1
|
Budgude P, Kale V, Vaidya A. Microvesicles and exosomes isolated from murine bone marrow-derived mesenchymal stromal cells primed with p38MAPK inhibitor differentially regulate hematopoietic stem cell function. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:122-137. [PMID: 40062630 DOI: 10.1080/21691401.2025.2475095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/07/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
The signaling mechanisms active within mesenchymal stromal cells (MSCs) influence the composition of microvesicles (MVs) and exosomes (Exos) secreted by them. Previously, we showed that priming MSCs with a p38 pharmacological inhibitor (pMSCs) rejuvenates them and improves their ability to promote ex vivo hematopoietic stem cell (HSC) expansion. This study examined whether pMSCs exerted HSC-supportive ability via MVs (pMVs) and Exos (pExos). Our findings demonstrate distinct regulation of HSC fate by pMVs and pExos. pMVs promoted the expansion of long-term HSCs (LT-HSCs), distinguished by their robust self-renewal capacity and superior engraftment ability. In contrast, pExos facilitated expansion of short-term HSCs (ST-HSCs) with high proliferative and differentiation potential. Infusing a combination of pMVs- and pExos-expanded HSCs as a composite graft resulted in significantly higher HSC engraftment, emphasizing the synergistic interaction between LT- and ST-HSC populations. Gene expression studies, functional and phenotypic experiments showed that pMVs regulate HSC quiescence via the Egr1/Cdkn1a axis, while pExos control HSC proliferation via the Nfya/Cdkn1a axis. These findings provide insights into the molecular mechanisms underlying the differential regulation of HSC function by pMVs and pExos. It also proposes a composite graft strategy of using pMVs and pExos as "MSC-derived biologics" for improving the HSC transplantation success.
Collapse
Affiliation(s)
- Pallavi Budgude
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Danev N, Harman RM, Sipka AS, Oliveira L, Huntimer L, Van de Walle GR. The secretomes of bovine mammary epithelial cell subpopulations differentially modulate macrophage function. Vet Q 2025; 45:1-14. [PMID: 39921381 PMCID: PMC11809179 DOI: 10.1080/01652176.2025.2463338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025] Open
Abstract
Bovine mammosphere-derived epithelial cell (MDEC) cultures are heterogeneous and enriched for stem and progenitor cells. We previously reported that the bovine MDEC secretome, comprised of all bioactive factors secreted by the cells, displays regenerative properties, exerts antimicrobial effects, and modulates neutrophil activity, positioning it as a promising non-antibiotic biologic therapy for infectious diseases important to the dairy industry, like mastitis. Mastitis is defined as inflammation of the udder, and it is typically caused by bacterial infection. The effect of the MDEC secretome on macrophages, a first line of defense against bacterial infections in the udder, is unknown and could impact the utility of the secretome as a therapy for mastitis. To address this, we isolated bovine monocytes from peripheral blood and maintained them as an unpolarized (M0) population or polarized them into M1 or M2 phenotypes. Macrophages cultured with the secretome of bovine MDECs were assessed for their ability to phagocytose labeled bacterial particles and accumulate reactive oxygen species (ROS). We used single-cell RNA sequencing (scRNA-seq) and fluorescence-activated cell sorting (FACS) to isolate a subpopulation of MDECs that exert enhanced effects on macrophages. We found that the secretome of MDECs that do not express cluster of differentiation (CD) 73, a cell surface enzyme used as a marker for mesenchymal stromal cells, most strongly increased macrophage phagocytosis and ROS accumulation. These findings will help optimize the generation of the bovine MDEC secretome as a suitable treatment option for mastitis.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anja S. Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian, Scotland
| |
Collapse
|
3
|
Teck Tan T, Kiang Lim S. Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles. RNA Biol 2025; 22:1-7. [PMID: 39719370 PMCID: PMC12064053 DOI: 10.1080/15476286.2024.2446868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response. Several RNA sequencing studies reveal that miRNAs are underrepresented in the small RNA population of MSC-sEVs compared to the parent MSCs. Additionally, the majority of miRNAs are mature forms that are not associated with Argonaute (AGO) proteins, essential for their function in RNA-induced silencing complexes (RISCs). Compounding this, cellular uptake of EVs is generally inefficient, with less than 1% being internalized, and only a fraction of these reaching the cytosol. This suggests that EVs may not deliver miRNAs in sufficient quantities to meaningfully interact with AGO proteins, either through canonical or non-canonical pathways, or with other proteins like Toll-like receptors (TLRs). Further, MSC-sEV RNAs are generally small, with sizes less than 500 nucleotides indicating that any mRNA present is likely fragmented as the average mammalian mRNA is approximately 2000 nucleotides, a fact confirmed by RNA sequencing data. Together, these findings challenge the notion that RNA, particularly miRNAs and mRNAs, are primary therapeutic attributes of MSC-sEVs.
Collapse
Affiliation(s)
- Thong Teck Tan
- Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore C/O NUHS Tower Block, Singapore, Republic of Singapore
| |
Collapse
|
4
|
Song H, Du X, Zhang Y, Liu W, Luo Y, Liu Y, Xue Y, Xu M, Lu J, Jia W, Du Y, Cao L, Lu J, Zhang W, He Z. Gelatin sponge patch grafting of microcryogel-based three-dimensional mesenchymal stem cells to alleviate acute liver failure. Biomaterials 2025; 321:123324. [PMID: 40253733 DOI: 10.1016/j.biomaterials.2025.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
The clinical application of human umbilical cord mesenchymal stem cells (hUCMSCs) in the treatment of liver failure faces challenges due to cell quality, short engraftment time, and limited efficacy. Here, gelatin microcryogel (GM) microcarriers with pore sizes ranging from 15 to 36 μm were tuned from mixed gelatin and glutaraldehyde to develop a 3D culture system of hUCMSCs with improved therapeutic effects. Bulk RNA sequencing and in vitro assays showed that 3D-hUCMSCs exhibited significant improvement in signaling pathways related to paracrine secretion and anti-inflammation. These 3D-hUCMSCs superior compared to 2D-hUCMSCs not only in terms of paracrine secretion, protection from oxidation, and resistance to mechanical force damage, but also had better liver function improvement effect than 2D-hUCMSCs when they were transplanted as single cells into liver injury mice. Furthermore, a gelatin sponge patch grafting (GSPG) strategy was developed to enable the direct engraftment of 3D-hUCMSCs within the GM microcarriers. The results showed that overall engraftment in the host liver was significantly improved, and the life span of transplanted hosts was extended. Our study provided a practical strategy to achieve high engraftment and long retraining time of 3D-hUCMSCs in rescuing acute liver failure with gelatin matrixes.
Collapse
Affiliation(s)
- Haimeng Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Xinyue Du
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Yuanyuan Zhang
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing, 100195, PR China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing, 100195, PR China
| | - Yi Luo
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Yuxin Liu
- Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China
| | - Yongjia Xue
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Jizhen Lu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China
| | - Wenwen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, PR China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, PR China.
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China.
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China.
| |
Collapse
|
5
|
Wang J, Luo Y, Wu Y, Du F, Shi S, Duan Y, Chen A, Zhang J, Yu S. Single-cell Raman spectroscopy as a novel platform for unveiling the heterogeneity of mesenchymal stem cells. Talanta 2025; 292:127933. [PMID: 40081243 DOI: 10.1016/j.talanta.2025.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
Despite the significant potential of mesenchymal stem cells (MSC) therapy in clinical settings, challenges persist regarding the efficient detection of consistency and uniformity of MSC populations. Raman spectroscopy is a fast, convenient, and nondestructive technique to acquire molecular properties of biomolecules across laboratory and mass-production settings. Here we utilized Raman spectroscopy to evaluate the heterogeneity of primary MSC from varying donors, passages, and distinct culture conditions, and compared its effectiveness with conventional techniques such as flow cytometry. Although these MSC exhibited insignificant differences in morphology and surface markers in flow cytometry analysis, they could be distinctly clustered into different populations by Raman spectroscopy and the subsequent machine learning using linear discriminant analysis. Principal component analysis demonstrated limited efficiency in clustering Raman data from diverse sources, which could be enhanced through combination with support vector machine or deterministic finite automation. These findings highlight the sensitivity of Raman spectroscopy in detecting subtle differences. Moreover, the analysis of characteristic Raman peaks attributed to cellular biomolecules in MSC from passages 2 (P2) to P10 revealed a gradual decrease in the levels of nucleic acids, lipids, and proteins with increasing passages, and a significant increase in carotenoids from P8. These results suggest the potential use of Raman spectroscopy to assess cellular biochemical characteristics such as aging, with carotenoids emerging as a potential marker of cell aging. In conclusion, Raman spectroscopy demonstrates the ability to rapidly and non-invasively detect cellular heterogeneity and biochemical status, offering significant potential for quality control in stem cell therapy.
Collapse
Affiliation(s)
- Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yanjun Luo
- Shanghai D-Band Medical Technology Co., LTD, Shanghai, 201802, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
6
|
Kumar A, Ramesh S, Kumar V, Mathews JE, Madhuri V. Human second-trimester fetal liver-derived mesenchymal stromal cells are more effective than adult bone marrow MSCs for their superior growth kinetics, immunomodulatory, and osteogenic potential. Tissue Cell 2025; 95:102859. [PMID: 40101501 DOI: 10.1016/j.tice.2025.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are promising candidates for cell therapy. Most of the therapeutic applications have used adult bone marrow MSCs, adipose MSCs and perinatal tissue-derived MSCs. Recent evidence suggests that MSCs from mid-gestational fetal tissues are more primitive, grow faster and are biologically more closely related to embryonic stem cells than other sources of MSCs. However, the expression of pluripotency genes raises the question of whether these genes are safe for clinical application. In this study, we demonstrated that second-trimester fetal liver-derived MSCs lack the expression of pluripotent markers and maintain their proliferative and osteogenic differentiation potential beyond passage 12. Compared to other sources, FL-MSCs exhibit characteristics that are promising for use in skeletal regeneration. METHODS MSCs were isolated from the second-trimester fetal liver and characterized for surface antigen expression, pluripotency marker expression and multilineage differentiation. The growth kinetics, population doubling, and number of colony-forming units were analyzed at the 3rd, 5th, 8th and 10th passages of FLMSCs and compared with those of BMMSCs. The immunomodulatory properties of FLMSCs were analyzed by a T-cell proliferation assay. The osteogenic differentiation potential of FL-MSCs was assessed at passages 3, 5, 8 and 12 and compared with that of BMMSCs. RESULTS We demonstrated that second-trimester fetal liver-derived MSCs exhibited a distinct fibroblast-like spindle-shaped morphology and expressed typical MSC surface antigens. Unlike first-trimester fetal MSCs, second-trimester FL-MSCs did not express pluripotent markers and showed significantly greater self-renewal and proliferative potential at higher passages and a lower apoptotic rate than BM-MSCs. Additionally, the osteogenic differentiation potential of FL-MSCs was 4-6 times greater than that of BM-MSCs at both early and late passages CONCLUSION: Our findings underscore the robust self-renewal and proliferative potential of second-trimester fetal liver-derived MSCs, which notably lack pluripotent markers. The ability of FL-MSCs to sustain osteogenic potential through multiple passages makes them promising candidates for bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ashis Kumar
- Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College, Vellore, India; Department of Paediatric Orthopedics, Christian Medical College, Vellore, India; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India
| | - Sowmya Ramesh
- Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College, Vellore, India; Department of Paediatric Orthopedics, Christian Medical College, Vellore, India
| | - Vignesh Kumar
- Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College, Vellore, India; Department of Paediatric Orthopedics, Christian Medical College, Vellore, India
| | | | - Vrisha Madhuri
- Centre for Stem Cell Research, a unit of inStem, Bengaluru, Christian Medical College, Vellore, India; Department of Paediatric Orthopedics, Christian Medical College, Vellore, India; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India; Department of Orthopedics, Amara Hospital, Tirupati, Andhra Pradesh-517520, India.
| |
Collapse
|
7
|
Cheng Z, Liu D, Park JY, Meng X, Yang Y, Dang M, Dai X, Yang J, Yuan M, Li M, Wang L, Huang Y, Wang J, Liang Y, Fei W. Evaluation of the management of rotator cuff injuries utilising superparamagnetic iron oxide tracking stem cells. Tissue Cell 2025; 95:102836. [PMID: 40081255 DOI: 10.1016/j.tice.2025.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND The ultrastructure of the tendon-bone interface (TBI) is inherently complex. After arthroscopic reconstruction, it is often replaced by disorganized scar tissue, which increases the risk of re-tearing.Stem cell therapies offer a promising approach to regenerate the original tissue structure and enhance the healing environment. The effectiveness of these therapies depends on understanding the localization, proliferation, and overall behavior of the implanted stem cells. This study aimed to track the distribution of stem cells in a rat model of rotator cuff injury using Magnetic Resonance Imaging (MRI) and superparamagnetic iron oxide nanoparticles (SPIO) and to evaluate the mechanisms and therapeutic effects of stem cell therapy. METHODS Adipose-derived mesenchymal stem cells (ADSCs) were isolated and expanded, then labeled with SPIO at an optimized concentration. The visibility of these labeled cells was assessed via MRI, along with evaluations of their viability, potential toxicity, and migration capacity in vitro.For the in vivo study, rats with rotator cuff tears were divided into two groups: a control group that received a PBS injection, and a treatment group that received SPIO-labeled ADSCs (designated as S-A). MRI scans were conducted at 1, 2, and 4 weeks post-surgery, followed by histological analysis after the rats were euthanized. At 8 weeks post-surgery, rats were sacrificed, and their shoulder joints were analyzed biomechanically and histologically to assess the overall treatment efficacy. RESULTS SPIO nanoparticles were successfully incorporated into ADSCs, and MRI imaging demonstrated that these SPIO-labeled cells significantly enhanced MRI contrast without affecting cell viability, proliferation, or migration ability. Both MRI and histological analyses confirmed that the implanted stem cells survived and remained localized for at least two weeks. Further histological and biomechanical evaluations indicated that the stem cells facilitated the repair of the TBI. This repair process appeared to be mediated by an increase in M2 macrophage activity within the injured tissue, promoting improved local healing conditions. CONCLUSION This study confirms that labeling ADSCs with SPIO nanoparticles is an effective method for tracking these cells in vivo using MRI, providing a non-invasive approach to monitor the repair of injured TBI. Moreover, the localized survival of transplanted stem cells supports their role in enhancing TBI repair by modulating the local inflammatory response.
