1
|
Jiao XF, Mu GJ, Zhao WY, Ni R, Zhao C, Lu X, Wu JQ, Gao W, Luo L. Dyrk1b as a potential biomarker for sarcopenia in older adults. BMC Geriatr 2025; 25:278. [PMID: 40281477 PMCID: PMC12032633 DOI: 10.1186/s12877-025-05942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of muscle mass and function due to aging. Dual-specificity tyrosine-regulated kinase 1b (Dyrk1b) plays a key role in muscle differentiation by regulating transcription, cell cycle progression, and cell survival. However, the relationship between Dyrk1b levels and sarcopenia is unclear. This study aimed to evaluate the association of serum Dyrk1b level with sarcopenia in the elderly of community-dwelling. METHODS A total of 939 community-dwelling elderly people (median age = 76.0 years) were recruited, including 524 men and 415 women. Serum Dyrk1b was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. RESULTS We found that serum Dyrk1b levels in patients with sarcopenia [median (IQR) = 67.37 (55.13-82.56) pg/mL] were lower than those in elderly people without sarcopenia [70.40 (58.34-92.35) pg/mL, P < 0.001]. Receiver operating characteristic curve analysis indicated that the optimal cutoff value of serum Dyrk1b level for predicting sarcopenia was 44.73 pg/mL, with a sensitivity of 94.8% and a specificity of 14.7% (AUC = 0.577, 95% CI = 0.540-0.613, P < 0.001. Multivariate logistic regression analysis showed that high serum Dyrk1b levels (> 44.73 pg/mL) were related to decreased risk of sarcopenia (adjusted OR = 0.342, 95%CI = 0.194-0.603, P < 0.001). Moreover, serum Dyrk1b concentration was positively correlated with ASMI (r = 0.169, P < 0.001), grip strength (r = 0.157, P < 0.001) and gait speed (r = 0.164, P < 0.001). CONCLUSIONS In summary, our results indicate that low serum Dyrk1b level is associated with an increased risk of sarcopenia in the elderly, suggesting that Dyrk1b may be valuable as a surrogate biomarker for screening and evaluation of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, No.20 Xishi Road, Nantong, 226001, Jiangsu Province, China
| | - Guang-Jian Mu
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Wen-Ya Zhao
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Ran Ni
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jian-Qing Wu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, No.87 Dingjiaqiao, Nanjing, 210009, Jiangsu Province, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, No.20 Xishi Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Ciurus S, Elewa MAF, Palmer MA, Wolf A, Hector M, Fuhrmann DC, Thomas D, Gurke R, Schwalm MP, Berger L, Zech TJ, Burgers LD, Marschalek R, Geisslinger G, Knapp S, Langmann T, Bracher F, Weigert A, Fürst R. Inhibition of DYRK1B BY C81 impedes inflammatory processes in leukocytes by reducing STAT3 activity. Cell Mol Life Sci 2025; 82:85. [PMID: 39985685 PMCID: PMC11846820 DOI: 10.1007/s00018-025-05579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 01/05/2025] [Indexed: 02/24/2025]
Abstract
Chronic inflammatory diseases are a significant global burden and are associated with dysregulated resolution of inflammation. Therefore, promoting the process of resolution is a promising therapeutic approach. This study presents the potent anti-inflammatory and pro-resolving effects of a natural product-derived compound called C81. Administration of C81 in a therapeutic window resolved inflammation in the murine imiquimod-induced psoriasis model, and reduced microglial infiltration in a laser-induced choroidal neovascularisation model. Investigations into the underlying mechanisms of C81 identified the DYRK1B/STAT3 axis as a new regulator of inflammatory processes in leukocytes. The inhibition of DYRK1B by C81 resulted in attenuated STAT3 phosphorylation. The depletion of STAT3-regulated gene expression led to the inhibition of leukocyte adhesion and migration due to reduced integrin activation, and in addition to the inhibition of the release of pro-inflammatory mediators such as cytokines and eicosanoids. Importantly, the pro-resolving effects of C81 included the cell type-specific induction of apoptosis in neutrophils and a subsequent increase in efferocytosis. In conclusion, we report the DYRK1B/STAT3 axis as a novel and promising therapeutic target for activating the resolution of inflammation.
Collapse
Affiliation(s)
- Sarah Ciurus
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Mohammed A F Elewa
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Department of Biochemistry, Faculty of Pharmacy, Kafr El-Sheikh University, Karf El-Sheikh, Egypt
| | - Megan A Palmer
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Lena Berger
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas J Zech
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Luisa D Burgers
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franz Bracher
- Pharmaceutical Chemistry, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Frankfurt, Germany.
- Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
3
|
Ems M, Brichkina A, Lauth M. A safe haven for cancer cells: tumor plus stroma control by DYRK1B. Oncogene 2025; 44:341-347. [PMID: 39863750 PMCID: PMC11790486 DOI: 10.1038/s41388-025-03275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated. In this review, we describe a seemingly paradoxical oncogenic mediator with this potential: The dual-specificity tyrosine-phosphorylation regulated kinase 1B (DYRK1B). DYRK1B promotes proliferative quiescence and yet is overexpressed or amplified in many hyperproliferative malignancies including ovarian cancer and pancreatic cancer. In particular the latter disease is a paradigmatic example for a therapy-recalcitrant and highly stroma-rich cancer entity. Here, recent evidence suggests that DYRK1B exerts its oncogenic features by installing a protective niche for cancer cells by directly affecting cancer cells but also the TME. Specifically, DYRK1B not only fosters cell-intrinsic processes like cell survival, chemoresistance, and disease recurrence, but it also upregulates TME and cancer cell-protective innate immune checkpoints and down-modulates anti-tumoral macrophage functionality. In this article, we outline the well-established cell-autonomous roles of DYRK1B and extend its importance to the TME and the control of the tumor immune stroma. In summary, DYRK1B appears as a single novel key player creating a safe haven for cancer cells by acting cell-intrinsically and-extrinsically, leading to the promotion of cancer cell survival, chemoresistance, and relapse. Thus, DYRK1B appears as an attractive drug target for future therapeutic approaches.
Collapse
Affiliation(s)
- Miriam Ems
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Philipps University Marburg, Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Vorwerk VA, Wilms G, Babendreyer A, Becker W. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells. Sci Rep 2024; 14:23926. [PMID: 39397076 PMCID: PMC11471791 DOI: 10.1038/s41598-024-74190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive. In the present study, we scrutinized the regulatory pathways modulating DYRK1B expression relative to DYRK1A in PANC-1 and A549 cancer cell lines across varying conditions. Serum deprivation, pharmacological mTOR inhibition and increased cell density resulted in the differential upregulation of DYRK1B compared to DYRK1A. We then aimed to assess the role of protein kinases MST1 and MST2, which are key transmitters of cell density dependent effects. Unexpectedly, exposure to the MST1/2 inhibitor XMU-MP-1 resulted in increased DYRK1B levels in A549 cells. Further investigation into the off-target effects of XMU-MP-1 unveiled the inhibition of Aurora kinases (AURKA and AURKB) as a potential causative factor. Consistently, AURK inhibitors VX-680 (tozasertib), MLN8237 (alisertib), AZD1152-HQPA (barasertib) resulted in the upregulation of DYRK1B expression in A549 cells. In summary, our findings indicate that the expression of DYRK1A and DYRK1B is differentially regulated in cancer cells and reveal that the kinase inhibitor XMU-MP-1 increases DYRK1B expression likely through off target inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Vincent Andreas Vorwerk
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Kokkorakis N, Zouridakis M, Gaitanou M. Mirk/Dyrk1B Kinase Inhibitors in Targeted Cancer Therapy. Pharmaceutics 2024; 16:528. [PMID: 38675189 PMCID: PMC11053710 DOI: 10.3390/pharmaceutics16040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising pharmacological target in cancer since it is overexpressed in many tumors, and its overexpression is correlated with patients' poor prognosis. Mirk/Dyrk1B acts as a negative cell cycle regulator, maintaining the survival of quiescent cancer cells and conferring their resistance to chemotherapies. Many studies have demonstrated the valuable therapeutic effect of Mirk/Dyrk1B inhibitors in cancer cell lines, mouse xenografts, and patient-derived 3D-organoids, providing a perspective for entering clinical trials. Since the majority of Mirk/Dyrk1B inhibitors target the highly conserved ATP-binding site, they exhibit off-target effects with other kinases, especially with the highly similar Dyrk1A. In this review, apart from summarizing the data establishing Dyrk1B as a therapeutic target in cancer, we highlight the most potent Mirk/Dyrk1B inhibitors recently reported. We also discuss the limitations and perspectives for the structure-based design of Mirk/Dyrk1B potent and highly selective inhibitors based on the accumulated structural data of Dyrk1A and the recent crystal structure of Dyrk1B with AZ191 inhibitor.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Marios Zouridakis
- Structural Neurobiology Research Group, Laboratory of Molecular Neurobiology and Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, 11521 Athens, Greece;
| |
Collapse
|
6
|
Kokkorakis N, Douka K, Nalmpanti A, Politis PK, Zagoraiou L, Matsas R, Gaitanou M. Mirk/Dyrk1B controls ventral spinal cord development via Shh pathway. Cell Mol Life Sci 2024; 81:70. [PMID: 38294527 PMCID: PMC10830675 DOI: 10.1007/s00018-023-05097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Cross-talk between Mirk/Dyrk1B kinase and Sonic hedgehog (Shh)/Gli pathway affects physiology and pathology. Here, we reveal a novel role for Dyrk1B in regulating ventral progenitor and neuron subtypes in the embryonic chick spinal cord (SC) via the Shh pathway. Using in ovo gain-and-loss-of-function approaches at E2, we report that Dyrk1B affects the proliferation and differentiation of neuronal progenitors at E4 and impacts on apoptosis specifically in the motor neuron (MN) domain. Especially, Dyrk1B overexpression decreases the numbers of ventral progenitors, MNs, and V2a interneurons, while the pharmacological inhibition of endogenous Dyrk1B kinase activity by AZ191 administration increases the numbers of ventral progenitors and MNs. Mechanistically, Dyrk1B overexpression suppresses Shh, Gli2 and Gli3 mRNA levels, while conversely, Shh, Gli2 and Gli3 transcription is increased in the presence of Dyrk1B inhibitor AZ191 or Smoothened agonist SAG. Most importantly, in phenotype rescue experiments, SAG restores the Dyrk1B-mediated dysregulation of ventral progenitors. Further at E6, Dyrk1B affects selectively the medial lateral motor neuron column (LMCm), consistent with the expression of Shh in this region. Collectively, these observations reveal a novel regulatory function of Dyrk1B kinase in suppressing the Shh/Gli pathway and thus affecting ventral subtypes in the developing spinal cord. These data render Dyrk1B a possible therapeutic target for motor neuron diseases.
