1
|
Comini G, Dowd E. A systematic review of progenitor survival and maturation in Parkinsonian models. Neural Regen Res 2025; 20:3172-3178. [PMID: 39589166 PMCID: PMC11881725 DOI: 10.4103/nrr.nrr-d-24-00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
Stem cell-based brain repair is a promising emergent therapy for Parkinson's disease based on years of foundational research using human fetal donors as a cell source. Unlike current therapeutic options for patients, this approach has the potential to provide long-term stem cell-derived reconstruction and restoration of the dopaminergic input to denervated regions of the brain allowing for restoration of certain functions to patients. The ultimate clinical success of stem cell-derived brain repair will depend on both the safety and efficacy of the approach and the latter is dependent on the ability of the transplanted cells to survive and differentiate into functional dopaminergic neurons in the Parkinsonian brain. Because the pre-clinical literature suggests that there is considerable variability in survival and differentiation between studies, the aim of this systematic review was to assess these parameters in human stem cell-derived dopaminergic progenitor transplant studies in animal models of Parkinson's disease. A defined systematic search of the PubMed database was completed to identify relevant studies published up to March 2024. After screening, 76 articles were included in the analysis from which 178 separate transplant studies were identified. From these, graft survival could be assessed in 52 studies and differentiation in 129 studies. Overall, we found that graft survival ranged from < 1% to 500% of cells transplanted, with a median of 51% of transplanted cells surviving in the brain; while dopaminergic differentiation of the cells ranged from 0% to 46% of cells transplanted with a median of 3%. This systematic review suggests that there is considerable scope for improvement in the differentiation of stem cell-derived dopaminergic progenitors to maximize the therapeutic potential of this approach for patients.
Collapse
Affiliation(s)
- Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Center, University of Galway, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Center, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Zhao Y, Wang T, Liu J, Wang Z, Lu Y. Emerging brain organoids: 3D models to decipher, identify and revolutionize brain. Bioact Mater 2025; 47:378-402. [PMID: 40026825 PMCID: PMC11869974 DOI: 10.1016/j.bioactmat.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Brain organoids are an emerging in vitro 3D brain model that is integrated from pluripotent stem cells. This model mimics the human brain's developmental process and disease-related phenotypes to a certain extent while advancing the development of human brain-based biological intelligence. However, many limitations of brain organoid culture (e.g., lacking a functional vascular system, etc.) prevent in vitro-cultured organoids from truly replicating the human brain in terms of cell type and structure. To improve brain organoids' scalability, efficiency, and stability, this paper discusses important contributions of material biology and microprocessing technology in solving the related limitations of brain organoids and applying the latest imaging technology to make real-time imaging of brain organoids possible. In addition, the related applications of brain organoids, especially the development of organoid intelligence combined with artificial intelligence, are analyzed, which will help accelerate the rational design and guidance of brain organoids.
Collapse
Affiliation(s)
- Yuli Zhao
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jiajun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze Wang
- College of Life Sciences, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Su X, Wang M, Yuan R, Guo L, Han Y, Huang C, Li A, Kaplan DL, Wang X. Organoids in Dynamic Culture: Microfluidics and 3D Printing Technologies. ACS Biomater Sci Eng 2025. [PMID: 40248908 DOI: 10.1021/acsbiomaterials.4c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
With the rapid advancement of biomaterials and tissue engineering technologies, organoid research and its applications have made significant strides. Organoids are increasingly utilized in pharmacology, regenerative medicine, and precision clinical medicine. Current trends in organoid research are moving toward multifunctional composite three-dimensional cultivation and dynamic cultivation strategies. Key technologies driving this evolution, including 3D printing and microfluidics, continue to impact new areas of discovery and clinical relevance. This review provides a systematic overview of these emerging trends, discussing the strengths and limitations of these critical technologies and offering insight and research directions for professionals working in the organoid field.
