1
|
Ye H, Wang Y, Zhang X, Yang L, Cai B, Zhang D, Peng B. Characterization of global research trends and prospects on celastrol, a principal bioactive ingredient of Tripterygium wilfordii Hook F: bibliometric analysis. PHARMACEUTICAL BIOLOGY 2025; 63:15-26. [PMID: 39745069 DOI: 10.1080/13880209.2024.2443424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
CONTEXT Celastrol, acknowledged as a prominent exemplar of the potential for transforming traditional medicinal compounds into contemporary pharmaceuticals, has garnered considerable attention owing to its extensive pharmacological activities. The increasing volume of publications concerning celastrol highlights its importance in current scientific inquiry. Despite the growing interest in this compound, a bibliometric analysis focused on this subject remains to be undertaken. OBJECTIVE Our study explored a bibliometric approach to identify and characterize global research trends and frontiers related to celastrol, including mapping research outputs, influential contributors, and thematic areas, as well as highlighting gaps and opportunities for future investigations. MATERIALS AND METHODS In this study, we utilized the Web of Science Core Collection (WoSCC) to source and review articles related to celastrol published from 1997 to 2023. The bibliometric analysis was conducted using the R package 'Bibliometrix,' supplemented by visualization tools including CiteSpace, VOSviewer, and GraphPad Prism 10. RESULTS Celastrol related research papers have exhibited an upward trend annually and can be categorized into three distinct phases, each highlighting different areas of focus. China, the United States, and South Korea rank as the top three nations for publication volume, with varied research interests across these countries. Several prolific research teams have emerged, each with distinct areas of interest. Examining the primary research domains of celastrol (anti-inflammatory, anticancer, and toxicity) reveals a notable intersection between the first two domains. DISCUSSION AND CONCLUSIONS The scope and depth of celastrol research have been steadily expanding, with regional and team-specific variations. Key research areas include anti-inflammatory, anticancer, and toxicity studies. Future research is expected to focus on enhancing the effectiveness and reducing the toxicity of celastrol. Meanwhile, given the multi-target characteristics of celastrol's effects, integrating methods such as network biology and molecular simulation will provide a novel perspective for celastrol research.
Collapse
Affiliation(s)
- Huizi Ye
- Postgraduate training base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Yufang Wang
- Postgraduate training base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Xue Zhang
- Postgraduate training base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lin Yang
- Postgraduate training base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Banglan Cai
- Postgraduate training base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Denghai Zhang
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Bin Peng
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Department of Central Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| |
Collapse
|
2
|
Kamel EM, Ali MAM, Allam AA, Ahmed NA, Aba Alkhayl FF, Lamsabhi AM. Disrupting the Hsp90-Cdc37 axis: a selective strategy for targeting oncogenic kinases in cancer. RSC Adv 2025; 15:19376-19391. [PMID: 40491798 PMCID: PMC12147015 DOI: 10.1039/d5ra03137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
Heat shock protein 90 (Hsp90) is a crucial molecular chaperone responsible for the maturation and stabilization of a wide range of client proteins, many of which are key drivers of oncogenic signaling. While traditional Hsp90 inhibitors targeting its ATPase activity have demonstrated antitumor potential, their clinical progress has been limited by issues such as low selectivity, toxicity, and the induction of cytoprotective heat shock responses. An alternative strategy focuses on disrupting the specific protein-protein interaction between Hsp90 and its kinase-specific co-chaperone, cell division cycle 37 (Cdc37), thereby selectively destabilizing oncogenic kinases without broadly impairing chaperone function. This review discusses the structural insights into the Hsp90-Cdc37 interface, recent advances in the discovery of small molecule inhibitors, peptides, peptidomimetics, and natural products such as celastrol, platycodin D, and withaferin A that effectively disrupt this interaction. Mechanistic studies reveal that disruption leads to targeted degradation of kinase clients, inhibition of key survival pathways including AKT and ERK signaling, induction of apoptosis, and sensitization to other therapeutic agents, all while minimizing activation of the heat shock response. Despite challenges related to targeting dynamic PPI surfaces, optimizing drug-like properties, and validating clinical biomarkers, the therapeutic advantages of this strategy are significant. Hsp90-Cdc37 disruptors represent a promising frontier in precision oncology, offering a refined, selective, and less toxic approach to targeting cancer cell survival networks. Continued multidisciplinary research is expected to drive these agents toward successful clinical translation.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| | - Noha A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University P.O. Box 62521 Beni-Suef Egypt
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University Buraydah 51452 Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química and Institute for Advanced Research in Chemical Science (IAdChem), Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
3
|
Feng ZW, Li L, Zhang SD, Wang YJ, Pei JY, Chen NN, Wu BD, Zheng QL, You QD, Guo XK, Xu XL. Structural Optimization of Pyrazole Compounds as Hsp90 Regulators with Enhanced Antitumor Activity. J Med Chem 2025; 68:9886-9905. [PMID: 40310691 DOI: 10.1021/acs.jmedchem.4c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Targeting Hsp90 is an effective strategy for cancer therapy. TAS-116 has been approved for the treatment of gastrointestinal stromal tumors. Our previous studies identified a series of pyrazole derivatives as covalent Hsp90 inhibitors that allosterically disrupt the Hsp90-Cdc37 interaction. Here, through systematic structure-activity relationship (SAR) optimization, compound 39 (DDO-6691) with a new covalent warhead was developed, which demonstrates improved ADME properties and significantly enhanced antitumor activity. Notably, parental HCT-116 cells exhibited markedly greater sensitivity to compound 39 (IC50 > 50 μM) compared to their Cdc37-knockout counterparts. Importantly, compound 39 displayed potent tumor growth inhibition in HCT-116 xenograft mouse models. These collective findings underscore the therapeutic promise of covalent Hsp90-targeted disruption of the Hsp90-Cdc37 complex, offering a novel mechanistic approach to cancer treatment.
Collapse
Affiliation(s)
- Zi-Wen Feng
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Li
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing 210029, China
| | - Shi-Duo Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ying-Ji Wang
- Department of Pharmaceutical Analysis, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yue Pei
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nan-Nan Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bei-Duo Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiu-Ling Zheng
- Department of Pharmaceutical Analysis, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Moon M, Pyeon M, Yang J, Yun J, Yeom HD, Lee MH, Lee G, Lee JH. Subtype-selective effect and molecular regulation of celastrol and triptolide at human nicotinic acetylcholine receptors. Chem Biol Interact 2025; 408:111412. [PMID: 39914504 DOI: 10.1016/j.cbi.2025.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/12/2025]
Abstract
Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungmi Moon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Minsu Pyeon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Jaehui Yang
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Jeongyeon Yun
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | | | - Mee-Hyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea
| | - Gihyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea.