Collapse
Affiliation(s)
- N Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - K Douka
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - A Nalmpanti
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Athens International Master's Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - L Zagoraiou
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - R Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - M Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
7
|
Bhat N, Mani A. Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2023; 15:2323. [PMID: 37242206 PMCID: PMC10222271 DOI: 10.3390/nu15102323] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a highly prevalent condition affecting approximately a quarter of the global population. It is associated with increased morbidity, mortality, economic burden, and healthcare costs. The disease is characterized by the accumulation of lipids in the liver, known as steatosis, which can progress to more severe stages such as steatohepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). This review focuses on the mechanisms that contribute to the development of diet-induced steatosis in an insulin-resistant liver. Specifically, it discusses the existing literature on carbon flux through glycolysis, ketogenesis, TCA (Tricarboxylic Acid Cycle), and fatty acid synthesis pathways in NAFLD, as well as the altered canonical insulin signaling and genetic predispositions that lead to the accumulation of diet-induced hepatic fat. Finally, the review discusses the current therapeutic efforts that aim to ameliorate various pathologies associated with NAFLD.
Collapse
Affiliation(s)
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Wongchang T, Pluangnooch P, Hongeng S, Wongkajornsilp A, Thumkeo D, Soontrapa K. Inhibition of DYRK1B suppresses inflammation in allergic contact dermatitis model and Th1/Th17 immune response. Sci Rep 2023; 13:7058. [PMID: 37120440 PMCID: PMC10148813 DOI: 10.1038/s41598-023-34211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Allergic contact dermatitis (ACD) is a type IV hypersensitivity mainly mediated by Th1/Th17 immune response. Topical corticosteroid is currently the first-line treatment for allergic contact dermatitis (ACD) and systemic administration of immunosuppressive drugs are used in patients with severe disseminated cases. However, increased risk of adverse effects has limited their use. Thus, the development of a novel immunosuppressant for ACD with low toxicity is a challenging issue. In this study, we began our study by using a murine contact hypersensitivity (CHS) model of ACD to examine the immunosuppressive effects of DYRK1B inhibition. We found that mice treated with a selective DYRK1B inhibitor show reduced ear inflammation. In addition, a significant reduction of Th1 and Th17 cells in the regional lymph node upon DYRK1B inhibition was observed by FACS analysis. Studies in vitro further revealed that DYRK1B inhibitor does not only suppressed Th1 and Th17 differentiation, but also promotes regulatory T cells (Treg) differentiation. Mechanistically, FOXO1 signaling was enhanced due to the suppression of FOXO1Ser329 phosphorylation in the presence of DYRK1B inhibitor. Therefore, these findings suggest that DYRK1B regulates CD4 T cell differentiation through FOXO1 phosphorylation and DYRK1B inhibitor has a potential as a novel agent for treatment of ACD.
Collapse
Affiliation(s)
- Thamrong Wongchang
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Division of Pharmacology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Panwadee Pluangnooch
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
9
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
10
|
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman GI, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. J Clin Invest 2022; 132:e153724. [PMID: 34855620 PMCID: PMC8803348 DOI: 10.1172/jci153724] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Mutations in Dyrk1b are associated with metabolic syndrome and nonalcoholic fatty liver disease in humans. Our investigations showed that DYRK1B levels are increased in the liver of patients with nonalcoholic steatohepatitis (NASH) and in mice fed with a high-fat, high-sucrose diet. Increasing Dyrk1b levels in the mouse liver enhanced de novo lipogenesis (DNL), fatty acid uptake, and triacylglycerol secretion and caused NASH and hyperlipidemia. Conversely, knockdown of Dyrk1b was protective against high-calorie-induced hepatic steatosis and fibrosis and hyperlipidemia. Mechanistically, Dyrk1b increased DNL by activating mTORC2 in a kinase-independent fashion. Accordingly, the Dyrk1b-induced NASH was fully rescued when mTORC2 was genetically disrupted. The elevated DNL was associated with increased plasma membrane sn-1,2-diacylglyerol levels and increased PKCε-mediated IRKT1150 phosphorylation, which resulted in impaired activation of hepatic insulin signaling and reduced hepatic glycogen storage. These findings provide insights into the mechanisms that underlie Dyrk1b-induced hepatic lipogenesis and hepatic insulin resistance and identify Dyrk1b as a therapeutic target for NASH and insulin resistance in the liver.
Collapse
Affiliation(s)
- Neha Bhat
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anand Narayanan
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mohsen Fathzadeh
- Department of Pediatrics, Stanford University, Palo Alto, California, USA
| | - Mario Kahn
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dongyan Zhang
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leigh Goedeke
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arpita Neogi
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rebecca L. Cardone
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard G. Kibbey
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Henry N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Gerald I. Shulman
- Yale Diabetes Research Center, Departments of Internal Medicine and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Bhat N, Narayanan A, Fathzadeh M, Shah K, Dianatpour M, Abou Ziki MD, Mani A. Dyrk1b promotes autophagy during skeletal muscle differentiation by upregulating 4e-bp1. Cell Signal 2022; 90:110186. [PMID: 34752933 PMCID: PMC8712395 DOI: 10.1016/j.cellsig.2021.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
Rare gain of function mutations in the gene encoding Dyrk1b, a key regulator of skeletal muscle differentiation, have been associated with sarcopenic obesity (SO) and metabolic syndrome (MetS) in humans. So far, the global gene networks regulated by Dyrk1b during myofiber differentiation have remained elusive. Here, we have performed untargeted proteomics to determine Dyrk1b-dependent gene-network in differentiated C2C12 myofibers. This analysis led to identification of translational inhibitor, 4e-bp1 as a post-transcriptional target of Dyrk1b in C2C12 cells. Accordingly, CRISPR/Cas9 mediated knockout of Dyrk1b in zebrafish identified 4e-bp1 as a downstream target of Dyrk1b in-vivo. The Dyrk1b knockout zebrafish embryos exhibited markedly reduced myosin heavy chain 1 expression in poorly developed myotomes and were embryonic lethal. Using knockdown and overexpression approaches in C2C12 cells, we found that 4e-bp1 enhances autophagy and mediates the effects of Dyrk1b on skeletal muscle differentiation. Dyrk1bR102C, the human sarcopenic obesity-associated mutation impaired muscle differentiation via excessive activation of 4e-bp1/autophagy axis in C2C12 cells. Strikingly, the defective muscle differentiation in Dyrk1bR102C cells was rescued by reduction of autophagic flux. The identification of Dyrk1b-4e-bp1-autophagy axis provides significant insight into pathways that are relevant to human skeletal muscle development and disorders.
Collapse
Affiliation(s)
- Neha Bhat
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anand Narayanan
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mohsen Fathzadeh
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kanan Shah
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mehdi Dianatpour
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maen D Abou Ziki
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
New insights into the roles for DYRK family in mammalian development and congenital diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Mohamed YA, Hassaneen HM, El-Dessouky MA, Safwat G, Hassan NAM, Amr K. Study of DYRK1B gene expression and its association with metabolic syndrome in a small cohort of Egyptians. Mol Biol Rep 2021; 48:5497-5502. [PMID: 34291393 DOI: 10.1007/s11033-021-06560-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND A cluster of many risk factors for type 2 diabetes and cardiovascular disease is used to describe the metabolic syndrome (MetS). Moreover, genetic differences associated with metabolic syndrome play a key role in its prevalence and side effects. This study aims to investigate the expression of DYRK1B and its association with metabolic syndrome in a small cohort of Egyptian. MATERIALS AND METHODS A total of 100 adult Egyptians (50 with MetS and 50 healthy control subjects) were included to this study. Clinical, biochemical and anthropometric analysis were assessed. Relative gene expressions of DYRK1B were compared between two groups of subjects using real time PCR. RESULTS We observed marked overexpression in DYRK1B (p < 0.05) in MetS subjects when compared with the healthy control subjects. CONCLUSION This is the first study to provide evidence that DYRK1B is highly expressed among the MetS subjects.