Collapse
Affiliation(s)
- Xin Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Mingqi Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Ruqiang Yuan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Lina Guo
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Yinhe Han
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Chun Huang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - Ang Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiuli Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China 116044
| |
Collapse
|
6
|
Lee EJ, Sun R, Kim J. The self-renewal function of Oct-4 can be replaced by the EWS-Oct-4 fusion protein in embryonic stem cells. Cell Mol Life Sci 2025; 82:166. [PMID: 40251420 PMCID: PMC12008092 DOI: 10.1007/s00018-025-05701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Octamer-binding transcription factor 4 (Oct-4) is essential for maintenance and pluripotency of embryonic stem (ES) cells. Despite the structural similarities between Oct-4 and its homologs (Oct-1, Oct-2, and Oct-6), these homologs cannot serve as substitutes for Oct-4 when generating stem cell colonies. While nuclear receptor subfamily 5, group A, member 2 (Nr5a2) can temporarily serve as a substitute for Oct-4 during cellular reprogramming, it is insufficient to maintain these functions in ES cells. The EWS-Oct-4 fusion protein, which was identified in human tumors, is a viable alternative that can potentially sustain and enhance ES cell functions. This study used ZHBTc4 ES cells, which have tetracycline-regulated Oct-4 expression, to explore the capabilities of EWS-Oct-4. It employed a variety of assays, including western blotting, immunocytochemistry, RT-PCR, luciferase reporter assays, flow cytometry, and teratoma formation assays. EWS-Oct-4 preserved the self-renewal capacity of Oct-4-null ES cells, as demonstrated by their undifferentiated morphology and increased expression of pluripotency markers such as Sox2, Nanog, and SSEA-1. It also boosted cell proliferation and influenced cell cycle dynamics by downregulating p21 and upregulating Oct-4 target genes, including Rex-1 and fibroblast growth factor-4. Epithelial markers were upregulated and mesenchymal markers were downregulated, suggesting a shift toward an epithelial phenotype. Prominent teratoma formation further confirmed the functionality of EWS-Oct-4 in vivo. The integrity and specific functional domains of EWS-Oct-4 were critical for these effects. Finally, comparative transcriptomic analysis revealed that ES cells expressing EWS-Oct-4 and those expressing Oct-4 had highly similar global gene expression profiles, with distinct variations in differentially expressed genes. These findings indicate that EWS-Oct-4 can effectively replace Oct-4, which has significant implications for advancements in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Eun Joo Lee
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Ruijing Sun
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, 04107, Korea.
- Stress-Responding Bionanomaterial Center, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
7
|
Okubo C, Nakamura M, Sato M, Shichino Y, Mito M, Takashima Y, Iwasaki S, Takahashi K. EIF3D safeguards the homeostasis of key signaling pathways in human primed pluripotency. SCIENCE ADVANCES 2025; 11:eadq5484. [PMID: 40203091 PMCID: PMC11980838 DOI: 10.1126/sciadv.adq5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although pluripotent stem cell (PSC) properties, such as differentiation and infinite proliferation, have been well documented within the frameworks of transcription factor networks, epigenomes, and signal transduction, they remain unclear and fragmented. Directing attention toward translational regulation as a bridge between these events can yield additional insights into previously unexplained mechanisms. Our functional CRISPR interference screen-based approach revealed that EIF3D, a translation initiation factor, is crucial for maintaining primed pluripotency. Loss of EIF3D disrupted the balance of pluripotency-associated signaling pathways, thereby compromising primed pluripotency. Moreover, EIF3D ensured robust proliferation by controlling the translation of various p53 regulators, which maintain low p53 activity in the undifferentiated state. In this way, EIF3D-mediated translation contributes to tuning the homeostasis of the primed pluripotency networks, ensuring the maintenance of an undifferentiated state with high proliferative potential. This study provides further insights into the translation network in maintaining pluripotency.
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
8
|
Guo D, Du Z, Liu Y, Lin M, Lu Y, Hardikar S, Xue Y, Zhang J, Chen T, Dan J. The ZBTB24-CDCA7-HELLS axis suppresses the totipotent 2C-like reprogramming by maintaining Dux methylation and repression. Nucleic Acids Res 2025; 53:gkaf302. [PMID: 40226918 PMCID: PMC11995263 DOI: 10.1093/nar/gkaf302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Two-cell-like cells (2CLCs), a rare population (∼0.5%) in mouse embryonic stem cell (mESC) cultures, are in a transient totipotent-like state resembling that of 2C-stage embryos, and their discovery and characterization have greatly facilitated the study of early developmental events, such as zygotic genome activation. However, the molecular determinants governing 2C-like reprogramming remain to be elucidated. Here, we show that ZBTB24, CDCA7, and HELLS, components of a molecular pathway that is involved in the pathogenesis of immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, function as negative regulators of 2C-like reprogramming by maintaining DNA methylation of the Dux cluster, a master inducer of the 2C-like state. Disruption of the ZBTB24-CDCA7-HELLS axis results in Dux hypomethylation and derepression, leading to dramatic upregulation of 2C-specific genes, which can be reversed by site-specific re-methylation in the Dux promoter. We also provide evidence that CDCA7 is enriched at the Dux cluster and recruits the CDCA7-HELLS chromatin remodeling complex to constitutive heterochromatin. Our study uncovers a key role for the ZBTB24-CDCA7-HELLS axis in safeguarding the mESC state by suppressing the 2C-like reprogramming.