| | - Junho H Lee
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
6
|
Yang J, He B, Dang L, Liu J, Liu G, Zhao Y, Yu P, Wang Q, Wang L, Xin W. Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis. Inflammation 2025; 48:346-360. [PMID: 38874810 DOI: 10.1007/s10753-024-02060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Biyao He
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longjiao Dang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Guohao Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuwei Zhao
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Pengfei Yu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lei Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
7
|
Gardner SM, Vogt A, Penning TM, Marmorstein R. Substrate specificity and kinetic mechanism of 3β-hydroxy-Δ 5-C 27-steroid oxidoreductase. J Biol Chem 2024; 300:107945. [PMID: 39505210 DOI: 10.1016/j.jbc.2024.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Cholesterol is a key sterol whose homeostasis is primarily maintained through bile acid metabolism. Proper bile acid formation is vital for nutrient and fat-soluble vitamin absorption and emulsification of lipids. Synthesis of bile acids occurs through two main pathways, both of which rely on 3β-hydroxy-Δ5-C27-steroid oxidoreductase (HSD3B7) to begin epimerization of the 3β hydroxyl of cholesterol into its active 3α conformation. In this sequence, HSD3B7 catalyzes the dehydrogenation of the 3β-hydroxy group followed by isomerization of the Δ5-cholestene-3-one. These reactions are some of the many steps that transform cholesterol for either storage or secretion. HSD3B7 has distinct activity from other 3β-HSD family members leaving significant gaps in our understanding of its mode of catalysis and substrate specificity. In addition, the role of HSD3B7 in health and disease positions it as a metabolic vulnerability that could be harnessed as a therapeutic target. To this end, we evaluated the mechanism of HSD3B7 catalysis and reveal that HSD3B7 displays activity toward diverse 7α-hydroxylated oxysterols. HSD3B7 retains its catalytic efficiency toward these substrates, suggesting that its substrate binding pocket can withstand changes in polarity upon alterations to this hydrocarbon tail. Experiments aimed at determining substrate order are consistent with HSD3B7 catalyzing a sequential ordered bi-bi reaction mechanism with the binding of NAD+ followed by 7α-hydroxycholesterol to form a central complex. HSD3B7 bifunctional activity is dependent on membrane localization through a putative membrane-associated helix giving insight into potential regulation of enzyme activity. We found strong binding of the NADH product thought to activate the isomerization reaction. Homology models of HSD3B7 reveal a potential substrate pocket that allows for oxysterol binding, and mutagenesis was utilized to support this model. Together, these studies offer an understanding of substrate specificity and kinetic mechanism of HSD3B7, which can be exploited for future drug development.
Collapse
Affiliation(s)
- Sarah M Gardner
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Austin Vogt
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia Pennsylvania, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trevor M Penning
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia Pennsylvania, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Yang F, Zhou H, Luo P, Jia L, Hou M, Huang J, Gao L, Zhang Q, Guan Y, Bao H, Zhang B, Liu L, Zou C, Yang Q, Wang J, Dai L. Celastrol induces DNA damage and cell death in BCR-ABL T315I-mutant CML by targeting YY1 and HMCES. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155937. [PMID: 39255723 DOI: 10.1016/j.phymed.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is driven primarily by the constitutively active BCR-ABL fusion oncoprotein. Although the development of tyrosine kinase inhibitors has markedly improved the prognosis of CML patients, it remains a significant challenge to overcome drug-resistant mutations, such as the T315I mutation of BCR-ABL, and achieve treatment-free remission in the clinic. PURPOSE The identification of new intervention targets beyond BCR-ABL could provide new perspectives for future research and therapeutic intervention. A network pharmacology analysis was conducted to identify the most promising natural product with anti-CML activity. Celastrol was selected for further analysis to gain insights into its mechanism of action (MoA), with the aim of identifying potential new intervention targets for BCR-ABL T315I-mutant CML. METHODS Transcriptomic and proteomic analyses were conducted to systematically investigate the molecular MoA of celastrol in K562T315I cells. To identify the target proteins of celastrol, mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) was carried out, followed by validations with genetic knockdown and overexpression, cell proliferation assay, comet assay, Western blotting, celastrol probe-based in situ labeling and pull-down assay, molecular docking, and biolayer interferometry. RESULTS Our multi-omics analyses revealed that celastrol primarily induces DNA damage accumulation and the unfolded protein response in K562T315I cells. Among the twelve most potential celastrol targets, experimental evidence demonstrated that the direct interaction of celastrol with YY1 and HMCES increases the levels of DNA damage, leading to cell death. CONCLUSION This study represents the first investigation utilizing a proteome-wide label-free target deconvolution approach, MS-CETSA, to identify the protein targets of celastrol. This study also develops a new systems pharmacology strategy. The findings provide new insights into the multifaceted mechanisms of celastrol and, more importantly, highlight the potential of targeting proteins in DNA damage and repair pathways, particularly YY1 and HMCES, to combat drug-resistant CML.
Collapse
Affiliation(s)
- Fan Yang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Hongchao Zhou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Mengyun Hou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jingnan Huang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Lin Gao
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yudong Guan
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Honglei Bao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Baotong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China
| | - Liping Liu
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Chang Zou
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Qinhe Yang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jigang Wang
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lingyun Dai
- Department of General Surgery, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen 518020, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
9
|
Abdullah O, Omran Z. Geldanamycins: Potent Hsp90 Inhibitors with Significant Potential in Cancer Therapy. Int J Mol Sci 2024; 25:11293. [PMID: 39457075 PMCID: PMC11509085 DOI: 10.3390/ijms252011293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Geldanamycin, an ansa-macrolide composed of a rigid benzoquinone ring and an aliphatic ansa-bridge, was isolated from Streptomyces hygroscopicus. Geldanamycin is a potent heat shock protein inhibitor with remarkable antiproliferative activity. However, it shows pronounced hepatotoxicity in animal models and unfavorable pharmacokinetic properties. Four geldanamycin analogs have progressed through various phases of clinical trials, but none have yet completed clinical evaluation or received FDA approval. To enhance the efficacy of these Hsp90 inhibitors, strategies such as prodrug approaches or nanocarrier delivery systems could be employed to minimize systemic and organ toxicity. Furthermore, exploring new drug combinations may help overcome resistance, potentially improving therapeutic outcomes. This review discusses the mechanism of action of geldanamycin, its pharmacokinetic properties, and the various approaches employed to alleviate its toxicity and maximize its clinical efficacy. The main focus is on those derivatives that have progressed to clinical trials or that have shown important in vivo activity in preclinical models.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ziad Omran
- King Abdullah International Medical Research Center, King Saud Bin Abdelaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| |
Collapse
|
10
|
Yang Y, Tse YS, Zhang Q, Wong KY, Yang C, Yang Y, Li S, Lau KW, Charles TC, Lam TC, Zhao Q. Multiplexed Target Profiling with Integrated Chemical Genomics and Chemical Proteomics. J Med Chem 2024; 67:17542-17550. [PMID: 39340453 DOI: 10.1021/acs.jmedchem.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds' perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
| | - Yin-Suen Tse
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong, SAR 999077, China
| | - Qi Zhang
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
| | - Kin-Yau Wong
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Chenxi Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Shuqi Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Kin-Wa Lau
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| | - Trevor C Charles
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Thomas C Lam
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, SAR 999077, China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, China
| |
Collapse
|
11
|
Dernovšek J, Gradišek N, Zajec Ž, Urbančič D, Cingl J, Goričan T, Grdadolnik SG, Tomašič T. Discovery of new Hsp90-Cdc37 protein-protein interaction inhibitors: in silico screening and optimization of anticancer activity. RSC Adv 2024; 14:28347-28375. [PMID: 39239280 PMCID: PMC11375794 DOI: 10.1039/d4ra05878j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
The interaction between heat shock protein 90 (Hsp90) and Hsp90 co-chaperone cell-division cycle 37 (Cdc37) is crucial for the folding and maturation of several oncogenic proteins, particularly protein kinases. This makes the inhibition of this protein-protein interaction (PPI) an interesting target for developing new anticancer compounds. However, due to the large interaction surface, developing PPI inhibitors is challenging. In this work, we describe the discovery of new Hsp90-Cdc37 PPI inhibitors using a ligand-based virtual screening approach. Initial hit compounds showed Hsp90 binding, resulting in anticancer activity in the MCF-7 breast cancer cell line. To optimize their antiproliferative effect, 35 analogs were prepared. Binding affinity for Hsp90 was determined for the most promising compounds, 8c (K d = 70.8 μM) and 13g (K d = 73.3 μM), both of which interfered with the binding of Cdc37 to Hsp90. This resulted in anticancer activity against Ewing sarcoma (SK-N-MC), breast cancer (MCF-7), and leukemia (THP-1) cell lines in vitro. Furthermore, compounds 8c and 13g demonstrated the ability to induce apoptosis in the Ewing sarcoma cell line and caused a decrease in the levels of several known Hsp90 client proteins in MCF-7 cells, all without inducing the heat shock response.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Nina Gradišek
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Jernej Cingl
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry Hajdrihova 19 1001 Ljubljana Slovenia
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry Hajdrihova 19 1001 Ljubljana Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana Aškerčeva cesta 7 1000 Ljubljana Slovenia
| |
Collapse
|
12
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
13
|
Li H, Li Y, Zhang L, Wang N, Lu D, Tang D, Lv Y, Zhang J, Yan H, Gong H, Zhang M, Nie K, Hou Y, Yu Y, Xiao H, Liu C. Prodrug-inspired adenosine triphosphate-activatable celastrol-Fe(III) chelate for cancer therapy. SCIENCE ADVANCES 2024; 10:eadn0960. [PMID: 38996025 PMCID: PMC11244545 DOI: 10.1126/sciadv.adn0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.
