1
|
Ying Z, Xin Y, Liu Z, Tan T, Huang Y, Ding Y, Hong X, Li Q, Li C, Guo J, Liu G, Meng Q, Zhou S, Li W, Yao Y, Xiang G, Li L, Wu Y, Liu Y, Mu M, Ruan Z, Liang W, Wang J, Wang Y, Liao B, Liu Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. The mitochondrial unfolded protein response inhibits pluripotency acquisition and mesenchymal-to-epithelial transition in somatic cell reprogramming. Nat Metab 2025:10.1038/s42255-025-01261-6. [PMID: 40205158 DOI: 10.1038/s42255-025-01261-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
The mitochondrial unfolded protein response (UPRmt), a mitochondria-to-nucleus retrograde pathway that promotes the maintenance of mitochondrial function in response to stress, plays an important role in promoting lifespan extension in Caenorhabditis elegans1,2. However, its role in mammals, including its contributions to development or cell fate decisions, remains largely unexplored. Here, we show that transient UPRmt activation occurs during somatic reprogramming in mouse embryonic fibroblasts. We observe a c-Myc-dependent, transient decrease in mitochondrial proteolysis, accompanied by UPRmt activation at the early phase of pluripotency acquisition. UPRmt impedes the mesenchymal-to-epithelial transition (MET) through c-Jun, thereby inhibiting pluripotency acquisition. Mechanistically, c-Jun enhances the expression of acetyl-CoA metabolic enzymes and reduces acetyl-CoA levels, thereby affecting levels of H3K9Ac, linking mitochondrial signalling to the epigenetic state of the cell and cell fate decisions. c-Jun also decreases the occupancy of H3K9Ac at MET genes, further inhibiting MET. Our findings reveal the crucial role of mitochondrial UPR-modulated MET in pluripotent stem cell plasticity. Additionally, we demonstrate that the UPRmt promotes cancer cell migration and invasion by enhancing epithelial-to-mesenchymal transition (EMT). Given the crucial role of EMT in tumour metastasis3,4, our findings on the connection between the UPRmt and EMT have important pathological implications and reveal potential targets for tumour treatment.
Collapse
Affiliation(s)
- Zhongfu Ying
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Yanmin Xin
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zihuang Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianxin Tan
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xuejun Hong
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuzhi Li
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chong Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jingyi Guo
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gaoshen Liu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Meng
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shihe Zhou
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenxin Li
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Yao
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ge Xiang
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linpeng Li
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaohui Mu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zifeng Ruan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenxi Liang
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junwei Wang
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Baojian Liao
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dajiang Qin
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Center for Development and Regeneration, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Ye J, Boileau RM, Parchem RJ, Judson-Torres RL, Blelloch R. The miR-290 and miR-302 clusters are essential for reprogramming of fibroblasts to induced pluripotent stem cells. Stem Cells 2025; 43:sxae080. [PMID: 40037390 PMCID: PMC11879289 DOI: 10.1093/stmcls/sxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 03/06/2025]
Abstract
The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell (ESC)-specific cell cycle regulating family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their ESC microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state.
Collapse
Affiliation(s)
- Julia Ye
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, United States
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, United States
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, United States
| | - Ryan M Boileau
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, United States
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, United States
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, United States
| | - Ronald J Parchem
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT 84112, United States
- Department of Dermatology, The University of Utah, Salt Lake City, UT 84112, United States
| | - Robert Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, United States
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, United States
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
3
|
Wang R, Bao F, Lu M, Jia X, Xiao J, Wu Y, Zhang Q, Liu X. MSC-mediated mitochondrial transfer restores mitochondrial DNA and function in neural progenitor cells of Leber's hereditary optic neuropathy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2511-2519. [PMID: 39134891 DOI: 10.1007/s11427-024-2647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/21/2024] [Indexed: 10/22/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA (mtDNA). Unfortunately, the available treatment options for LHON patients are limited due to challenges in mitochondrial replacement. In our study, we reprogramming LHON urine cells into induced pluripotent stem cells (iPSCs) and differentiating them into neural progenitor cells (NPCs) and neurons for disease modeling. Our research revealed that LHON neurons exhibited significantly higher levels of mtDNA mutations and reduced mitochondrial function, confirming the disease phenotype. However, through co-culturing LHON iPSC-derived NPCs with mesenchymal stem cells (MSCs), we observed a remarkable rescue of mutant mtDNA and a significant improvement in mitochondrial metabolic function in LHON neurons. These findings suggest that co-culturing with MSCs can enhance mitochondrial function in LHON NPCs, even after their differentiation into neurons. This discovery holds promise as a potential therapeutic strategy for LHON patients.
Collapse
Affiliation(s)
- Rui Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, 99077, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feixiang Bao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Manjiao Lu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahui Xiao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, 99077, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
4
|
Russell SJ, Zhao C, Biondic S, Menezes K, Hagemann-Jensen M, Librach CL, Petropoulos S. An atlas of small non-coding RNAs in human preimplantation development. Nat Commun 2024; 15:8634. [PMID: 39367016 PMCID: PMC11452719 DOI: 10.1038/s41467-024-52943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Understanding the molecular circuitries that govern early embryogenesis is important, yet our knowledge of these in human preimplantation development remains limited. Small non-coding RNAs (sncRNAs) can regulate gene expression and thus impact blastocyst formation, however, the expression of specific biotypes and their dynamics during preimplantation development remains unknown. Here we identify the abundance of and kinetics of piRNA, rRNA, snoRNA, tRNA, and miRNA from embryonic day (E)3-7 and isolate specific miRNAs and snoRNAs of particular importance in blastocyst formation and pluripotency. These sncRNAs correspond to specific genomic hotspots: an enrichment of the chromosome 19 miRNA cluster (C19MC) in the trophectoderm (TE), and the chromosome 14 miRNA cluster (C14MC) and MEG8-related snoRNAs in the inner cell mass (ICM), which may serve as 'master regulators' of potency and lineage. Additionally, we observe a developmental transition with 21 isomiRs and in tRNA fragment (tRF) codon usage and identify two novel miRNAs. Our analysis provides a comprehensive measure of sncRNA biotypes and their corresponding dynamics throughout human preimplantation development, providing an extensive resource. Better understanding the sncRNA regulatory programmes in human embryogenesis will inform strategies to improve embryo development and outcomes of assisted reproductive technologies. We anticipate broad usage of our data as a resource for studies aimed at understanding embryogenesis, optimising stem cell-based models, assisted reproductive technology, and stem cell biology.
Collapse
MESH Headings
- Humans
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Embryonic Development/genetics
- Blastocyst/metabolism
- Gene Expression Regulation, Developmental
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Female
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- Chromosomes, Human, Pair 19/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
Collapse
Affiliation(s)
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Savana Biondic
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada
| | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada.
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Faculty of Medicine, Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Ye J, Boileau RM, Parchem RJ, Judson-Torres RL, Blelloch R. The miR-290 and miR-302 clusters are essential for reprogramming of fibroblasts to induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610895. [PMID: 39282363 PMCID: PMC11398367 DOI: 10.1101/2024.09.02.610895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell-specific cell cycle regulating (ESCC) family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their embryonic stem cell microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state. Impact Statement The process by which somatic cell reprogramming yields induced pluripotent stem cells (iPSCs) is incompletely understood. MicroRNAs from the miR-290 and miR-302 clusters have been shown to greatly increase reprogramming efficiency, but their requirement in the process has not been studied. Here, we examine this requirement by genetically removing the miRNA clusters in somatic cells. We discover that somatic cells lacking either, but not both, of these miRNA clusters can form iPSC cells. This work thus provides new important insight into mechanisms underlying reprogramming to pluripotency.
