs are enriched for the binding sites of the well-established B-cell and CLL transcription factors (TFs) NF-kB, AP2, P53, E2F1, PAX5, and SP1. We also identified CLL-associated SNPs and demonstrated that the mutations at these SNPs change the binding sites of key TFs much more frequently than expected. CONCLUSIONS Through exploring sequencing data measuring DNA methylation, we identified the epigenetic alterations (more specifically, DNA methylation) and genetic mutations along non-coding genomic regions CLL, and demonstrated that these changes play a critical role in carcinogenesis through damaging the regulation of key genes and alternating the binding of key TFs in B and CLL cells.
Collapse
Affiliation(s)
- Di Huang
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Sato T, Cesaroni M, Chung W, Panjarian S, Tran A, Madzo J, Okamoto Y, Zhang H, Chen X, Jelinek J, Issa JPJ. Transcriptional Selectivity of Epigenetic Therapy in Cancer. Cancer Res 2016; 77:470-481. [PMID: 27879268 DOI: 10.1158/0008-5472.can-16-0834] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/26/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
A central challenge in the development of epigenetic cancer therapy is the ability to direct selectivity in modulating gene expression for disease-selective efficacy. To address this issue, we characterized by RNA-seq, DNA methylation, and ChIP-seq analyses the epigenetic response of a set of colon, breast, and leukemia cancer cell lines to small-molecule inhibitors against DNA methyltransferases (DAC), histone deacetylases (Depsi), histone demethylases (KDM1A inhibitor S2101), and histone methylases (EHMT2 inhibitor UNC0638 and EZH2 inhibitor GSK343). We also characterized the effects of DAC as combined with the other compounds. Averaged over the cancer cell models used, we found that DAC affected 8.6% of the transcriptome and that 95.4% of the genes affected were upregulated. DAC preferentially regulated genes that were silenced in cancer and that were methylated at their promoters. In contrast, Depsi affected the expression of 30.4% of the transcriptome but showed little selectivity for gene upregulation or silenced genes. S2101, UNC0638, and GSK343 affected only 2% of the transcriptome, with UNC0638 and GSK343 preferentially targeting genes marked with H3K9me2 or H3K27me3, respectively. When combined with histone methylase inhibitors, the extent of gene upregulation by DAC was extended while still maintaining selectivity for DNA-methylated genes and silenced genes. However, the genes upregulated by combination treatment exhibited limited overlap, indicating the possibility of targeting distinct sets of genes based on different epigenetic therapy combinations. Overall, our results demonstrated that DNA methyltransferase inhibitors preferentially target cancer-relevant genes and can be combined with inhibitors targeting histone methylation for synergistic effects while still maintaining selectivity. Cancer Res; 77(2); 470-81. ©2016 AACR.
Collapse
Affiliation(s)
- Takahiro Sato
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania.
| | - Matteo Cesaroni
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Woonbok Chung
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Shoghag Panjarian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Anthony Tran
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Jozef Madzo
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Yasuyuki Okamoto
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Hanghang Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Xiaowei Chen
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Matt SM, Lawson MA, Johnson RW. Aging and peripheral lipopolysaccharide can modulate epigenetic regulators and decrease IL-1β promoter DNA methylation in microglia. Neurobiol Aging 2016; 47:1-9. [PMID: 27500965 DOI: 10.1016/j.neurobiolaging.2016.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
Abstract
In aged mice, peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes exaggerated neuroinflammation and prolonged sickness behavior due in part to microglial dysfunction. Epigenetic changes to DNA may play a role in microglial dysfunction; therefore, we sought to determine whether aged microglia displayed DNA hypomethylation of the interleukin-1 beta (IL-1β) promoter and altered expression of epigenetic regulators. We further examined whether the demethylating agent 5-azacytidine induced IL-1β expression in BV2 and primary microglia similar to microglia from aged mice. Novel findings indicated that aged mice had decreased methylation of the IL-1β gene promoter in primary microglia basally or following systemic LPS that is associated with increased IL-1β mRNA, intracellular IL-1β production, as well as prolonged sickness behavior. Last, 5-azacytidine increased IL-1β gene expression and decreased DNA methylation of BV2 and primary microglial cells similar to microglia from aged mice. Taken together, these data indicate that DNA methylation promotes heightened microglial activation in the aged brain.