Collapse
Affiliation(s)
- Dan Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zeling Du
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Youqi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Meiqi Lin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
| | - Yanna Xue
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Jinghong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
- Programs in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, United States
| | - Jiameng Dan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
9
|
Li N, Yang Z, Su Y, Ma W, Zhao J, Wang X, Wan W, Xie S, Li H, Wang M, Zhao Y, Han S, Li T, Xiehe S, Guo J, Yue L, Li X, Wang A, Jiang F, Qing S, Liu X, Liu J, Lei A, Tang Y. Establishing Bovine Embryonic Stem Cells and Dissecting Their Self-Renewal Mechanisms. Int J Mol Sci 2025; 26:3536. [PMID: 40331984 PMCID: PMC12027403 DOI: 10.3390/ijms26083536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Bovine pluripotent stem cells (PSCs) hold significant potential for diverse applications in agriculture, reproductive biotechnology, and biomedical research. However, challenges persist in establishing stable bovine PSC lines and understanding the mechanisms underlying their pluripotency maintenance. Here, we derived bovine embryonic stem cells (bESCs) from Holstein cattle embryos. These cells exhibited robust differentiation capacity into three germ layers in vitro and in vivo. Transcriptome analysis revealed distinct molecular profiles compared to primed-state bESCs. Notably, bESC proliferation ceased on methanol-treated feeder cells, in contrast to mouse ESCs (mESCs), which proliferated normally. Pathway analysis identified key signaling events critical for bESC survival and proliferation, highlighting species-specific regulatory mechanisms. Furthermore, the derived bESCs demonstrated chimerism capacity in early bovine embryos, underscoring their functional pluripotency. This work provides a foundation for advancing bovine embryology research and stem cell-based biotechnologies in livestock.
Collapse
Affiliation(s)
- Ningxiao Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Zhen Yang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Yue Su
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Wei Ma
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Jianglin Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Xiangyan Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; (X.W.); (X.L.)
| | - Wenjing Wan
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Shengcan Xie
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Heqiang Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Ming Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Yiyu Zhao
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Shiyao Han
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Tianle Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Shuangyi Xiehe
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Jintong Guo
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Linxiu Yue
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Xiaoting Li
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Ahui Wang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Fenfen Jiang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Xinfeng Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; (X.W.); (X.L.)
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (J.Z.); (H.L.); (M.W.); (S.Q.)
| | - Anmin Lei
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
| | - Young Tang
- Shaanxi Centre of Stem Cells Engineering & Technology, Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (N.L.); (Z.Y.); (Y.S.); (W.M.); (W.W.); (S.X.); (Y.Z.); (S.H.); (T.L.); (S.X.); (J.G.); (L.Y.); (X.L.); (A.W.); (F.J.); (A.L.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; (X.W.); (X.L.)
| |
Collapse
|
10
|
Qi M, Wang B, Liao H, Xu Y, Dong L, Xu L, Xia Y, Jiang X, Ling S, Qin J. Loss of sex-determining region Y-box 2 (Sox2) captures embryonic stem cells in a primed pluripotent state. J Biol Chem 2025; 301:108501. [PMID: 40216251 DOI: 10.1016/j.jbc.2025.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Two main pluripotent cell lines can be established from the preimplantation and postimplantation mouse embryo as naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. Although the two pluripotent states are interconvertible, the molecular mechanism controlling the transition between naïve and primed pluripotency remains to be fully elucidated. Here, by performing a CRISPR-based loss-of-function screen in ESCs, we identify Sox2 involved in the repression of lineage-specification marker brachyury (T). Upon Sox2 ablation in ESCs, two populations of cells mutually exclusive for CDX2 (trophectoderm marker) and T expression can be observed. T-positive cells display features resembling the salient characteristics of EpiSCs including molecular and functional properties. By using genetic ablation approach, we show that acquisition and maintenance of primed pluripotency in Sox2 null T-positive cells heavily depend on fibroblast growth factor (Fgf) and Nodal, which is produced in an autocrine manner in these cells. We further demonstrate that Sox3 compensates for the absence of Sox2 in maintaining the primed state of Sox2-null pluripotent cells. Establishment of Sox2-deficient pluripotent cells will enable the elucidation of the mechanisms controlling the transition of cells between different states of pluripotency.