Collapse
Affiliation(s)
- Julia Ye
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ryan M. Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ronald J. Parchem
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
6
|
Huang T, Liu D, Wang X, Kuang J, Wu M, Wang B, Liang Z, Fan Y, Chen B, Ma Z, Fu Y, Zhang W, Ming J, Qin Y, Zhao C, Wang B, Pei D. Engineering mouse cell fate controller by rational design. Nat Commun 2024; 15:6200. [PMID: 39043686 PMCID: PMC11266670 DOI: 10.1038/s41467-024-50551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.
Collapse
Affiliation(s)
- Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Dong Liu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Manqi Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Beibei Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Chen
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wenhui Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Biomedical Intelligent Computing Technology of Zhejiang Province, Hangzhou, China.
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Key Laboratory of Biomedical Intelligent Computing Technology of Zhejiang Province, Hangzhou, China.
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
7
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
9
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
10
|
Bekas N, Samiotaki M, Papathanasiou M, Mokos P, Pseftogas A, Xanthopoulos K, Thanos D, Mosialos G, Dafou D. Inactivation of Tumor Suppressor CYLD Inhibits Fibroblast Reprogramming to Pluripotency. Cancers (Basel) 2023; 15:4997. [PMID: 37894364 PMCID: PMC10605754 DOI: 10.3390/cancers15204997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.
Collapse
Affiliation(s)
- Nikolaos Bekas
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Maria Papathanasiou
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - Panagiotis Mokos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Athanasios Pseftogas
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Dimitra Dafou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| |
Collapse
|
11
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
12
|
Deng M, Wang X, Xiong Z, Tang P. Control of RNA degradation in cell fate decision. Front Cell Dev Biol 2023; 11:1164546. [PMID: 37025171 PMCID: PMC10070868 DOI: 10.3389/fcell.2023.1164546] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cell fate is shaped by a unique gene expression program, which reflects the concerted action of multilayered precise regulation. Substantial research attention has been paid to the contribution of RNA biogenesis to cell fate decisions. However, increasing evidence shows that RNA degradation, well known for its function in RNA processing and the surveillance of aberrant transcripts, is broadly engaged in cell fate decisions, such as maternal-to-zygotic transition (MZT), stem cell differentiation, or somatic cell reprogramming. In this review, we first look at the diverse RNA degradation pathways in the cytoplasm and nucleus. Then, we summarize how selective transcript clearance is regulated and integrated into the gene expression regulation network for the establishment, maintenance, and exit from a special cellular state.
Collapse
Affiliation(s)
- Mingqiang Deng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiwei Wang
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Zhi Xiong
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China
| | - Peng Tang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Peng Tang,
| |
Collapse
|
13
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
14
|
MiR-302a Regenerates Human Corneal Endothelial Cells against IFN-γ-Induced Cell Death. Cells 2022; 12:cells12010036. [PMID: 36611829 PMCID: PMC9818234 DOI: 10.3390/cells12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Damage to human corneal endothelial cells (hCECs) leads to bullous keratopathy because these cells cannot be regenerated in vivo. In this study, we investigated the protective role of microRNA (miR)-302a against interferon-γ (IFN-γ)-induced senescence and cell death of hCECs. Cultured hCECs were transfected with miR-302a and treated with IFN-γ (20 ng/mL) to evaluate the protective effect of miR-302a on IFN-γ-induced cell death. Senescence was evaluated by the senescence-associated β-galactosidase (SA-β-gal) assay, and the secretion of senescence-associated secretory phenotype (SASP) factors was analyzed. Mitochondrial function and endoplasmic reticulum (ER) stress were assessed. We revealed that miR-302a enhanced the cell viability and proliferation of hCECs and that IFN-γ increased the cell size, the number of SA-β-gal-positive cells, and SASP factors, and arrested the cell cycle, which was eliminated by miR-302a. miR-302a ameliorated mitochondrial oxidative stress and ER stress levels which were induced by IFN-γ. IFN-γ decreased the mitochondrial membrane potential and promoted autophagy, which was eliminated by miR-302a. The in vivo study showed that regeneration of rat CECs was promoted in the miR-302a group by inhibiting IFN-γ and enhancing mitochondrial function. In conclusion, miR-302a eliminated IFN-γ-induced senescence and cellular damage by regulating the oxidative and ER stress, and promoting the proliferation of CECs. Therefore, miR-302a may be a therapeutic option to protect hCECs against IFN-γ-induced stress.
Collapse
|
15
|
Benati D, Leung A, Perdigao P, Toulis V, van der Spuy J, Recchia A. Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. Int J Mol Sci 2022; 23:ijms232315276. [PMID: 36499601 PMCID: PMC9735568 DOI: 10.3390/ijms232315276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Amy Leung
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Pedro Perdigao
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (J.v.d.S.); (A.R.)
| |
Collapse
|
16
|
Yuan Y, Chen H, Ou S, Cai B, Zhang R, Qin Y, Pan M, Cao S, Pei D, Hou FF. Generation of mitochondria-rich kidney organoids from expandable intermediate mesoderm progenitors reprogrammed from human urine cells under defined medium. Cell Biosci 2022; 12:174. [PMID: 36243732 PMCID: PMC9569036 DOI: 10.1186/s13578-022-00909-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kidneys require vast amounts of mitochondria to provide ample energy to reabsorb nutrients and regulate electrolyte, fluid, and blood pressure homeostasis. The lack of the human model hinders the investigation of mitochondria homeostasis related to kidney physiology and disease. RESULTS Here, we report the generation of mitochondria-rich kidney organoids via partial reprogramming of human urine cells (hUCs) under the defined medium. First, we reprogrammed mitochondria-rich hUCs into expandable intermediate mesoderm progenitor like cells (U-iIMPLCs), which in turn generated nephron progenitors and formed kidney organoids in both 2D and 3D cultures. Cell fate transitions were confirmed at each stage by marker expressions at the RNA and protein levels, along with chromatin accessibility dynamics. Single cell RNA-seq revealed hUCs-induced kidney organoids (U-iKOs) consist of podocytes, tubules, and mesenchyme cells with 2D dominated with mesenchyme and 3D with tubule and enriched specific mitochondria function associated genes. Specific cell types, such as podocytes and proximal tubules, loop of Henle, and distal tubules, were readily identified. Consistent with these cell types, 3D organoids exhibited the functional and structural features of the kidney, as indicated by dextran uptake and transmission electron microscopy. These organoids can be further matured in the chick chorioallantoic membrane. Finally, cisplatin, gentamicin, and forskolin treatment led to anatomical abnormalities typical of kidney injury and altered mitochondria homeostasis respectively. CONCLUSIONS Our study demonstrates that U-iKOs recapitulate the structural and functional characteristics of the kidneys, providing a promising model to study mitochondria-related kidney physiology and disease in a personalized manner.
Collapse
Affiliation(s)
- Yapei Yuan
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Provincial Institute of Nephrology, Guangzhou, 510515 China
| | - Huan Chen
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Sihua Ou
- grid.410737.60000 0000 8653 1072Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Baomei Cai
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Ruifang Zhang
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Yue Qin
- grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Mengjie Pan
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Shangtao Cao
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Duanqing Pei
- grid.494629.40000 0004 8008 9315Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024 China
| | - Fan Fan Hou
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Provincial Institute of Nephrology, Guangzhou, 510515 China ,grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| |
Collapse
|
17
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
18
|
Chong CM, Tan Y, Tong J, Ke M, Zhang K, Yan L, Cen X, Lu JH, Chen G, Su H, Qin D. Presenilin-1 F105C mutation leads to tau accumulation in human neurons via the Akt/mTORC1 signaling pathway. Cell Biosci 2022; 12:131. [PMID: 35965317 PMCID: PMC9375916 DOI: 10.1186/s13578-022-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer’s disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer’s disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. Methods We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aβ and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. Results Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aβ and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. Conclusion We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00874-8.