Collapse
Affiliation(s)
- Ziang Cheng
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Dianwei Liu
- The Yangzhou school of clinical medicine of Dalian Medical University, Dalian 116000, P. R. China
| | - Jin-Young Park
- Center for Shoulder, Elbow and Sports, Neon Orthopaedic Clinic, Seoul, Republic of Korea
| | - Xiangji Meng
- The Yangzhou school of clinical medicine of Dalian Medical University, Dalian 116000, P. R. China
| | - Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Mengbo Dang
- The Yangzhou school of clinical medicine of Dalian Medical University, Dalian 116000, P. R. China
| | - Xiaomei Dai
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Jian Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Meijuan Yuan
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Mingjun Li
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Liang Wang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Yao Huang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China
| | - Jingcheng Wang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China.
| | - Yuan Liang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China.
| | - Wenyong Fei
- Department of Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou 225001, P. R. China; Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, P. R. China.
| |
Collapse
|
8
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
9
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Zou B, Wang D, Zhong J, He Z, Zhou Y, Yang H, Liu Y, Zeng G, Duan X. Mesenchymal stem cells attenuate hyperoxaluria-induced kidney injury and crystal depositions via inhibiting the activation of NLRP3 inflammasome. Life Sci 2025; 371:123608. [PMID: 40194762 DOI: 10.1016/j.lfs.2025.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
AIMS Calcium oxalate (CaOx) is the predominant form of kidney stones, associated with significant morbidity and recurrence rates. Mesenchymal stem cells (MSCs) have shown promise in treating renal injury, but their impact on CaOx stone formation remains unclear. MATERIALS AND METHODS We established a hyperoxaluria-induced AKI model in mice through intraperitoneal injection of glyoxylate. Two types of MSCs, bone marrow-derived MSCs (BMSCs) and umbilical cord-derived mesenchymal stem cells (UMSCs), were injected through tail vein injection. Histological evaluations and blood biochemical tests were performed to assess crystal deposition and kidney function. The inflammatory response and NLRP3 inflammasome activation were assessed using immunofluorescence, immunohistochemistry, TUNEL staining, and qPCR. In vitro, macrophages were cocultured in the presence of MSCs. ELISA was used to measure IL-1β and IL-18 release. MTS assays assessed renal epithelial cell protection. Western blotting evaluated NLRP3 inflammasome activation in macrophages. KEY FINDINGS Both BMSCs and UMSCs significantly inhibited CaOx crystal deposition and kidney injury by inhibiting NLRP3 inflammasome activation. In vitro, both MSC types suppressed NLRP3 inflammasome activation in macrophages through the NF-κB signaling pathway, leading to decreased release of IL-1β and IL-18 and enhanced protection of renal epithelial cells. This attenuation of renal tubular cell injury is a critical factor in preventing CaOx stone formation. SIGNIFICANCE Our findings reveal that Both BMSCs and UMSCs effectively attenuate hyperoxaluria-induced kidney injury and crystal deposition by inhibiting NLRP3 inflammasome activation. This discovery is helpful for developing new effective therapeutic means for nephrolithiasis.
Collapse
Affiliation(s)
- Bangyu Zou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University; Department of Urology, Changhai Hospital, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghua Zhong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Zhiqing He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Yuhao Zhou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Houmeng Yang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| |
Collapse
|
11
|
Mante N, Undale V, Sanap A, Bhonde R, Tambe P, Bansode M, Gupta RK. Disease microenvironment preconditioning: An evolving approach to improve therapeutic efficacy of human mesenchymal stromal cells. Int Immunopharmacol 2025; 157:114701. [PMID: 40300358 DOI: 10.1016/j.intimp.2025.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
Despite the tremendous success in preclinical models, the translation of human mesenchymal stromal cells (hMSCs) as a therapy in the clinic is not up to the expectation. Intrinsic factors (age, sex, health status, life style of the donor, source, cellular senescence, and oxidative stress in hMSCs), extrinsic factors (culture system, batch-to-batch variations, choice of biomaterials, cell processing and preservation protocols), and host microenvironment (inflammatory milieu, oxidative stress, and hypoxia in the recipient) compromise the overall therapeutic efficacy of the transplanted hMSCs. In recent times, the approach of 'Disease Microenvironment Preconditioning (DMP)' has garnered attention to overcome the host-associated attributes involved in compromised hMSCs therapeutic potential. In this review, we discuss various approaches of DMP of hMSCs by employing serum and other body fluids obtained from diseased patients/animals and small molecules, including cytokines such as IFN-γ, IL-6, IL-10, IL- β, TGF-β1, IL-1α, IL-1β, TNF-α, HMGB1, IL-17 A, and IL-8 which are associated with disease conditions. DMP strengthens hMSCs ability to adapt/acclimatize and respond more efficiently to the hostile microenvironment they encounter upon transplantation. DMP modulate hMSCs to withstand inflammation, survive under hypoxic and nutrient-deprived conditions, and resist oxidative stress. Evidence from various disease models ranging from cardiovascular and neurodegenerative disorders to autoimmune diseases and tissue injuries supports the role of DMP in improving hMSC survival, integration, and functional efficacy. While the potential of DMP to revolutionize MSC-based therapies is evident, challenges such as standardizing/optimizing protocols for preconditioning is essential. This review synthesizes current advancements in the approach of DMP aiming to propel the area of regenerative medicine.
Collapse
Affiliation(s)
- Nishant Mante
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune 411018, India; Department of Pharmacology, School of Pharmacy and Research, Dr. D. Y. Patil Dnyan Prasad University, Pimpri, Pune 411018, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; Department of Pharmacology, School of Pharmacy and Research, Dr. D. Y. Patil Dnyan Prasad University, Pimpri, Pune 411018, India.
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune 411018, India.
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune 411018, India
| | - Pratima Tambe
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, India; Department of Pharmacology, School of Pharmacy and Research, Dr. D. Y. Patil Dnyan Prasad University, Pimpri, Pune 411018, India
| | - Manoj Bansode
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| |
Collapse
|
12
|
Izawa H, Xiang C, Ogawa S, Hisanaga I, Yoshimoto T. Amelioration of female menopausal syndrome by intravenous administration of autologous menstrual blood-derived stem cells. Regen Ther 2025; 29:192-201. [PMID: 40225052 PMCID: PMC11992397 DOI: 10.1016/j.reth.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Menopausal syndrome is characterized by a wide range of physical and psychological symptoms in women aged 40s-50s as a result of hormonal fluctuations and age-related decline. Various treatments have been used to manage the symptoms, including hormone replacement therapy, but no effective causal therapies have yet been identified. Regenerative medicine has gained considerable attention as a promising approach to age-related problems, and mesenchymal stem cell therapies have been extensively studied. Recently, menstrual blood has emerged as a novel cell source of stem cells, called menstrual blood-derived stem cells (MenSCs), due to its non-invasive, regular and consistent collection from women. In this study, we have investigated the therapeutic potential of intravenous administration of autologous MenSCs on female menopausal syndromes. Methods Menstrual blood was collected from 15 patients aged 30s-60s with ovarian dysfunction using a menstrual cup, and MenSCs were isolated, cultured and expanded. Patients received either 3 × 107 cells or 1 × 108 cells intravenously 1 to 5 times at intervals of more than 1 month. Patient-reported symptoms were assessed using the Simplified Menopausal Index at pre-treatment and after 1, 3, 6, and 12 months, and safety assessments were performed. Serum estradiol and follicle-stimulating hormone levels were also measured by immunoassay. Results Almost all patients who received MenSCs experienced a sharp reduction in menopausal symptoms, including vasomotor, neuropsychiatric, and motor symptoms, one month after the first administration, and these symptoms remained low for 6 months. The Simplified Menopausal Index score was significantly reduced after treatment. The reducing potency of 1 × 108 MenSCs was greater than that of 3 × 107 MenSCs. Patients who received a higher number of MenSCs showed an increasing trend in estradiol levels and a decreasing trend in follicle-stimulating hormone levels. When MenSCs were administered to postmenopausal patients, this trend was more pronounced. Overall, no apparent serious adverse events were observed during these treatments. Conclusions The present results suggest that the administration of MenSCs improved menopausal symptoms and regulated hormonal balance without any serious adverse events. This is the first report on the promising therapeutic potential of cell-based therapy using autologous MenSCs for female menopausal syndrome.
Collapse
Affiliation(s)
- Hiromi Izawa
- Jingu-Gaien Woman Life Clinic, Shibuya-ku, Tokyo, Japan
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Beijing, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Seiji Ogawa
- Jingu-Gaien Woman Life Clinic, Shibuya-ku, Tokyo, Japan
- Fujita Medical Innovation Center Tokyo, Reproduction Center, Ota-ku, Tokyo, Japan
| | - Ichiro Hisanaga
- Jingu-Gaien Woman Life Clinic, Shibuya-ku, Tokyo, Japan
- Dai Nippon Printing Co., Ltd., Human Engineering Laboratory, Shinjuku-ku, Tokyo, Japan
- Ritsumeikan University, Art Research Center, Kyoto-shi, Kyoto, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
13
|
Si-Hyeong Park S, Li B, Kim C. Efficacy of intra-articular injections for the treatment of osteoarthritis: A narrative review. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100596. [PMID: 40144957 PMCID: PMC11938051 DOI: 10.1016/j.ocarto.2025.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage loss, inflammation, and joint dysfunction. With profound effects on joint function and quality of life, OA imposes a substantial socio-economic burden. As of now, OA remains incurable, lacking approved medications, regenerative therapies, or procedures that can halt the progressive destruction of the joint. Intraarticular (IA) injections have emerged as a cornerstone in the management of knee OA, offering localized minimally invasive therapeutic options. Traditional IA therapies, including corticosteroids and hyaluronic acid (HA), primarily aim to reduce pain but lack regenerative capacity. Biologic IA therapies for knee OA including autologous blood-derived products like platelet-rich plasma (PRP), bone marrow aspirate concentrate (BMAC) and mesenchymal stromal cells (MSCs) have become more commonly used. Finally, newer IA therapies such as fibroblast growth factor 18 and gene therapy are being investigated. In this review, we highlight the current evidence around IA injections for the treatment of knee OA.