Collapse
Affiliation(s)
- Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingpu Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Nan Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Lu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinbo Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Heben Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Gong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing 102206,China
| | - Kaili Nie
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Ni Z, Shi Y, Liu Q, Wang L, Sun X, Rao Y. Degradation-Based Protein Profiling: A Case Study of Celastrol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308186. [PMID: 38664976 PMCID: PMC11220716 DOI: 10.1002/advs.202308186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Indexed: 07/04/2024]
Abstract
Natural products, while valuable for drug discovery, encounter limitations like uncertainty in targets and toxicity. As an important active ingredient in traditional Chinese medicine, celastrol exhibits a wide range of biological activities, yet its mechanism remains unclear. In this study, they introduced an innovative "Degradation-based protein profiling (DBPP)" strategy, which combined PROteolysis TArgeting Chimeras (PROTAC) technology with quantitative proteomics and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques, to identify multiple targets of natural products using a toolbox of degraders. Taking celastrol as an example, they successfully identified its known targets, including inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3Kα), and cellular inhibitor of PP2A (CIP2A), as well as potential new targets such as checkpoint kinase 1 (CHK1), O-GlcNAcase (OGA), and DNA excision repair protein ERCC-6-like (ERCC6L). Furthermore, the first glycosidase degrader is developed in this work. Finally, by employing a mixed PROTAC toolbox in quantitative proteomics, they also achieved multi-target identification of celastrol, significantly reducing costs while improving efficiency. Taken together, they believe that the DBPP strategy can complement existing target identification strategies, thereby facilitating the rapid advancement of the pharmaceutical field.
Collapse
Affiliation(s)
- Zhihao Ni
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Yi Shi
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Qianlong Liu
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Liguo Wang
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | | | - Yu Rao
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
- Changping LaboratoryBeijing102206China
| |
Collapse
|
15
|
Jia L, Zhu S, Zhu M, Nie R, Huang L, Xu S, Luo Y, Su H, Huang S, Tan Q. Celastrol inhibits angiogenesis and the biological processes of MDA-MB-231 cells via the DEGS1/S1P signaling pathway. Biol Chem 2024; 405:267-281. [PMID: 38081222 DOI: 10.1515/hsz-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 04/02/2024]
Abstract
Celastrol (Cel) shows potent antitumor activity in various experimental models. This study examined the relationship between Cel's antivascular and antitumor effects and sphingolipids. CCK-8 assay, transwell assay, Matrigel, PCR-array/RT-PCR/western blotting/immunohistochemistry assay, ELISA and HE staining were used to detect cell proliferation, migration and invasion, adhesion and angiogenesis, mRNA and protein expression, S1P production and tumor morphology. The results showed that Cel could inhibit proliferation, migration or invasion, adhesion and angiogenesis of human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 cells by downregulating the expression of degenerative spermatocyte homolog 1 (DEGS1). Transfection experiments showed that downregulation of DEGS1 inhibited the above processes and sphingosine-1-phosphate (S1P) production of HUVECs and MDA-MB-231 cells, while upregulation of DEGS1 had the opposite effects. Coculture experiments showed that HUVECs could promote proliferation, migration and invasion of MDA-MB-231 cells through S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway, while Cel inhibited these processes in MDA-MB-231 cells induced by HUVECs. Animal experiments showed that Cel could inhibit tumor growth in nude mice. Western blotting, immunohistochemistry and ELISA assay showed that Cel downregulated the expression of DEGS1, CD146, S1PR1-3 and S1P production. These data confirm that DEGS1/S1P signaling pathway may be related to the antivascular and antitumor effects of cel.
Collapse
Affiliation(s)
- Lulu Jia
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Shengnan Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Mingfei Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Rongrong Nie
- Rehabilitation Department, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Lingyue Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Siyuan Xu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Yuqin Luo
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Huazhen Su
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Shaoyuan Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Qinyou Tan
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001 Guilin, Guangxi Province, China
| |
Collapse
|
16
|
Kohlmann P, Krylov SN, Marchand P, Jose J. FRET Assays for the Identification of C. albicans HSP90-Sba1 and Human HSP90α-p23 Binding Inhibitors. Pharmaceuticals (Basel) 2024; 17:516. [PMID: 38675476 PMCID: PMC11053944 DOI: 10.3390/ph17040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock protein 90 (HSP90) is a critical target for anticancer and anti-fungal-infection therapies due to its central role as a molecular chaperone involved in protein folding and activation. In this study, we developed in vitro Förster Resonance Energy Transfer (FRET) assays to characterize the binding of C. albicans HSP90 to its co-chaperone Sba1, as well as that of the homologous human HSP90α to p23. The assay for human HSP90α binding to p23 enables selectivity assessment for compounds aimed to inhibit the binding of C. albicans HSP90 to Sba1 without affecting the physiological activity of human HSP90α. The combination of the two assays is important for antifungal drug development, while the assay for human HSP90α can potentially be used on its own for anticancer drug discovery. Since ATP binding of HSP90 is a prerequisite for HSP90-Sba1/p23 binding, ATP-competitive inhibitors can be identified with the assays. The specificity of binding of fusion protein constructs-HSP90-mNeonGreen (donor) and Sba1-mScarlet-I (acceptor)-to each other in our assay was confirmed via competitive inhibition by both non-labeled Sba1 and known ATP-competitive inhibitors. We utilized the developed assays to characterize the stability of both HSP90-Sba1 and HSP90α-p23 affinity complexes quantitatively. Kd values were determined and assessed for their precision and accuracy using the 95.5% confidence level. For HSP90-Sba1, the precision confidence interval (PCI) was found to be 70-120 (100 ± 20) nM while the accuracy confidence interval (ACI) was 100-130 nM. For HSP90α-p23, PCI was 180-260 (220 ± 40) nM and ACI was 200-270 nM. The developed assays were used to screen a nucleoside-mimetics library of 320 compounds for inhibitory activity against both C. albicans HSP90-Sba1 and human HSP90α-p23 binding. No novel active compounds were identified. Overall, the developed assays exhibited low data variability and robust signal separation, achieving Z factors > 0.5.