Collapse
Affiliation(s)
- Min Qi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Bowen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Huaqi Liao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yuzhuo Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lixia Dong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lijun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Jinzhong Qin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025:10.1007/s12015-025-10851-6. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
12
|
Blotenburg M, Suurenbroek L, Bax D, de Visser J, Bhardwaj V, Braccioli L, de Wit E, van Boxtel A, Marks H, Zeller P. Stem cell culture conditions affect in vitro differentiation potential and mouse gastruloid formation. PLoS One 2025; 20:e0317309. [PMID: 40138371 PMCID: PMC11940422 DOI: 10.1371/journal.pone.0317309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/24/2024] [Indexed: 03/29/2025] Open
Abstract
Aggregating low numbers of mouse embryonic stem cells (mESCs) and inducing Wnt signalling generates 'gastruloids', self-organising complex structures that display an anteroposterior organisation of cell types derived from all three germ layers. Current gastruloid protocols display considerable heterogeneity between experiments in terms of morphology, elongation efficiency, and cell type composition. We therefore investigated whether altering the mESC pluripotency state would provide more consistent results. By growing three mESC lines from two different genetic backgrounds in different intervals of ESLIF and 2i medium the pluripotency state of cells was modulated, and mESC culture as well as the resulting gastruloids were analysed. Microscopic analysis showed a pre-culture-specific effect on gastruloid formation, in terms of aspect ratio and reproducibility. RNA-seq analysis of the mESC start population confirmed that short-term pulses of 2i and ESLIF modulate the pluripotency state, and result in different cellular states. Since multiple epigenetic regulators were detected among the top differentially expressed genes, we further analysed genome-wide DNA methylation and H3K27me3 distributions. We observed epigenetic differences between conditions, most dominantly in the promoter regions of developmental regulators. Lastly, when we investigated the cell type composition of gastruloids grown from these different pre-cultures, we observed that mESCs subjected to 2i-ESLIF preceding aggregation generated gastruloids more consistently, including more complex mesodermal contributions as compared to the ESLIF-only control. These results indicate that optimisation of the mESCs pluripotency state allows the modulation of cell differentiation during gastruloid formation.
Collapse
Affiliation(s)
- Marloes Blotenburg
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lianne Suurenbroek
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Danique Bax
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joëlle de Visser
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivek Bhardwaj
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luca Braccioli
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elzo de Wit
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Antonius van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Peter Zeller
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Garg V, Yang Y, Nowotschin S, Setty M, Salataj E, Kuo YY, Murphy D, Sharma R, Jang A, Polyzos A, Pe'er D, Apostolou E, Hadjantonakis AK. Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice. Dev Cell 2025; 60:901-917.e12. [PMID: 39729987 PMCID: PMC11998022 DOI: 10.1016/j.devcel.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/01/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024]
Abstract
Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4-, KLF4-, and SOX2-induced XEN-to-induced pluripotent stem (iPS) reprogramming progressed with diminished efficiency and kinetics. A dominant PrE transcriptional program, safeguarded by GATA4, alongside elevated chromatin accessibility and reduced DNA methylation of the EPI underscored the differential plasticities of the two states. Mapping in vitro to embryo trajectories tracked reprogramming cells in either direction along EPI and PrE in vivo states, without transitioning through the ICM.