Collapse
Affiliation(s)
- Sam Si-Hyeong Park
- Division of Orthopaedic Surgery, Women's College Hospital, 76 Grenville Street, Toronto, Ontario, M5S 1B2, Canada
| | - Biao Li
- Schroeder Arthritis Institute, Krembil Research Institute, 60 Leonard Avenue, 5KD410, Toronto, Ontario, M5T 2R1, Canada
| | - Christopher Kim
- Schroeder Arthritis Institute, Krembil Research Institute, 60 Leonard Avenue, 5KD410, Toronto, Ontario, M5T 2R1, Canada
| |
Collapse
|
14
|
Wang Y, Li Q, Li H, Yang X, Fang H, Bi R, Zhu S. Heterogeneous Characteristics of the CD90 + Progenitors in the Fibrocartilage of Different Joints. Cartilage 2025; 16:190-201. [PMID: 37750508 PMCID: PMC12066840 DOI: 10.1177/19476035231200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
ObjectiveThis study aimed to isolate and compare the mesenchymal stem cell characteristics of CD90+ cells from different fibrocartilage tissues in the temporomandibular joint (TMJ), the knee joint, and the intervertebral joint to further understand the similarities and differences of these 4 fibrocartilage tissues.MethodsCD90+ cells were isolated from TMJ disc, condylar cartilage, meniscus, and intervertebral disc by using magnetic-activated cell sorting. Cellular assays including 4.5-ethynyl-2'-deoxyuridine labeling, multilineage differentiation, colony formation, and cell migration were conducted to compare their mesenchymal stem cell characteristics. Immunofluorescent staining was performed for observing the expression of actively proliferating CD90+ cells within the tissues. H&E staining and Safranine O staining were used to compare the histological features.ResultsThe CD90+ cells derived from these 4 fibrocartilage tissues exhibited comparable cell proliferation abilities. However, the cells from the TMJ disc displayed limited multilineage differentiation potential, colony formation, and cell migration abilities in comparison with the cells from the other fibrocartilage tissues. In vivo, there was relatively more abundant expression of CD90+ cells in the TMJ disc during the early postnatal stage. The limited EDU+ cell numbers signified a low proliferation capacity of CD90+ cells in the TMJ disc. In addition, we observed a significant decrease in cell density and a restriction in the synthesis of extracellular proteoglycans in the TMJ disc.ConclusionOur study highlights the spatial heterogeneity of CD90+ cells in the fibrocartilages of different joint tissues, which may contribute to the limited cartilage repair capacity in the TMJ disc.
Collapse
Affiliation(s)
- Yiru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianli Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haohan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianni Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and Temporomandibular Joint Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
17
|
Sutthiwanjampa C, Kang SH, Kim MK, Hwa Choi J, Kim HK, Woo SH, Bae TH, Kim WJ, Kang SH, Park H. Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. J Adv Res 2025; 72:433-449. [PMID: 39019109 DOI: 10.1016/j.jare.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.
Collapse
Affiliation(s)
- Chanutchamon Sutthiwanjampa
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Mi Kyung Kim
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Departments of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Jin Hwa Choi
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Radiation Oncology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Woo Joo Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Shin Hyuk Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
18
|
Franco-Fuquen P, Figueroa-Aguirre J, Martínez DA, Moreno-Cortes EF, Garcia-Robledo JE, Vargas-Cely F, Castro-Martínez DA, Almaini M, Castro JE. Cellular therapies in rheumatic and musculoskeletal diseases. J Transl Autoimmun 2025; 10:100264. [PMID: 39931050 PMCID: PMC11808717 DOI: 10.1016/j.jtauto.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/13/2025] Open
Abstract
A substantial proportion of patients diagnosed with rheumatologic and musculoskeletal diseases (RMDs) exhibit resistance to conventional therapies or experience recurrent symptoms. These diseases, which include autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus, are marked by the presence of autoreactive B cells that play a critical role in their pathogenesis. The persistence of these autoreactive B cells within lymphatic organs and inflamed tissues impairs the effectiveness of B-cell-depleting monoclonal antibodies like rituximab. A promising therapeutic approach involves using T cells genetically engineered to express chimeric antigen receptors (CARs) that target specific antigens. This strategy has demonstrated efficacy in treating B-cell malignancies by achieving long-term depletion of malignant and normal B cells. Preliminary data from patients with RMDs, particularly those with lupus erythematosus and dermatomyositis, suggest that CAR T-cells targeting CD19 can induce rapid and sustained depletion of circulating B cells, leading to complete clinical and serological responses in cases that were previously unresponsive to conventional therapies. This review will provide an overview of the current state of preclinical and clinical studies on the use of CAR T-cells and other cellular therapies for RMDs. Additionally, it will explore potential future applications of these innovative treatment modalities for managing patients with refractory and recurrent manifestations of these diseases.
Collapse
Affiliation(s)
- Pedro Franco-Fuquen
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juana Figueroa-Aguirre
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - David A. Martínez
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Eider F. Moreno-Cortes
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Juan E. Garcia-Robledo
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | - Fabio Vargas-Cely
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| | | | - Mustafa Almaini
- Rheumatology, Allergy & Clinical Immunology Division, Mafraq Hospital, United Arab Emirates
| | - Januario E. Castro
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
- Cancer Research and Cellular Therapies Laboratory, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
19
|
Liang G, Ma Y, Deng P, Li S, He C, He H, Liu H, Fan Y, Li Z. Role of cell-based therapies in digestive disorders: Obstacles and opportunities. Regen Ther 2025; 29:1-18. [PMID: 40124469 PMCID: PMC11925584 DOI: 10.1016/j.reth.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cell-based therapies have emerged as a promising frontier in the treatment of gastrointestinal disorders, offering potential solutions for challenges posed by conventional treatments. This review comprehensively examines recent advancements in cell-based therapeutic strategies, particularly focusing on stem cell applications, immunotherapy, and cellular therapies for digestive diseases. It highlights the successful differentiation of enteric neural progenitors from pluripotent stem cells and their application in animal models, such as Hirschsprung disease. Furthermore, the review evaluates clinical trials and experimental studies demonstrating the potential of stem cells in regenerating damaged tissues, modulating immune responses, and promoting healing in conditions like Crohn's disease and liver failure. By addressing challenges, such as scalability, immunogenicity, and ethical considerations, the review underscores the translational opportunities and obstacles in realizing the clinical potential of these therapies. Concluding with an emphasis on future directions, the study provides insights into optimizing therapeutic efficacy and fostering innovations in personalized medicine for digestive disorders.
Collapse
Affiliation(s)
- Guodong Liang
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuehan Ma
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ping Deng
- Medical Department, Jilin Cancer Hospital, Changchun 130012, China
| | - Shufeng Li
- First Department of Gynecological Tumor, Jilin Cancer Hospital, Changchun 130012, China
| | - Chunyan He
- Department of Anaesthesia, Jilin Cancer Hospital, Changchun 130012, China
| | - Haihang He
- Department of Otorhinolaryngology, Oral Maxillofacial, Head and Neck, Jilin Cancer Hospital, Changchun 130012, China
| | - Hairui Liu
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yunda Fan
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ze Li
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
20
|
Meng S, Han S, Kong M, Liu Z, Lin A, Qu C, Li L, Ma X, Wang Y. Melatonin Promotes Osteogenic Differentiation of Rat Adipose-Derived Stem Cells via the p38/MAPK Signaling Pathway. FASEB J 2025; 39:e70647. [PMID: 40387393 DOI: 10.1096/fj.202403193rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
While adipose-derived stem cells (ADSCs) transplantation represents an appealing therapeutic strategy for bone defect repair, the osteogenic capacity of ADSCs is largely limited. Melatonin has been demonstrated to contribute to the bone marrow stem cell (BMSC) osteogenesis. However, its effect on the osteogenic differentiation of ADSCs has not yet been determined. This study aims to identify whether melatonin exerts influences on the osteogenic differentiation in rat ADSCs. Rat ADSCs were isolated and identified. Subsequently, the impact of melatonin on the proliferation of rat ADSCs was examined. The effects of melatonin on the phenotypic features as well as marker genes and proteins of osteogenic differentiation were determined through the use of alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red staining (ARS), RT-qPCR, western blot assay, and cellular immunofluorescence assay. To investigate the potential molecular mechanism through which melatonin promotes osteogenic differentiation of rat ADSCs, RNA sequencing, MAPK signaling pathway blocking assay and p38 mRNA interference assay were carried out. The results showed that melatonin at concentrations of 0-100 μM was safe and nontoxic for the proliferation of rat ADSCs, with the concentration at 100 μM exhibiting the most pronounced osteogenesis. Additionally, melatonin was observed to activate the p38/MAPK signaling pathway in rat ADSCs. Moreover, the p38/MAPK pathway inhibitor (SB203580) and siRNA targeting p38 mRNA (p38 siRNA) were found to inhibit the melatonin-promoted osteogenic differentiation of rat ADSCs. In conclusion, the results of this study indicate that melatonin promotes osteogenic differentiation of rat ADSCs through the activation of the p38/MAPK signaling pathway. In light of these findings, melatonin treatment represents an effective strategy for promoting osteogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Shengwei Meng
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
- Department of Spinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong Province, China
| | - Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Meng Kong
- Department of Spinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong Province, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Antao Lin
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Changpeng Qu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
21
|
Łabędź-Masłowska A, Wieczorek J, Mierzwiński M, Sekuła-Stryjewska M, Noga S, Rajca J, Duda P, Milian-Ciesielska K, Karnas E, Kmiotek-Caller K, Szkaradek A, Madeja Z, Ficek K, Jura J, Zuba-Surma E. Evaluation of the Safety and Regenerative Potential of Human Mesenchymal Stem Cells and Their Extracellular Vesicles in a Transgenic Pig Model of Cartilage-Bone Injury In Vivo - Preclinical Study. Stem Cell Rev Rep 2025:10.1007/s12015-025-10853-4. [PMID: 40380984 DOI: 10.1007/s12015-025-10853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 05/19/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint condition leading to disability. The lack of effective treatment for OA creates a need for the development of new therapeutic approaches that may rely on stem cells including mesenchymal stem/stromal cells (MSCs) and their derivatives such as extracellular vesicles (EVs). The objective of this study was to evaluate the impact of MSCs derived from adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) and their EVs on cartilage-bone injury in vivo, to identify the specimen with the highest regenerative potential for further clinical applications in patients with OA. Humanized pigs underwent cartilage-bone injuries followed by intraarticular administration of products containing AT-MSCs, UC-MSCs, AT-MSC-EVs or UC-MSC-EVs mixed with hyaluronic acid (HA) or HA alone (for comparison). After 6-m follow-up, almost-fully-healed cartilage-bone defects were observed in the AT-MSC- and UC-MSC-treated pigs, and the defects were filled primarily with hyaline cartilage. In AT-MSC-EV- and UC-MSC-EV-treated pigs, a partial cartilage-bone tissue repair was observed, and the defects were filled primarily with fibrocartilage. The control pigs demonstrated limited regeneration capacity. The microcomputed tomography parameters of the subchondral bone indicated the ongoing progression of OA in controls, whereas in the MSC- and MSC-EV-treated pigs, the parameters indicated the cessation of OA progression. Moreover, no serious side effects were observed after the administration of products containing MSCs or MSC-EVs. The results indicate the safety and regenerative activity of MSCs on injured tissues, which favors not only the healing and improvement of bone structure but also the formation of hyaline cartilage. Superior tissue repair was observed after the administration of products containing AT-MSCs. The treatment of OA with MSC-EVs needs further standardization.
Collapse
Affiliation(s)
- Anna Łabędź-Masłowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jarosław Wieczorek
- University Center of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Maciej Mierzwiński
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun, Poland
| | - Małgorzata Sekuła-Stryjewska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Noga
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Rajca
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun, Poland
- Spin-Lab Centre for Microscopic Research on Matter, University of Silesia in Katowice, Katowice, Poland
| | - Piotr Duda
- Institute of Biomedical Engineering, Faculty of Science and Technology, University of Silesia in Katowice, Katowice, Poland
| | | | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kmiotek-Caller
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Szkaradek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Ficek
- Department of Science, Innovation and Development, Galen-Orthopaedics, Bierun, Poland
| | - Jacek Jura
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice, Poland.
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
22
|
Nash A, Lee IN, Fox G, Phillips J, White LJ, Marlow M. An evaluation of spraying as a delivery method for human mesenchymal stem cells suspended in low-methyl pectin solutions. Stem Cell Res Ther 2025; 16:246. [PMID: 40380251 DOI: 10.1186/s13287-025-04331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells have shown promise in many areas of regenerative medicine due to the anti-inflammatory and pro-regenerative effects of the secreted factors. However, successful delivery remains problematic, particularly for delivery to areas such as the brain. Spray delivery is a method investigated in wound care and lung injury, which may be applicable for brain delivery to patients already requiring surgery. To retain therapeutic mesenchymal stem cells at the delivery site, biomaterials can be employed; pectin is a biocompatible, sprayable, and mucoadhesive material, which could prove suitable for spray delivery of cells for therapeutic uses. METHODS The biocompatibility of four grades of low-methyl pectin gelled by addition of calcium was assessed using SH-SY5Y cells. After, mesenchymal stem cells were suspended within the four different grades of low-methyl pectin solutions and sprayed using a syringe-driven spray device. The suitability was then assessed by cell viability testing, flow cytometry to test for surface markers, and differential gene expression studies to understand the effects of both the pectin and the spraying process on the gene expression of the cells. RESULTS All four grades of low-methyl pectin were biocompatible with SH-SY5Y cells. The syringe-driven spray device delivered human mesenchymal stem cells to well plates with high viability, and suspending these cells in pectin solutions for spraying did not negatively affect the viability. The grade of pectin named CU-701 was the best grade based on results of the flow cytometry, whereby the surface marker expression was not altered from the control cells. The RNA sequencing showing the differential expression showed that the process of spraying the cells did not alter gene expression compared to the control, however the pectin, and the presence of calcium used to induce gelation of the pectin, did lead to altered gene expression in cells. CONCLUSION Spraying is a suitable delivery method for the mesenchymal stem cells, showing no detrimental effect on the cells. Pectin shows little effect on the viability of the cells, however the use of calcium to gel the pectin appears to affect the expression of several genes.