Collapse
Affiliation(s)
- Philip Kohlmann
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| | - Sergey N. Krylov
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada;
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France;
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
17
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
19
|
Zhang Q, Yan L, Zhang Y, Zhang L, Yu J, You Q, Wang L. Rational design of peptide inhibitors targeting HSP90-CDC37 protein-protein interaction. Future Med Chem 2024; 16:125-138. [PMID: 38189168 DOI: 10.4155/fmc-2023-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background: Specifically blocking HSP90-CDC37 interaction is emerging as a prospective strategy for cancer therapy. Aim: Applying a kinase pseudopeptide rationale to the discovery of HSP90-CDC37 protein-protein interaction (PPI) inhibitors. Methods: Pseudosubstrates were identified through sequence alignment and evaluated by biolayer interferometry assay, co-immunoprecipitation assay and antiproliferation assay. Results: TAT-DDO-59120 was identified to disrupt HSP90-CDC37 PPI through directly binding to HSP90, both extracellularly and intracellularly. In addition, the identified peptide showed ideal antiproliferative activity against the colorectal cancer cell HCT116 (IC50 = 12.82 μM). Conclusion: Compared with the traditional method of screening a large compound library to identify PPI inhibitors, this method is rapid and efficient with strong purpose, which provides a novel strategy for designing HSP90-CDC37 PPI inhibitors.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling Yan
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxuan Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixiao Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines & Jiangsu Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
20
|
Shahraki K, Boroumand PG, Lotfi H, Radnia F, Shahriari H, Sargazi S, Mortazavi SS, Shirvaliloo M, Shirvalilou S, Sheervalilou R. An update in the applications of exosomes in cancer theranostics: from research to clinical trials. J Cancer Res Clin Oncol 2023; 149:8087-8116. [PMID: 37010586 DOI: 10.1007/s00432-023-04701-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023]
Abstract
Exosomes are nanosized extracellular vesicles secreted by nearly all viable cells following the fusing of multivesicular bodies and the plasma membrane and discharged into the encircling bodily fluids. Exosomes can transport cell-specific components from the source cell to the target cell. Given the enormous potential of exosomes as non-invasive diagnostic biomarkers and therapeutic nanovehicles. Lately, accumulated evidence has demonstrated that exosomes serve an important role in prognosis, diagnosis, and even treatment strategies. While several reviews have collective information on the biomedical application of exosomes, a comprehensive review incorporating updated and improved methodologies for beneficial applications of such vesicles in cancer theranostics is indispensable. In the current review, we first provided a comprehensive review of the introduction of exosomes, featuring their discovery, separation, characterization, function, biogenesis, secretion. The implications of exosomes as promising nanovehicles for drug and gene delivery, application of exosome inhibitors in the management of cancers, completed and ongoing clinical trials on the biological relevance of exosomes are then discussed in detail. As the field of exosome research grows, a better understanding of the subcellular parts and mechanisms involved in exosome secretion and targeting of specific cells will help figure out what their exact physiological functions are in the body.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT-Head and Neck Surgery Research Center and Department, Rasool Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Radnia
- Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Shahriari
- Department of Immunology, School of Medicine, Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
21
|
Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther 2023; 8:51. [PMID: 36732502 PMCID: PMC9895061 DOI: 10.1038/s41392-022-01231-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023] Open
Abstract
As a terpenoids natural product isolated from the plant Thunder God Vine, Celastrol is widely studied for its pharmacological activities, including anti-tumor activities. The clinical application of Celastrol is strictly limited due to its severe side effects, whereas previously revealed targets and mechanism of Celastrol seldom reduce its in vivo toxicity via structural optimization. Target identification has a far-reaching influence on the development of innovative drugs, and omics data has been widely used for unbiased target prediction. However, it is difficult to enrich target of specific phenotype from thousands of genes or proteins, especially for natural products with broad promising activities. Here, we developed a text-mining-based web-server tool to enrich targets from omics data of inquired compounds. Then peroxiredoxin 1 (PRDX1) was identified as the ROS-manipulating target protein of Celastrol in colorectal cancer. Our solved high-resolution crystal structure revealed the unique covalent binding mode of Celastrol with PRDX1. New derivative compound 19-048 with improved potency against PRDX1 and selectivity towards PRDX2~PRDX6 were synthesized based on crystal structure analysis. Both Celastrol and 19-048 effectively suppressed the proliferation of colorectal cancer cells. The anti-tumor efficacy of Celastrol and 19-048 was significantly diminished on xenograft nude mice bearing PRDX1 knock-down colorectal cancer cells. Several downstream genes of p53 signaling pathway were dramatically up-regulated with Celastrol or 19-048 treatment. Our findings reveal that the side effects of Celastrol could be reduced via structural modification, and PRDX1 inhibition is promising for the treatment of colorectal cancer.
Collapse
|
22
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Cox D, Ormsby AR, Reid GE, Hatters DM. Protein painting reveals pervasive remodeling of conserved proteostasis machinery in response to pharmacological stimuli. NPJ Syst Biol Appl 2022; 8:46. [DOI: 10.1038/s41540-022-00256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractThe correct spatio-temporal organization of the proteome is essential for cellular homeostasis. However, a detailed mechanistic understanding of this organization and how it is altered in response to external stimuli in the intact cellular environment is as-yet unrealized. ‘Protein painting methods provide a means to address this gap in knowledge by monitoring the conformational status of proteins within cells at the proteome-wide scale. Here, we demonstrate the ability of a protein painting method employing tetraphenylethene maleimide (TPE-MI) to reveal proteome network remodeling in whole cells in response to a cohort of commonly used pharmacological stimuli of varying specificity. We report specific, albeit heterogeneous, responses to individual stimuli that coalesce on a conserved set of core cellular machineries. This work expands our understanding of proteome conformational remodeling in response to cellular stimuli, and provides a blueprint for assessing how these conformational changes may contribute to disorders characterized by proteostasis imbalance.
Collapse
|
24
|
Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites 2022; 12:1153. [PMID: 36422293 PMCID: PMC9697676 DOI: 10.3390/metabo12111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 09/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nusrat Jahan Selsi
- Product Development Department, Popular Pharmaceuticals Ltd., Dhaka 1207, Bangladesh
| | - Nasrin Akter
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University Bangladesh, Dhaka 1212, Bangladesh
| | - Md Nazim Uddin
- Department of Pharmacy, Southern University Bangladesh, Chittagong 4000, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
25
|
Zhou Y, Li M, Shen T, Yang T, Shi G, Wei Y, Chen C, Wang D, Wang Y, Zhang T. Celastrol Targets Cullin-Associated and Neddylation-Dissociated 1 to Prevent Fibroblast-Myofibroblast Transformation against Pulmonary Fibrosis. ACS Chem Biol 2022; 17:2734-2743. [PMID: 36076154 DOI: 10.1021/acschembio.2c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Celastrol (CEL), a pentacyclic triterpene compound, has been proven to have a definite antipulmonary fibrosis effect. However, its direct targets for antipulmonary fibrosis remain unknown. In this study, we designed and synthesized a series of celastrol-based probes to identify the direct targets in human pulmonary fibroblasts using an activity-based protein profiling strategy. Among many fished targets, we identified a key protein, cullin-associated and neddylation-dissociated 1 (CAND1), which was involved in fibroblast-myofibroblast transformation (FMT). More importantly, we found that the inhibitory effect of celastrol on FMT is dependent on CAND1, through improving the interactions between CAND1 and Cullin1 to promote the activity of Skp1/Cullin1/F-box ubiquitin ligases. In silico studies and cysteine mutation experiments further demonstrated that Cys264 of CAND1 is the site for conjugation of celastrol. This reveals a new mechanism of celastrol against pulmonary fibrosis and may provide a novel therapeutic option for antipulmonary fibrosis.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Manru Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tianming Yang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yazi Wei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
26
|
Dou X, Patel BA, D'Amico T, Subramanian C, Cousineau E, Yi Y, Cohen M, Blagg BSJ. Synthesis and Evaluation of Simplified Cruentaren A Analogues. J Org Chem 2022; 87:9940-9956. [PMID: 35894845 DOI: 10.1021/acs.joc.2c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 90 kDa heat shock protein (Hsp90) belongs to a group of molecular chaperones that regulate homeostasis via the folding of nascent polypeptides into their biologically active proteins, many of which are involved in cancer development and progression. As a result, inhibition of Hsp90 is an exciting area of research for the treatment of cancer. However, most of the 18 Hsp90 N-terminal inhibitors evaluated in clinical trials exhibited deleterious side effects and toxicities. Cruentaren A is a natural product that manifests potent anticancer activity against various human cancer cell lines via disruption of interactions between Hsp90α and F1FO ATP synthase, which does not induce the pro-survival, heat shock response, a major limitation associated with current Hsp90 inhibitors. However, the development of cruentaren A as a new anticancer agent has been hindered by its complex structure. Herein, we systematically removed the functionalities present in fragment 2 of cruentaren A and incorporated some key structural modifications from previous work, which produced 12 simplified analogues. Our studies determined that all functional groups present in fragment 2 are essential for cruentaren A's anticancer activity.