Collapse
Affiliation(s)
- Yara Ahmed Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University (MSA), No. 12567, 54 Anwar El-Sadat street, Al-Haram, Giza, Egypt.
| | - H M Hassaneen
- Faculty of Science, Chemistry Department, Cairo University, Giza, Egypt
| | | | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts University (MSA), No. 12567, 54 Anwar El-Sadat street, Al-Haram, Giza, Egypt
| | - Naglaa Abu-Mandil Hassan
- Medical Research Division, Biological Anthropology Department, National Research Centre, Giza, Egypt
| | - Khalda Amr
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Giza, Egypt
| |
Collapse
|
14
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
15
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
16
|
Yousefelahiyeh M, Xu J, Alvarado E, Yu Y, Salven D, Nissen RM. DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B. PLoS One 2018; 13:e0207779. [PMID: 30496304 PMCID: PMC6264848 DOI: 10.1371/journal.pone.0207779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the Dual-specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) gene contributes to the retardation, craniofacial anomalies, cognitive impairment, and learning and memory deficits associated with Down Syndrome (DS). DCAF7/HAN11/WDR68 (hereafter WDR68) binds DYRK1A and is required for craniofacial development. Accumulating evidence suggests DYRK1A-WDR68 complexes enable proper growth and patterning of multiple organ systems and suppress inappropriate cell growth/transformation by regulating the balance between proliferation and differentiation in multiple cellular contexts. Here we report, using engineered mouse C2C12 and human HeLa cell lines, that WDR68 is required for normal levels of DYRK1A. However, Wdr68 does not significantly regulate Dyrk1a mRNA expression levels and proteasome inhibition did not restore DYRK1A in cells lacking Wdr68 (Δwdr68 cells). Overexpression of WDR68 increased DYRK1A levels while overexpression of DYRK1A had no effect on WDR68 levels. We further report that WDR68 is similarly required for normal levels of the closely related DYRK1B kinase and that both DYRK1A and DYRK1B are essential for the transition from proliferation to differentiation in C2C12 cells. These findings reveal an additional role of WDR68 in DYRK1A-WDR68 and DYRK1B-WDR68 complexes.
Collapse
Affiliation(s)
- Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Jingyi Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - David Salven
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
17
|
He M, Gu J, Zhu J, Wang X, Wang C, Duan C, Ni Y, Lu X, Li J. Up-regulation of Dyrk1b promote astrocyte activation following lipopolysaccharide-induced neuroinflammation. Neuropeptides 2018; 69:76-83. [PMID: 29751999 DOI: 10.1016/j.npep.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/11/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Astrocytes become activated in response to different stimulation. Dyrk1b is an arginine-directed serine/threonineprotein kinase that is expressed at elevated levels in many cancers but remains unknown in the pathologies of neuroinflammation. In this study, in vivo, we demonstrated that Dyrk1b expression was significantly increased and reached a peak at 12 h after LPS injection via Western blot. Double immunofluorescence staining showed that Dyrk1b co-located with GFAP and Ki67. In vitro, the expression of Dyrk1b, Ki67 and cyclinD1 was gradually increased and reached a peak at 12 h in a time-dependent manner after 1 μg/mL LPS stimulation. Knockdown of Dyrk1b significantly reduced the expression of Ki67 and cyclinD1. In addition, the data exhibited that silenced Dyrk1b decreased the expression of p-STAT3 in primary astrocyte cells, and Dyrk1b interacted with STAT3 in LPS-induced neuroinflammation. In conclusion, these results suggested that Dyrk1b is increased and may play a crucial role in regulating astrocyte cell activation via interact with STAT3 in LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Mingqing He
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Jun Gu
- Department of Orthopaedics, XiShan People's Hospital, Wuxi 214011, Jiangsu, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xiaoyan Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001,Jiangsu, China
| | - Chengwei Duan
- The Second People's Hospital of Nantong, Nantong 226002, Jiangsu, China
| | - Yingjie Ni
- Department of Orthopaedics, XiShan People's Hospital, Wuxi 214011, Jiangsu, China
| | - Xiang Lu
- Department of Geriatrics, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 210011, Jiangsu, China.
| | - Jianzhong Li
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
18
|
Pérez-Sánchez G, Jiménez A, Quezada-Ramírez MA, Estudillo E, Ayala-Sarmiento AE, Mendoza-Hernández G, Hernández-Soto J, Hernández-Hernández FC, Cázares-Raga FE, Segovia J. Annexin A1, Annexin A2, and Dyrk 1B are upregulated during GAS1-induced cell cycle arrest. J Cell Physiol 2018; 233:4166-4182. [PMID: 29030970 DOI: 10.1002/jcp.26226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
GAS1 is a pleiotropic protein that has been investigated because of its ability to induce cell proliferation, cell arrest, and apoptosis, depending on the cellular or the physiological context in which it is expressed. At this point, we have information about the molecular mechanisms by which GAS1 induces proliferation and apoptosis; but very few studies have been focused on elucidating the mechanisms by which GAS1 induces cell arrest. With the aim of expanding our knowledge on this subject, we first focused our research on finding proteins that were preferentially expressed in cells arrested by serum deprivation. By using a proteomics approach and mass spectrometry analysis, we identified 17 proteins in the 2-DE protein profile of serum deprived NIH3T3 cells. Among them, Annexin A1 (Anxa1), Annexin A2 (Anxa2), dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B), and Eukaryotic translation initiation factor 3, F (eIf3f) were upregulated at transcriptional the level in proliferative NIH3T3 cells. Moreover, we demonstrated that Anxa1, Anxa2, and Dyrk1b are upregulated at both the transcriptional and translational levels by the overexpression of GAS1. Thus, our results suggest that the upregulation of Anxa1, Anxa2, and Dyrk1b could be related to the ability of GAS1 to induce cell arrest and maintain cell viability. Finally, we provided further evidence showing that GAS1 through Dyrk 1B leads not only to the arrest of NIH3T3 cells but also maintains cell viability.
Collapse
Affiliation(s)
- Gilberto Pérez-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Adriana Jiménez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Marco A Quezada-Ramírez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Enrique Estudillo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Alberto E Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | | | - Justino Hernández-Soto
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Fidel C Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
19
|
Becker W. A wake-up call to quiescent cancer cells - potential use of DYRK1B inhibitors in cancer therapy. FEBS J 2018; 285:1203-1211. [PMID: 29193696 DOI: 10.1111/febs.14347] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
Nondividing cancer cells are relatively resistant to chemotherapeutic drugs and environmental stress factors. Promoting cell cycle re-entry of quiescent cancer cells is a potential strategy to enhance the cytotoxicity of agents that target cycling cells. It is therefore important to elucidate the mechanisms by which these cells are maintained in the quiescent state. The protein kinase dual specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) is overexpressed in a subset of cancers and maintains cellular quiescence by counteracting G0 /G1 -S phase transition. Specifically, DYRK1B controls the S phase checkpoint by stabilizing the cyclin-dependent kinase (CDK) inhibitor p27Kip1 and inducing the degradation of cyclin D. DYRK1B also stabilizes the DREAM complex that represses cell cycle gene expression in G0 arrested cells. In addition, DYRK1B enhances cell survival by upregulating antioxidant gene expression and reducing intracellular levels of reactive oxygen species (ROS). Substantial evidence indicates that depletion or inhibition of DYRK1B drives cell cycle re-entry and enhances apoptosis of those quiescent cancer cells with high expression of DYRK1B. Furthermore, small molecule DYRK1B inhibitors sensitize cells to the cytotoxic effects of anticancer drugs that target proliferating cells. These encouraging findings justify continued efforts to investigate the use of DYRK1B inhibitors to disrupt the quiescent state and overturn chemoresistance of noncycling cancer cells.