Collapse
Affiliation(s)
- Ami Nash
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - I-Ning Lee
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Graeme Fox
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - James Phillips
- Department of Pharmacology, School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Lisa J White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
23
|
Carlson EG, Lopez JC, Yamaguchi Y, Gibson J, Priceman SJ, LaBarge MA. CD105 + fibroblasts support an immunosuppressive niche in women at high risk of breast cancer initiation. Breast Cancer Res 2025; 27:81. [PMID: 40375322 PMCID: PMC12079957 DOI: 10.1186/s13058-025-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Aging is the greatest risk factor for breast cancer, and although epithelial cells are the source of carcinomas, epithelial changes alone do not fully explain cancer susceptibility. Fibroblasts and macrophages are key stromal constituents around the cells of origin for cancer in breast tissue. With age, macrophages surrounding terminal ductal lobular units (TDLUs) become increasingly immunosuppressive. CD105+ fibroblasts intercalate within TDLUs, drive luminal differentiation, and give rise to immunosuppressive cancer-associated fibroblasts in other tissues. We propose that differences in fibroblasts are a crucial component of the stroma that shapes cancer susceptibility. METHODS Primary peri-epithelial fibroblast cultures were established from prophylactic and reduction mammoplasties from 30 women ranging in age from 16 to 70 years and from BRCA1 mutation carriers. Growth characteristics, transcriptional profiles, differentiation potential, and secreted proteins were profiled for fibroblast subtypes from diverse donors. Co-cultures with fibroblasts, macrophages, and T cells were used to ascertain the functional role played by CD105+ fibroblasts in immune cell modulation. RESULTS We found that peri-epithelial CD105+ fibroblasts are enriched in older women as well as women who carry BRCA1 mutations. These CD105+ fibroblasts exhibit robust adipogenesis and secrete factors related to macrophage polarization. Macrophages cocultured with fibroblasts better maintain or enhance polarization states than media alone. CD105+ fibroblasts increased expression of immunosuppressive macrophage genes. CD105+ fibroblasts supported anti-inflammatory macrophage-mediated suppression of T cell proliferation, whereas CD105- fibroblasts significantly reduced the suppressive effect of anti-inflammatory macrophages on T cell proliferation. CONCLUSIONS Establishment of a coculture system to dissect the molecular circuits between CD105+ fibroblasts and macrophages that drive immunosuppressive macrophage polarization has broad utility in understanding mammary gland development and events that precede cancer initiation. CD105+ fibroblasts and macrophages may coordinate to suppress immunosurveillance and increase breast cancer susceptibility.
Collapse
Affiliation(s)
- Eric G Carlson
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Jennifer C Lopez
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Mark A LaBarge
- Department of Population Sciences, City of Hope, Duarte, CA, USA.
| |
Collapse
|
24
|
Zhao X, Gao J, Zhu X, Chen Y, Ge H, Xiao Y, Han Q, Sun Z, Zhao X, Zhao RC. Specifically Enhanced Immunosuppression of B Cells with Chimeric Antigen Receptors Modify Mesenchymal Stem Cells. Stem Cells Dev 2025. [PMID: 40370257 DOI: 10.1089/scd.2025.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Recently, cell therapies, including chimeric antigen receptor (CAR) modified T cell therapy and mesenchymal stem cell (MSC) therapy, have demonstrated considerable potential for systemic lupus erythematosus (SLE). In this study, a CAR-MSC model was constructed, combining two cell therapies. The structural domains of the CAR were designed by using the anti-CD19 scFv, targeting the CD19 antigen on the surface of B cells and the intracellular region of the interferon-gamma receptor, activating the JAK-STAT1 signaling pathway. Then we screened and identified the most effective structural domain of CAR as CAR1, as it facilitates MSCs to maintain significantly higher levels of JAK2 phosphorylation and IDO expression, as shown by western blot analysis. We also demonstrated CAR1 could be consistently and stably expressed at high levels in MSCs, and CAR1 transduction did not significantly affect the surface antigenic phenotypic criteria of MSCs via flow analysis. Furthermore, immunofluorescence results showed CAR1-MSCs could stably bind CD19 antigen, and they were activated by human CD19 antigen resulting in significantly high JAK2 phosphorylation and IDO expression via western blot analysis following co-culture. Besides, when activated peripheral blood mononuclear cells (PBMCs) were co-cultured with untransduced MSCs (UTD-MSCs) and CAR1-MSCs in vitro, respectively, the results showed that the percentage of activated CD3+ T cells and CD19+ B cells was both significantly lower after co-culturing. The percentage of activated CD19+ B cells was lower in the CAR1-MSCs co-culture group than in the UTD-MSCs co-culture group, whereas the percentage of activated CD3+ T cells was similar in the two co-culture groups. This suggests that CAR1 increased the inhibitory ability of MSCs on activated CD19+ B cells and had no significant effect on the ability of MSCs to inhibit activated CD3+ T cells. In conclusion, CAR1-MSCs were successfully constructed and demonstrated the ability to enhance the inhibitory effect of MSCs on activated human CD19+ B cells, facilitating SLE therapy.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| | - Jingxi Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| | - Xingyu Zhu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| | - Yunhua Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ge
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuzhen Xiao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| | - Qin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiuli Zhao
- Center for Rare Diseases, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Robert Chunhua Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
25
|
El-Sayed SM, Ahmed HH, Aglan HA, Naguib MM, Mohamed MR. Preconditioning of bone marrow mesenchymal stem cells with sodium hydrosulfide enhances their therapeutic potential in type II collagen-induced arthritis rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04222-8. [PMID: 40366399 DOI: 10.1007/s00210-025-04222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
This study was conducted to evaluate the impact of sodium hydrogen sulfide (NaHS) on the therapeutic efficacy of bone marrow mesenchymal stem cells (BM-MSCs) in the treatment of collagen-induced arthritis (CIA) rats. MSCs were isolated and cultured from rat bone marrow, and their characteristics were determined. The CIA model was induced in rats by intradermal injections of type II collagen on days 0 and 21. A variety of treatments were administered, including naproxen, BM-MSCs, BM-MSC-conditioned media, NaHS, BM-MSCs preconditioned with NaHS, and BM-MSCs preconditioned with NaHS-conditioned media. The infused BM-MSCs homed to the bone trabeculae and cartilage of the knee joint, leading to significant improvements in gait scores and a reduction in paw withdrawal frequency (PWF). Treatment with BM-MSCs and NaHS also significantly suppressed serum levels of CRP, RF, and 14-3-3η, while downregulating TNF-α gene expression and MMP-1 protein levels in the synovial membrane. Histopathological analysis confirmed these biochemical and molecular genetic findings. Notably, CIA rats treated with BM-MSCs preconditioned with NaHS showed the most significant improvements, with outcomes closely resembling those of healthy controls. This study concludes that NaHS enhances the therapeutic efficacy of BM-MSC therapy for rheumatoid arthritis (RA) by augmenting their anti-inflammatory, immunomodulatory, and regenerative properties.
Collapse
Affiliation(s)
- Sara M El-Sayed
- Biochemistry Department, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mohamed M Naguib
- Biochemistry Department, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt
| | - Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, P.O. 11566, Cairo, Egypt.
| |
Collapse
|
26
|
Wei H, Liu Y, Huang C, Wang C, Jiang H, Wang L, Wang Y, Wang Z. Ginsenoside Rg1 targets TLR2 to inhibit the NF-κB signaling pathway and ameliorate hematopoietic support of mesenchymal stromal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119917. [PMID: 40348305 DOI: 10.1016/j.jep.2025.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/19/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginsenoside Rg1 is a key bioactive compound in ginseng, a traditional herbal medicine known for tonifying qi and nourishing blood, traditionally used to replenish "qi" by regulating hematopoietic function. But its underlying mechanism remains to be elucidated. AIM OF THE STUDY This study aims to delve into the role of Rg1 on senescent hematopoiesis and its mechanisms. MATERIALS AND METHODS A model of D-galactose-induced hematopoietic injury was established with ginsenoside Rg1. The hematopoietic supportive effect of Rg1 was assessed by quantifying the levels of hematopoietic supportive factors VCAM1, CXCL12 and SCF, CFU-Mix formation and cellular senescence; and the levels of inflammatory factors and oxidative stress were measured by ELISA in the serum and cellular supernatant of mice. Co-culture technique was used to examine the ability of Rg1 to restore impaired hematopoiesis by improving the inflammatory hematopoietic microenvironment. For mechanism exploration, RNA-Seq was used to detect differential genes in Rg1-treated MSCs, GO- and KEGG-based enrichment analyses were used to screen the key pathways in which Rg1 exerts its effects, and molecular docking was used to demonstrate the feasibility of molecular interconnections between Rg1 and TLR2. To further explore the mechanism, pathway activators were further used and the expression levels of target proteins downstream of the TLR2 pathway were quantified using Western blotting. RESULTS Rg1 decreased the levels of inflammatory factors IL-1β, IL-6 and TNFα, while enhancing the expression of hematopoietic support factors in senescent MSCs, thereby improving the self-renewal and differentiation of aged HSPCs. Additionally, Rg1 also delayed HSPC senescence and reduced the level of oxidative stress. KEGG and GO were enriched for the Toll/NF-κB signaling pathway, based on differential genes obtained by transcriptional sequencing. Rg1 could inhibit the elevated levels of MyD88, NF-κB-p65 and IκBα proteins, and their phosphorylation levels by binding to TLR2 protein and inhibiting them. In conclusion, Rg1 ameliorates the inflammatory hematopoietic microenvironment induced by MSCs senescence via the TLR2/NF-κB-p65 signaling pathway, alleviating HSPCs senescence. CONCLUSIONS Our results reveal the mechanism by which Rg1 regulates HSPCs function and represent a potential therapeutic strategy for hematopoietic dysfunction, highlighting the potential value of traditional Chinese medicine extracts in clinical applications.
Collapse
Affiliation(s)
- Han Wei
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yonggang Liu
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Caihong Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Cheng Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Honghui Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Ziling Wang
- Department of Pathology, Basic Medicine College, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
27
|
Rahnama M, Ghasemzadeh N, Latifi Z, Kheradmand F, Koukia FA, Sharun K, Golchin A. Menstrual Blood and Endometrial Mesenchymal Stem/Stromal Cells: A Frontier in Regenerative Medicine and Cancer Therapy. Eur J Pharmacol 2025:177726. [PMID: 40350020 DOI: 10.1016/j.ejphar.2025.177726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The acquisition of suitable stem cell sources is a significant issue in regenerative medicine. There has been considerable interest in utilizing mesenchymal stem cells (MSCs) derived from endometrial and menstrual blood as a promising resource of MSCs, owing to their unique biochemical properties and prospective use in clinical therapies. This population of stem cells has distinct characteristics in terms of immunophenotype, proliferation rate, and differentiation capacity. A notable characteristic of these stem cells is their capacity to develop into mesodermal lineages, highlighting their regenerative capability. Moreover, the presence of certain surface markers facilitates the augmentation of clonogenic endometrial MSCs. Their distinctive characteristics, along with their swift multiplication ability, underscore their significant promise for therapeutic applicability in regenerative medicine and cell-based treatments. Current investigations are examining possible usage of diverse stem cell resources in the treatment of inflammatory diseases and perhaps intractable illnesses like Parkinson's disease, utilizing their immunomodulatory properties. This review aims to analyze stem cell-related research that has utilized endometrial and menstrual blood-derived MSCs (enMSCs and MenSCs) with a special focus on their clinical application. We will explore the existing evidence about the therapeutic potential for these stem cells across many medical diseases and address the obstacles and prospective trajectories in this domain. Additionally, we will study the unique properties of enMSCs and MenSCs that make them promising candidates for regenerative medicine.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Ghasemzadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Latifi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fariba Abbasi Koukia
- Department of Pathology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Independent Researcher, Urmia, Iran.
| |
Collapse
|
28
|
Hirono K, Hayashi Y, A Udugama I, Gaddem MR, Tanaka K, Takemoto Y, Kato R, Kino-Oka M, Sugiyama H. Determination and validation of design space for mesenchymal stem cell cultivation processes using prediction intervals. Commun Biol 2025; 8:657. [PMID: 40341300 PMCID: PMC12062477 DOI: 10.1038/s42003-025-08063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
In regenerative medicine, mesenchymal stem cells (MSCs) constitute a promising therapeutic route for many diseases. The current quality-by-design guidelines do not clearly define a framework for MSC production. Here, we suggest and experimentally validate a model-based method to determine design spaces (DSs) for MSC cultivation. A kinetic model used in previous work was employed; part of the experimental data was used to re-estimate the maximum specific growth rate in the kinetic model and then calculate the prediction intervals of this parameter. Subsequently, regions of seeding density and harvesting time where both the upper and lower limits of growth predictions met the acceptable number of cells and confluency with given risk levels were defined as DSs. Finally, the established DS was validated with the remaining data; it allowed better predictions of the cell numbers and confluency under specific cultivation conditions and improved the overall robustness of MSC cultivation processes.