Collapse
Affiliation(s)
- Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eralda Salataj
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amy Jang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Polyzos
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Effie Apostolou
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
14
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
15
|
Guiltinan C, Botigelli RC, Candelaria JI, Smith JM, Arcanjo RB, Denicol AC. Primed bovine embryonic stem cell lines can be derived at diverse stages of blastocyst development with similar efficiency and molecular characteristics. Biol Open 2025; 14:BIO061819. [PMID: 39957479 PMCID: PMC11911636 DOI: 10.1242/bio.061819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
In this study, we established bovine embryonic stem cell (bESC) lines from early (eBL) and full (BL) blastocysts to determine the efficiency of bESC derivation from an earlier embryonic stage and compare the characteristics of the resulting lines. Using established medium and protocols for derivation of primed bESCs from expanded blastocysts, we derived bESC lines from eBLs and BLs with the same efficiency (4/12 each, 33%). Regardless of original blastocyst stage, bESC lines had a similar phenotype, including differentiation capacity, stable karyotype, and pluripotency marker expression over feeder-free transition and long-term culture. Transcriptome and functional analyses indicated that eBL- and BL-derived lines were in primed pluripotency. We additionally compared RNA-sequencing data from our lines to bovine embryos and stem cells from other recent reports, finding that base medium was the predominant source of variation among cell lines. In conclusion, our results show that indistinguishable bESC lines can be readily derived from eBL and BL, widening the pool of embryos available for bESC establishment. Finally, our investigation points to sources of variation in cell phenotype among recently reported bESC conditions, opening the door to future studies investigating the impact of factors aside from signaling molecules on ESC derivation, maintenance, and performance.
Collapse
Affiliation(s)
- Carly Guiltinan
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Ramon C. Botigelli
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | | | - Justin M. Smith
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Rachel B. Arcanjo
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| | - Anna C. Denicol
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Duan X, Zhang Q, Gao L, Ling B, Du X, Chen L. ERK phosphorylates ESRRB to regulate the self-renewal and differentiation of mouse embryonic stem cells. Stem Cell Reports 2025; 20:102397. [PMID: 39919750 PMCID: PMC11960530 DOI: 10.1016/j.stemcr.2025.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
MEK (mitogen-activated protein kinase) inhibitor is widely used for culturing pluripotent stem cells, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs), implying a dual role of MEK/ERK (extracellular signal-regulated kinase) signaling in pluripotency maintenance. To better understand the mechanism of MEK/ERK in pluripotency maintenance, we performed quantitative phosphoproteomic analysis and identified 169 ERK substrates, which are enriched for proteins involved in stem cell population maintenance, embryonic development, and mitotic cell cycle. Next, we demonstrated that ERK phosphorylates a well-known pluripotency factor ESRRB on Serine 42 and 43. Dephosphorylation of ESRRB facilitates its binding to pluripotency genes, thus enhancing its activity to maintain pluripotency. In contrast, phosphorylation of ESRRB increases its binding to extraembryonic endoderm (XEN) genes, consequently promoting XEN differentiation of ESCs. Altogether, our study reveals that ERK may regulate ESC self-renewal and differentiation by phosphorylating multiple substrates, including ESRRB, which affects both ESC self-renewal and XEN differentiation.
Collapse
Affiliation(s)
- Xiaowei Duan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingye Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lulu Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Ling
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Henden C, Fjerdingstad HB, Bjørnsen EG, Thiruchelvam-Kyle L, Daws MR, Inngjerdingen M, Glover JC, Dissen E. NK-cell cytotoxicity toward pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch. Stem Cells 2025; 43:sxae083. [PMID: 39708357 PMCID: PMC11929945 DOI: 10.1093/stmcls/sxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK-cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2, and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2, or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS-cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS-cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2-stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS-cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK-cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.
Collapse
Affiliation(s)
- Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Hege B Fjerdingstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0317 Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
18
|
Peng B, Wang Q, Zhang F, Shen H, Du P. Mouse totipotent blastomere-like cells model embryogenesis from zygotic genome activation to post implantation. Cell Stem Cell 2025; 32:391-408.e11. [PMID: 39826539 DOI: 10.1016/j.stem.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively. We found Wnt signaling enabled the rapid expansion of TBLCs and the optimization of their culture medium. We successfully developed a TBLC-spontaneous differentiation system in which mouse TBLCs (mTBLCs) firstly converted into two types of ZGA-like cells (ZLCs) distinguished by Zscan4 expression. Surprisingly, Zscan4-, but not Zscan4+, ZLCs further passed through intermediate 4-cell and then 8-cell/morula stages to produce epiblast, primitive endoderm, and trophectoderm lineages. Significantly, single TBLCs underwent expansion, compaction, and polarization to efficiently generate blastocyst-like structures and even post-implantation egg-cylinder-like structures. Conclusively, we established TBLC-based differentiation and embryo-like structure formation systems to model early embryonic development, offering criteria for evaluating and understanding totipotency.