Collapse
Affiliation(s)
- Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Germany
| |
Collapse
|
20
|
Chen H, Shen J, Choy E, Hornicek FJ, Shan A, Duan Z. Targeting DYRK1B suppresses the proliferation and migration of liposarcoma cells. Oncotarget 2017; 9:13154-13166. [PMID: 29568347 PMCID: PMC5862568 DOI: 10.18632/oncotarget.22743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022] Open
Abstract
Liposarcoma is a common subtype of soft tissue sarcoma and accounts for 20% of all sarcomas. Conventional chemotherapeutic agents have limited efficacy in liposarcoma patients. Expression and activation of serine/threonine-protein kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B (DYRK1B) is associated with growth and survival of many types of cancer cells. However, the role of DYRK1B in liposarcoma remains unknown. In this study, we investigated the functional and therapeutic relevance of DYRK1B in liposarcoma. Tissue microarray and immunohistochemistry analysis showed that higher expression levels of DYRK1B correlated with a worse prognosis. RNA interference-mediated knockdown of DYRK1B or targeting DYRK1B with the kinase inhibitor AZ191 inhibited liposarcoma cell growth, decreased cell motility, and induced apoptosis. Moreover, combined AZ191 with doxorubicin demonstrated an increased anti-cancer effect on liposarcoma cells. These findings suggest that DYRK1B is critical for the growth of liposarcoma cells. Targeting DYRK1B provides a new rationale for treatment of liposarcoma.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China, 518020.,Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6902, USA
| | - Aijun Shan
- Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China, 518020
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6902, USA
| |
Collapse
|
21
|
Singh R, Lauth M. Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control. J Dev Biol 2017; 5:E13. [PMID: 29615569 PMCID: PMC5831797 DOI: 10.3390/jdb5040013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes during embryonic development, such as tissue patterning, stem cell maintenance, and cell differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies. Understanding the molecular mechanisms of pathway regulation is therefore of high interest. Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) comprise a group of protein kinases which are emerging modulators of signal transduction, cell proliferation, survival, and cell differentiation. Work from the last years has identified a close regulatory connection between DYRKs and the Hh signaling system. In this manuscript, we outline the mechanistic influence of DYRK kinases on Hh signaling with a focus on the mammalian situation. We furthermore aim to bring together what is known about the functional consequences of a DYRK-Hh cross-talk and how this might affect cellular processes in development, physiology, and pathology.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
22
|
Ashford AL, Dunkley TPJ, Cockerill M, Rowlinson RA, Baak LM, Gallo R, Balmanno K, Goodwin LM, Ward RA, Lochhead PA, Guichard S, Hudson K, Cook SJ. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci 2016; 73:883-900. [PMID: 26346493 PMCID: PMC4735261 DOI: 10.1007/s00018-015-2032-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022]
Abstract
The dual-specificity tyrosine-phosphorylation-regulated kinase, DYRK1B, is expressed de novo during myogenesis, amplified or mutated in certain cancers and mutated in familial cases of metabolic syndrome. DYRK1B is activated by cis auto-phosphorylation on tyrosine-273 (Y273) within the activation loop during translation but few other DYRK1B phosphorylation sites have been characterised to date. Here, we demonstrate that DYRK1B also undergoes trans-autophosphorylation on serine-421 (S421) in vitro and in cells and that this site contributes to DYRK1B kinase activity. Whilst a DYRK1B(S421A) mutant was completely defective for p-S421 in cells, DYRK1B inhibitors caused only a partial loss of p-S421 suggesting the existence of an additional kinase that could also phosphorylate DYRK1B S421. Indeed, a catalytically inactive DYRK1B(D239A) mutant exhibited very low levels of p-S421 in cells but this was increased by KRAS(G12V). In addition, selective activation of the RAF-MEK1/2-ERK1/2 signalling pathway rapidly increased p-S421 in cells whereas activation of the stress kinases JNK or p38 could not. S421 resides within a Ser-Pro phosphoacceptor motif that is typical for ERK1/2 and recombinant ERK2 phosphorylated DYRK1B at S421 in vitro. Our results show that DYRK1B is a novel ERK2 substrate, uncovering new links between two kinases involved in cell fate decisions. Finally, we show that DYRK1B mutants that have recently been described in cancer and metabolic syndrome exhibit normal or reduced intrinsic kinase activity.
Collapse
Affiliation(s)
- Anne L Ashford
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Tom P J Dunkley
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
- Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Cockerill
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | | | - Lisa M Baak
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Raffaella Gallo
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Kathryn Balmanno
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Louise M Goodwin
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Richard A Ward
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Sylvie Guichard
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
- AstraZeneca, Waltham, MA, 02451, USA
| | - Kevin Hudson
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
23
|
Zhou N, Yuan S, Wang R, Zhang W, Chen JJ. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence. Oncotarget 2015; 6:30745-61. [PMID: 26307683 PMCID: PMC4741565 DOI: 10.18632/oncotarget.5222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022] Open
Abstract
The high-risk human papillomavirus (HPV) is the causative agent for cervical cancer. The HPV E7 oncogene promotes S-phase entry from quiescent state in the presence of elevated cell cycle inhibitor p27Kip1, a function that may contribute to carcinogenesis. However, the mechanism by which HPV E7 induces quiescent cells to entry into S-phase is not fully understood. Interestingly, we found that Dyrk1B, a dual-specificity kinase and negative regulator of cell proliferation in quiescent cells, was upregulated in E7 expressing cells. Surprisingly and in contrast to what was previously reported, Dyrk1B played a positive role in S-phase entry of quiescent HPV E7 expressing cells. Mechanistically, Dyrk1B contributed to p27 phosphorylation (at serine 10 and threonine 198), which was important for the proliferation of HPV E7 expressing cells. Moreover, Dyrk1B up-regulated HPV E7. Taken together, our studies uncovered a novel function of Dyrk1B in high-risk HPV E7-mediated cell proliferation. Dyrk1B may serve as a target for therapy in HPV-associated cancers.
Collapse
Affiliation(s)
- Na Zhou
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shoudao Yuan
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| | - Rongchun Wang
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Weifang Zhang
- Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jason J. Chen
- Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
24
|
Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol 2015; 763:64-74. [PMID: 26001373 DOI: 10.1016/j.ejphar.2015.03.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 01/12/2023]
Abstract
Metabolic syndrome (MetS) is a cluster ofassociated metabolic traits that collectively confer unsurpassed risk for development of cardiovascular disease (CVD) and type 2 diabetes compared to any single CVD risk factor. Truncal obesity plays an exceptionally critical role among all metabolic traits of the MetS. Consequently, the prevalence of the MetS has steadily increased with the growing epidemic of obesity. Pharmacotherapy has been available for obesity for more than one decade, but with little success in improving the metabolic profiles. The serotonergic drugs and inhibitors of pancreatic lipases were among the few drugs that were initially approved to treat obesity. At the present time, only the pancreatic lipase inhibitor orlistat is approved for long-term treatment of obesity. New classes of anti-diabetic drugs, including glucagon-like peptide 1 receptor (GLP-1R) agonists and Dipeptidyl-peptidase IV (DPP-IV) inhibitors, are currently being evaluated for their effects on obesity and metabolic traits. The genetic studies of obesity and metabolic syndrome have identified novel molecules acting on the hunger and satiety peptidergic signaling of the gut-hypothalamus axis or the melanocortin system of the brain and are promising targets for future drug development. The goal is to develop drugs that not only treat obesity, but also favorably impact its associated traits.
Collapse
Affiliation(s)
- Kathleen A Martin
- Department of Internal Medicine, Yale University School of Medicine, USA
| | | | - Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, USA; Department of Genetics, Yale University School of Medicine, USA.
| |
Collapse
|
25
|
Alexeeva M, Åberg E, Engh RA, Rothweiler U. The structure of a dual-specificity tyrosine phosphorylation-regulated kinase 1A-PKC412 complex reveals disulfide-bridge formation with the anomalous catalytic loop HRD(HCD) cysteine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1207-15. [PMID: 25945585 DOI: 10.1107/s1399004715005106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 01/12/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase associated with neuronal development and brain physiology. The DYRK kinases are very unusual with respect to the sequence of the catalytic loop, in which the otherwise highly conserved arginine of the HRD motif is replaced by a cysteine. This replacement, along with the proximity of a potential disulfide-bridge partner from the activation segment, implies a potential for redox control of DYRK family activities. Here, the crystal structure of DYRK1A bound to PKC412 is reported, showing the formation of the disulfide bridge and associated conformational changes of the activation loop. The DYRK kinases represent emerging drug targets for several neurological diseases as well as cancer. The observation of distinct activation states may impact strategies for drug targeting. In addition, the characterization of PKC412 binding offers new insights for DYRK inhibitor discovery.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Espen Åberg
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Richard A Engh
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ulli Rothweiler
- Department of Chemistry, The Norwegian Structural Biology Centre, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
26
|
Castoria G, Giovannelli P, Di Donato M, Ciociola A, Hayashi R, Bernal F, Appella E, Auricchio F, Migliaccio A. Role of non-genomic androgen signalling in suppressing proliferation of fibroblasts and fibrosarcoma cells. Cell Death Dis 2014; 5:e1548. [PMID: 25476896 PMCID: PMC4649827 DOI: 10.1038/cddis.2014.497] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/01/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
Abstract
The functions of androgen receptor (AR) in stromal cells are still debated in spite of the demonstrated importance of these cells in organ development and diseases. Here, we show that physiological androgen concentration (10 nM R1881 or DHT) fails to induce DNA synthesis, while it consistently stimulates cell migration in mesenchymal and transformed mesenchymal cells. Ten nanomolar R1881 triggers p27 Ser10 phosphorylation and its stabilization in NIH3T3 fibroblasts. Activation of Rac and its downstream effector DYRK 1B is responsible for p27 Ser10 phosphorylation and cell quiescence. Ten nanomolar androgen also inhibits transformation induced by oncogenic Ras in NIH3T3 fibroblasts. Overexpression of an AR mutant unable to interact with filamin A, use of a small peptide displacing AR/filamin A interaction, and filamin A knockdown indicate that the androgen-triggered AR/filamin A complex regulates the pathway leading to p27 Ser10 phosphorylation and cell cycle arrest. As the AR/filamin A complex is also responsible for migration stimulated by 10 nM androgen, our report shows that the androgen-triggered AR/filamin A complex controls, through Rac 1, the decision of cells to halt cell cycle and migration. This study reveals a new and unexpected role of androgen/AR signalling in coordinating stromal cell functions.