Collapse
|
19
|
Rezania MA, Eghtedari A, Taha MF, Ardekani AM, Javeri A. A novel role for aspirin in enhancing the reprogramming function of miR-302/367 cluster and breast tumor suppression. J Cell Biochem 2022; 123:1077-1090. [PMID: 35535453 DOI: 10.1002/jcb.30264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies have provided evidence for tumor suppressive function of the embryonic stem cell-specific miR-302/367 cluster through induction of a reprogramming process. Aspirin has been found to induce reprogramming factors of mesenchymal-to-epithelial transition in breast cancer cells. Therefore, we aimed to investigate whether overexpression of miR-302/367 cluster and aspirin treatment cooperate in the induction of reprogramming and tumor suppression in breast cancer cells. MDA-MB-231 and SK-BR-3 human breast cancer cell lines were transfected with a miR-302/367 expressing vector and treated with aspirin. The cells were evaluated for indices of apoptosis, proliferation, migration, and invasion. In both cell lines, treatment of miR-302/367-transfected cells with aspirin upregulated expression of some main pluripotency factors such as OCT4, SOX2, NANOG, and KLF4, and downregulated expression of some invasion and angiogenesis markers at gene and protein levels. Aspirin increased the apoptotic rate in both cell lines transfected with miR-302/367. Both miR-302/367 and aspirin upregulated the expression of FOXD3 protein which is a known inducer of OCT4 and NANOG. Our results demonstrate that aspirin can enhance miR-302/367-induced reprogramming of breast cancer cells possibly through upregulation of FOXD3 expression. This can further augment the reversal of epithelial-mesenchymal transition and inhibits migration, invasion, and angiogenic signaling in breast cancer cells reprogrammed by miR-302/367. Therefore, aspirin may serve as a useful adjuvant for reprogramming of cancer cells.
Collapse
Affiliation(s)
- Mohammad A Rezania
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Azadeh Eghtedari
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
20
|
Bailly A, Milhavet O, Lemaitre JM. RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics 2022; 14:317. [PMID: 35214051 PMCID: PMC8876983 DOI: 10.3390/pharmaceutics14020317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cell therapy approaches to treat a wide range of pathologies have greatly benefited from cell reprogramming techniques that allow the conversion of a somatic cell into a pluripotent cell. Many technological developments have been made since the initial major discovery of this biological process. Recently reprogramming methods based on the use of RNA have emerged and seem very promising. Thus, in this review we will focus on presenting the interest of such methods for cell reprogramming but also how these RNA-based strategies can be extended to eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Anaëlle Bailly
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- INGRAALYS, SA, IRMB, Incubator Cyborg, 34295 Montpellier, France
| | - Ollivier Milhavet
- IRMB, University Montpellier, INSERM, CNRS, 34295 Montpellier, France
- SAFE-iPSC Facility, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- SAFE-iPSC Facility, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
21
|
Borisova E, Nishimura K, An Y, Takami M, Li J, Song D, Matsuo-Takasaki M, Luijkx D, Aizawa S, Kuno A, Sugihara E, Sato TA, Yumoto F, Terada T, Hisatake K, Hayashi Y. Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. iScience 2022; 25:103525. [PMID: 35106457 PMCID: PMC8786646 DOI: 10.1016/j.isci.2021.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-genetically modified somatic cells can only be inefficiently and stochastically reprogrammed to pluripotency by exogenous expression of reprogramming factors. Low competence of natural reprogramming factors may prevent the majority of cells to successfully and synchronously reprogram. Here we screened DNA-interacting amino acid residues in the zinc-finger domain of KLF4 for enhanced reprogramming efficiency using alanine-substitution scanning methods. Identified KLF4 L507A mutant accelerated and stabilized reprogramming to pluripotency in both mouse and human somatic cells. By testing all the variants of L507 position, variants with smaller amino acid residues in the KLF4 L507 position showed higher reprogramming efficiency. L507A bound more to promoters or enhancers of pluripotency genes, such as KLF5, and drove gene expression of these genes during reprogramming. Molecular dynamics simulations predicted that L507A formed additional interactions with DNA. Our study demonstrates how modifications in amino acid residues of DNA-binding domains enable next-generation reprogramming technology with engineered reprogramming factors.
KLF4 L507A variant accelerates and stabilizes reprogramming to pluripotency KLF4 L507A has distinctive features of transcriptional binding and activation KLF4 L507A may acquire a unique conformation with additional DNA interaction Smaller amino acid residues in L507 position cause higher reprogramming efficiency
Collapse
Affiliation(s)
- Evgeniia Borisova
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Miho Takami
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jingyue Li
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Dorian Luijkx
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shiho Aizawa
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan.,The Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan
| | - Fumiaki Yumoto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization in Tsukuba, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
22
|
Okeke C, Silas U, Nnodu O, Clementina O. HSC and miRNA Regulation with Implication for Foetal Haemoglobin Induction in Beta Haemoglobinopathies. Curr Stem Cell Res Ther 2022; 17:339-347. [PMID: 35189805 DOI: 10.2174/1574888x17666220221104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Sickle cell disease (SCD) is one of the most common haemoglobinopathies worldwide, with up to 70 % of global SCD annual births occurring in sub-Saharan Africa. Reports have shown that 50 to 80 % of affected children in these countries die annually. Efforts geared towards understanding and controlling HbF production in SCD patients could lead to strategies for effective control of globin gene expression and therapeutic approaches that could be beneficial to individuals with haemoglobinopathies. Hemopoietic stem cells (HSCs) are characterized by a specific miRNA signature in every state of differentiation. The role of miRNAs has become evident both in the maintenance of the "stemness" and in the early induction of differentiation by modulation of the expression of the master pluripotency genes and during early organogenesis. miRNAs are extra regulatory mechanisms in hematopoietic stem cells (HSCs) via influencing transcription profiles together with transcript stability. miRNAs have been reported to be used to reprogram primary somatic cells toward pluripotency. Their involvement in cell editing holds the potential for therapy for many genetic diseases. This review provides a snapshot of miRNA involvement in cell fate decisions, haemoglobin induction pathway, and their journey as some emerge prime targets for therapy in beta haemoglobinopathies.
Collapse
Affiliation(s)
- Chinwe Okeke
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Ufele Silas
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| | - Obiageli Nnodu
- Department of Haematology, College of Medicine, University of Abuja, Abuja Nigeria
| | - Odoh Clementina
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
23
|
Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. Cells 2021; 10:cells10113250. [PMID: 34831472 PMCID: PMC8623953 DOI: 10.3390/cells10113250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The breakthrough in human induced pluripotent stem cells (hiPSCs) has revolutionized the field of biomedical and pharmaceutical research and opened up vast opportunities for drug discovery and regenerative medicine, especially when combined with gene-editing technology. Numerous healthy and patient-derived hiPSCs for human disease modeling have been established, enabling mechanistic studies of pathogenesis, platforms for preclinical drug screening, and the development of novel therapeutic targets/approaches. Additionally, hiPSCs hold great promise for cell-based therapy, serving as an attractive cell source for generating stem/progenitor cells or functional differentiated cells for degenerative diseases, due to their unlimited proliferative capacity, pluripotency, and ethical acceptability. In this review, we provide an overview of hiPSCs and their utility in the study of hematologic disorders through hematopoietic differentiation. We highlight recent hereditary and acquired genetic hematologic disease modeling with patient-specific iPSCs, and discuss their applications as instrumental drug screening tools. The clinical applications of hiPSCs in cell-based therapy, including the next-generation cancer immunotherapy, are provided. Lastly, we discuss the current challenges that need to be addressed to fulfill the validity of hiPSC-based disease modeling and future perspectives of hiPSCs in the field of hematology.