Collapse
Affiliation(s)
- Xiaozheng Dou
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bhargav A Patel
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Terin D'Amico
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Chitra Subramanian
- General Surgery Clinic, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eric Cousineau
- General Surgery Clinic, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yi Yi
- Global Blood Therapeutics, San Francisco, California 94080, United States
| | - Mark Cohen
- General Surgery Clinic, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
27
|
Cheng CJ, Liu KX, Zhang M, Shen FK, Ye LL, Wu WB, Hou XT, Hao EW, Hou YY, Bai G. Okicamelliaside targets the N-terminal chaperone pocket of HSP90 disrupts the chaperone protein interaction of HSP90-CDC37 and exerts antitumor activity. Acta Pharmacol Sin 2022; 43:1046-1058. [PMID: 34326484 PMCID: PMC8976057 DOI: 10.1038/s41401-021-00737-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Heat shock protein 90 (HSP90) has been recognized as a crucial target in cancer cells. However, various toxic reactions targeting the ATP binding site of HSP90 may not be the best choice for HSP90 inhibitors. In this paper, an ellagic acid derivative, namely, okicamelliaside (OCS), with antitumor effects was found. To identify potential anti-cancer mechanisms, an OCS photosensitive probe was applied to target fishing and tracing. Chemical proteomics and protein-drug interaction experiments have shown that HSP90 is a key target for OCS, with a strong binding affinity (KD = 6.45 μM). Mutation analysis of the target protein and molecular dynamics simulation revealed that OCS could competitively act on the key Glu-47 site at the N-terminal chaperone pocket of HSP90, where the co-chaperone CDC37 binds to HSP90, affect its stability and reduce the ∆Gbind of HSP90-CDC37. It was demonstrated that OCS destroys the protein-protein interactions of HSP90-CDC37; selectively affects downstream kinase client proteins of HSP90, including CDK4, P-AKT473, and P-ERK1/2; and exerts antitumor effects on A549 cells. Furthermore, tumor xenograft experiments demonstrated high antitumor activity and low toxicity of OCS in the same way. Our findings identified a novel N-terminal chaperone pocket natural inhibitor of HSP90, that is, OCS, which selectively inhibits the formation of the HSP90-CDC37 protein complex, and provided further insight into HSP90 inhibitors for anti-cancer candidate drugs.
Collapse
Affiliation(s)
- Chuan-jing Cheng
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Kai-xin Liu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Man Zhang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Fu-kui Shen
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Li-li Ye
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Wen-bo Wu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Xiao-tao Hou
- grid.411858.10000 0004 1759 3543Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese medicine, Nanning, 530200 China ,grid.411858.10000 0004 1759 3543China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, 530200 China
| | - Er-wei Hao
- grid.411858.10000 0004 1759 3543Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese medicine, Nanning, 530200 China ,grid.411858.10000 0004 1759 3543China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, 530200 China
| | - Yuan-yuan Hou
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China
| | - Gang Bai
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353 China ,grid.411858.10000 0004 1759 3543China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, 530200 China
| |
Collapse
|
28
|
Huang W, Li JY, Wu YY, Liao TL, Nielsen BL, Liu HJ. p17-Modulated Hsp90/Cdc37 Complex Governs Oncolytic Avian Reovirus Replication by Chaperoning p17, Which Promotes Viral Protein Synthesis and Accumulation of Viral Proteins σC and σA in Viral Factories. J Virol 2022; 96:e0007422. [PMID: 35107368 PMCID: PMC8941905 DOI: 10.1128/jvi.00074-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
In this work we have determined that heat shock protein 90 (Hsp90) is essential for avian reovirus (ARV) replication by chaperoning the ARV p17 protein. p17 modulates the formation of the Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation. Inhibition of the Hsp90/Cdc37 complex by inhibitors (17-N-allylamino-17-demethoxygeldanamycin 17-AGG, and celastrol) or short hairpin RNAs (shRNAs) significantly reduced expression levels of viral proteins and virus yield, suggesting that the Hsp90/Cdc37 chaperone complex functions in virus replication. The expression levels of p17 were decreased at the examined time points (2 to 7 h and 7 to 16 h) in 17-AAG-treated cells in a dose-dependent manner while the expression levels of viral proteins σA, σC, and σNS were decreased at the examined time point (7 to 16 h). Interestingly, the expression levels of σC, σA, and σNS proteins increased along with coexpression of p17 protein. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability, maturation, and virus production. Virus factories of ARV are composed of nonstructural proteins σNS and μNS. We found that the Hsp90/Cdc37 chaperone complex plays an important role in accumulation of the outer-capsid protein σC, inner core protein σA, and nonstructural protein σNS of ARV in viral factories. Depletion of Hsp90 inhibited σA, σC, and p17 proteins colocalized with σNS in viral factories. This study provides novel insights into p17-modulated formation of the Hsp90/Cdc37 chaperone complex governing virus replication via stabilization and maturation of viral proteins and accumulation of viral proteins in viral factories for virus assembly. IMPORTANCE Molecular mechanisms that control stabilization of ARV proteins and the intermolecular interactions among inclusion components remain largely unknown. Here, we show that the ARV p17 is an Hsp90 client protein. The Hsp90/Cdc37 chaperone complex is essential for ARV replication by protecting p17 chaperone from ubiquitin-proteasome degradation. p17 modulates the formation of Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation, suggesting a feedback loop between p17 and the Hsp90/Cdc37 chaperone complex. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability and virus production. Depletion of Hsp90 prevented viral proteins σA, σC, and p17 from colocalizing with σNS in viral factories. Our findings elucidate that the Hsp90/Cdc37 complex chaperones p17, which, in turn, promotes the synthesis of viral proteins σA, σC, and σNS and facilitates accumulation of the outer-capsid protein σC and inner core protein σA in viral factories for virus assembly.
Collapse
Affiliation(s)
- Wei‐Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jyun-Yi Li
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
29
|
Geng Y, Xu J, Li W, Li Q, Shen C, Deng Z, Zhou Y. Chemoproteomic profiling reveals celastrol as a potential modulator of cholesterol signaling. Chem Commun (Camb) 2022; 58:1914-1917. [PMID: 35040838 DOI: 10.1039/d1cc05986f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report a quantitative chemoproteomic approach that utilizes a clickable photoreactive probe for global profiling of celastrol targets, which may significantly improve the current understanding of celastrol's mode of action.
Collapse
Affiliation(s)
- Yiyun Geng
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China.
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China.