Collapse
Affiliation(s)
- G Castoria
- Department of Biochemistry,
Biophysics and General Pathology—II University of Naples,
Via L. De Crecchio 7, 80138
Naples, Italy
| | - P Giovannelli
- Department of Biochemistry,
Biophysics and General Pathology—II University of Naples,
Via L. De Crecchio 7, 80138
Naples, Italy
| | - M Di Donato
- Department of Biochemistry,
Biophysics and General Pathology—II University of Naples,
Via L. De Crecchio 7, 80138
Naples, Italy
| | - A Ciociola
- Department of Biochemistry,
Biophysics and General Pathology—II University of Naples,
Via L. De Crecchio 7, 80138
Naples, Italy
| | - R Hayashi
- Laboratory of Cell Biology, National
Cancer Institute, Bethesda, MD
20892-4256, USA
| | - F Bernal
- Metabolism Branch, National Cancer
Institute, Bethesda, MD 20892-4256, USA
| | - E Appella
- Laboratory of Cell Biology, National
Cancer Institute, Bethesda, MD
20892-4256, USA
| | - F Auricchio
- Department of Biochemistry,
Biophysics and General Pathology—II University of Naples,
Via L. De Crecchio 7, 80138
Naples, Italy
| | - A Migliaccio
- Department of Biochemistry,
Biophysics and General Pathology—II University of Naples,
Via L. De Crecchio 7, 80138
Naples, Italy
| |
Collapse
|
27
|
Deng X, Hu J, Ewton DZ, Friedman E. Mirk/dyrk1B kinase is upregulated following inhibition of mTOR. Carcinogenesis 2014; 35:1968-76. [PMID: 24590896 PMCID: PMC4146409 DOI: 10.1093/carcin/bgu058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/20/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022] Open
Abstract
The PI3K/PTEN/Akt/mTOR/p70S6K pathway is one of the most frequently deregulated signaling pathways in solid tumors and has a functional role in drug resistance. However, targeting this pathway leads to compensatory activation of several mediators of cell survival. Expression of the reactive oxygen species-controlling kinase Mirk/dyrk1B was increased severalfold by the mammalian target of rapamycin (mTOR) inhibitors RAD001, WYE354 and rapamycin, with less effect by the Akt inhibitors AZD5363 and MK-2206. Upregulation of Mirk messenger RNA (mRNA) expression was mediated by cyclic AMP response element binding protein (CREB) binding to two sites in the Mirk promoter upstream of the transcription start site and one site within exon 4. Depletion of CREB reduced Mirk expression, whereas depletion of mTOR increased it. Moreover, hydroxytamoxifen activation of an Akt-estrogen receptor construct blocked an increase in Mirk mRNA and protein. Addition of a Mirk/dyrk1B kinase inhibitor increased the sensitivity of Panc1 pancreatic cancer cells and three different ovarian cancer cell lines to the mTOR inhibitor RAD001. Targeting Mirk kinase could improve the utility of mTOR inhibitors and so presents an attractive drug target.
Collapse
Affiliation(s)
- Xiaobing Deng
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jing Hu
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Daina Z Ewton
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Eileen Friedman
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
28
|
Janel N, Sarazin M, Corlier F, Corne H, de Souza LC, Hamelin L, Aka A, Lagarde J, Blehaut H, Hindié V, Rain JC, Arbones ML, Dubois B, Potier MC, Bottlaender M, Delabar JM. Plasma DYRK1A as a novel risk factor for Alzheimer's disease. Transl Psychiatry 2014; 4:e425. [PMID: 25116835 PMCID: PMC4150238 DOI: 10.1038/tp.2014.61] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
To determine whether apparent involvement of DYRK1A in Alzheimer's disease (AD) pathology makes it a candidate plasma biomarker for diagnosis, we developed a method to quantify plasma DYRK1A by immunoblot in transgenic mouse models having different gene dosages of Dyrk1a, and, consequently, different relative protein expression. Then, we measured plasma DYRK1A levels in 26 patients with biologically confirmed AD and 25 controls (negative amyloid imaging available on 13). DYRK1A was detected in transgenic mouse brain and plasma samples, and relative levels of DYRK1A correlated with the gene copy number. In plasma from AD patients, DYRK1A levels were significantly lower compared with controls (P<0.0001). Results were similar when we compared AD patients with the subgroup of controls confirmed by negative amyloid imaging. In a subgroup of patients with early AD (CDR=0.5), lower DYRK1A expression was confirmed. In contrast, no difference was found in levels of DYRK1B, the closest relative of DYRK1A, between AD patients and controls. Further, AD patients exhibited a positive correlation between plasma DYRK1A levels and cerebrospinal fluid tau and phosphorylated-tau proteins, but no correlation with amyloid-β42 levels and Pittsburgh compound B cortical binding. DYRK1A levels detected in lymphoblastoid cell lines from AD patients were also lower when compared with cells from age-matched controls. These findings suggest that reduced DYRK1A expression might be a novel plasma risk factor for AD.
Collapse
Affiliation(s)
- N Janel
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, Université Paris Diderot, EAC4413 CNRS, Paris, France
| | - M Sarazin
- Department of Neurology, Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - F Corlier
- Department of Neurology, Alzheimer Institute (MB, LCdS, BD, MS), Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
- Brain & Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, Paris, France
- Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - H Corne
- Department of Neurology, Alzheimer Institute (MB, LCdS, BD, MS), Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
- Brain & Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, Paris, France
| | - L C de Souza
- Department of Neurology, Alzheimer Institute (MB, LCdS, BD, MS), Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
- Brain & Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, Paris, France
- Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - L Hamelin
- Department of Neurology, Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - A Aka
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, Université Paris Diderot, EAC4413 CNRS, Paris, France
| | - J Lagarde
- Department of Neurology, Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - H Blehaut
- Fondation Jérome Lejeune, Paris, France
| | - V Hindié
- HYBRIGENICS Services SAS, Paris, France
| | - J-C Rain
- HYBRIGENICS Services SAS, Paris, France
| | - M L Arbones
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - B Dubois
- Department of Neurology, Alzheimer Institute (MB, LCdS, BD, MS), Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
- Brain & Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, Paris, France
| | - M C Potier
- Brain & Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, Paris, France
| | - M Bottlaender
- CEA (MB), DSV, Institut d'Imagerie Biomédicale, Service Hospitalier Frédéric Joliot, Orsay, France
| | - J M Delabar
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, Université Paris Diderot, EAC4413 CNRS, Paris, France
| |
Collapse
|
29
|
The normal function of the cancer kinase Mirk/dyrk1B is to reduce reactive oxygen species. Genes Cancer 2014; 5:22-30. [PMID: 24955215 PMCID: PMC4063251 DOI: 10.18632/genesandcancer.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/20/2014] [Indexed: 01/04/2023] Open
Abstract
Mirk kinase is a gene upregulated and sometimes amplified in pancreatic cancers and in ovarian cancers, but expressed at very low levels in most normal diploid cells except for skeletal muscle. The muscle cell function of Mirk kinase selected for by cancer cells is unknown. It is now shown that Mirk protein is expressed at low levels and is largely nuclear in cycling skeletal muscle C2C12 myoblasts, but is translocated to the cytoplasm and upregulated when myoblasts initiate differentiation, as shown by immunofluorescence staining and by cell fractionation. Either Mirk depletion or Mirk kinase inhibition increased ROS levels in cycling C2C12 myoblasts. However, Mirk protein is localized in the cytoplasm of mature muscle fibers, specifically in the fast twitch fibers of human skeletal muscle where toxic ROS levels are generated by muscle contraction. C2C12 myoblasts at high density in differentiation media fuse to form differentiated postmitotic myotubes that can contract. A Mirk kinase inhibitor induced a dose-dependent increase in ROS in this model for fast twitch fibers of human skeletal muscle. Efficient Mirk depletion in SU86.86 pancreatic cancer cells by an inducible shRNA decreased expression of eight antioxidant genes. Thus both cancer cells and differentiated myotubes utilize Mirk kinase to relieve oxidative stress.
Collapse
|
30
|
Molecular ties between the cell cycle and differentiation in embryonic stem cells. Proc Natl Acad Sci U S A 2014; 111:9503-8. [PMID: 24979803 DOI: 10.1073/pnas.1408638111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attainment of the differentiated state during the final stages of somatic cell differentiation is closely tied to cell cycle progression. Much less is known about the role of the cell cycle at very early stages of embryonic development. Here, we show that molecular pathways involving the cell cycle can be engineered to strongly affect embryonic stem cell differentiation at early stages in vitro. Strategies based on perturbing these pathways can shorten the rate and simplify the lineage path of ES differentiation. These results make it likely that pathways involving cell proliferation intersect at various points with pathways that regulate cell lineages in embryos and demonstrate that this knowledge can be used profitably to guide the path and effectiveness of cell differentiation of pluripotent cells.
Collapse
|
31
|
Schmitt C, Kail D, Mariano M, Empting M, Weber N, Paul T, Hartmann RW, Engel M. Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLoS One 2014; 9:e87851. [PMID: 24676346 PMCID: PMC3968014 DOI: 10.1371/journal.pone.0087851] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform-mediated functions.