Collapse
Affiliation(s)
- Bing Peng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Liu S, Meng Y, Lan X, Li R, Kanchanawong P. Ground-state pluripotent stem cells are characterized by Rac1-dependent cadherin-enriched F-actin complexes. J Cell Sci 2025; 138:JCS263811. [PMID: 39886806 DOI: 10.1242/jcs.263811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Pluripotent stem cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, although different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here, we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) into converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We term these structures 'non-junctional cadherin complexes' (NJCCs) and show that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal Ca2+ dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCCs might arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Yue Meng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Xi Lan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
20
|
Yoshida T, Tsukamoto M, Kimura K, Tanaka M, Kuwamura M, Hatoya S. Establishment of feline embryonic stem cells from the inner cell mass of blastocysts produced in vitro. Regen Ther 2025; 28:63-72. [PMID: 39697661 PMCID: PMC11652941 DOI: 10.1016/j.reth.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction The rising number of cats as pets and the growing interest in animal welfare have led to an increased need for the latest treatments in feline veterinary medicine. Among these, veterinary regenerative medicine using pluripotent stem cells is gaining significant attention. However, there have been no reports on establishing feline embryonic stem cell (ESC) lines that possess the pluripotent potential and the ability to differentiate into three germ layers. Methods In this study, we isolated three inner cell masses from feline in vitro-derived blastocysts and subcultured them in a chemically defined medium (StemFit AK02N). We assessed the expression of undifferentiated markers, the ability to differentiate into the three germ layers, and the karyotype structure. Results We established three feline ESC lines. Feline ESCs exhibited positive staining for alkaline phosphatase. RT-qPCR analysis revealed that these cells express undifferentiated marker genes in vitro. Immunostaining and flow cytometry analysis demonstrated that feline ESCs express undifferentiated marker proteins in vitro. In the KSR/FBS medium with or without Activin A, feline ESCs differentiated into all three germ layers (ectoderm, endoderm, and mesoderm), expressing specific marker genes and proteins for each germ layer, as evidenced by RT-qPCR, immunostaining, and flow cytometry. Furthermore, we confirmed that feline ESCs formed teratomas comprising all three germ layers in mouse testes, demonstrating de novo pluripotency in vivo. We also verified that the feline ESCs maintained a normal karyotype. Conclusions We successfully established three feline ESC lines, each possessing pluripotent potential and capable of differentiating into all three germ layers, derived from the inner cell masses of blastocysts produced in vitro.
Collapse
Affiliation(s)
- Takumi Yoshida
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Masaya Tsukamoto
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Kazuto Kimura
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
21
|
Athanasouli P, Vanhessche T, Lluis F. Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination. Life Sci Alliance 2025; 8:e202403091. [PMID: 39779220 PMCID: PMC11711469 DOI: 10.26508/lsa.202403091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Zhang W, An S, Hou S, He X, Xiang J, Yan H, Liu X, Dong L, Wang X, Yang Y. Generation of transient totipotent blastomere-like stem cells by short-term high-dose Pladienolide B treatment. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2774-2. [PMID: 40024996 DOI: 10.1007/s11427-024-2774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 03/04/2025]
Abstract
As an alternative model for studying the dynamic process of early mammalian embryonic development, much progress has been made in using mouse embryonic stem cells (mESCs) to generate embryo-like structures, especially by modifying the starting cells. A previous study has demonstrated that totipotent blastomere-like cells (TBLCs) can be obtained by continuous treatment of mESCs with a low-dose splicing inhibitor, Pladienolide B (PlaB). However, these totipotent mESCs have limited proliferative capacity. Here, we report that short-term high-dose PlaB treatment can also induce mESCs to acquire totipotency. This treatment equips this novel type of stem cells with the ability to self-organize into blastoids and recapitulate key preimplantation developmental processes. Therefore, the stem cells are termed transient totipotent blastomere-like stem cells (tTBLCs). Transcriptome analysis showed that tTBLC blastoids bore similarities to mouse E3.5 blastocysts, E4.5 blastocysts, and TBLC blastoids. Additionally, we found that tTBLC blastoids could develop beyond the implantation stage, forming egg-cylinder-like structures both in vitro and in vivo. In summary, our research provides an alternative rapid and convenient method to generate the starting cells capable of developing into blastoids, which have immense application in various fields, not only in the basic study of early mouse embryogenesis but also in high-throughput drug screening.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shiyu An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shuyue Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xingsi He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinfeng Xiang
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, 210004, China
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, 210004, China
| | - Huanyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaorui Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lingling Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Prenatal Diagnosis of the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, China.