Collapse
|
24
|
Zhang Y, He Y, Wu P, Hu S, Zhang Y, Chen C. miR-200c-141 Enhances Sheep Kidney Cell Reprogramming into Pluripotent Cells by Targeting ZEB1. Int J Stem Cells 2021; 14:423-433. [PMID: 34456193 PMCID: PMC8611307 DOI: 10.15283/ijsc21080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Background and Objectives Sheep-induced pluripotent stem cells (siPSCs) have low reprogramming efficiency, thereby hampering their use in biotechnology and agriculture. Several studies have shown that some microRNAs play an important role in promoting somatic reprogramming in mouse and human. In this study, we investigated the effect of miR-200c-141 on somatic reprogramming in sheep and explored the mechanism of promoting the reprogramming. Methods and Results The lentivirus system driven by tetracycline (TET)-on carrying Oct4, Sox2, c-Myc, Klf4, Nanog, Lin28, hTERT, and SV40LT (OSKMNLST) could reprogram sheep kidney cells into pluripotent cells. Overexpression of miR-200c-141 in combination with OSKMNLST could significantly improve the efficiency of sheep iPSC generation (p<0.01). Sheep iPSCs derived from miR-200c-141 showed embryonic stem cell (ESC)-like pluripotent properties, were positive for alkaline phosphatase and some pluripotent markers by quantitative real-time PCR (qRT-PCR) and immunofluorescence, and were able to differentiate into three germ layers in vitro. Oar-miR-200c was transfected into HEK293FT cells and was able to target the zinc finger E-box-binding homeobox 1 (ZEB1) 3’UTR using dual luciferase reporting analysis. Overexpression of oar-miR-200c in SKCs significantly reduced the expression of ZEB1, but increased the expression of E-cadherin by qRT-PCR and western blotting analysis. Conclusions These results suggest that miR-200c-141 can promote the reprogramming of sheep somatic cells to iPSCs, and oar-miR-200c targeted ZEB1 3’UTR, significantly decreased expression of ZEB1, and increased expression of E-cadherin. Oar-miR-200c may improve the MET process by affecting the TGF-β signaling pathway, thus improving the efficiency of somatic cell reprogramming in sheep.
Collapse
Affiliation(s)
- Yunfeng Zhang
- College of Animal Science and Technology, Shihezi University, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious, Shihezi, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | - Yanhua He
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | - Peng Wu
- College of Life Technology, Shihezi University, Xinjiang, China
| | - Shengwei Hu
- College of Life Technology, Shihezi University, Xinjiang, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious, Shihezi, China
| |
Collapse
|
25
|
Identification of New Transcription Factors that Can Promote Pluripotent Reprogramming. Stem Cell Rev Rep 2021; 17:2223-2234. [PMID: 34448118 PMCID: PMC8599342 DOI: 10.1007/s12015-021-10220-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/28/2022]
Abstract
BACKGROUND Four transcription factors, Oct4, Sox2, Klf4, and c-Myc (the Yamanka factors), can reprogram somatic cells to induced pluripotent stem cells (iPSCs). Many studies have provided a number of alternative combinations to the non-Yamanaka factors. However, it is clear that many additional transcription factors that can generate iPSCs remain to be discovered. METHODS The chromatin accessibility and transcriptional level of human embryonic stem cells and human urine cells were compared by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to identify potential reprogramming factors. Selected transcription factors were employed to reprogram urine cells, and the reprogramming efficiency was measured. Urine-derived iPSCs were detected for pluripotency by Immunofluorescence, quantitative polymerase chain reaction, RNA sequencing and teratoma formation test. Finally, we assessed the differentiation potential of the new iPSCs to cardiomyocytes in vitro. RESULTS ATAC-seq and RNA-seq datasets predicted TEAD2, TEAD4 and ZIC3 as potential factors involved in urine cell reprogramming. Transfection of TEAD2, TEAD4 and ZIC3 (in the presence of Yamanaka factors) significantly improved the reprogramming efficiency of urine cells. We confirmed that the newly generated iPSCs possessed pluripotency characteristics similar to normal H1 embryonic stem cells. We also confirmed that the new iPSCs could differentiate to functional cardiomyocytes. CONCLUSIONS In conclusion, TEAD2, TEAD4 and ZIC3 can increase the efficiency of reprogramming human urine cells into iPSCs, and provides a new stem cell sources for the clinical application and modeling of cardiovascular disease.
Collapse
|
26
|
Afshari A, Yaghobi R, Rezaei G. Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World J Stem Cells 2021; 13:985-1004. [PMID: 34567421 PMCID: PMC8422934 DOI: 10.4252/wjsc.v13.i8.985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability over specific mRNA targets. miRNAs exhibit temporal or tissue-specific expression patterns and regulate the cell and tissue developmental pathways. They also have determinative roles in production and differentiation of multiple lineages of stem cells and might have therapeutic advantages. miRNAs are a part of some viruses' regulatory machinery, not a byproduct. The trace of miRNAs was detected in the genomes of viruses and regulation of cell reprograming and viral pathogenesis. Combination of inter-regulatory systems has been detected for miRNAs during viral infections in stem cells. Contraction between viruses and stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral infections and defining stem cell developmental strategies that is programmed by miRNAs as a tool. Therefore, in this review we intended to study the inter-regulatory role of miRNAs in the interaction between viruses and stem cells and tried to explain the advantages of miRNA regulatory potentials, which make a new landscape for future studies.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran.
| | - Ghazal Rezaei
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| |
Collapse
|
27
|
Wei Y, Wang T, Ma L, Zhang Y, Zhao Y, Lye K, Xiao L, Chen C, Wang Z, Ma Y, Zhou X, Sun F, Li W, Dunk C, Li S, Nagy A, Yu Y, Pan G, Lye SJ, Shan Y. Efficient derivation of human trophoblast stem cells from primed pluripotent stem cells. SCIENCE ADVANCES 2021; 7:eabf4416. [PMID: 34380613 PMCID: PMC8357231 DOI: 10.1126/sciadv.abf4416] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/22/2021] [Indexed: 05/04/2023]
Abstract
Human trophoblast stem cells (hTSCs) provide a valuable model to study placental development and function. While primary hTSCs have been derived from embryos/early placenta, and transdifferentiated hTSCs from naïve human pluripotent stem cells (hPSCs), the generation of hTSCs from primed PSCs is problematic. We report the successful generation of TSCs from primed hPSCs and show that BMP4 substantially enhances this process. TSCs derived from primed hPSCs are similar to blastocyst-derived hTSCs in terms of morphology, proliferation, differentiation potential, and gene expression. We define the chromatin accessibility dynamics and histone modifications (H3K4me3/H3K27me3) that specify hPSC-derived TSCs. Consistent with low density of H3K27me3 in primed hPSC-derived hTSCs, we show that knockout of H3K27 methyltransferases (EZH1/2) increases the efficiency of hTSC derivation from primed hPSCs. Efficient derivation of hTSCs from primed hPSCs provides a simple and powerful model to understand human trophoblast development, including the pathogenesis of trophoblast-related disorders, by generating disease-specific hTSCs.
Collapse
Affiliation(s)
- Yanxing Wei
- Placenta Research Group, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto M5T3H7, Canada
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishi Ma
- Placenta Research Group, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kathryn Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto M5T3H7, Canada
- Institute of Medical Science, University of Toronto, Toronto M5G1L4, Canada
| | - Lu Xiao
- Placenta Research Group, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
| | - Xiaohua Zhou
- Placenta Research Group, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics and Gynecology, The Second People's Hospital of Shenzhen, The First Hospital Affiliated to Shenzhen University, Shenzhen 518029, China
| | - Fei Sun
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weili Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Caroline Dunk
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto M5T3H7, Canada
| | - Siliang Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto M5T3H7, Canada
- China National Gene Bank-Shenzhen, Shenzhen 518083, China
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto M5T3H7, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto M5G1L4, Canada
- Institute of Medical Science, University of Toronto, Toronto M5S 1A8, Canada
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Yanhong Yu
- Placenta Research Group, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto M5T3H7, Canada.