Collapse
Affiliation(s)
- Christian Schmitt
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | | | - Marica Mariano
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Nadja Weber
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tamara Paul
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
32
|
Ashford AL, Oxley D, Kettle J, Hudson K, Guichard S, Cook SJ, Lochhead PA. A novel DYRK1B inhibitor AZ191 demonstrates that DYRK1B acts independently of GSK3β to phosphorylate cyclin D1 at Thr(286), not Thr(288). Biochem J 2014; 457:43-56. [PMID: 24134204 DOI: 10.1042/bj20130461] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DYRK1B (dual-specificity tyrosine phosphorylation-regulated kinase 1B) is amplified in certain cancers and may be an oncogene; however, our knowledge of DYRK1B has been limited by the lack of selective inhibitors. In the present study we describe AZ191, a potent small molecule inhibitor that selectively inhibits DYRK1B in vitro and in cells. CCND1 (cyclin D1), a key regulator of the mammalian G1-S-phase transition, is phosphorylated on Thr(286) by GSK3β (glycogen synthase kinase 3β) to promote its degradation. DYRK1B has also been proposed to promote CCND1 turnover, but was reported to phosphorylate Thr(288) rather than Thr(286). Using in vitro kinase assays, phospho-specific immunoblot analysis and MS in conjunction with AZ191 we now show that DYRK1B phosphorylates CCND1 at Thr(286), not Thr(288), in vitro and in cells. In HEK (human embryonic kidney)-293 and PANC-1 cells (which exhibit DYRK1B amplification) DYRK1B drives Thr(286) phosphorylation and proteasome-dependent turnover of CCND1 and this is abolished by AZ191 or DYRK1B RNAi, but not by GSK3β inhibitors or GSK3β RNAi. DYRK1B expression causes a G1-phase cell-cycle arrest, but overexpression of CCND1 (wild-type or T286A) fails to overcome this; indeed, DYRK1B also promotes the expression of p21CIP1 (21 kDa CDK-interacting protein 1) and p27KIP1 (CDK-inhibitory protein 1). The results of the present study demonstrate for the first time that DYRK1B is a novel Thr(286)-CCND1 kinase that acts independently of GSK3β to promote CCND1 degradation. Furthermore, we anticipate that AZ191 may prove useful in defining further substrates and biological functions of DYRK1B.
Collapse
Affiliation(s)
- Anne L Ashford
- *Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, U.K
| | | | | | | | | | | | | |
Collapse
|
33
|
Bodaker M, Meshorer E, Mitrani E, Louzoun Y. Genes related to differentiation are correlated with the gene regulatory network structure. Bioinformatics 2013; 30:406-13. [DOI: 10.1093/bioinformatics/btt685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Zhao B, Yang C, Yang S, Gao Y, Wang J. Construction of conditional lentivirus-mediated shRNA vector targeting the human Mirk gene and identification of RNAi efficiency in rhabdomyosarcoma RD cells. Int J Oncol 2013; 43:1253-9. [PMID: 23913162 DOI: 10.3892/ijo.2013.2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/23/2013] [Indexed: 11/05/2022] Open
Abstract
Rhabdomyosarcoma is the most common malignant soft tissue tumor in children. It has been demonstrated that Mirk as an activated protein kinase is overexpressed in rhabdomyosarcoma cells, which may be correlated with tumorigenesis. The aim of the present study was to explore the possibility of Mirk gene as a therapeutic target for the treatment of rhabdomyosarcoma, and the use of RNA interference in a temporally and spatially restricted manner to study the function of the target gene would be highly beneficial. To address this problem, a conditional lentivirus-mediated short hairpin RNA targeting human Mirk gene was constructed and employed to reduce endogenous Mirk expression in the rhabdomyosarcoma RD cell line in vitro. The expression of Mirk shRNA in RD cells transduced with this recombinant vector could be tracked with the expression of red fluorescent protein by the administration of doxycycline. A stable transgenic RD line was generated by transducing RD lines with the packaging viral particles. Quantitative PCR and western blot analysis indicated that the mRNA and protein levels of Mirk in the transgenic RD cells were significantly lower compared to those in the controls. In addition, the increasing apoptosis of RD cells induced by silencing of the Mirk gene was also observed. Overall, the results demonstrated that this recombinant vector-based RNAi expression system is an efficient approach to knockdown Mirk gene expression in the rhabdomyosarcoma RD cell line, which could, thereby, provide both a protocol to study the role of Mirk gene in tumor cells and a safer gene therapy in the clinic.
Collapse
Affiliation(s)
- Boming Zhao
- Department of Orthopaedic Surgery, The No. 1 People's Hospital of Jingzhou, Jingzhou, P.R. China
| | | | | | | | | |
Collapse
|
35
|
The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development. Genetics 2013; 195:927-40. [PMID: 24026097 DOI: 10.1534/genetics.113.154211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes.
Collapse
|
36
|
Soundararajan M, Roos A, Savitsky P, Filippakopoulos P, Kettenbach A, Olsen J, Gerber S, Eswaran J, Knapp S, Elkins J. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 2013; 21:986-96. [PMID: 23665168 PMCID: PMC3677093 DOI: 10.1016/j.str.2013.03.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/16/2023]
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity.
Collapse
Affiliation(s)
- Meera Soundararajan
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Annette K. Roos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Arminja N. Kettenbach
- Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jesper V. Olsen
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, Copenhagen DK-2200, Denmark
| | - Scott A. Gerber
- Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jeyanthy Eswaran
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
37
|
Hu J, Deng H, Friedman EA. Ovarian cancer cells, not normal cells, are damaged by Mirk/Dyrk1B kinase inhibition. Int J Cancer 2013; 132:2258-69. [PMID: 23114871 PMCID: PMC3586305 DOI: 10.1002/ijc.27917] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/05/2012] [Indexed: 01/12/2023]
Abstract
Prior studies had shown that the Mirk/dyrk1B gene is amplified/upregulated in about 75% of ovarian cancers, that protein levels of this kinase are elevated in quiescent G0 cells and that Mirk maintains tumor cells in quiescence by initiating rapid degradation of cyclin D isoforms and by phosphorylation of a member of the DREAM complex. Depletion of Mirk/dyrk1B led to increased cyclin D levels, an elevated reactive oxygen species (ROS) content and loss of viability. However, many normal cells in vivo are quiescent, and therefore, targeting a kinase found in quiescent cells might be problematic. In our study, Mirk kinase activity was found to be higher in ovarian cancer cells than in normal cells. Pharmacological inhibition of Mirk/dyrk1B kinase increased cyclin D levels both in quiescent normal diploid cells and in quiescent CDKN2A-negative ovarian cancer cells, but led to more active CDK4/cyclin D complexes in quiescent ovarian cancer cells, allowing them to escape G0/G1 quiescence, enter cycle with high ROS levels and undergo apoptosis. The ROS scavenger N-acetyl cysteine reduced both the amount of cleaved poly(ADP-ribose) polymerase (PARP) and the extent of cancer cell loss. In contrast, normal cells were spared because of their expression of cyclin directed kinase (CDK) inhibitors that blocked unregulated cycling. Quiescent early passage normal ovarian epithelial cells and two strains of quiescent normal diploid fibroblasts remained viable after the inhibition of Mirk/dyrk1B kinase, and the few cells that left G0/G1 quiescence were accumulated in G2+M. Thus, inhibition of Mirk kinase targeted quiescent ovarian cancer cells.
Collapse
Affiliation(s)
- Jing Hu
- Pathology Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
38
|
Shaposhnikov D, Kuffer C, Storchova Z, Posern G. Myocardin related transcription factors are required for coordinated cell cycle progression. Cell Cycle 2013; 12:1762-72. [PMID: 23656782 DOI: 10.4161/cc.24839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Myocardin related transcription factors A and B (MRTFs) activate serum response factor-driven transcription in response to Rho signaling and changes in actin dynamics. Myocardin and MRTFs have been implicated in anti-proliferative effects on a range of cell types. The precise mechanisms, however, remained elusive. We employed double knockdown of MRTF-A and MRTF-B in NIH 3T3 fibroblasts to evaluate its effects on cell cycle progression and proliferation. We show that transient depletion of MRTFs conveys a modest anti-proliferative effect and impinges on normal cell cycle progression, resulting in significantly shortened G 1 phase and slightly extended S and G 2 phase under normal growth conditions. Under serum-starved conditions we observed aberrant entry into the S and G 2 phases without subsequent cell division. This was accompanied by downregulation of cyclin-CDK inhibitors p27Kip1, p18Ink4c and 19Ink4d as well as upregulation of p21Waf1 and cyclin D1. Extended knockdown led to increased formation of micronuclei, while cells stably depleted of MRTFs tend to become aneuploid and polyploid. Thus, MRTFs are required for accurate cell cycle progression and maintenance of genomic stability in fibroblast cells.
Collapse
Affiliation(s)
- Dmitry Shaposhnikov
- Gene Regulation Lab, Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg; Halle (Saale), Germany
| | | | | | | |
Collapse
|
39
|
Friedman E. Mirk/dyrk1B Kinase in Ovarian Cancer. Int J Mol Sci 2013; 14:5560-75. [PMID: 23528858 PMCID: PMC3634458 DOI: 10.3390/ijms14035560] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 02/03/2023] Open
Abstract
Mirk/dyrk1B kinase is expressed in about 75% of resected human ovarian cancers and in most ovarian cancer cell lines with amplification in the OVCAR3 line. Mirk (minibrain-related kinase) is a member of the Minibrain/dyrk family of related serine/threonine kinases. Mirk maintains cells in a quiescent state by stabilizing the CDK inhibitor p27 and by inducing the breakdown of cyclin D isoforms. Mirk also stabilizes the DREAM complex, which maintains G0 quiescence by sequestering transcription factors needed to enter cycle. By entering a quiescent state, tumor cells can resist the nutrient deficiencies, hypoxic and acidic conditions within the tumor mass. Mirk maintains the viability of quiescent ovarian cancer cells by reducing intracellular levels of reactive oxygen species. CDKN2A-negative ovarian cancer cells treated with a Mirk kinase inhibitor escaped G0/G1 quiescence, entered cycle with high ROS levels and underwent apoptosis. The ROS scavenger N-acetyl cysteine reduced the extent of cancer cell loss. In contrast, the Mirk kinase inhibitor slightly reduced the fraction of G0 quiescent diploid epithelial cells and fibroblasts, and the majority of the cells pushed into cycle accumulated in G2 + M. Apoptotic sub-G0/G1 cells were not detected. Thus, normal cells were spared because of their expression of CDK inhibitors that blocked unregulated cycling and Mirk kinase inhibitor-treated normal diploid cells were about as viable as untreated controls.