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
23
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
24
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
25
|
Goolab S, Terburgh K, du Plessis C, Scholefield J, Louw R. CRISPR-Cas9 mediated knockout of NDUFS4 in human iPSCs: A model for mitochondrial complex I deficiency. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167569. [PMID: 39547516 DOI: 10.1016/j.bbadis.2024.167569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Mitochondrial diseases, often caused by defects in complex I (CI) of the oxidative phosphorylation system, currently lack curative treatments. Human-relevant, high-throughput drug screening platforms are crucial for the discovery of effective therapeutics, with induced pluripotent stem cells (iPSCs) emerging as a valuable technology for this purpose. Here, we present a novel iPSC model of NDUFS4-related CI deficiency that displays a strong metabolic phenotype in the pluripotent state. Human iPSCs were edited using CRISPR-Cas9 to target the NDUFS4 gene, generating isogenic NDUFS4 knockout (KO) cell lines. Sanger sequencing detected heterozygous biallelic deletions, whereas no indel mutations were found in isogenic control cells. Western blotting confirmed the absence of NDUFS4 protein in KO iPSCs and CI enzyme kinetics showed a ~56 % reduction in activity compared to isogenic controls. Comprehensive metabolomic profiling revealed a distinct metabolic phenotype in NDUFS4 KO iPSCs, predominantly associated with an elevated NADH/NAD+ ratio, consistent with alterations observed in other models of mitochondrial dysfunction. Additionally, β-lapachone, a recognized NAD+ modulator, alleviated reductive stress in KO iPSCs by modifying the redox state in both the cytosol and mitochondria. Although undifferentiated iPSCs cannot fully replicate the complex cellular dynamics of the disease seen in vivo, these findings highlight the utility of iPSCs in providing a relevant metabolic milieu that can facilitate early-stage, high-throughput exploration of therapeutic strategies for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Charl du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
26
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
27
|
Gertsenstein M, Lintott LG, Nutter LMJ. Engineering Base Changes and Epitope-Tagged Alleles in Mice Using Cas9 RNA-Guided Nuclease. Curr Protoc 2025; 5:e70109. [PMID: 39999224 PMCID: PMC11856344 DOI: 10.1002/cpz1.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Mice carrying patient-associated base changes are powerful tools to define the causality of single-nucleotide variants to disease states. Epitope tags enable immuno-based studies of genes for which no antibodies are available. These alleles enable detailed and precise developmental, mechanistic, and translational research. The first step in generating these alleles is to identify within the target sequence-the orthologous sequence for base changes or the N or C terminus for epitope tags-appropriate Cas9 protospacer sequences. Subsequent steps include design and acquisition of a single-stranded oligonucleotide repair template, synthesis of a single guide RNA (sgRNA), collection of zygotes, and microinjection or electroporation of zygotes with Cas9 mRNA or protein, sgRNA, and repair template followed by screening born mice for the presence of the desired sequence change. Quality control of mouse lines includes screening for random or multicopy insertions of the repair template and, depending on sgRNA sequence, off-target sequence variation introduced by Cas9. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Single guide RNA design and synthesis Alternate Protocol 1: Single guide RNA synthesis by primer extension and in vitro transcription Basic Protocol 2: Design of oligonucleotide repair template Basic Protocol 3: Preparation of RNA mixture for microinjection Support Protocol 1: Preparation of microinjection buffer Alternate Protocol 2: Preparation of RNP complexes for electroporation Basic Protocol 4: Collection and preparation of mouse zygotes for microinjection or electroporation Basic Protocol 5: Electroporation of Cas9 RNP into zygotes using cuvettes Alternate Protocol 3: Electroporation of Cas9 RNP into zygotes using electrode slides Basic Protocol 6: Screening and quality control of derived mice Support Protocol 2: Deconvoluting multiple sequence chromatograms with DECODR.