Collapse
Affiliation(s)
- Stephanie M Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
40
|
Duymich CE, Charlet J, Yang X, Jones PA, Liang G. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 2016; 7:11453. [PMID: 27121154 PMCID: PMC4853477 DOI: 10.1038/ncomms11453] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Promoter DNA methylation is a key epigenetic mechanism for stable gene silencing, but is correlated with expression when located in gene bodies. Maintenance and de novo DNA methylation by catalytically active DNA methyltransferases (DNMT1 and DNMT3A/B) require accessory proteins such as UHRF1 and DNMT3L. DNMT3B isoforms are widely expressed, although some do not have active catalytic domains and their expression can be altered during cell development and tumourigenesis, questioning their biological roles. Here, we show that DNMT3B isoforms stimulate gene body methylation and re-methylation after methylation-inhibitor treatment. This occurs independently of the isoforms' catalytic activity, demonstrating a similar functional role to the accessory protein DNMT3L, which is only expressed in undifferentiated cells and recruits DNMT3A to initiate DNA methylation. This unexpected role for DNMT3B suggests that it might substitute for the absent accessory protein DNMT3L to recruit DNMT3A in somatic cells.
Collapse
Affiliation(s)
- Christopher E. Duymich
- Department of Urology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Jessica Charlet
- Department of Urology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Xiaojing Yang
- Department of Urology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Peter A. Jones
- Department of Urology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
41
|
Isoform switching and exon skipping induced by the DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Sci Rep 2016; 6:24545. [PMID: 27090213 PMCID: PMC4835787 DOI: 10.1038/srep24545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
DNA methylation in gene promoters leads to gene silencing and is the therapeutic target of methylation inhibitors such as 5-Aza-2′-deoxycytidine (5-Aza-CdR). By analyzing the time series RNA-seq data (days 5, 9, 13, 17) obtained from human bladder cells exposed to 5-Aza-CdR with 0.1 uM concentration, we showed that 5-Aza-CdR can affect isoform switching and differential exon usage (i.e., exon-skipping), in addition to its effects on gene expression. We identified more than 2,000 genes with significant expression changes after 5-Aza-CdR treatment. Interestingly, 29 exon-skipping events induced by treatment were identified and validated experimentally. Particularly, exon-skipping event in Enhancer of Zeste Homologue 2 (EZH2) along with expression changes showed significant down regulation on Day 5 and Day 9 but returned to normal level on Day 13 and Day 17. EZH2 is a component of the multi-subunit polycomb repressive complex PRC2, and the down-regulation of exon-skipping event may lead to the regain of functional EZH2 which was consistent with our previous finding that demethylation may cause regain of PRC2 in demethylated regions. In summary, our study identified pervasive transcriptome changes of bladder cancer cells after treatment with 5-Aza-CdR, and provided valuable insights into the therapeutic effects of 5-Aza-CdR in current clinical trials.
Collapse
|
42
|
Identification and optimization of hydrazone-gallate derivatives as specific inhibitors of DNA methyltransferase 3A. Future Med Chem 2016; 8:373-80. [PMID: 26976348 DOI: 10.4155/fmc.15.192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is the most studied epigenetic event. Since the methylation profile of the genome is widely modified in cancer cells, DNA methyltransferases are the target of new anticancer therapies. Nucleosidic inhibitors suffer from toxicity and chemical stability, while non-nucleosidic inhibitors lack potency. Here, we found a novel DNMT inhibitor scaffold by enzymatic screening and structure-activity relationship studies. The optimization studies led to an inhibitor containing three fragments: a gallate frame, a hydrazone linker and a benzothiazole moiety. Interestingly, the compound inhibits DNMT3A with micromolar potency (EC50 = 1.6 μM) and does not inhibit DNMT1; this DNMT3A selectivity is supported by a docking study. Finally, the compound reactivates a reporter gene in leukemia KG-1 cells.