Collapse
Affiliation(s)
- Eileen Friedman
- Pathology Department, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
40
|
Abstract
Wdr68 is a highly conserved scaffolding protein required for craniofacial development and left-right asymmetry. A Ras-Map3k-Wdr68-Dyrk1 signaling relay may mediate these and other diverse signaling events important in development and disease. While the sub-cellular localization of Wdr68 has been shown to be dependent on that of its interaction partners, it is not clear where Wdr68 activity is required during development. Here we show that while a GFP-Wdr68 fusion functionally substituted for craniofacial development in the zebrafish, that a Nuclear Export Signal (NES) fusion protein (GFPNESWdr68) failed to support craniofacial development. As control for NES activity, we show that while GFP-Wdr68 exhibited a pan-cellular distribution in C2C12 cells, the GFPNESWdr68 fusion predominantly localized to the cell cytoplasm, as expected. Interestingly, while GFP-Wdr68 and RFP-Dyrk1a co-localized to the cell nucleus as expected based on the known sub-cellular localization for Dyrk1a, we found that the GFPNESWdr68 fusion redistributed RFP-Dyrk1a to the cell cytoplasm potentially disconnecting the Ras/Dyrk1 signal relay from further downstream targets. Consistent with a nuclear role in gene regulation, we also found that while a transcriptional activation domain fusion, CebpFlagWdr68, functionally substituted for endogenous Wdr68 for craniofacial development, that a transcriptional repression domain fusion, MadFlagWdr68, failed to support craniofacial development. Dyrk1b is required for myogenin (myog) expression in differentiating mouse C2C12 cells and here we report that wdr68 is also important for myog expression in differentiating C2C12 cells. Using a C2C12 cell myog promoter-reporter system, we found that Wdr68 overexpression increased reporter activity while moderate expression levels of MadFlagWdr68 interfered with reporter activity. Taken together, these findings support a nuclear role for Wdr68-containing complexes.
Collapse
|
41
|
Gao J, Zhao Y, Lv Y, Chen Y, Wei B, Tian J, Yang Z, Kong F, Pang J, Liu J, Shi H. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell Int 2013; 13:2. [PMID: 23311607 PMCID: PMC3575355 DOI: 10.1186/1475-2867-13-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/08/2013] [Indexed: 01/09/2023] Open
Abstract
Background Mirk/Dyrk1B contributes to G0 arrest by destabilization of cyclin D1 and stabilization of p27kip1 to maintain the viability of quiescent human cancer cells, and it could be negatively regulated by mitogenic-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. This study was performed to investigate the effect of Mirk/Dyrk1B on cell cycle and survival of human cancer cells involving MAPK/ERK signaling. Methods The correlations between Mirk/Dyrk1B expression and active ERK1/2 detected by western blot in both ovarian cancer and non-small cell lung cancer (NSCLC) cells were analyzed by simple regression. Mirk/Dyrk1B unique phosphopeptides with sites associated with Mirk/Dyrk1B protein were isolated and quantitated by liquid chromatography coupled to tandem mass/mass spectrometry (LC-MS/MS) proteomics analysis. The human cancer cells were treated with small interfering RNAs (siRNAs) and/or U0126, an inhibitor of MEK for indicated duration, followed by investigating the alterations of cell cycle and apoptosis as well as related proteins examined by flow cytometry and Western blot, respectively. Results Our study demonstrated the widely expressed Mirk/Dyrk1B proteins in the human cancer cells were positively correlated with the levels of activated ERK1/2. Moreover, Mirk/Dyrk1B protein expressions consistent with the tyrosine autophosphorylated levels in the human cancer cells were increased by U0126 or growth factor-depleted culture. Conversely, knockdown of Mirk/Dyrk1B by siRNA led to up-regulated activation of c-Raf-MEK-ERK1/2 pathway and subsequent changes in cell cycle proteins (cyclin D1, p27kip1), accompanied by increased growth rate and cells from G0/G1 into S of cell cycle which could be blocked by U0126 in a dose-dependent manner, indicating Mirk/Dyrk1B may sequester MAPK/ERK pathway, and vice versa. Whereas, combined Mirk siRNA and U0126 induced cell apoptosis in the human cancer cells. Conclusions These data together show that Mirk/Dyrk1B mediates cell cycle and survival via interacting with MAPK/ERK signals and simultaneous inhibition of both pathways may be a novel therapeutic target for human cancer.
Collapse
Affiliation(s)
- Jingchun Gao
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Yi Zhao
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Yunyi Lv
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Yamin Chen
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bing Wei
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Jianxin Tian
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Zhihai Yang
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Fandou Kong
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Jian Pang
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| | - Jiwei Liu
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Hong Shi
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning 116011, China
| |
Collapse
|
42
|
Masuda T, Itoh K, Higashitsuji H, Higashitsuji H, Nakazawa N, Sakurai T, Liu Y, Tokuchi H, Fujita T, Zhao Y, Nishiyama H, Tanaka T, Fukumoto M, Ikawa M, Okabe M, Fujita J. Cold-inducible RNA-binding protein (Cirp) interacts with Dyrk1b/Mirk and promotes proliferation of immature male germ cells in mice. Proc Natl Acad Sci U S A 2012; 109:10885-90. [PMID: 22711815 PMCID: PMC3390833 DOI: 10.1073/pnas.1121524109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cold-inducible RNA-binding protein (Cirp) was the first cold-shock protein identified in mammals. It is structurally quite different from bacterial cold-shock proteins and is induced in response to mild, but not severe, hypothermia. To clarify the physiological function of Cirp in vivo, we produced cirp-knockout mice. They showed neither gross abnormality nor defect in fertility, but the number of undifferentiated spermatogonia was significantly reduced and the recovery of spermatogenesis was delayed after treatment with a cytotoxic agent, busulfan. Cirp accelerated cell-cycle progression from G0 to G1 as well as from G1 to S phase in cultured mouse embryonic fibroblasts. Cirp directly bound to dual-specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1b, also called Mirk) and inhibited its binding to p27, resulting in decreased phosphorylation and destabilization of p27. Cirp did not affect binding of Dyrk1b to cyclin D1 but inhibited phosphorylation of cyclin D1 by Dyrk1b, resulting in cyclin D1 stabilization. In the spermatogonial cell line GC-1spg, suppression of Cirp expression increased the protein level of p27, decreased that of cyclin D1, and decreased the growth rate, which depended on Dyrk1b. Consistent changes in the protein levels of p27 and cyclin D1 as well as the percentage of cells in G0 phase were observed in undifferentiated spermatogonia of cirp-knockout mice. In undifferentiated spermatogonia of wild-type mice, Cirp and Dyrk1b colocalized in the nucleus. Thus, our study demonstrates that Cirp functions to fine-tune the proliferation of undifferentiated spermatogonia by interacting with Dyrk1b.
Collapse
Affiliation(s)
- Tomoko Masuda
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroaki Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hisako Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Noa Nakazawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshiharu Sakurai
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yu Liu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Tokuchi
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takanori Fujita
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yan Zhao
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 3058575, Japan
| | - Takashi Tanaka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Masahito Ikawa
- Department of Experimental Genome Research, Genome Information Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masaru Okabe
- Department of Experimental Genome Research, Genome Information Research Center, Osaka University, Osaka 565-0871, Japan
| | - Jun Fujita
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle 2011; 1:29. [PMID: 21902831 PMCID: PMC3180440 DOI: 10.1186/2044-5040-1-29] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022] Open
Abstract
Myogenesis is a complex and tightly regulated process, the end result of which is the formation of a multinucleated myofibre with contractile capability. Typically, this process is described as being regulated by a coordinated transcriptional hierarchy. However, like any cellular process, myogenesis is also controlled by members of the protein kinase family, which transmit and execute signals initiated by promyogenic stimuli. In this review, we describe the various kinases involved in mammalian skeletal myogenesis: which step of myogenesis a particular kinase regulates, how it is activated (if known) and what its downstream effects are. We present a scheme of protein kinase activity, similar to that which exists for the myogenic transcription factors, to better clarify the complex signalling that underlies muscle development.