- Department of Obstetrics & Gynecology, University of Toronto, Toronto M5G1L4, Canada
- Department of Physiology, University of Toronto, Toronto M5G1L4, Canada
- Department of Medicine, University of Toronto, Toronto M5G1L4, Canada
| | - Yongli Shan
- Placenta Research Group, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
28
|
Clinically compatible advances in blood-derived endothelial progenitor cell isolation and reprogramming for translational applications. N Biotechnol 2021; 63:1-9. [PMID: 33588094 DOI: 10.1016/j.nbt.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022]
Abstract
The promise of using induced pluripotent stem cells (iPSCs) for cellular therapies has been hampered by the lack of easily isolatable and well characterized source cells whose genomes have undergone minimal changes during their processing. Blood-derived late-outgrowth endothelial progenitor cells (EPCs) are used for disease modeling and have potential therapeutic uses including cell transplantation and the translation of induced pluripotent stem cell (iPSC) derivatives. However, the current isolation of EPCs has been inconsistent and requires at least 40-80 mL of blood, limiting their wider use. In addition, previous EPC reprogramming methods precluded the translation of EPC-derived iPSCs to the clinic. Here a series of clinically-compatible advances in the isolation and reprogramming of EPCs is presented, including a reduction of blood sampling volumes to 10 mL and use of highly efficient RNA-based reprogramming methods together with autologous human serum, resulting in clinically relevant iPSCs carrying minimal copy number variations (CNVs) compared to their parent line.
Collapse
|
29
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
30
|
Liu P, Chen S, Wang Y, Chen X, Guo Y, Liu C, Wang H, Zhao Y, Wu D, Shan Y, Zhang J, Wu C, Li D, Zhang Y, Zhou T, Chen Y, Liu X, Li C, Wang L, Jia B, Liu J, Feng B, Cai J, Pei D. Efficient induction of neural progenitor cells from human ESC/iPSCs on Type I Collagen. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2100-2113. [PMID: 33740188 DOI: 10.1007/s11427-020-1897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 10/21/2022]
Abstract
A stable, rapid and effective neural differentiation method is essential for the clinical applications of human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) in treating neurological disorders and diseases. Herein, we established a novel and robust monolayer differentiation method to produce functional neural progenitor cells (NPCs) from human ESC/iPSCs on Type I Collagen. The derived cells not only displayed the requisite markers, but also behaved similarly to classic NPCs both in vitro and in vivo. Upon transplantation into traumatic brain injury model, the derived NPCs facilitated recovery from injury. We also found that SMAD signaling stayed down throughout the differentiation process on Type I Collagen, and the pluripotent signals were rapidly downregulated along with raising up of neural early markers on the third day. Meanwhile, ATAC-seq data showed the related mediation of distinct transcriptome and global chromatin dynamics during NPC induction. Totally, our results thus provide a convenient way to generate NPCs from human ESC/iPSCs for neural diseases' treatment.
Collapse
Affiliation(s)
- Pengfei Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Ambulatory Surgical Center, The 2nd Clinical medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yaofeng Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chunhua Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Haitao Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Di Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuman Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongwei Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yaoyu Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Xiaobo Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Chenxu Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, 130012, China
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, 510632, China
| | - Bei Jia
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinglei Cai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Wang J, Chen MY, Chen JF, Ren QL, Zhang JQ, Cao H, Xing BS, Pan CY. LncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1. BMC Mol Cell Biol 2020; 21:77. [PMID: 33148167 PMCID: PMC7640402 DOI: 10.1186/s12860-020-00324-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Local Chinese local pig breeds have thinner muscle fiber and higher intramuscular-fat (IMF) content. But its regulation mechanism has not been discussed in-depth. Studies indicated that long non coding RNAs (lncRNAs) play important role in muscle and fat development. Results The lncRNAs expressional differences in the longissimus dorsi (LD) muscle were identified between Huainan pigs (local Chinese pigs, fat-type, HN) and Large White pigs (lean-type, LW) at 38, 58, and 78 days post conception (dpc). In total, 2131 novel lncRNAs were identified in 18 samples, and 291, 305, and 683 differentially expressed lncRNAs (DELs) were found between these two breeds at three stages, respectively. The mRNAs that co-expressed with these DELs were used for GO and KEGG analysis, and the results showed that muscle development and energy metabolism were more active at 58 dpc in HN, but at 78 dpc in LW pigs. Muscle cell differentiation and myofibril assembly might associated with earlier myogenesis and primary-muscle-fiber assembly in HN, and cell proliferation, insulin, and the MAPK pathway might be contribute to longer proliferation and elevated energy metabolism in LW pigs at 78 dpc. The PI3K/Akt and cAMP pathways were associated with higher IMF deposition in HN. Intramuscular fat deposition-associated long noncoding RNA 1 (IMFlnc1) was selected for functional verification, and results indicated that it regulated the expressional level of caveolin-1 (CAV-1) by acting as competing endogenous RNA (ceRNA) to sponge miR-199a-5p. Conclusions Our data contributed to understanding the role of lncRNAs in porcine-muscle development and IMF deposition, and provided valuable information for improving pig-meat quality. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00324-8.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Ming-Yue Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Ministry of Agriculture, Number 22, Xi Nong Road, Yangling, 712100, Shaanxi, China
| | - Jun-Feng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Qiao-Ling Ren
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Jia-Qing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Hai Cao
- Henan Xing Rui Agriculture and Animal Husbandry Technology Co., LTD, Number 59, Jie Fang Road, Xinxian, Xinyang, 465550, China
| | - Bao-Song Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China.
| | - Chuan-Ying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Ministry of Agriculture, Number 22, Xi Nong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
32
|
Abstract
Derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming somatic cells to a pluripotent state has revolutionized stem cell research. Ensuing this, various groups have used genetic and non-genetic approaches to generate iPSCs from numerous cell types. However, achieving a pluripotent state in most of the reprogramming studies is marred by serious limitations such as low reprogramming efficiency and slow kinetics. These limitations are mainly due to the presence of potent barriers that exist during reprogramming when a mature cell is coaxed to achieve a pluripotent state. Several studies have revealed that intrinsic factors such as non-optimal stoichiometry of reprogramming factors, specific signaling pathways, cellular senescence, pluripotency-inhibiting transcription factors and microRNAs act as a roadblock. In addition, the epigenetic state of somatic cells and specific epigenetic modifications that occur during reprogramming also remarkably impede the generation of iPSCs. In this review, we present a comprehensive overview of the barriers that inhibit reprogramming and the understanding of which will pave the way to develop safe strategies for efficient reprogramming.
Collapse
|
33
|
Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H, Guo L. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Front Cell Dev Biol 2020; 8:760. [PMID: 32850862 PMCID: PMC7423833 DOI: 10.3389/fcell.2020.00760] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its critical roles during cancer progression have long been recognized and extensively reviewed. Recent studies on the generation of induced pluripotent stem cells (iPSCs) have established the connections among EMT, energy metabolism, DNA methylation, and histone modification. Since energy metabolism, DNA methylation, and histone modification are important for cancer development and there are common characteristics between cancer cells and stem cells, it is reasonable to identify mechanisms that have been established during both reprogramming and cancer progression. In the current review, we start from a brief review on EMT and related processes during cancer progression, and then switch to the EMT during somatic cell reprogramming. We summarize the connection between EMT and metabolic switch during reprogramming, and further review the involvements of DNA methylation and cell proliferation. The connections between EMT and mesenchymal-epithelial transition (MET) and cellular aspects including DNA methylation, histone modification and energy metabolism may provide potential new targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaowei Lai
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Fang Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jiechun Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Hui Zheng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Lin Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
34
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
35
|
Jaiswal A, Maurya M, Maurya P, Barthwal MK. Lin28B Regulates Angiotensin II-Mediated Let-7c/miR-99a MicroRNA Formation Consequently Affecting Macrophage Polarization and Allergic Inflammation. Inflammation 2020; 43:1846-1861. [DOI: 10.1007/s10753-020-01258-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Kanwal S, Guo X, Ward C, Volpe G, Qin B, Esteban MA, Bao X. Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:16-25. [PMID: 32445708 PMCID: PMC7393543 DOI: 10.1016/j.gpb.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.