Collapse
|
43
|
Trejbalová K, Kovářová D, Blažková J, Machala L, Jilich D, Weber J, Kučerová D, Vencálek O, Hirsch I, Hejnar J. Development of 5' LTR DNA methylation of latent HIV-1 provirus in cell line models and in long-term-infected individuals. Clin Epigenetics 2016; 8:19. [PMID: 26900410 PMCID: PMC4759744 DOI: 10.1186/s13148-016-0185-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) latency represents the major barrier to virus eradication in infected individuals because cells harboring latent HIV-1 provirus are not affected by current antiretroviral therapy (ART). We previously demonstrated that DNA methylation of HIV-1 long terminal repeat (5' LTR) restricts HIV-1 reactivation and, together with chromatin conformation, represents an important mechanism of HIV-1 latency maintenance. Here, we explored the new issue of temporal development of DNA methylation in latent HIV-1 5' LTR. RESULTS In the Jurkat CD4(+) T cell model of latency, we showed that the stimulation of host cells contributed to de novo DNA methylation of the latent HIV-1 5' LTR sequences. Consecutive stimulations of model CD4(+) T cell line with TNF-α and PMA or with SAHA contributed to the progressive accumulation of 5' LTR DNA methylation. Further, we showed that once established, the high DNA methylation level of the latent 5' LTR in the cell line model was a stable epigenetic mark. Finally, we explored the development of 5' LTR DNA methylation in the latent reservoir of HIV-1-infected individuals who were treated with ART. We detected low levels of 5' LTR DNA methylation in the resting CD4(+) T cells of the group of patients who were treated for up to 3 years. However, after long-term ART, we observed an accumulation of 5' LTR DNA methylation in the latent reservoir. Importantly, within the latent reservoir of some long-term-treated individuals, we uncovered populations of proviral molecules with a high density of 5' LTR CpG methylation. CONCLUSIONS Our data showed the presence of 5' LTR DNA methylation in the long-term reservoir of HIV-1-infected individuals and implied that the transient stimulation of cells harboring latent proviruses may contribute, at least in part, to the methylation of the HIV-1 promoter.
Collapse
Affiliation(s)
- Kateřina Trejbalová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Denisa Kovářová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Jana Blažková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ladislav Machala
- Department of Infectious Diseases, Third Faculty of Medicine, Charles University and Hospital Na Bulovce in Prague, Budínova 67/2, CZ-18081 Prague 8, Czech Republic
| | - David Jilich
- Department of Infectious, Tropical and Parasitic Diseases, First Faculty of Medicine, Charles University in Prague and Hospital Na Bulovce, Budínova 67/ 2, CZ-18081 Prague 8, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science of the Palacky University in Olomouc, Olomouc, CZ-77146 Czech Republic
| | - Ivan Hirsch
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic ; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic ; Faculty of Science, Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, CZ-12844 Prague 2, Czech Republic ; Inserm, Centre de Recherche en Cancérologie de Marseille (CRCM), F-13273 Marseille, France ; Institut Paoli-Calmettes, F-13009 Marseille, France ; Aix-Marseille Univ., F-13284 Marseille, France ; CNRS, UMR7258, CRCM, F-13009 Marseille, France
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| |
Collapse
|
44
|
Sokolova V, Crippa E, Gariboldi M. Integration of genome scale data for identifying new players in colorectal cancer. World J Gastroenterol 2016; 22:534-45. [PMID: 26811605 PMCID: PMC4716057 DOI: 10.3748/wjg.v22.i2.534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers (CRCs) display a wide variety of genomic aberrations that may be either causally linked to their development and progression, or might serve as biomarkers for their presence. Recent advances in rapid high-throughput genetic and genomic analysis have helped to identify a plethora of alterations that can potentially serve as new cancer biomarkers, and thus help to improve CRC diagnosis, prognosis, and treatment. Each distinct data type (copy number variations, gene and microRNAs expression, CpG island methylation) provides an investigator with a different, partially independent, and complementary view of the entire genome. However, elucidation of gene function will require more information than can be provided by analyzing a single type of data. The integration of knowledge obtained from different sources is becoming increasingly essential for obtaining an interdisciplinary view of large amounts of information, and also for cross-validating experimental results. The integration of numerous types of genetic and genomic data derived from public sources, and via the use of ad-hoc bioinformatics tools and statistical methods facilitates the discovery and validation of novel, informative biomarkers. This combinatory approach will also enable researchers to more accurately and comprehensively understand the associations between different biologic pathways, mechanisms, and phenomena, and gain new insights into the etiology of CRC.