Collapse
|
44
|
Hu J, Nakhla H, Friedman E. Transient arrest in a quiescent state allows ovarian cancer cells to survive suboptimal growth conditions and is mediated by both Mirk/dyrk1b and p130/RB2. Int J Cancer 2011; 129:307-18. [PMID: 20857490 DOI: 10.1002/ijc.25692] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/07/2010] [Indexed: 01/12/2023]
Abstract
Some ovarian cancer cells in vivo are in a reversible quiescent state where they can contribute to cancer spread under favorable growth conditions. The serine/threonine kinase Mirk/dyrk1B was expressed in each of seven ovarian cancer cell lines and in 21 of 28 resected human ovarian cancers, and upregulated in 60% of the cancers. Some ovarian cancer cells were found in a G0 quiescent state, with the highest fraction in a line with an amplified Mirk gene. Suboptimal culture conditions increased the G0 fraction in SKOV3 and TOV21G, but not OVCAR4 cultures. Less than half as many OVCAR4 cells survived under suboptimal culture conditions as shown by total cell numbers, dye exclusion viability studies, and assay of cleaved apoptotic marker proteins. G0 arrest in TOV21G and SKOV3 cells led to increased levels of Mirk, the CDK inhibitor p27, p130/Rb2, and p130/Rb2 complexed with E2F4. The G0 arrest was transient, and cells exited G0 when fresh nutrients were supplied. Depletion of p130/Rb2 reduced the G0 fraction, increased cell sensitivity to serum-free culture and to cisplatin, and reduced Mirk levels. Mirk contributed to G0 arrest by destabilization of cyclin D1. In TOV21G cells, but not in normal diploid fibroblasts, Mirk depletion led to increased apoptosis and loss of viability. Because Mirk is expressed at low levels in most normal adult tissues, the elevated Mirk protein levels in ovarian cancers may present a novel therapeutic target, in particular for quiescent tumor cells which are difficult to eradicate by conventional therapies targeting dividing cells.
Collapse
Affiliation(s)
- Jing Hu
- Pathology Department, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
45
|
Friedman E. The role of mirk kinase in sarcomas. Sarcoma 2011; 2011:260757. [PMID: 21559261 PMCID: PMC3087898 DOI: 10.1155/2011/260757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/23/2011] [Indexed: 01/07/2023] Open
Abstract
Targeting the tyrosine kinase KIT in gastrointestinal stromal tumors has led to improved treatment. Other kinases might serve as therapeutic targets in the more common forms of sarcoma. The kinase Mirk/dyrk1B is highly expressed in the vast majority of osteosarcomas and rhabdomyosarcomas and mediates their growth, as depletion of Mirk led to tumor cell apoptosis. Mirk is known to increase the expression of a series of antioxidant genes, which scavenge reactive oxygen species (ROS) within various tumor cells, mediating their survival. As a result, depleting Mirk led to increased levels of damaging ROS. Tumor cells depleted of Mirk were also sensitized to low levels of chemotherapeutic drugs that increase ROS levels. In contrast, Mirk expression is quite low in most normal cells, and Mirk depletion or embryonic knockout of Mirk did not detectably affect cell survival. Thus targeting Mirk for intervention in sarcomas might spare most normal tissues.
Collapse
Affiliation(s)
- Eileen Friedman
- Department of Pathology, Upstate Medical University, 750 East Adams Street, 2305 Weiskotten Hall, Syracuse, NY 13210, USA
| |
Collapse
|
46
|
Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011; 25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Collapse
Affiliation(s)
- Sergi Aranda
- Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
47
|
Friedman E. The Kinase Mirk/dyrk1B: A Possible Therapeutic Target in Pancreatic Cancer. Cancers (Basel) 2010; 2:1492-512. [PMID: 24281169 PMCID: PMC3837318 DOI: 10.3390/cancers2031492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are strongly resistant to chemotherapeutic drugs and radiation, underscoring the need for new therapeutic targets, particularly ones which target the numerous out of cycle cancer cells. Analysis of resected tumors for nuclear Ki67 antigen has shown that about 70% of pancreatic cancer cells are out of cycle, some post-mitotic. Other out of cycle cells are in a quiescent, reversible G0 state, resistant to drugs which target dividing cells, with some able to repopulate a tumor. The serine/threonine kinase Mirk/dyrk1B is a downstream effector of oncogenic K-ras, the most common mutation in this cancer. Mirk expression is elevated in quiescent pancreatic cancer cells and mediates their prolonged survival through increasing expression of a cohort of antioxidant genes. Mirk is expressed in about 90% of pancreatic cancers and is amplified in a subset. Mirk appears not to be an essential gene for normal cells from embryonic knockout studies in mice and RNA interference studies on cultured cells, but is upregulated in pancreatic tumor cells. These unusual characteristics suggest that Mirk may be a selective target for therapeutic intervention.
Collapse
Affiliation(s)
- Eileen Friedman
- Upstate Medical University, State University of New York, Syracuse, New York, NY 13210, USA.
| |
Collapse
|
48
|
Mazmanian G, Kovshilovsky M, Yen D, Mohanty A, Mohanty S, Nee A, Nissen RM. The zebrafish dyrk1b gene is important for endoderm formation. Genesis 2010; 48:20-30. [PMID: 20014342 DOI: 10.1002/dvg.20578] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nodal-signaling is required for specification of mesoderm, endoderm, establishing left-right asymmetry, and craniofacial development. Wdr68 is a WD40-repeat domain-containing protein recently shown to be required for endothelin-1 (edn1) expression and subsequent lower jaw development. Previous reports detected the Wdr68 protein in multiprotein complexes containing mammalian members of the dual-specificity tyrosine-regulated kinase (dyrk) family. Here we describe the characterization of the zebrafish dyrk1b homolog. We report the detection of a physical interaction between Dyrk1b and Wdr68. We also found perturbations of nodal signaling in dyrk1b antisense morpholino knockdown (dyrk1b-MO) animals. Specifically, we found reduced expression of lft1 and lft2 (lft1/2) during gastrulation and a near complete loss of the later asymmetric lft1/2 expression domains. Although wdr68-MO animals did not display lft1/2 expression defects during gastrulation, they displayed a near complete loss of the later asymmetric lft1/2 expression domains. While expression of ndr1 was not substantially effected during gastrulation, ndr2 expression was moderately reduced in dyrk1b-MO animals. Analysis of additional downstream components of the nodal signaling pathway in dyrk1b-MO animals revealed modestly expanded expression of the dorsal axial mesoderm marker gsc while the pan-mesodermal marker bik was largely unaffected. The endodermal markers cas and sox17 were also moderately reduced in dyrk1b-MO animals. Notably, and similar to defects previously reported for wdr68 mutant animals, we also found reduced expression of the pharyngeal pouch marker edn1 in dyrk1b-MO animals. Taken together, these data reveal a role for dyrk1b in endoderm formation and craniofacial patterning in the zebrafish.
Collapse
Affiliation(s)
- Gohar Mazmanian
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Thalacker-Mercer AE, Dell'Italia LJ, Cui X, Cross JM, Bamman MM. Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol Genomics 2010; 40:141-9. [PMID: 19903761 PMCID: PMC2825766 DOI: 10.1152/physiolgenomics.00151.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/09/2009] [Indexed: 02/07/2023] Open
Abstract
Across numerous model systems, aging skeletal muscle demonstrates an impaired regenerative response when exposed to the same stimulus as young muscle. To better understand the impact of aging in a human model, we compared changes to the skeletal muscle transcriptome induced by unaccustomed high-intensity resistance loading (RL) sufficient to cause moderate muscle damage in young (37 yr) vs. older (73 yr) adults. Serum creatine kinase was elevated 46% 24 h after RL in all subjects with no age differences, indicating similar degrees of myofiber membrane wounding by age. Despite this similarity, from genomic microarrays 318 unique transcripts were differentially expressed after RL in old vs. only 87 in young subjects. Follow-up pathways analysis and functional annotation revealed among old subjects upregulation of transcripts related to stress and cellular compromise, inflammation and immune responses, necrosis, and protein degradation and changes in expression (up- and downregulation) of transcripts related to skeletal and muscular development, cell growth and proliferation, protein synthesis, fibrosis and connective tissue function, myoblast-myotube fusion and cell-cell adhesion, and structural integrity. Overall the transcript-level changes indicative of undue inflammatory and stress responses in these older adults were not mirrored in young subjects. Follow-up immunoblotting revealed higher protein expression among old subjects for NF-kappaB, heat shock protein (HSP)70, and IL-6 signaling [total and phosphorylated signal transducer and activator of transcription (STAT)3 at Tyr705]. Together, these novel findings suggest that young and old adults are equally susceptible to RL-mediated damage, yet the muscles of older adults are much more sensitive to this modest degree of damage-launching a robust transcriptome-level response that may begin to reveal key differences in the regenerative capacity of skeletal muscle with advancing age.
Collapse
Affiliation(s)
- Anna E Thalacker-Mercer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Timely cell cycle regulation is conducted by sequential activation of a family of serine-threonine kinases called cycle dependent kinases (CDKs). Tight CDK regulation involves cyclin dependent kinase inhibitors (CKIs) which ensure the correct timing of CDK activation in different phases of the cell cycle. One CKI of importance is p27(KIP1). The regulation and cellular localization of p27(KIP1) can result in biologically contradicting roles when found in the nucleus or cytoplasm of both normal and tumor cells. The p27(KIP1) protein is mainly regulated by proteasomal degradation and its downregulation is often correlated with poor prognosis in several types of human cancers. The protein can also be functionally inactivated by cytoplasmic localization or by phosphorylation. The p27(KIP1) protein is an unconventional tumor suppressor because mutation of its gene is extremely rare in tumors, implying the normal function of the protein is deranged during tumor development. While the tumor suppressor function is mediated by p27(KIP1)s inhibitory interactions with the cyclin/CDK complexes, its oncogenic function is cyclin/CDK independent, and in many cases correlates with cytoplasmic localization. Here we review the basic features and novel aspects of the p27(KIP1) protein, which displays genetically separable tumor suppressing and oncogenic functions.
Collapse
Affiliation(s)
- Jinhwa Lee
- Department of Clinical Lab Science, Dongseo University, Busan 617-716, Korea
| | | |
Collapse
|