Collapse
Affiliation(s)
- Shahzina Kanwal
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Xiangpeng Guo
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Carl Ward
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Giacomo Volpe
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Baoming Qin
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (5)Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (6)Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xichen Bao
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (7)Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
37
|
Molugu K, Harkness T, Carlson-Stevermer J, Prestil R, Piscopo NJ, Seymour SK, Knight GT, Ashton RS, Saha K. Tracking and Predicting Human Somatic Cell Reprogramming Using Nuclear Characteristics. Biophys J 2020; 118:2086-2102. [PMID: 31699335 PMCID: PMC7203070 DOI: 10.1016/j.bpj.2019.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell's microenvironment. Here, we develop a micropatterned substrate that allows for dynamic live-cell microscopy of hundreds of cell subpopulations undergoing reprogramming while preserving many of the biophysical and biochemical cues within the cells' microenvironment. On this substrate, we were able to both watch and physically confine cells into discrete islands during the reprogramming of human somatic cells from skin biopsies and blood draws obtained from healthy donors. Using high-content analysis, we identified a combination of eight nuclear characteristics that can be used to generate a computational model to predict the progression of reprogramming and distinguish partially reprogrammed cells from those that are fully reprogrammed. This approach to track reprogramming in situ using micropatterned substrates could aid in biomanufacturing of therapeutically relevant iPSCs and be used to elucidate multiscale cellular changes (cell-cell interactions as well as subcellular changes) that accompany human cell fate transitions.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ty Harkness
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jared Carlson-Stevermer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan Prestil
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicole J Piscopo
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephanie K Seymour
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gavin T Knight
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
38
|
Rao SR, Howarth A, Kratschmer P, Snaith AE, Yapp C, Ebner D, Hamdy FC, Edwards CM. Transcriptomic and Functional Screens Reveal MicroRNAs That Modulate Prostate Cancer Metastasis. Front Oncol 2020; 10:292. [PMID: 32231998 PMCID: PMC7082744 DOI: 10.3389/fonc.2020.00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Identifying new mechanisms that underlie the complex process of metastasis is vital to combat this fatal step in prostate cancer (PCa) progression. Small non-coding RNAs are emerging as important regulators of tumor cell biology. Here we take an integrative approach to elucidate the contribution of microRNAs to metastatic progression, combining transcriptomic analysis with functional screens for migration and morphology. We developed high-content microscopy, high-throughput functional screens for migration and morphology in PCa cells using a microRNA library. RNA-Seq analysis of paired epithelial and mesenchymal PCa cells identified differential expression of 200 microRNAs. Data integration identified two microRNAs that inhibited migration, induced an epithelial-like morphology and were increased in epithelial PCa cells. An overrepresentation of the AAGUGC seed sequence was detected in all three datasets. Analysis of published datasets of patients with PCa identified microRNAs of clinical relevance. The integration of high-throughput functional and expression analyses identifies microRNAs with clinical significance that modulate metastatic behavior in PCa.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Patrick Kratschmer
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Ann E Snaith
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Clarence Yapp
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Mong EF, Yang Y, Akat KM, Canfield J, VanWye J, Lockhart J, Tsibris JCM, Schatz F, Lockwood CJ, Tuschl T, Kayisli UA, Totary-Jain H. Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep 2020; 10:3029. [PMID: 32080251 PMCID: PMC7033247 DOI: 10.1038/s41598-020-59812-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
During implantation, cytotrophoblasts undergo epithelial-to-mesenchymal transition (EMT) as they differentiate into invasive extravillous trophoblasts (EVTs). The primate-specific microRNA cluster on chromosome 19 (C19MC) is exclusively expressed in the placenta, embryonic stem cells and certain cancers however, its role in EMT gene regulation is unknown. In situ hybridization for miR-517a/c, a C19MC cistron microRNA, in first trimester human placentas displayed strong expression in villous trophoblasts and a gradual decrease from proximal to distal cell columns as cytotrophoblasts differentiate into invasive EVTs. To investigate the role of C19MC in the regulation of EMT genes, we employed the CRISPR/dCas9 Synergistic Activation Mediator (SAM) system, which induced robust transcriptional activation of the entire C19MC cistron and resulted in suppression of EMT associated genes. Exposure of human iPSCs to hypoxia or differentiation of iPSCs into either cytotrophoblast-stem-like cells or EVT-like cells under hypoxia reduced C19MC expression and increased EMT genes. Furthermore, transcriptional activation of the C19MC cistron induced the expression of OCT4 and FGF4 and accelerated cellular reprogramming. This study establishes the CRISPR/dCas9 SAM as a powerful tool that enables activation of the entire C19MC cistron and uncovers its novel role in suppressing EMT genes critical for maintaining the epithelial cytotrophoblasts stem cell phenotype.
Collapse
Affiliation(s)
- Ezinne F Mong
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Kemal M Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - John Canfield
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - John Lockhart
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
40
|
Basu S, Chaudhary A, Chowdhury P, Karmakar D, Basu K, Karmakar D, Chatterjee J, Sengupta S. Evaluating the role of hsa-miR-200c in reversing the epithelial to mesenchymal transition in prostate cancer. Gene 2019; 730:144264. [PMID: 31759982 DOI: 10.1016/j.gene.2019.144264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Deregulated epithelial-to-mesenchymal transition constitutes one of the major aspects of cancer progression. In this study, to identify key molecular principles of EMT pathway in prostate carcinogenesis, an elaborate gene expression profiling was conducted by qRT-PCR and Western blot analyses. A preponderance of mesenchymal trait was observed in the pathological samples of prostate cancer. To simulate an appropriate in vitro model, PC3 cell line was subjected to hypoxic stress, which resulted in elevated expression of vimentin along with EMT-mediating transcription factors Zeb1 and Slug. To conciliate this mesenchymal behavior of PC3 cells, hsa-miR-200c was deliberately overexpressed which led to a marked reduction of cell motility and expression of vimentin, N-cadherin, Zeb1 and Slug with concurrent increase in level of β-catenin. hsa-miR-200c was demonstrated to appease hypoxia-aggravated changes in cellular morphology by coordinated repression of vimentin, Zeb1 and Slug. Mode of action for hsa-miR-200c was mediated through transcriptional repression of Zeb1 and Slug interacting with E-box sequences in the vimentin promoter as documented by promoter assay. This ability of hsa-miR-200c to reclaim epithelial traits leads to the anticipation that molecular reprogramming of Zeb1-Slug/vimentin axis may relieve aggressiveness of prostate cancer.
Collapse
Affiliation(s)
- Sanmitra Basu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Amrita Chaudhary
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Deepmala Karmakar
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Keya Basu
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata 700014, West Bengal, India
| | - Dilip Karmakar
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata 700014, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India.
| |
Collapse
|
41
|
Sano M, Nakasu A, Ohtaka M, Nakanishi M. A Sendai Virus-Based Cytoplasmic RNA Vector as a Novel Platform for Long-Term Expression of MicroRNAs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:371-382. [PMID: 31828179 PMCID: PMC6889074 DOI: 10.1016/j.omtm.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Cytoplasmic RNA virus-derived vectors have emerged as attractive vehicles for microRNA (miRNA) delivery as they possess no potential risk of chromosomal insertion. However, their relatively short-term expression limits their use in biological applications that require long-term miRNA manipulation, such as somatic cell reprogramming. Here, we show that a cytoplasmic RNA virus vector based on a replication-defective and persistent Sendai virus (SeVdp) serves as an effective platform for long-term production of miRNAs capable of inducing sequence-specific target suppression. The SeVdp vector was able to simultaneously deliver embryonic stem cell-enriched miRNAs, as well as multiple transcription factors, into fibroblasts, resulting in effective reprogramming into induced pluripotent stem cells. Furthermore, we report that the murine miR-367 hairpin produced elevated levels of mature miRNA when it was incorporated into the SeVdp vector and served as an effective backbone for production of artificial miRNAs. These SeVdp vector-derived artificial miRNAs efficiently inhibited expression of target genes. Our findings provide novel insights into a powerful tool for long-term and targeted gene silencing in areas such as regenerative medicine, gene therapy, and cell therapy.