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China. .,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chenjinxin Shen
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China.
| | - Zhangshuang Deng
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China. .,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
Zhang M, Cui J, Shen F, Ye L, Cheng C, Li Y, Zhang Q, Niu L, Hou Y, Bai G. A novel mode of action for COX‐2 inhibition: Targeting ATPase domain of HSP90 induces ubiquitin degradation of new client protein COX‐2. Clin Transl Med 2022; 12:e705. [PMID: 35075789 PMCID: PMC8787097 DOI: 10.1002/ctm2.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Jing Cui
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Lili Ye
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Qiuyang Zhang
- Thompson Rivers University Manna British Columbia Canada
| | - Lin Niu
- Tianjin University of Traditional Chinese Medicine Tianjin People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin People's Republic of China
| |
Collapse
|
31
|
Durairajan SSK, Selvarasu K, Bera MR, Rajaram K, Iyaswamy A, Li M. Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-derived Compounds in Alleviating Tau-mediated Neurodegeneration. Curr Mol Pharmacol 2022; 15:361-379. [PMID: 34488602 DOI: 10.2174/1874467214666210906125318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick's disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recent unsuccessful phase III clinical trials related to Aβ- targeted therapeutic drugs have indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies focused on medicinal plant- derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We have mainly considered the studies focused on Tau protein as a therapeutic target. We have reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Karthikeyan Selvarasu
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Minu Rani Bera
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Kaushik Rajaram
- Mycobiology and Neurodegenerative Disease Research Lab, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
32
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
33
|
Schiavone S, Morgese MG, Tucci P, Trabace L. The Therapeutic Potential of Celastrol in Central Nervous System Disorders: Highlights from In Vitro and In Vivo Approaches. Molecules 2021; 26:molecules26154700. [PMID: 34361850 PMCID: PMC8347599 DOI: 10.3390/molecules26154700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Celastrol, the most abundant compound derived from the root of Tripterygium wilfordii, largely used in traditional Chinese medicine, has shown preclinical and clinical efficacy for a broad range of disorders, acting via numerous mechanisms, including the induction of the expression of several neuroprotective factors, the inhibition of cellular apoptosis, and the decrease of reactive oxygen species (ROS). Given the crucial implication of these pathways in the pathogenesis of Central Nervous System disorders, both in vitro and in vivo studies have focused their attention on the possible use of this compound in these diseases. However, although most of the available studies have reported significant neuroprotective effects of celastrol in cellular and animal models of these pathological conditions, some of these data could not be replicated. This review aims to discuss current in vitro and in vivo lines of evidence on the therapeutic potential of celastrol in neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, and cadmium-induced neurodegeneration, as well as in psychiatric disorders, such as psychosis and depression. In vitro and in vivo studies focused on celastrol effects in cerebral ischemia, ischemic stroke, traumatic brain injury, and epilepsy are also described.
Collapse
|
34
|
Coghi P, Ng JPL, Kadioglu O, Law BYK, Qiu AC, Saeed MEM, Chen X, Ip CK, Efferth T, Liu L, Wong VKW. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy. Eur J Med Chem 2021; 224:113676. [PMID: 34256125 DOI: 10.1016/j.ejmech.2021.113676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
A series of eleven celastrol derivatives was designed, synthesized, and evaluated for their in vitro cytotoxic activities against six human cancer cell lines (A549, HepG2, HepAD38, PC3, DLD-1 Bax-Bak WT and DKO) and three human normal cells (LO2, BEAS-2B, CCD19Lu). To our knowledge, six derivatives were the first example of dipeptide celastrol derivatives. Among them, compound 3 was the most promising derivative, as it exhibited a remarkable anti-proliferative activity and improved selectivity in liver cancer HepAD38 versus human normal hepatocytes, LO2. Compound 6 showed higher selectivity in liver cancer cells against human normal lung fibroblasts, CCD19Lu cell line. The Ca2+ mobilizations of 3 and 6 were also evaluated in the presence and absence of thapsigargin to demonstrate their inhibitory effects on SERCA. Derivatives 3 and 6 were found to induce apoptosis on LO2, HepG2 and HepAD38 cells. The potential docking poses of all synthesized celastrol dipeptides and other known inhibitors were proposed by molecular docking. Finally, 3 inhibited P-gp-mediated drug efflux with greater efficiency than inhibitor verapamil in A549 lung cancer cells. Therefore, celastrol-dipeptide derivatives are potent drug candidates for the treatment of drug-resistant cancer.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Alena Congling Qiu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chi Kio Ip
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
35
|
Jing M, Yang J, Zhang L, Liu J, Xu S, Wang M, Zhang L, Sun Y, Yan W, Hou G, Wang C, Xin W. Celastrol inhibits rheumatoid arthritis through the ROS-NF-κB-NLRP3 inflammasome axis. Int Immunopharmacol 2021; 98:107879. [PMID: 34147915 DOI: 10.1016/j.intimp.2021.107879] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022]
Abstract
Emerging evidence indicates that NOD-like receptor protein 3 (NLRP3) inflammasome-induced inflammation plays a critical role in the pathogenesis of rheumatoid arthritis (RA). Celastrol (Cel) is a quinone-methylated triterpenoid extracted from Tripterygium wilfordii that is used to treat RA. However, researchers have not determined whether Cel exerts anti-RA effects by regulating the activation of the NLRP3 inflammasome. In the present study, complete Freund's adjuvant (CFA)- induced rats and human mononuclear macrophages (THP-1 cells) were used to explore the anti-RA effects of Cel and its underlying mechanism. Joint swelling, the arthritis index score, inflammatory cell infiltration, and synovial hyperplasia in CFA-induced rats were correspondingly reduced after Cel treatment. The secretion of interleukin (IL)-1β and IL-18 in the serum of CFA-induced rats and supernatants of THP-1 cells exposed to Cel was significantly decreased. These inhibitory effects occurred because Cel blocked the nuclear factor-kappa B (NF-κB) signaling pathway and inhibited the activation of the NLRP3 inflammasome. Furthermore, Cel inhibited reactive oxygen species (ROS) production induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). We speculated that Cel relieves RA symptoms and inhibits inflammation by inhibiting the ROS-NF-κB-NLRP3 axis.