Collapse
|
45
|
Becket E, Chopra S, Duymich CE, Lin JJ, You JS, Pandiyan K, Nichols PW, Siegmund KD, Charlet J, Weisenberger DJ, Jones PA, Liang G. Identification of DNA Methylation-Independent Epigenetic Events Underlying Clear Cell Renal Cell Carcinoma. Cancer Res 2016; 76:1954-64. [PMID: 26759245 DOI: 10.1158/0008-5472.can-15-2622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Abstract
Alterations in chromatin accessibility independent of DNA methylation can affect cancer-related gene expression, but are often overlooked in conventional epigenomic profiling approaches. In this study, we describe a cost-effective and computationally simple assay called AcceSssIble to simultaneously interrogate DNA methylation and chromatin accessibility alterations in primary human clear cell renal cell carcinomas (ccRCC). Our study revealed significant perturbations to the ccRCC epigenome and identified gene expression changes that were specifically attributed to the chromatin accessibility status whether or not DNA methylation was involved. Compared with commonly mutated genes in ccRCC, such as the von Hippel-Lindau (VHL) tumor suppressor, the genes identified by AcceSssIble comprised distinct pathways and more frequently underwent epigenetic changes, suggesting that genetic and epigenetic alterations could be independent events in ccRCC. Specifically, we found unique DNA methylation-independent promoter accessibility alterations in pathways mimicking VHL deficiency. Overall, this study provides a novel approach for identifying new epigenetic-based therapeutic targets, previously undetectable by DNA methylation studies alone, that may complement current genetic-based treatment strategies. Cancer Res; 76(7); 1954-64. ©2016 AACR.
Collapse
Affiliation(s)
- Elinne Becket
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Sameer Chopra
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Christopher E Duymich
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Justin J Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine Konkuk University, Seoul, Korea
| | - Kurinji Pandiyan
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Peter W Nichols
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Kimberly D Siegmund
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Jessica Charlet
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Peter A Jones
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California. Van Andel Research Institute, Grand Rapids, Michigan
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
46
|
|
47
|
Maurano MT, Wang H, John S, Shafer A, Canfield T, Lee K, Stamatoyannopoulos JA. Role of DNA Methylation in Modulating Transcription Factor Occupancy. Cell Rep 2015; 12:1184-95. [PMID: 26257180 DOI: 10.1016/j.celrep.2015.07.024] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/14/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023] Open
Abstract
Although DNA methylation is commonly invoked as a mechanism for transcriptional repression, the extent to which it actively silences transcription factor (TF) occupancy sites in vivo is unknown. To study the role of DNA methylation in the active modulation of TF binding, we quantified the effect of DNA methylation depletion on the genomic occupancy patterns of CTCF, an abundant TF with known methylation sensitivity that is capable of autonomous binding to its target sites in chromatin. Here, we show that the vast majority (>98.5%) of the tens of thousands of unoccupied, methylated CTCF recognition sequences remain unbound upon abrogation of DNA methylation. The small fraction of sites that show methylation-dependent binding in vivo are in turn characterized by highly variable CTCF occupancy across cell types. Our results suggest that DNA methylation is not a primary groundskeeper of genomic TF landscapes, but rather a specialized mechanism for stabilizing intrinsically labile sites.