Collapse
Affiliation(s)
- Masayuki Sano
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Asako Nakasu
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
42
|
Tan Y, Ke M, Huang Z, Chong CM, Cen X, Lu JH, Yao X, Qin D, Su H. Hydroxyurea Facilitates Manifestation of Disease Relevant Phenotypes in Patients-Derived IPSCs-Based Modeling of Late-Onset Parkinson's Disease. Aging Dis 2019; 10:1037-1048. [PMID: 31595201 PMCID: PMC6764725 DOI: 10.14336/ad.2018.1216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs)-derived dopaminergic neurons might be reset back to the fetal state due to reprogramming. Thus, it is a compelling challenge to reliably and efficiently induce disease phenotypes of iPSCs-derived dopaminergic neurons to model late-onset Parkinson’s disease (PD). Here, we applied a small molecule, hydroxyurea (HU), to promote the manifestation of disease relevant phenotypes in iPSCs-based modeling of PD. We established two iPS cell lines derived from two sporadic PD patients. Both patients-iPSCs-derived dopaminergic neurons did not display PD relevant phenotypes after 6 weeks culture. HU treatment remarkably induced ER stress on patients-iPSCs-derived dopaminergic neurons. Moreover, HU treatment significantly reduced neurite outgrowth, decreased the expression of p-AKT and its downstream targets (p-4EBP1 and p-ULK1), and increased the expression level of cleaved-Caspase 3 in patients-iPSCs-derived dopaminergic neurons. The findings of the present study suggest that HU administration could be a convenient and reliable approach to induce disease relevant phenotypes in PD-iPSCs-based models, facilitating to study disease mechanisms and test drug effects.
Collapse
Affiliation(s)
- Yuan Tan
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Minjing Ke
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhijian Huang
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheong-Meng Chong
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaotong Cen
- 2South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Hong Lu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- 3Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dajiang Qin
- 2South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huanxing Su
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
43
|
Qiao S, Deng Y, Li S, Yang X, Shi D, Li X. Partially Reprogrammed Induced Pluripotent Stem Cells Using MicroRNA Cluster miR-302s in Guangxi Bama Minipig Fibroblasts. Cell Reprogram 2019; 21:229-237. [PMID: 31479283 DOI: 10.1089/cell.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pig-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. The miR-302s cluster alone has been shown to reprogram mouse and human somatic cells into induced pluripotent stem cells (iPSCs) without exogenous transcription factors. However, miR-302s alone have not been reported to reprogram cells in large livestock. In this study, we induced pig somatic cells into partially reprogrammed piPSCs using overexpression of the miR-302s cluster (miR-302s-piPSC) and investigated the early reprogramming events during the miRNA induction process. The results showed that miR-302s-piPSCs exhibited some characteristics of pluripotent stem cells including expression of pluripotency markers-particularly, efficient activation of endogenous OCT4-and differentiation to the three germ layers in vitro. During the early reprogramming process, somatic cells first underwent epithelial-mesenchymal transition and then mesenchymal-epithelial transition to eventually form miR-302s-piPSCs. These data show, for the first time, that single factor miR-302s successfully induced pig somatic cells into miR-302s-piPSCs. This study provides a new tool and research direction for the induction of pluripotent stem cells in a large livestock.
Collapse
Affiliation(s)
- Shuye Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
44
|
Ahmadalizadeh Khanehsar M, Hoseinbeyki M, Fakhr Taha M, Javeri A. Repression of TGF-β Signaling in Breast Cancer Cells by miR-302/367 Cluster. CELL JOURNAL 2019; 21:444-450. [PMID: 31376326 PMCID: PMC6722449 DOI: 10.22074/cellj.2020.6193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
Abstract
Objective Epigenetic alterations of the malignantly transformed cells have increasingly been regarded as an important
event in the carcinogenic development. Induction of some miRNAs such as miR-302/367 cluster has been shown
to induce reprogramming of breast cancer cells and exert a tumor suppressive role by induction of mesenchymal to
epithelial transition, apoptosis and a lower proliferation rate. Here, we aimed to investigate the impact of miR-302/367
overexpression on transforming growth factor-beta (TGF-β) signaling and how this may contribute to tumor suppressive
effects of miR-302/367 cluster.
Materials and Methods In this experimental study, MDA-MB-231 and SK-BR-3 breast cancer cells were cultured and
transfected with miR-302/367 expressing lentivector. The impact of miR-302/367 overexpression on several mediators
of TGF-β signaling and cell cycle was assessed by quantitative real-time polymerase chain reaction (qPCR) and flow
cytometry.
Results Ectopic expression of miR-302/367 cluster downregulated expression of some downstream elements of
TGF-β pathway in MDA-MB-231 and SK-BR-3 breast cancer cell lines. Overexpression of miR-302/367 cluster inhibited
proliferation of the breast cancer cells by suppressing the S-phase of cell cycle which was in accordance with inhibition
of TGF-β pathway.
Conclusion TGF-β signaling is one of the key pathways in tumor progression and a general suppression of TGF-β
mediators by the pleiotropically acting miR-302/367 cluster may be one of the important reasons for its anti-tumor
effects in breast cancer cells.
Collapse
Affiliation(s)
- Mona Ahmadalizadeh Khanehsar
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Moslem Hoseinbeyki
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.Electronic Address:
| |
Collapse
|
45
|
de Souza Lima IM, Schiavinato JLDS, Paulino Leite SB, Sastre D, Bezerra HLDO, Sangiorgi B, Corveloni AC, Thomé CH, Faça VM, Covas DT, Zago MA, Giacca M, Mano M, Panepucci RA. High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation. Stem Cell Res Ther 2019; 10:202. [PMID: 31287022 PMCID: PMC6615276 DOI: 10.1186/s13287-019-1318-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background By post-transcriptionally regulating multiple target transcripts, microRNAs (miRNAs or miR) play important biological functions. H1 embryonic stem cells (hESCs) and NTera-2 embryonal carcinoma cells (ECCs) are two of the most widely used human pluripotent model cell lines, sharing several characteristics, including the expression of miRNAs associated to the pluripotent state or with differentiation. However, how each of these miRNAs functionally impacts the biological properties of these cells has not been systematically evaluated. Methods We investigated the effects of 31 miRNAs on NTera-2 and H1 hESCs, by transfecting miRNA mimics. Following 3–4 days of culture, cells were stained for the pluripotency marker OCT4 and the G2 cell-cycle marker Cyclin B1, and nuclei and cytoplasm were co-stained with Hoechst and Cell Mask Blue, respectively. By using automated quantitative fluorescence microscopy (i.e., high-content screening (HCS)), we obtained several morphological and marker intensity measurements, in both cell compartments, allowing the generation of a multiparametric miR-induced phenotypic profile describing changes related to proliferation, cell cycle, pluripotency, and differentiation. Results Despite the overall similarities between both cell types, some miRNAs elicited cell-specific effects, while some related miRNAs induced contrasting effects in the same cell. By identifying transcripts predicted to be commonly targeted by miRNAs inducing similar effects (profiles grouped by hierarchical clustering), we were able to uncover potentially modulated signaling pathways and biological processes, likely mediating the effects of the microRNAs on the distinct groups identified. Specifically, we show that miR-363 contributes to pluripotency maintenance, at least in part, by targeting NOTCH1 and PSEN1 and inhibiting Notch-induced differentiation, a mechanism that could be implicated in naïve and primed pluripotent states. Conclusions We present the first multiparametric high-content microRNA functional screening in human pluripotent cells. Integration of this type of data with similar data obtained from siRNA screenings (using the same HCS assay) could provide a large-scale functional approach to identify and validate microRNA-mediated regulatory mechanisms controlling pluripotency and differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1318-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ildercílio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Josiane Lilian Dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Sarah Blima Paulino Leite
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Danuta Sastre
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil
| | - Hudson Lenormando de Oliveira Bezerra
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Bruno Sangiorgi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Marco Antônio Zago