Collapse
Affiliation(s)
- Ming Jing
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Lirong Zhang
- Qingdao Jimo People's Hospital, Qingdao 266200, Shandong, China
| | - Jing Liu
- Qingdao Jimo People's Hospital, Qingdao 266200, Shandong, China
| | - Sen Xu
- Department of Clinical Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Meiling Wang
- Department of Clinical Medicine, Jining First People's Hospital, Jining 272011, Shandong, China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, Shandong, China
| | - Yue Sun
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Weibin Yan
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Guige Hou
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Chunhua Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| |
Collapse
|
36
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
37
|
Li L, Chen N, Xia D, Xu S, Dai W, Tong Y, Wang L, Jiang Z, You Q, Xu X. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Cell Chem Biol 2021; 28:1446-1459.e6. [PMID: 33932325 DOI: 10.1016/j.chembiol.2021.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 01/24/2023]
Abstract
Heat shock protein (Hsp90), a critical molecular chaperone that regulates the maturation of a large number of oncogenic client proteins, plays an essential role in the growth of neoplastic cells. Herein, DDO-6600 is identified to covalent modification of Cys598 on Hsp90 from in silico study and is verified by a series of biological assays. We demonstrated that DDO-6600 covalently bound to Cys598 on the Hsp90 C terminus and exhibited antiproliferative activities against multiple tumor cells without inhibiting ATPase activity. Further studies showed that DDO-6600 disrupted the interaction between Hsp90 and Cdc37, which induced the degradation of kinase client proteins in multiple tumor cell lines, promoted apoptosis, and inhibited cell motility. Our findings offer mechanic insights into the covalent modification of Hsp90 and provide an alternative strategy for the development of Hsp90 covalent regulators or chemical probes to explore the therapeutical potential of Hsp90.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dandan Xia
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Dai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer. Med Res Rev 2021; 42:156-182. [PMID: 33846988 DOI: 10.1002/med.21807] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Heat shock protein 90 (HSP90) is an indispensable molecular chaperone that facilitates the maturation of numerous oncoproteins in cancer cells, including protein kinases, ribonucleoproteins, steroid hormone receptors, and transcription factors. Although over 30 HSP90 inhibitors have steadily entered clinical trials, further clinical advancement has been restricted by their limited efficacy, inevitable heat shock response, and multiple side-effects, likely induced via an ATP inhibition mechanism. Since both ATP and various co-chaperones play essential roles in the HSP90 chaperone cycle to achieve integrated function, optimal therapeutics require an understanding of the dynamic interactions among HSP90, ATP, and cochaperones. To date, continuous research has promoted the exploration of the cochaperone cell division cycle 37 (CDC37) as a kinase-specific recognizer and has shown that the HSP90-CDC37-kinase complex is particularly relevant in cancers. Indeed, disrupting the HSP90-CDC37-kinase complex, rather than totally blocking the ATP function of HSP90, is emerging as an alternative way to avoid the limitations of current inhibitors. In this review, we first briefly introduce the HSP90-CDC37-kinase cycle and present the currently available approaches for inhibitor development targeting this cycle and provide insights into selective regulation of the kinase clients of HSP90 by more directional ways.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Zhu D, Li S, Chen C, Wang S, Zhu J, Kong L, Luo J. Tubocapsenolide A targets C-terminal cysteine residues of HSP90 to exert the anti-tumor effect. Pharmacol Res 2021; 166:105523. [PMID: 33667688 DOI: 10.1016/j.phrs.2021.105523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 01/29/2023]
Abstract
Heat shock protein 90 (HSP90) is a chaperone protein that has been shown to regulate cancer progression. As a result, HSP90 has emerged as an attractive target for cancer therapy. Tubocapsenolide A (TA) is an anti-tumor component isolated from Tubocapsicum anomalum. Although the anti-tumor activity of TA was considered to be related to HSP90, the binding site and deep anti-tumor mechanisms still need to be elucidated. In this study, we found that TA is a covalent inhibitor of HSP90, which inhibits HSP90 ATPase activity without blocking ATP binding. Further studies indicated that TA targets the C-terminal Cys521 site, which led to HSP90 partial oligomerization and hindered its anti-aggregation and refolding activity. The damage of the chaperone activity disrupted the interaction between HSP90 and its cochaperone CDC37 as well as its client proteins, thereby inducing cell cycle arrest and apoptosis. Moreover, TA was found to have therapeutic effects on the xenograft tumor model by inducing the degradation of HSP90 client proteins. Together, our results identified HSP90 as the direct target of TA for mediating the anti-tumor activity. TA could serve as a lead compound for developing novel HSP90 C-terminal covalent inhibitors with binding site different from the ATP-binding domain.
Collapse
Affiliation(s)
- Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Sibei Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jiangmin Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
40
|
Li N, Chen C, Zhu H, Shi Z, Sun J, Chen L. Discovery of novel celastrol-triazole derivatives with Hsp90-Cdc37 disruption to induce tumor cell apoptosis. Bioorg Chem 2021; 111:104867. [PMID: 33845380 DOI: 10.1016/j.bioorg.2021.104867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
To enhance the disruption of Hsp90-Cdc37, we designed and synthesized a series (27) of CEL-triazole derivatives. Most of the target compounds showed enhanced anti-proliferative activity on four cancer cell lines (MDA-MB-231, MCF-7, HepG2 and A459). Among them, compound 6 showed the best anti-proliferation (IC50 = 0.34 ± 0.01 μM) on MDA-MB-231. Pharmacological studies had found that compound 6 showed a higher ability to disrupt Hsp90-Cdc37 interaction in cells and inhibited the expression of the key Hsp90-Cdc37 clients in a concentration-dependent manner. Further studies indicated that an enhanced covalent binding between compound 6 and thiols (cysteine) might be one of the reasons for the increased activity. Furthermore, compound 6 arrested cells in the G0/G1 phase and induced tumor cell apoptosis significantly. Overall, for cancer treatment, compound 6 was worth further exploring.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Cheng Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Huiting Zhu
- National Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, People's Republic of China
| | - Zhixian Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
41
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
42
|
Xu M, Zhao C, Zhu B, Wang L, Zhou H, Yan D, Gu Q, Xu J. Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. J Med Chem 2021; 64:2010-2023. [PMID: 33543615 DOI: 10.1021/acs.jmedchem.0c01521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 is a new promising target for cancer treatment. Many inhibitors have been discovered as therapeutic agents, and some have passed Phase I and II. However, no one is approved by FDA yet. Novel and druggable Hsp90 inhibitors are still demanding. Here, we report a new way to discover high potent Hsp90 inhibitors as antinasopharyngeal carcinoma agents through assembling fragments. With chemotyping analysis, we extract seven chemotypes from 3482 known Hsp90 inhibitors, screen 500 fragments that are compatible with the chemotypes, and confirm 15 anti-Hsp90 fragments. Click chemistry is employed to construct 172 molecules and synthesize 21 compounds among them. The best inhibitor 3d was further optimized and resulted in more potent 4f (IC50 = 0.16 μM). In vitro and in vivo experiments confirmed that 4f is a promising agent against nasopharyngeal carcinoma. This study may provide a strategy in discovering new ligands against targets without well-understood structures.
Collapse
Affiliation(s)
- Mengyang Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chao Zhao
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Shenzhen Cell Inspire Therapeutics Co., Ltd., Shenzhen 518101, China
| | - Biying Zhu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liangyue Wang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Daoguang Yan
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbin Road, Jiangmen 529020, China
| |
Collapse
|
43
|
Zhao C, Peng C, Wang P, Fan S, Yan L, Qiu L. Identification of co-chaperone Cdc37 in Penaeus monodon: coordination with Hsp90 can reduce cadmium stress-induced lipid peroxidation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111800. [PMID: 33340955 DOI: 10.1016/j.ecoenv.2020.111800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Cell division cycle 37 (Cdc37) is an important cytoplasmic phosphoprotein, which usually functions as a complex with heat shock protein 90 (Hsp90), to effectively reduce the damage caused by heavy metals, such as cadmium (Cd), in aquatic animals. The high toxicity of Cd in aquatic systems generally has a deleterious effect on healthy farming of shrimps. In the present study, a novel Cdc37 gene from Penaeus monodon was identified and designated as PmCdc37. Following exposure to Cd stress, the expression levels of PmCdc37 were upregulated at the transcriptional level in both the hepatopancreas and hemolymph. RNA interference and recombinant protein injection experiments were carried out to determine the function of PmCdc37 in P. monodon following Cd exposure. To clarify the correlations between PmCdc37 and PmHsp90, the respective recombinant proteins were expressed in vitro, and the ATPase activity of PmHsp90, with or without PmCdc37, was assessed. Moreover, a pull-down assay was conducted to detect the correlation between PmCdc37 and PmHsp90. After analyzing the expression patterns of PmHsp90 following Cd challenge, whether PmHsp90 can promote the ability of PmCdc37 to resist Cd stress or not was investigated. The results showed that formation of a PmHsp90/PmCdc37 complex protected shrimp against Cd stress-induced damage. Moreover, we also confirmed that PmSOD is involved in Cd stress, and that the PmHsp90/PmCdc37 complex can regulate SOD enzymatic activity. PmSOD was involved in decreasing the MDA content in shrimp hemolymph caused by Cd stress. We concluded that during exposure to Cd, the PmHsp90/PmCdc37 complex increases SOD enzyme activity, and in turn decreases the MDA content, thereby protecting shrimp against the damage caused by Cd stress. The present studies contribute to understanding the molecular mechanism underlying resistance to Cd stress in shrimp.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Sigang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, China.