Collapse
Affiliation(s)
- Keita Hirono
- Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Hayashi
- Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Isuru A Udugama
- Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mohamed Rami Gaddem
- Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenjiro Tanaka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Aichi, Japan
| | - Yuto Takemoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Aichi, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Aichi, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Aichi, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, The University of Osaka, Suita, Osaka, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
29
|
Wang Y, Ding Y, Dong H, Wuren T, Luo P. MSCs in Acute Kidney Injury Treatment: Modulating Mitochondrial Function and Inhibiting Pyroptosis via PGC-1α. Exp Cell Res 2025:114583. [PMID: 40324626 DOI: 10.1016/j.yexcr.2025.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE This study aims to investigate the mechanisms of MSC therapy for acute kidney injury, focusing on the regulation of mitochondrial function and pyroptosis in renal tubular epithelial cells (RTECs). METHODS An in vivo ischemia/reperfusion (I/R) model was used to assess the effects of MSC treatment on mitochondrial membrane potential, mitochondrial function, cell pyroptosis, and PGC-1α expression in RTECs. RESULTS MSCs significantly improved mitochondrial function in RTECs by upregulating PGC-1α expression, regulating mitochondrial fusion and fission proteins, reducing mitochondrial ROS production, and suppressing NLRP3 inflammasome activation. Furthermore, MSC treatment reduced the levels of pyroptotic markers, such as IL-18, and exhibited a marked anti-fibrotic effect in the long-term. These findings suggest that MSCs not only repair acute kidney injury but also offer long-term protection against fibrosis. CONCLUSION MSCs improve the repair of acute kidney injury by modulating mitochondrial function and inhibiting pyroptosis, providing new theoretical support for MSC-based therapies in AKI treatment.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China; Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810016,China; High-Altitude Medicine Key Laboratory of the Ministry of Educationy, Xining, Qinghai 810001,China; Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining, Qinghai 810001,China
| | - Yanlin Ding
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China
| | - Haiyun Dong
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810016,China; High-Altitude Medicine Key Laboratory of the Ministry of Educationy, Xining, Qinghai 810001,China; Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining, Qinghai 810001,China
| | - Pengli Luo
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China.
| |
Collapse
|
30
|
Chen L, Liu Y, Yu C, Cao P, Ma Y, Geng Y, Cai Y, Zhang Y, Liu J, Li Y, Luan Q. Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) inhibit M1 macrophage polarization and reduce alveolar bone loss associated with periodontitis. Stem Cell Res Ther 2025; 16:223. [PMID: 40317064 PMCID: PMC12046914 DOI: 10.1186/s13287-025-04327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease and macrophages play a pivotal role in the progression of periodontitis. Mesenchymal stem cells (MSCs) have emerged as potential therapeutic agents for the treatment of periodontitis due to their immunomodulatory properties and capacity for tissue regeneration. Compared to conventionally derived MSCs, induced pluripotent stem cell-derived MSCs (iMSCs) offer distinct advantages as promising candidates for MSC-based therapies, owing to their non-invasive acquisition methods and virtually unlimited availability. This study aims to investigate the effects and mechanisms of iMSCs in modulating macrophage polarization and alleviating periodontitis-related alveolar bone loss. METHODS iMSCs were generated from iPSCs and characterized for differentiation potential. The effects of iMSCs on macrophage polarization were evaluated using THP-1-derived macrophages under inflammatory conditions (LPS and IFN-γ stimulation). Co-culture assays, cytokine analysis, reactive oxygen species (ROS) detection, transcriptomic analysis, flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to elucidate the underlying mechanisms. The therapeutic potential of iMSCs was assessed in a ligature-induced periodontitis mouse model using micro-CT, histological analysis, and immunofluorescence staining. RESULTS iMSCs inhibit M1 macrophage polarization through the suppression of the NF-κB signaling pathway. Additionally, iMSCs reduce the production of pro-inflammatory cytokines (IL-1β, IL-17) and reactive oxygen species (ROS), while enhancing the secretion of anti-inflammatory cytokines (IL-10) and growth factors (VEGF), thereby improving the inflammatory microenvironment. Under inflammatory conditions, iMSCs preserve the osteogenic potential of periodontal ligament stem cells (PDLSCs) and alleviate alveolar bone loss in mice with periodontitis. In vivo, iMSCs reduce the number of M1 macrophages and inhibit the activation of NF-κB in periodontal tissues, supporting their anti-inflammatory and immunomodulatory effects. CONCLUSION iMSCs demonstrate significant therapeutic potential in periodontitis by modulating macrophage polarization, reducing oxidative stress, and mitigating alveolar bone loss associated with the disease. These findings provide new insights into the mechanisms of iMSCs and their application as cell-based therapies for periodontal diseases.
Collapse
Affiliation(s)
- Liang Chen
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yuanqing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Chenhao Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Pei Cao
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yiming Ma
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yiran Geng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yu Cai
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yong Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jia Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, People's Republic of China.
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
31
|
Das M, Behere I, Ingavle G, Vaidya A, Kale VP. Inhibition of CD45-specific phosphatase activity restores the differentiation potential of aged mesenchymal stromal cells: implications in regenerative medicine. Biol Res 2025; 58:24. [PMID: 40312428 PMCID: PMC12046811 DOI: 10.1186/s40659-025-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/09/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Aging affects the reparative potency of mesenchymal stem/stromal cells (MSCs) by diminishing their proliferation and differentiation capability; making them unsuitable for regenerative purposes. Earlier we showed that MSCs acquire the expression of CD45 as a consequence of aging, and this increased expression is associated with downregulated expression of osteogenic markers and upregulated expression of adipogenic and osteoclastogenic markers. However, whether CD45 is actively involved in the aging-mediated deregulated differentiation in the MSCs was not elucidated. RESULTS In the present study, we showed that pharmacological inhibition of CD45-specific phosphatase activity in the aged MSCs restores their differentiation potential to young-like. Investigation of the molecular mechanism involved in the process showed that several regulatory kinases like p38, p44/42, Src, and GSK3β are in their dephosphorylated form in the aged MSCs, and importantly, this status gets reversed by the application of a CD45-specific PTP inhibitor. Conversely, pharmacological inhibition of these kinases in young MSCs imposes an aged-like gene expression profile on them. Additionally, we also showed that the secretome of aged MSCs affects the viability and differentiation of primary chondrocytes, and this detrimental effect is reversed by treating aged MSCs with the PTP inhibitor. Our data demonstrate that the aging-mediated expression of CD45 in MSCs alters their differentiation profile by dephosphorylating several kinases and treating the aged MSCs with a CD45 PTP activity inhibitor rejuvenates them. CONCLUSIONS CD45 can be used as an aging marker for mesenchymal stem cells. Alteration of CD45 phosphatase activity could have significant implications for the use of MSCs in regenerative medicine.
Collapse
Affiliation(s)
- Madhurima Das
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
| | - Isha Behere
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
- NIHR Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust and King's College London Clinical Research Facility, London, UK
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, 412115, India
| | - Vaijayanti Prakash Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences, Symbiosis Knowledge Park, Lavale, Pune, 412112, India.
| |
Collapse
|
32
|
Chin JS, Tan MLL, Lim PLK, Sharma B, Yeo A, Aw YB, Ng YZ, Bonnard C, Becker DL, Mok P. Secretome from prolonged high-density human Wharton's jelly stem cell culture accelerates wound healing in both in vitro and in vivo models. Int Wound J 2025; 22:e70033. [PMID: 40320827 PMCID: PMC12050407 DOI: 10.1111/iwj.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 05/08/2025] Open
Abstract
The complex of biofactors secreted by mesenchymal stem cells, termed the secretome, can promote wound healing. Studies using this secretome often utilise material collected from short term and sub-confluent lab-scale cultures. Secretome was derived from prolonged culture of high-density industrial scale human Wharton's jelly stem cells and its effects on wound healing was assessed. In vitro cell proliferation and scratch closure assays showed that secretome treatment dose-dependently increased cell proliferation and promoted scratch closure. Subsequently, using biopsy punch, circular wounds were created on three-dimensional de-epidermised dermis human skin equivalent (in vitro) where secretome-treated wounds showed accelerated wound closure, and enhanced epithelial proliferation and differentiation were observed and quantified. In an in vivo rat acute wound model, secretome applied to the back of test animals greatly enhanced wound healing by promoting re-epithelialisation, vascularisation and granulation maturation. In conclusion, secretome derived from prolonged culture of high-density industrial scale two-dimensional human Wharton's jelly stem cells possesses potent wound healing properties. This could greatly lower the cost of production and facilitate development of highly efficacious secretome-based wound healing products.
Collapse
Affiliation(s)
- Jiah Shin Chin
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Mandy Li Ling Tan
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | | | - Bhavya Sharma
- Skin Research Institute of SingaporeSingaporeSingapore
| | - Aimin Yeo
- Celligenics Pte LtdSingaporeSingapore
| | | | - Yi Zhen Ng
- A*STAR Skin Research Labs, Agency for ScienceTechnology and ResearchSingaporeSingapore
| | - Carine Bonnard
- A*STAR Skin Research Labs, Agency for ScienceTechnology and ResearchSingaporeSingapore
- Skin Research Institute of SingaporeSingaporeSingapore
| | - David L. Becker
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Skin Research Institute of SingaporeSingaporeSingapore
- National Skin CentreSingaporeSingapore
| | | |
Collapse
|
33
|
Wen R, Huang R, Xu K, Yi X. Insights into the role of histone lysine demethylases in bone homeostasis and skeletal diseases: A review. Int J Biol Macromol 2025; 306:141807. [PMID: 40054804 DOI: 10.1016/j.ijbiomac.2025.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Histone lysine demethylases (KDMs), as important epigenetic regulators, are involved in various biological processes such as energy metabolism, apoptosis, and autophagy. Recent research shows that KDMs activate or silence downstream target genes by removing lysine residues from histone tails, and participate in the regulation of bone marrow mesenchymal stem cells (BM-MSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes and other skeletal cell development, differentiation and formation. Moreover, several members of the KDM family affect the occurrence and development of bone diseases such as osteoporosis (OP), osteoarthritis (OA), osteosarcoma (OS), by regulating target genes. Specific regulation mechanisms of KDMs suggest new strategies for bone disease treatment and prevention. Despite the unique function and importance of KDMs in the skeletal system, previous studies have never systematically summarized their specific role, molecular mechanism, and clinical treatment in bone physiology and pathology. Therefore, this review summarises the expression pattern, intracellular signal transduction, and mechanism of action of the KDM family in several bone physiological and pathological conditions, aiming to highlight the important role of KDMs in bone diseases and provide a reference for the future treatment of bone diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China; School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
34
|
Mizuno K, Ohnishi H, Kishimoto Y, Kojima T, Fujimura S, Kawai Y, Kitano M, Ikeya M, Omori K. Rat Tracheal Cartilage Regeneration Using Mesenchymal Stem Cells Derived From Human iPS Cells. Tissue Eng Part A 2025; 31:398-408. [PMID: 38970444 DOI: 10.1089/ten.tea.2024.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Tracheal cartilage provides structural support to the airways to enable breathing. However, it can become damaged or impaired, sometimes requiring surgical resection and reconstruction. Previously, we clinically applied an artificial trachea composed of a polypropylene mesh and collagen sponge, with a favorable postoperative course. However, the artificial trachea presents a limitation, as the mesh is not biodegradable and cannot be used in pediatric patients. Compared to a polypropylene mesh, regenerated cartilage represents an ideal material for reconstruction of the damaged trachea. The use of mesenchymal stem cells (MSCs) as a source for cartilage regeneration has gained widespread acceptance, but challenges such as the invasiveness of harvesting and limited cell supply persist. Therefore, we focused on the potential of human-induced pluripotent stem cell (hiPSC)-derived mesenchymal stem cells (iMSCs) for tracheal cartilage regeneration. In this study, we aimed to regenerate tracheal cartilage on an artificial trachea as a preliminary step to replace the polypropylene mesh. iMSCs were induced from hiPSCs through neural crest cells and transplanted with a polypropylene mesh covered with a collagen sponge into the damaged tracheal cartilage in immunodeficient rats. Human nuclear antigen (HNA)-positive cells were observed in all six rats at 4 weeks and in six out of seven rats at 12 weeks after transplantation, indicating that transplanted iMSCs survived within the tracheal cartilage defects of rats. The HNA-positive cells coexpressed SOX9, and type II collagen was detected around HNA-positive cells in four of six rats at 4 weeks and in three of seven rats at 12 weeks after transplantation, reflecting cartilage-like tissue regeneration. These results indicate that the transplanted iMSCs could differentiate into chondrogenic cells and promote tracheal cartilage regeneration. iMSC transplantation thus represents a promising approach for human tracheal reconstruction.