Collapse
Affiliation(s)
- Matthew T Maurano
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Hao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sam John
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony Shafer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kristen Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Loiseau C, Ali A, Itzykson R. New therapeutic approaches in myelodysplastic syndromes: Hypomethylating agents and lenalidomide. Exp Hematol 2015; 43:661-72. [PMID: 26123365 DOI: 10.1016/j.exphem.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/17/2023]
Abstract
Recent advances in the treatment of myelodysplastic syndromes have come from the use of the hypomethylating agents decitabine and azacitidine as well as the immunomodulatory drug lenalidomide. Their clinical benefit has been demonstrated by randomized phase III clinical trials, mostly in high-risk and del(5q) myelodysplastic syndromes, respectively. Neither drug, however, appears to eradicate myelodysplastic stem cells, and thus they currently do not represent curative options. Here, we review data from both clinical and translational research on those drugs to identify their molecular and cellular mechanisms of action and to delineate paths for improved treatment allocation and further therapeutic advances in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Clémence Loiseau
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France
| | - Raphael Itzykson
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France; Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France.
| |
Collapse
|
49
|
Momparler RL, Côté S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs 2015; 24:1031-43. [PMID: 26004134 DOI: 10.1517/13543784.2015.1051220] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Curative chemotherapy should target cancer stem cells (CSCs). The key characteristics of CSCs are a block in differentiation and an epigenetic signature similar to embryonic stem cells (ESCs). Differentiation by ESCs and CSCs is suppressed by gene silencing through the polycomb repressive complex 2 (PRC2) and/or DNA methylation. PRC2 contains the EZH2 subunit, which catalyzes the trimethylation of histone 3 lysine 27, a gene silencing marker. It is possible to reverse this 'double lock' mechanism using a combination of inhibitors of EZH2 and DNA methylation (5-aza-2'-deoxycytidine), which exhibits remarkable synergistic antineoplastic activity in preclinical studies. AREAS COVERED The authors discuss several specific EZH2 inhibitors that have been synthesized with antineoplastic activity. One such inhibitor, EPZ-6438 (E7438), has been shown to be effective against lymphoma in a Phase I study. The indirect EZH2 inhibitor, 3-deazaneplanocin-A (DZNep), also exhibits remarkable anticancer activity due to its inhibition of methionine metabolism. EXPERT OPINION Agents that target EZH2 warrant Phase I trials. Due to its positive pharmacodynamics, DZNep merits a high priority for clinical investigation. Agents that show positive results in Phase I studies should be advanced to clinical trials for use in combination with 5-aza-2'-deoxycytidine due to the interesting potential of this epigenetic therapy to target CSCs.
Collapse
Affiliation(s)
- Richard L Momparler
- Université de Montréal, Centre de recherche, Département de Pharmacologie , CHU-Saint-Justine, Montréal, Québec , Canada
| | | |
Collapse
|
50
|
Abstract
Genetic and epigenetic changes are at the root of all cancers. The epigenetic component involves alterations of the post-synthetic modifications of DNA (methylation) and histones (histone posttranslational modifications, PTMs) as well as of those of their molecular "writers," "readers," and "erasers." Noncoding RNAs (ncRNA) can also play a role. Here, we focus on the involvement of histone alterations in cancer, in particular that of the histone variant H2A.Z in the etiology of prostate cancer. The structural mechanisms putatively responsible for the contribution of H2A.Z to oncogenic gene expression programs are first described, followed by what is currently known about the involvement of this histone variant in the regulation of androgen receptor regulated gene expression. The implications of this and their relevance to oncogene deregulation in different stages of prostate cancer, including the progression toward androgen independence, are discussed. This review underscores the increasing awareness of the epigenetic contribution of histone variants to oncogenic progression.
Collapse
Affiliation(s)
- Deanna Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 258a, Victoria, British Columbia Canada V8W 3P6
- ImmunoPrecise Antibodies Ltd., 3204-4464 Markham St., Victoria, British Columbia Canada V8Z 7X8
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 258a, Victoria, British Columbia Canada V8W 3P6
| |
Collapse
|