| |
Collapse
|
44
|
Bassanini I, Parapini S, Ferrandi EE, Gabriele E, Basilico N, Taramelli D, Sparatore A. Design, Synthesis and In Vitro Investigation of Novel Basic Celastrol Carboxamides as Bio-Inspired Leishmanicidal Agents Endowed with Inhibitory Activity against Leishmania Hsp90. Biomolecules 2021; 11:56. [PMID: 33466300 PMCID: PMC7824787 DOI: 10.3390/biom11010056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The natural triterpene celastrol (CE) is here used as lead compound for the design and synthesis of a panel of eleven CE carboxamides that were tested in vitro for their growth inhibitory activity against Leishmania infantum and L.tropica parasites. Among them, in vitro screening identified four basic CE carboxamides endowed with nanomolar leishmanicidal activity, against both the promastigotes and the intramacrophage Leishmania amastigotes forms. These compounds also showed low toxicity toward two human (HMEC-1 and THP-1) and one murine (BMDM) cell lines. Interestingly, the most selective CE analogue (compound 3) was also endowed with the ability to inhibit the ATPase activity of the Leishmania protein chaperone Hsp90 as demonstrated by the in vitro assay conducted on a purified, full-length recombinant protein. Preliminary investigations by comparing it with the naturally occurring Hsp90 active site inhibitor Geldanamycin (GA) in two different in vitro experiments were performed. These promising results set the basis for a future biochemical investigation of the mode of interaction of celastrol and CE-inspired compounds with Leishmania Hsp90.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy;
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy;
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| | - Erica E. Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italy;
| | - Elena Gabriele
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
| | - Nicoletta Basilico
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy;
| | - Donatella Taramelli
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Via Pascal, 36, 20133 Milano, Italy;
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy;
- Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network (CIRM-IMN), Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
45
|
Munoz-Tello P, Lin H, Khan P, de Vera IMS, Kamenecka TM, Kojetin DJ. Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1. J Med Chem 2020; 63:15639-15654. [PMID: 33289551 PMCID: PMC8006468 DOI: 10.1021/acs.jmedchem.0c00894] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nurr1/NR4A2 is an orphan nuclear receptor transcription factor implicated as a drug target for neurological disorders including Alzheimer's and Parkinson's diseases. Previous studies identified small-molecule NR4A nuclear receptor modulators, but it remains unclear if these ligands affect transcription via direct binding to Nurr1. We assessed 12 ligands reported to affect NR4A activity for Nurr1-dependent and Nurr1-independent transcriptional effects and the ability to bind the Nurr1 ligand-binding domain (LBD). Protein NMR structural footprinting data show that amodiaquine, chloroquine, and cytosporone B bind the Nurr1 LBD; ligands that do not bind include C-DIM12, celastrol, camptothecin, IP7e, isoalantolactone, ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), and three high-throughput screening hit derivatives. Importantly, ligands that modulate Nurr1 transcription also show Nurr1-independent effects on transcription in a cell type-specific manner, indicating that care should be taken when interpreting the functional response of these ligands in transcriptional assays. These findings should help focus medicinal chemistry efforts that desire to optimize Nurr1-binding ligands.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Pasha Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ian Mitchelle S. de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
46
|
Shi J, Li J, Xu Z, Chen L, Luo R, Zhang C, Gao F, Zhang J, Fu C. Celastrol: A Review of Useful Strategies Overcoming its Limitation in Anticancer Application. Front Pharmacol 2020; 11:558741. [PMID: 33364939 PMCID: PMC7751759 DOI: 10.3389/fphar.2020.558741] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Celastrol, a natural bioactive ingredient derived from Tripterygium wilfordii Hook F, exhibits significant broad-spectrum anticancer activities for the treatment of a variety of cancers including liver cancer, breast cancer, prostate tumor, multiple myeloma, glioma, etc. However, the poor water stability, low bioavailability, narrow therapeutic window, and undesired side effects greatly limit its clinical application. To address this issue, some strategies were employed to improve the anticancer efficacy and reduce the side-effects of celastrol. The present review comprehensively focuses on the various challenges associated with the anticancer efficiency and drug delivery of celastrol, and the useful approaches including combination therapy, structural derivatives and nano/micro-systems development. The specific advantages for the use of celastrol mediated by these strategies are presented. Moreover, the challenges and future research directions are also discussed. Based on this review, it would provide a reference to develop a natural anticancer compound for cancer treatment.
Collapse
Affiliation(s)
- Jinfeng Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Dike PP, Bhowmick S, Eldesoky GE, Wabaidur SM, Patil PC, Islam MA. In silico identification of small molecule modulators for disruption of Hsp90-Cdc37 protein-protein interaction interface for cancer therapeutic application. J Biomol Struct Dyn 2020; 40:2082-2098. [PMID: 33095103 DOI: 10.1080/07391102.2020.1835714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protein-protein interactions (PPIs) in the biological systems are important to maintain a number of cellular processes. Several disorders including cancer may be developed due to dysfunction in the assembly of PPI networks. Hence, targeting intracellular PPIs can be considered as a crucial drug target for cancer therapy. Among the enormous and diverse group of cancer-enabling PPIs, the Hsp90-Cdc37 is prominent for cancer therapeutic development. The successful inhibition of Hsp90-Cdc37 PPI interface can be an important therapeutic option for cancer management. In the current study, a set of more than sixty thousand compounds belong to four databases were screened through a multi-steps molecular docking study in Glide against the Hsp90-Cdc37 interaction interface. The Glide-score and Prime-MM-GBSA based binding free energy of DCZ3112, standard Hsp90-Cdc37 inhibitor were found to be -6.96 and -40.46 kcal/mol, respectively. The above two parameters were used as cut-off score to reduce the chemical space from all successfully docked molecules. Furthermore, the in-silico pharmacokinetics parameters, common-feature pharmacophore analyses and the molecular binding interactions were used to wipe out the inactive molecules. Finally, four molecules were found to be important to modulate the Hsp90-Cdc37 interface. The potentiality of the final four molecules was checked through several drug-likeness characteristics. The molecular dynamics (MD) simulation study explained that all four molecules retained inside the interface of Hsp90-Cdc37. The binding free energy of each molecule obtained from the MD simulation trajectory was clearly explained the strong affection towards the Hsp90-Cdc37. Hence, the proposed molecule might be crucial for successful inhibition of the Hsp90-Cdc37 interface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prajakta Prakash Dike
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Preeti Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
48
|
Wang L, Bharti, Kumar R, Pavlov PF, Winblad B. Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance. Eur J Med Chem 2020; 209:112915. [PMID: 33139110 DOI: 10.1016/j.ejmech.2020.112915] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD.
Collapse
Affiliation(s)
- Lisha Wang
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rajnish Kumar
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Pavel F Pavlov
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Bengt Winblad
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden.
| |
Collapse
|
49
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
50
|
Der Sarkissian S, Aceros H, Williams PM, Scalabrini C, Borie M, Noiseux N. Heat shock protein 90 inhibition and multi-target approach to maximize cardioprotection in ischaemic injury. Br J Pharmacol 2020; 177:3378-3388. [PMID: 32335899 DOI: 10.1111/bph.15075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/23/2019] [Accepted: 04/10/2020] [Indexed: 01/27/2023] Open
Abstract
Despite several advances in medicine, ischaemic heart disease remains a major cause of morbidity and mortality. The unravelling of molecular mechanisms underlying disease pathophysiology has revealed targets for pharmacological interventions. However, transfer of these pharmcological possibilities to clinical use has been disappointing. Considering the complexity of ischaemic disease at the cellular and molecular levels, an equally multifaceted treatment approach may be envisioned. The pharmacological principle of 'one target, one key' may fall short in such contexts, and optimal treatment may involve one or many agents directed against complementary targets. Here, we introduce a 'multi-target approach to cardioprotection' and propose heat shock protein 90 (HSP90) as a target of interest. We report on a member of a distinct class of HSP90 inhibitor possessing pleiotropic activity, which we found to exhibit potent infarct-sparing effects.
Collapse
Affiliation(s)
- Shant Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Henry Aceros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Mélanie Borie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.,Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|