Collapse
Affiliation(s)
- Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Kojima
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Fujimura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Sun MX, Zhu HC, Yu Y, Yao Y, Li HY, Feng FB, Wang QY, Liu RJ, Sun CG. Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). Int J Oncol 2025; 66:36. [PMID: 40145557 PMCID: PMC12068849 DOI: 10.3892/ijo.2025.5742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The focus on breast cancer treatment has shifted from the cytotoxic effects of single drugs on tumor cells to multidimensional multi‑pathway synergistic intervention strategies targeting the tumor microenvironment (TME). The activation of the Wnt signaling pathway in the TME of breast cancer cells serves a key regulatory role in tissue homeostasis and is a key driver of the carcinogenic process. Modulating the crosstalk between the Wnt pathway and TME of breast cancer is key for understanding the biological behavior of breast cancer and advancing the development of novel antitumor drugs. The present review aimed to summarize the complex mechanisms of the Wnt signaling pathway in the breast cancer TME, interactions between the Wnt signaling pathway and components of the breast cancer TME and breast cancer‑associated genes, as well as the interactions between the Wnt signaling pathway and other signaling cascades at the molecular level. Furthermore, the present review aimed to highlight the unique advantages of the Wnt signaling pathway in the macro‑regulation of the TME and the current therapeutic strategies targeting the Wnt signaling pathway, their potential clinical value and future research directions in breast cancer treatment.
Collapse
Affiliation(s)
- Meng Xuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Han Ci Zhu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Yan Yao
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Hua Yao Li
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fu Bin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Qing Yang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Rui Juan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
| | - Chang Gang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
36
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
37
|
Surico PL, Barone V, Singh RB, Coassin M, Blanco T, Dohlman TH, Basu S, Chauhan SK, Dana R, Di Zazzo A. Potential applications of mesenchymal stem cells in ocular surface immune-mediated disorders. Surv Ophthalmol 2025; 70:467-479. [PMID: 39097173 DOI: 10.1016/j.survophthal.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We explore the interaction between corneal immunity and mesenchymal stem/stromal cells (MSCs) and their potential in treating corneal and ocular surface disorders. We outline the cornea's immune privilege mechanisms and the immunomodulatory substances involved. In this realm, MSCs are characterized by their immunomodulatory properties and regenerative potential, making them promising for therapeutic application. Therefore, we focus on the role of MSCs in immune-mediated corneal diseases such as dry eye disease, corneal transplantation rejection, limbal stem cell deficiency, and ocular graft-versus-host disease. Preclinical and clinical studies demonstrate MSCs' efficacy in promoting corneal healing and reducing inflammation in these conditions. Overall, we emphasize the potential of MSCs as innovative therapies in ophthalmology, offering promising solutions for managing various ocular surface pathologies.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sayan Basu
- Brien Holden Eye Research Centre (BHERC), L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy.
| |
Collapse
|
38
|
Vieira Ferreira N, Andrade R, Pinto Freitas T, de Campos Azevedo C, Espregueira-Mendes J, Salgado AJ, Sevivas N. The role of injections of mesenchymal stem cells as an augmentation tool in rotator cuff repair: a systematic review. JSES REVIEWS, REPORTS, AND TECHNIQUES 2025; 5:231-242. [PMID: 40321851 PMCID: PMC12047555 DOI: 10.1016/j.xrrt.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background Arthroscopic repair is currently the gold standard for the surgical treatment of rotator cuff tears, but the retear rates remain unacceptably high. Mesenchymal stem cells (MSCs) may play a role in the local biology and enhance tendon-to-bone healing during rotator cuff repair. However, the scientific literature is still not well systematized on the effects of injection of MSCs as an augmentation tool for rotator cuff repair. Our goal was to investigate the effect of injections of MSCs to augment rotator cuff repair in patients with rotator cuff tear. Methods PubMed and EMBASE were searched up to June 2022 for clinical studies that applied MSCs injections to augment rotator cuff repair. Imaging, patient-reported outcomes measures, shoulder range of motion and strength were collected. Quantitative synthesis included within- and between-group mean differences with the within-group percentage of minimal clinically important difference for each study and continuous outcomes, and relative risks (RR) for retears and adverse events. Quantitative synthesis was computed with 95% confidence intervals (CIs). Results We included 5 studies comprising a total of 228 individuals with a weighted mean age of 59.3 ± 1.2 years. Three studies used bone marrow MSCs and two studies applied adipose-derived MSCs. Patient-reported outcomes measures, shoulder range of motion, and strength improved significantly in all MSCs groups, with minimal clinically important differences ranging from 120% to 679% of established cut-off. When compared to rotator cuff repair alone, the MSCs groups did not result in improved outcomes. The MSCs group showed significant protective effect at the mid-term (RR = 0.52, 95% CI 0.27-0.98) and long-term (RR = 0.24, 95% CI 0.11-0.53). Conclusion There are no differences in clinical and functional outcomes between rotator cuff repair with or without augmentation with MSCs. However, there may be a protective effect against retear at the mid-term and long-term follow-up when augmenting the repair with MSCs. The literature on this topic is still preliminary and the quality and certainty of evidence is limited.
Collapse
Affiliation(s)
- Nuno Vieira Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Hospital de Santa Maria Maior Barcelos, Barcelos, Portugal
- Hospital dos Lusíadas Braga, Braga, Portugal
- Instituto de Investigação em Ortopedia e Medicina Desportiva, Braga, Portugal
| | - Renato Andrade
- Clínica Espregueira - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Tânia Pinto Freitas
- Hospital de Santa Maria Maior Barcelos, Barcelos, Portugal
- Hospital dos Lusíadas Braga, Braga, Portugal
- Instituto de Investigação em Ortopedia e Medicina Desportiva, Braga, Portugal
| | | | - João Espregueira-Mendes
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clínica Espregueira - FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- School of Medicine, University of Minho, Braga, Portugal
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- School of Medicine, University of Minho, Braga, Portugal
- Trofa Saúde Group, Vila do Conde, Portugal
- Centro Hospitalar Médio Ave, Famalicão, Portugal
| |
Collapse
|
39
|
Suwittayarak R, Klincumhom N, Phrueksotsai C, Limjeerajarus N, Limjeerajarus CN, Egusa H, Osathanon T. Shear stress preconditioning enhances periodontal ligament stem cell survival. Arch Oral Biol 2025; 173:106232. [PMID: 40086040 DOI: 10.1016/j.archoralbio.2025.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE The study investigated in vitro the influences of shear stress preconditioning on human periodontal ligament stem cells (hPDLSCs) under serum deprivation. DESIGN hPDLSCs were subjected to shear stress at 0.5 and 5 dyn/cm², both with and without serum starvation. Cell viability and apoptosis were assessed using the Resazurin assay and flow cytometry analysis, respectively. Gene and protein expressions were analysed by real-time polymerase chain reaction, immunofluorescent staining, and Western blotting. RESULTS Our results revealed that shear stress potentially mitigated serum derivation-induced cell death by inducing cell viability, enhancing colony formation, and inhibiting cell apoptosis. The addition of an ERK inhibitor inhibited the shear stress-induced cell apoptosis resistance. Shear stress treatment upregulated cell viability-related gene expression, including SOX2, SOD1 and BIRC5. In particular, shear stress promoted the nuclear translocation of SOX2. Meanwhile, the expression of BIRC5 was not inhibited by cycloheximide. Shear stress-induced SOX2 and BIRC5 expression was attenuated by PI3K and ERK inhibitors, respectively. CONCLUSIONS Shear stress contributes to promoting SOX2 and BIRC5 expression by hPDLSCs, implicating the promotion of stemness and cell survival under serum starvation.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaloemrit Phrueksotsai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapol Limjeerajarus
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
40
|
Xu Y, Shi X, Lin H, Li S, Zhang Z, Wei F, Chen Y. GelMA/HA-NB hydrogel encapsulating adipose-derived chondrogenic exosomes enhances enthesis regeneration in chronic rotator cuff tears. Int J Biol Macromol 2025; 309:142800. [PMID: 40185430 DOI: 10.1016/j.ijbiomac.2025.142800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Chronic rotator cuff tears (RCTs) often lead to poor surgical outcomes, requiring innovative therapies. This study explores the potential of exosomes from chondrogenic stem/progenitor cells (CSPCs), encapsulated in a GelMA/HA-NB hydrogel, to improve rotator cuff healing. Adipose-derived stem cells (ASCs) were isolated and sorted to obtain CSPCs, from which exosomes (sub-Exos) were extracted and characterized. Unsorted ASCs exosomes (un-Exos) were also isolated for comparison. The hydrogel-exosome system was evaluated for biocompatibility, chondrogenic differentiation, and sustained release in vitro and in a chronic RCT rat model. 112 rats were divided into four groups: control, hydrogel alone, un-Exos with hydrogel, and sub-Exos with hydrogel. Healing was assessed at 4 and 8 weeks using micro-CT, histology, and biomechanical testing. In vitro, sub-Exos with hydrogel demonstrated excellent biocompatibility and enhanced chondrogenic potential. In vivo, sub-Exos were retained at the injury site for up to 14 days, significantly improving histological scores, bone mineral density, bone volume/total volume, and trabecular thickness. Biomechanical tests revealed superior failure load and stiffness in the sub-Exos group. These findings demonstrate that localized delivery of GelMA/HA-NB hydrogel-encapsulated sub-Exos significantly enhances enthesis healing, offering a promising cell-free therapeutic strategy for chronic RCTs.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China
| | - Xin Shi
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Haofeng Lin
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China
| | - Siqi Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiyuan Zhang
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China
| | - Fuxin Wei
- Department of Orthopaedics, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, China.
| | - Yang Chen
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China; Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
41
|
Fujii S, Sugino N, Miura Y. The Supportive Role of Lymph Node Mesenchymal Stromal Cells in Follicular Lymphoma Involves the PITX1-hTERT-Podoplanin Axis. Stem Cells Dev 2025; 34:201-213. [PMID: 40130551 DOI: 10.1089/scd.2025.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
The microenvironment within lymph nodes plays a pivotal role in the pathogenesis of follicular lymphoma (FL), a malignancy characterized by the accumulation of neoplastic B cells. Here, we report that human FL lymph node mesenchymal stromal cells (FLSCs) display surface protein expression profiles consistent with the standard phenotypic criteria for human mesenchymal stromal/stem cells (MSCs), yet exhibit reduced mesenchymal differentiation capability. FLSCs did not show the typical immunomodulatory protein expression patterns observed in fibroblastic reticular cells, marginal reticular cells, or follicular dendritic cells, as they expressed chemokine (C-X-C motif) ligand 13 and podoplanin but lacked chemokine (C-C motif) ligand 19 and complement receptor 1/2. Functionally, FLSCs exhibited superior FL cell survival-supportive capability in cocultures compared with bone marrow MSCs. This supportive effect was reduced when the cell culture inserts were used. In addition, this supportive capability was accompanied by reduced levels of B-cell-supportive soluble factors such as interleukin-6, regardless of the presence of cell culture inserts. Thus, both cell-cell contact-dependent and -independent mechanisms are involved in this process. Comprehensive transcriptomic analysis revealed that transcription factor paired-like homeodomain 1 (PITX1) is downregulated in FLSCs. Given that PITX1 regulates human telomerase reverse transcriptase (hTERT) transcription, FLSCs exhibited longer telomeres and a higher population-doubling capacity than MSCs. Furthermore, FLSCs expressed elevated podoplanin, whereas MSCs did not. Notably, hTERT-transfected MSCs also showed increased podoplanin expression, suggesting a positive association between hTERT and podoplanin. In summary, our findings indicate that FLSCs deviate from classical MSCs in their differentiation potential and instead exhibit a protumorigenic phenotype. This phenotype supports FL cell survival and is potentially mediated by an aberrant PITX1-hTERT-podoplanin signaling axis. These results highlight the critical role of FLSCs in the FL lymph node microenvironment, with implications for understanding tumor-supportive niches in FL pathogenesis.