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic and Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic and Engineering and Biotechnology (ICGEB), Trieste, Italy.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil. .,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
46
|
Grace HE, Galdun P, Lesnefsky EJ, West FD, Iyer S. mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells Dev 2019; 28:846-859. [PMID: 31017045 DOI: 10.1089/scd.2019.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early molecular and developmental events impacting many incurable mitochondrial disorders are not fully understood and require generation of relevant patient- and disease-specific stem cell models. In this study, we focus on the ability of a nonviral and integration-free reprogramming method for deriving clinical-grade induced pluripotent stem cells (iPSCs) specific to Leigh's syndrome (LS), a fatal neurodegenerative mitochondrial disorder of infants. The cause of fatality could be due to the presence of high abundance of mutant mitochondrial DNA (mtDNA) or decline in respiration levels, thus affecting early molecular and developmental events in energy-intensive tissues. LS patient fibroblasts (designated LS1 in this study), carrying a high percentage of mutant T8993G mtDNA, were reprogrammed using a combined mRNA-miRNA nonviral approach to generate human iPSCs (hiPSCs). The LS1-hiPSCs were evaluated for their self-renewal, embryoid body (EB) formation, and differentiation potential, using immunocytochemistry and gene expression profiling methods. Sanger sequencing and next-generation sequencing approaches were used to detect the mutation and quantify the percentage of mutant mtDNA in the LS1-hiPSCs and differentiated derivatives. Reprogrammed LS-hiPSCs expressed pluripotent stem cell markers including transcription factors OCT4, NANOG, and SOX2 and cell surface markers SSEA4, TRA-1-60, and TRA-1-81 at the RNA and protein level. LS1-hiPSCs also demonstrated the capacity for self-renewal and multilineage differentiation into all three embryonic germ layers. EB analysis demonstrated impaired differentiation potential in cells carrying high percentage of mutant mtDNA. Next-generation sequencing analysis confirmed the presence of high abundance of T8993G mutant mtDNA in the patient fibroblasts and their reprogrammed and differentiated derivatives. These results represent for the first time the derivation and characterization of a stable nonviral hiPSC line reprogrammed from a LS patient fibroblast carrying a high abundance of mutant mtDNA. These outcomes are important steps toward understanding disease origins and developing personalized therapies for patients suffering from mitochondrial diseases.
Collapse
Affiliation(s)
- Harrison E Grace
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Patrick Galdun
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- 3 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,4 Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia.,5 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia.,6 Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,2 Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Shilpa Iyer
- 7 Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
47
|
Groenendyk J, Fan X, Peng Z, Kurgan L, Michalak M. Endoplasmic reticulum and the microRNA environment in the cardiovascular system 1. Can J Physiol Pharmacol 2019; 97:515-527. [PMID: 31063413 DOI: 10.1139/cjpp-2018-0720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress responses are important to human physiology and pathology, and the inability to adapt to cellular stress leads to cell death. To mitigate cellular stress and re-establish homeostasis, cells, including those in the cardiovascular system, activate stress coping response mechanisms. The endoplasmic reticulum, a component of the cellular reticular network in cardiac cells, mobilizes so-called endoplasmic reticulum stress coping responses, such as the unfolded protein response. MicroRNAs play an important part in the maintenance of cellular and tissue homeostasis, perform a central role in the biology of the cardiac myocyte, and are involved in pathological cardiac function and remodeling. In this paper, we review a link between endoplasmic reticulum homeostasis and microRNA with an emphasis on the impact on stress responses in the cardiovascular system.
Collapse
Affiliation(s)
- Jody Groenendyk
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S7, Canada
| | - Xiao Fan
- b Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Zhenling Peng
- c Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Lukasz Kurgan
- d Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.,e Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | - Marek Michalak
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S7, Canada
| |
Collapse
|
48
|
Comprehensive Analysis of Differentially Expressed mRNA, lncRNA and circRNA and Their ceRNA Networks in the Longissimus Dorsi Muscle of Two Different Pig Breeds. Int J Mol Sci 2019; 20:ijms20051107. [PMID: 30836719 PMCID: PMC6429497 DOI: 10.3390/ijms20051107] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
Circular RNA (circRNA) and long non-coding RNA (lncRNA) are known to participate in adipogenesis and myogenic differentiation, but their impact on porcine muscle traits is not well understood. We compared their expressional profiles in the longissimus dorsi muscle of Chinese Huainan pigs (HN, the fat type) and Western commercial Duroc×(Landrace×Yorkshire) (DLY, the thin type) pigs, and 854 mRNAs, 233 lncRNAs, and 66 circRNAs (p < 0.05 and |log₂FoldChange|>1) were found to be differentially expressed. The differentially expressed mRNA and circRNA parental genes were enriched in the Wnt signaling pathway (adipogenesis), the transition between fast and slow fibers (myogenic differentiation), and alanine, aspartate and glutamate metabolism (pork flavor). The potential lncRNAs/circRNAs-miRNAs-mRNAs regulatory networks shared MYOD1, PPARD, miR-423-5p and miR-874, which were associated with skeletal muscle muscular proliferation, differentiation/regeneration and adipogenesis. Taken together, these differentially expressed non-coding RNAs may be involved in the molecular basis of muscle traits, acting as the competing endogenous RNA (ceRNA) for miRNAs.
Collapse
|
49
|
Chen EYY, Chen JS, Ying SY. The microRNA and the perspectives of miR-302. Heliyon 2019; 5:e01167. [PMID: 30723835 PMCID: PMC6351428 DOI: 10.1016/j.heliyon.2019.e01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
MiRNAs are naturally occurring, small, non-coding RNA molecules that post-transcriptionally regulate the expression of a large number of genes involved in various biological processes, either through mRNA degradation or through translation inhibition. MiRNAs play important roles in many aspects of physiology and pathology throughout the body, particularly in cancer, which have made miRNAs attractive tools and targets for translational research. The types of non-coding RNAs, biogenesis of miRNAs, circulating miRNAs, and direct delivery of miRNA were briefly reviewed. As a case of point, the role and perspective of miR-302, a family of ES-specific miRNA, on cancer, iPSCs, heart disease were presented.
Collapse
Affiliation(s)
- Emily Yen Yu Chen
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Jack S. Chen
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA 90670, USA
| | - Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, BMT-403, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| |
Collapse
|
50
|
The role of miR-183 cluster in immunity. Cancer Lett 2018; 443:108-114. [PMID: 30529154 DOI: 10.1016/j.canlet.2018.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are essential factors of an extensively conserved post-transcriptional process to regulate gene expression. MiRNAs play a pivotal role in immunity, including controlling the differentiation of various immune cells as well as their immunological functions. The miR-183 cluster, which is comprised of miR-183, -96 and -182, is a miRNA family with sequence homology. These miRNAs are usually transcribed together as a polycistronic miRNA cluster during development and are required for maturation of sensory organs. In comparison to defined sensory-specific role of these miRNAs in normal development, they are frequently over-expressed in several non-sensory diseases, including autoimmune diseases and cancers. Because individual miRNAs of miR-183 cluster have both common and unique targets within functionally interrelated pathways, they can show cooperative or opposing effects on biological processes, implying the complexity of this miR cluster-mediated gene regulation. Therefore, a better understanding of the molecular regulation of miR-183 cluster expression and its downstream networks is important for the therapeutic applications. In this review, we will discuss the characteristics of miR-183 cluster and a wide variety of evidence on its function in immune system. Newer knowledge summarized here will help readers understand the versatile role of miR-183 cluster in this field.
Collapse
|