Collapse
Affiliation(s)
- Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| | - Noriko Sugino
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Hematology, Osaka Red Cross Hospital, Osaka, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Transfusion Medicine and Cell Therapy, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
42
|
Wang LT, Wang HH, Jiang SS, Chang CC, Hsu PJ, Liu KJ, Sytwu HK, Yen BL, Yen ML. Lack of IFN-γ response of human uterine myometrium-derived MSCs significantly improve multiple IBD parameters compared to bone marrow MSCs: Implications for anti-TNFα-refractory patients. Pharmacol Res 2025; 215:107716. [PMID: 40154933 DOI: 10.1016/j.phrs.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical efficacy of mesenchymal stem cell (MSC) therapy for inflammatory bowel disease (IBD) is inconsistent and often fails to match promising preclinical findings. To improve outcome, we compared MSCs isolated from human uterine myometrium (Ut), a readily-available tissue source from a unique immune niche, to bone marrow (BM) MSCs, the most common source, in a murine IBD model with mechanisms underlying differential effects. In this study, human BMMSCs and UtMSCs were intravenously administered to mice with dextran sulfate sodium-induced colitis and evaluated for disease activity, microbiome composition, and cellular immunity. Bioinformatics analyses including patient data were performed to further specify involved mechanisms with subsequent functional validation performed. We found that UtMSC but not BMMSC treatment significantly reversed disease parameters by improving microbiome and reducing mesenteric lymph node IFN-γ and IL-17A-secreting T cells. Transcriptomic analysis revealed UtMSCs had reduced MHC II pathway activation compared to BMMSCs. Functional validation confirmed UtMSCs compared to BMMSCs expressed lower IFN-γ receptors, prevent MHC II-mediated human unstimulated T cell activation, and modulated stimulated T helper (Th) cells away from effector phenotypes while increasing regulatory T cells (Tregs) and IL-10 levels. Bioinformatics from IBD patients resistant to non-T cell-specific therapies implicated persistent MHC II-mediated Th1/Th17 activation as key drivers of disease. Overall, UtMSCs outperformed BMMSCs in improving microbiota, avoiding IFN-γ responses, and modulating overall Th responses, suggesting this MSC source may offer more significant effectiveness for IBD and Th1/Th17-mediated conditions. Our findings also highlight that understanding MSC source-specific therapeutic mechanisms is crucial for optimizing clinical therapies.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Chia-Chih Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan; Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan; Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan.
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan.
| |
Collapse
|
43
|
Eliasberg CD, Carballo CB, J H Yao V, Piacentini A, Sanchez LA, Li TM, Havasy J, Bowen EG, Khan M, Rodeo SA. Evaluation of Novel Therapeutic Agents for Modulation of the Inflammatory Response in Rotator Cuff Tendinopathy Utilizing a Mouse Model of Subacromial Impingement. Am J Sports Med 2025; 53:1317-1327. [PMID: 40159684 DOI: 10.1177/03635465251330008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND Rotator cuff disease is prevalent and can cause significant disability. Local subacromial corticosteroid injections (CSIs) have been a mainstay of nonoperative management despite concerns regarding their potential for adverse effects on tendon and muscle tissue. We identified 3 potential molecular targets that could be inhibited by alternative, currently available treatments. PURPOSE To compare the effects of losartan (LOS), anakinra (AK), and alpha-2-macroglobulin (A2M), not previously utilized in the treatment of rotator cuff disease, with CSI-treated and nontreated controls in a murine model of rotator cuff tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS A total of 90 twelve-week-old male C57BL/6J mice were placed into 6 different groups (n = 15 mice per group). Group 1 underwent a sham procedure with no treatment (sham controls). Group 2 underwent placement of a metal clip in bilateral shoulders to induce impingement on the rotator cuff but received no further treatment. All mice receiving treatments (groups 3-6) underwent bilateral clip impingement surgery on day 0. On day 21, subacromial injections of CSI, AK, or A2M were performed, and LOS was administered via drinking water. All mice were sacrificed at 6 weeks after the initial impingement surgery. The supraspinatus tendons and muscles were harvested. Histology, biomechanical testing, flow cytometry, gene expression, and gait analysis were performed. The significance level was set at P = .05 for all statistical analyses. RESULTS Flow cytometry demonstrated that treatment groups exhibited individual stromal cell marker profiles more similar to sham controls than to the impingement control groups, with significantly higher percentages of CD51+, CD73+, CD90.2+, CD105+, and CD146+ cells compared with the impingement control group. Gene expression analysis demonstrated significantly decreased pathway scores for cytokine signaling, inflammasome, phagocytic cell function, oxidative stress, and proteotoxic stress in the treatment groups compared with the impingement control group. CONCLUSION These novel therapeutic agents may have utility in promoting a favorable environment for stromal progenitor cells and decreasing cytokine signaling, inflammatory responses, and stress pathways associated with subacromial impingement. CLINICAL RELEVANCE Further investigation into these agents and the underlying cellular and molecular mechanisms of inflammation may allow for the utilization of alternatives to CSIs.
Collapse
Affiliation(s)
- Claire D Eliasberg
- Sports Medicine Institute, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute, New York, New York, USA
| | - Camila B Carballo
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute, New York, New York, USA
| | - Vincent J H Yao
- City University of New York, School of Medicine, New York, New York, USA
| | - Alexander Piacentini
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute, New York, New York, USA
| | | | - Thomas M Li
- University of California, San Francisco, San Francisco, California, USA
| | - Janice Havasy
- Long Island Jewish Medical Center/North Shore University Hospital, New York, New York, USA
| | | | - Marjan Khan
- University of Florida, Gainesville, Florida, USA
| | - Scott A Rodeo
- Sports Medicine Institute, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute, New York, New York, USA
| |
Collapse
|
44
|
De Simone U, Caloni F, Pignatti P, Gaetano C, Locatelli CA, Coccini T. Human stromal cell-based protocol to generate astrocytes: a straightforward in vitro predictive strategy in neurotoxicology. Toxicol Mech Methods 2025; 35:340-355. [PMID: 39626968 DOI: 10.1080/15376516.2024.2435351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 05/04/2025]
Abstract
The inherent adaptability of human mesenchymal stromal cells (hMSCs) to differentiate into neural lineages provides a valuable resource for investigating potential neurotoxicity in humans. By harnessing the ability of hMSCs to transform into astrocytes, we can evaluate the effects of various agents on these vital cells. Our protocol employs hMSCs sourced from umbilical cord tissue, ensuring a readily available supply of high-quality cells. The hMSC-to-neural workflow encompasses six essential steps: hMSC culture, followed by the generation of embryoid bodies (EBs) from these cells on specialized surfaces. Next, EBs and cells are expanded in a growth-promoting medium, directing them toward neural lineages. Subsequent differentiation into immature astrocytes is achieved through the use of specific factors. The process continues with the maturation of EBs/cells into astrocyte-like cells (hALCs) under optimized conditions, culminating in the final development of hALCs in a specialized medium. This methodology yields cells that display astrocyte morphology and express characteristic markers such as GFAP and S100β. The protocol is efficient, requiring roughly 6 weeks to generate hALCs from primary hMSCs without genetic manipulation. The application of hMSCs in evaluating cell damage triggered by neurotoxicants like MeHg and MGO underscores their potential as a valuable component within a more extensive battery of neurotoxicity tests.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Center-National Toxicology Information Center, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
45
|
Chen FD, Zhang B, Wang LL, Jia YL, Zeng Q, Fan T, Wang HY, Xiong MF, Lin YX, Zhou JN, Yue W, Chen L, Xi JF. DSUP modified mesenchymal stem cells exert significant radiation protective effect by enhancing the hematopoietic niche. Stem Cell Res Ther 2025; 16:216. [PMID: 40312405 PMCID: PMC12045013 DOI: 10.1186/s13287-025-04300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Radiation induced hematopoietic failure was the primary cause of death after exposure to a moderate or high dose of whole body irradiation, causing increased challenge for nuclear or radiological treatment, so it is an urgent need to develop radioprotectors for attenuating hematopoietic damage caused by acute radiation syndrome (ARS). Given the excellent therapeutic effects and special benefits of mesenchymal stem cells (MSCs) in radiation damaged hematopoietic stem/progenitor cells (HSPCs) recovery and hematopoietic niche reconstruction, enhancing the hematopoietic niche with the radiotolerance MSCs can be an alternative solution to prevent and attenuate hematopoietic radiation damage, which needs to be studied. METHODS Here, we constructed MSCs modified with Damage Suppressor Protein (DSUP), a radiotolerance gene identified from tardigrade Ramazzotius varieornatus, and verify its radiation protection effect in HSPCs-MSCs co-culture model in vitro and radiation damaged mice model in vivo. RESULTS Our results showed that DSUP protein had no significant toxic side effects on the basic stemness properties and differentiation potential of MSCs, and significantly enhanced the radiation tolerance and DNA protection ability of MSCs. Compared with the control (CON) group MSCs, the DSUP modified MSCs after radiation damage suffered less DNA damage, preserved most of proliferation activity and migration ability. In the HSPCs-MSCs co-culture model, DSUP modified MSCs have significant protective effect on HSPCs by providing a functional hematopoietic niche after radiation damage. The DSUP group irradiated HSPCs exhibited more rapid recovery, the higher HSPCs ratio and better hematopoietic differentiation potential. In animal studies, pre infusion of DSUP modified MSCs reduce irradiated mice mortality rate, reduce hematopoietic failure incidence, and provide a protective effect against radiation injury by protecting hematopoietic microenvironment and promoting HSCs recovery. DSUP modified MSCs can be used as a radioprotector and existed significant radiation protection effect for ARS at doses below 7 Gy total-body irradiation (TBI) of X-ray in both immunodeficient and immunocompetent mice models. CONCLUSIONS DSUP modified MSCs may serve as a new radioprotector for ARS. DSUP modified MSCs could attenuate radiation damage of HSPCs and promote HSPCs rapid recovery as well as hematopoietic reconstruction by providing a more functional niche after radiation, thereby reducing the occurrence of hematopoietic failure and improving survival rate.
Collapse
Affiliation(s)
- Fu-Dong Chen
- Medical School of Chinese PLA: Chinese, PLA General Hospital, Beijing, 100039, China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
- Department of General Medicine, The First Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Li-Li Wang
- Department of General Medicine, The First Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Tao Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Ming-Fang Xiong
- Medical School of Chinese PLA: Chinese, PLA General Hospital, Beijing, 100039, China
| | - Ying-Xue Lin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Li Chen
- Medical School of Chinese PLA: Chinese, PLA General Hospital, Beijing, 100039, China.
- Department of General Medicine, The First Center of the Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jia-Fei Xi
- Medical School of Chinese PLA: Chinese, PLA General Hospital, Beijing, 100039, China.
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
46
|
Eraković M, Bekić M, Đokić J, Tomić S, Vučević D, Pavlović L, Duka M, Marković M, Bokonjić D, Čolić M. Biodentine Stimulates Calcium-Dependent Osteogenic Differentiation of Mesenchymal Stromal Cells from Periapical Lesions. Int J Mol Sci 2025; 26:4220. [PMID: 40362457 PMCID: PMC12072047 DOI: 10.3390/ijms26094220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Biodentine, a tricalcium silicate cement, has emerged as a retrograde root-end filling material to promote periapical lesion (PL) healing after apicoectomy. However, its underlying mechanisms remain unclear. This study tested the hypothesis that Biodentine stimulates the osteogenic differentiation of mesenchymal stromal cells (MSCs) derived from PLs. The Biodentine extract (B-Ex) was prepared by incubating polymerized Biodentine in RPMI medium (0.2 g/mL) for three days at 37 °C. B-Ex, containing both released microparticles and soluble components, was incubated with PL-MSCs cultured in either a basal MSC medium or suboptimal osteogenic medium. Osteogenic differentiation was assessed by Alizarin Red staining and the expression of 20 osteoblastogenesis-related genes. Non-cytotoxic concentrations of B-Ex stimulated the proliferation of PL-MSCs and induced their osteogenic differentiation in a dose-dependent manner, with a significantly enhanced effect in suboptimal osteogenic medium. B-Ex upregulated most early and late osteoblastic genes. However, the differentiation process was prolonged, as indicated by the delayed expression of wingless-type MMTV integration site family member 2 (WNT2), bone gamma-carboxyglutamate protein (BGLAP), bone morphogenic protein-2 (BMP-2), growth hormone receptor (GHR), and FOS-like 2, AP-1 transcription factor subunit (FOSL2), compared with their expression under optimal osteogenic conditions. The stimulatory effect of B-Ex was primarily calcium dependent, as it was reduced by 85% when B-Ex was treated with the calcium-chelating agent EGTA. In conclusion, Biodentine promotes the osteogenic differentiation of PL-MSCs in a calcium-dependent manner, supporting its stimulatory role in periapical healing.
Collapse
Affiliation(s)
- Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia;
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Dragana Vučević
- Center for Medical Scientific Information, Faculty of Medicine of the Military Medical Academy, University of Defence, 11040 Belgrade, Serbia;
| | - Luka Pavlović
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Miloš Duka
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Milan Marković
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.); (L.P.); (M.M.)
| | - Dejan Bokonjić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
47
|
Sun B, He Y, Zhang L, Liu S, Chen M, Pan J, Fang J, Wang Y, Jiang H, Liu X, Zhang CY, Li J. Protecting and rejuvenating ageing skin by regulating endogenous hyaluronan metabolism using adipose-derived stem cell-secreted siRNAs. Front Med (Lausanne) 2025; 12:1529936. [PMID: 40365494 PMCID: PMC12069053 DOI: 10.3389/fmed.2025.1529936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Background Loss of moisture is the primary cause of skin ageing and dysfunction. The skin's hydration largely depends on hyaluronan (HA) and its ability to retain water. Ultraviolet (UV) irradiation, which accounts for 80% of skin ageing (commonly referred to as photoaging), gradually disrupts the balance of HA metabolism, leading to a reduction in HA levels, dehydration, and, ultimately, the formation of wrinkles. Methods In this study, we develop an RNAi-based strategy to treat aged skin by modulating endogenous HA metabolism. Hyaluronidase 2 (HYAL2), an enzyme responsible for HA degradation, is selected as the therapeutic target, given its significant upregulation in photoaged skin. To deliver the siRNA targeting HYAL2 to the skin, human adipose-derived stem cells (ADSCs) are engineered to stably express and secrete HYAL2-targeting siRNAs (ADSC/siRH) via small extracellular vesicles (sEVs). Results In vitro experiments demonstrate that ADSC-delivered siRNAs are successfully internalised by recipient cells, where they restore UV-induced HA reduction by inhibiting HYAL2 expression. In vivo experiments revealed that subcutaneous implantation of engineered ADSCs prior to UV exposure significantly protects mouse skin from accelerated HA degradation, helping to retain water content and prevent UV-induced dryness. Furthermore, the application of engineered ADSCs to aged mouse skin can markedly restore HA and water content, effectively smoothing deep wrinkles and improving skin appearance. Conclusion We developed an effective biological strategy to combat skin ageing and damage by preserving endogenous HA levels, which could be applied for facial rejuvenation in the future.
Collapse
Affiliation(s)
- Benben Sun
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqiu He
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingzhu Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Siyu Liu
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China
| | - Menghan Chen
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jinmeng Pan
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jingwen Fang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ye Wang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Haiyue Jiang
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xia Liu
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
48
|
Liu E, Sun Y, Yang L, Jiang H, Sun F, Chen L, Duan J, Yang S. Investigating the regulation of the miR-199a-3p/TGF-β/Smad signaling pathway by BSHXF drug-containing serum combined with ADSCs for delaying intervertebral disc degeneration. Front Pharmacol 2025; 16:1583635. [PMID: 40356987 PMCID: PMC12067415 DOI: 10.3389/fphar.2025.1583635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) significantly contributes to low back pain (LBP), yet effective treatment options are scarce. BSHXF, a classical traditional Chinese medicine formula, demonstrates dual pharmacological actions: tonifying kidneys, strengthening bones, activating blood circulation, and resolving stasis. It has been widely used in IDD management. Given its potential, combining BSHXF with miRNA regulation and stem cell therapy may enhance therapeutic outcomes by targeting molecular and cellular pathways underlying IDD pathogenesis. Aim of the study IDD is recognized as one of the primary causes of low back pain, yet effective therapeutic interventions for this condition remain limited. This study explores the role of BSHXF drug-containing serum combined with adipose-derived stem cells (ADSCs) in slowing IDD progression via the miR-199a-3p/TGF-β/Smad signaling pathway. By comprehensively investigating the synergistic effects of this combination therapy, we aim to propose a novel multi-target strategy that addresses the complex pathogenesis of IDD. Materials and Methods This study employed a combination of in vivo and in vitro models. An IDD model was induced in rat caudal intervertebral discs through needle puncture, while an oxidative stress-induced ADSCs injury model was created in vitro using tert-butyl hydroperoxide (T-BHP). Cell viability was measured with the CCK-8 assay. Cell cycle distribution and mitochondrial reactive oxygen species (ROS) levels were assessed using flow cytometry. Cellular senescence was assessed using SA-β-galactosidase staining. Lactate dehydrogenase (LDH) activity was quantified to evaluate cellular damage. Differentiation into nucleus pulposus-like cells was assessed using immunofluorescence double staining for CD73 and COL2A1. ELISA was used to measure inflammatory cytokines (TNF-α, IL-1β, IL-4, IL-10) in cell supernatants. miR-199a-3p expression was determined using RT-qPCR. Western blotting was employed to quantify COL2A1, SOX9, and ACAN protein levels, reflecting nucleus pulposus-like differentiation and extracellular matrix (ECM) synthesis capacity. Western blotting was employed to assess pathway activity by analyzing the protein expressions of TGF-β1, Smad2, Smad3, and their phosphorylated forms, P-Smad2 and P-Smad3. In vivo experiments assessed histopathological degeneration through hematoxylin-eosin (HE) and Safranin O-Fast Green staining. Immunohistochemistry (IHC) analyzed COL1A1 and COL2A1 expression levels. RT-qPCR quantified miR-199a-3p expression. Western blotting was employed to assess the expression levels of TGF-β1, Smad2, Smad3, P-Smad2, and P-Smad3 for pathway regulation evaluation. Results Our experimental results demonstrated that serum containing BSHXF significantly alleviated T-BHP-induced oxidative stress, improved the cellular microenvironment, promoted ADSCs proliferation, and decelerated cellular senescence. Further mechanistic analysis revealed that BSHXF significantly activated the TGF-β/Smad signaling pathway, driving the differentiation of ADSCs into nucleus pulposus-like cells and restoring normal cell cycle progression. Overexpression of miR-199a-3p inhibited the TGF-β/Smad pathway, leading to ECM degradation and elevated expression of inflammatory factors (TNF-α, IL-1β). In contrast, BSHXF restored TGF-β/Smad pathway activity by downregulating miR-199a-3p expression. In vivo experiments demonstrated that miR-199a-3p overexpression exacerbated IDD, characterized by reduced COL2A1 expression, elevated COL1A1 levels, and increased disc fibrosis. BSHXF intervention markedly attenuated IDD progression by downregulating miR-199a-3p expression, reducing disc fibrosis, and effectively restoring collagen expression. Conclusion BSHXF activated the TGF-β/Smad pathway to promote the differentiation of ADSCs into nucleus pulposus-like cells. It exerted protective effects by alleviating oxidative stress damage, improving the microenvironment, delaying senescence, and enhancing cellular functions. This study is the first to reveal that miR-199a-3p overexpression exacerbates intervertebral disc fibrosis and degeneration. BSHXF restored TGF-β/Smad pathway activity by downregulating miR-199a-3p expression, thereby improving disc structure and function. This integrated approach offers a novel multi-target intervention strategy for IDD, demonstrating significant therapeutic potential.
Collapse
Affiliation(s)
- Enxu Liu
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Yu Sun
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Lei Yang
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Haobo Jiang
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Fei Sun
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
| | - Long Chen
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Jiahao Duan
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| | - Shaofeng Yang
- Hunan University of Traditional Chinese Medicine, Graduate School, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Department of Orthopaedics, Changsha, Hunan, China
| |
Collapse
|
49
|
Chen C, Zhong W, Zheng H, Zhao W, Wang Y, Shen B. Current state of heart failure treatment: are mesenchymal stem cells and their exosomes a future therapy? Front Cardiovasc Med 2025; 12:1518036. [PMID: 40357434 PMCID: PMC12066684 DOI: 10.3389/fcvm.2025.1518036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Heart failure (HF) represents the terminal stage of cardiovascular disease and remains a leading cause of mortality. Epidemiological studies indicate a high prevalence and mortality rate of HF globally. Current treatment options primarily include pharmacological and non-pharmacological approaches. With the development of mesenchymal stem cell (MSC) transplantation technology, increasing research has shown that stem cell therapy and exosomes derived from these cells hold promise for repairing damaged myocardium and improving cardiac function, becoming a hot topic in clinical treatment for HF. However, this approach also presents certain limitations. This review summarizes the mechanisms of HF, current treatment strategies, and the latest progress in the application of MSCs and their exosomes in HF therapy.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Holiuk Y, Birsa R, Bukreieva T, Nemtinov P, Kyryk V, Ustymenko A, Mazevych V, Sokolov M, Lobyntseva G, Shablii V. Effectiveness and safety of multiple injections of human placenta-derived MSCs for knee osteoarthritis: a nonrandomized phase I trial. BMC Musculoskelet Disord 2025; 26:418. [PMID: 40281581 PMCID: PMC12032682 DOI: 10.1186/s12891-025-08664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE This study investigates the safety and efficacy of three intra-articular (IA) injections of cryopreserved human placenta-derived mesenchymal stem cells (hP-MSCs) for knee osteoarthritis (KOA) over a 1-year follow-up period. METHODS A total of 26 patients with stage II-III KOA were enrolled in this non-randomized, open-label study. Patients received either conventional therapy with hyaluronic acid (HA) alone (Control group, n = 11) or in combination with hP-MSCs (MSC group, n = 15) via three intra-articular injections with 4-week intervals. Clinical outcomes were assessed using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analogue Scale (VAS), and magnetic resonance imaging (MRI) at 6 and 12 months following the first injection. Blood samples were analyzed for cytokine levels. RESULTS Three injections of hP-MSCs combined with HA were well-tolerated, with no severe adverse events observed. Significant improvements in WOMAC and VAS scores were noted in the MSC group compared to the Control group at both 6 and 12 months. MRI analysis revealed no significant differences in cartilage thickness or optical density index between the groups. Additionally, serum cytokine analysis showed a significant decrease in interleukin-2 (IL-2) levels in the MSC group, indicating an anti-inflammatory effect of hP-MSCs. However, no significant changes were observed in other cytokines. CONCLUSION This study demonstrates that three intra-articular injections of cryopreserved hP-MSCs in combination with HA are safe and effective for treating KOA, providing sustained clinical improvement at the 1-year follow-up. TRIAL REGISTRATION NCT04453111, #7/09.26.2018. Registered 02 January 2020, https://www. CLINICALTRIALS gov/study/NCT04453111 .
Collapse
Affiliation(s)
- Yevhen Holiuk
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Roman Birsa
- Department of Traumatology, Kyiv City Clinical Hospital, #6, 3 Guzara Ave, Kyiv, 03680, Ukraine
| | - Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, Kyiv, 03143, Ukraine
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine
| | - Petro Nemtinov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | - Vitalii Kyryk
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Alina Ustymenko
- Cell and Tissue Technologies Department, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, 5 Svyatoslav Khorobrygo str, Kyiv, 03151, Ukraine
- Laboratory of Pathological Physiology and Immunology, D. F. Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 67 Vyshgorodska Street, Kyiv, 04114, Ukraine
| | - Vadym Mazevych
- State Institution "The Institute of Traumatology and Orthopedics by NAMS of Ukraine", 27 Bulvarno-Kudriavska Street, Kyiv, 01601, Ukraine
| | - Mykola Sokolov
- Institute of Cell Therapy, 9 Mokra str, Kyiv, 03035, Ukraine
| | | | - Volodymyr Shablii
- Placenta Stem Cell Laboratory, Institute of Cell Therapy, 9 Mokra str, Cryobank, Kyiv, 03035, Ukraine.
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 150 Zabolotnogo Str, 03143, Kyiv, Ukraine.
| |
Collapse
|