Collapse
Affiliation(s)
| | - Lauri G. Lintott
- The Centre for PhenogenomicsTorontoCanada
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoCanada
| | - Lauryl M. J. Nutter
- The Centre for PhenogenomicsTorontoCanada
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
28
|
Bobrin VA, Sharma-Brymer SE, Monteiro MJ. Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures. ACS NANO 2025; 19:3054-3084. [PMID: 39801086 DOI: 10.1021/acsnano.4c14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles. This method utilized temperature or pH responsive nanoreactors for controlled particle growth and with the added advantages of controlled surface chemical functionality and the ability to produce well-defined asymmetric structures (e.g., tadpoles and kettlebells). This review summarizes the fundamental thermodynamic and kinetic principles that govern particle formation and control using the TDMT method, allowing precision-engineered polymer nanoparticles, offering a versatile and an efficient means to produce 3D nanostructures directly in water with diverse morphologies, high purity, high solids content, and controlled surface and internal functionality. With such control over the nanoparticle features, the TDMT-generated nanostructures could be designed for a wide variety of biological applications, including antiviral coatings effective against SARS-CoV-2 and other pathogens, reversible scaffolds for stem cell expansion and release, and vaccine and drug delivery systems.
Collapse
Affiliation(s)
- Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Surya E Sharma-Brymer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Ye Y, Xie W, Wang X, Tan S, Yang L, Ma Z, Zhu Z, Chen X, Liu X, O'Neill E, Chang L, Zhang W. DNA-damage orchestrates self-renewal and differentiation via reciprocal p53 family and Hippo/Wnt/TGF-β pathway activation in embryonic stem cells. Cell Mol Life Sci 2025; 82:38. [PMID: 39762370 PMCID: PMC11704118 DOI: 10.1007/s00018-024-05561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/18/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025]
Abstract
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs). Our findings demonstrate that irradiation induces the upregulation of the p53 family genes, including p53, p63, and p73, resulting in elevated expression of the E3 ubiquitin ligases Itch and Trim32. Consequently, this impairs ESC maintenance by reducing the protein levels of key pluripotency transcription factors in both mouse ESCs and early embryos. Notably, our study reveals that irradiation-induced DNA damage leads to the recruitment of the BAF complex, causing it to dissociate from its binding sites on the target genes associated with the Yap, Wnt, and TGF-β pathways, thereby increasing signaling and promoting differentiation of ESCs into all three lineages. Importantly, pathway inhibition demonstrates that DNA damage accelerated ESC differentiation relies on Wnt and TGF-β, and is selectively dependent on p53 or p63/ p73 for mesoderm and endoderm respectively. Finally, our study reveals that p53 family proteins form complexes with effector proteins of key signaling pathways which actively contribute to ESC differentiation. In summary, this study uncovered a mechanism by which multiple differentiation signaling pathways converge on the p53 family genes to promote ESC differentiation and are impacted by exposure to ionizing radiation.
Collapse
Affiliation(s)
- Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, 255300, China
| | - Wenyan Xie
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xuepeng Wang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, 4090 Guanhai Road, Heifei, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Province International Joint Laboratory for Regeneration Medicine, Medical College of Soochow University, Suzhou, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
30
|
Zhu Z, Cheng Y, Liu X, Ding W, Liu J, Ling Z, Wu L. Advances in the Development and Application of Human Organoids: Techniques, Applications, and Future Perspectives. Cell Transplant 2025; 34:9636897241303271. [PMID: 39874083 PMCID: PMC11775963 DOI: 10.1177/09636897241303271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Organoids are three-dimensional (3D) cell cultures derived from human pluripotent stem cells or adult stem cells that recapitulate the cellular heterogeneity, structure, and function of human organs. These microstructures are invaluable for biomedical research due to their ability to closely mimic the complexity of native tissues while retaining human genetic material. This fidelity to native organ systems positions organoids as a powerful tool for advancing our understanding of human biology and for enhancing preclinical drug testing. Recent advancements have led to the successful development of a variety of organoid types, reflecting a broad range of human organs and tissues. This progress has expanded their application across several domains, including regenerative medicine, where organoids offer potential for tissue replacement and repair; disease modeling, which allows for the study of disease mechanisms and progression in a controlled environment; drug discovery and evaluation, where organoids provide a more accurate platform for testing drug efficacy and safety; and microecological research, where they contribute to understanding the interactions between microbes and host tissues. This review provides a comprehensive overview of the historical development of organoid technology, highlights the key achievements and ongoing challenges in the field, and discusses the current and emerging applications of organoids in both laboratory research and clinical practice.
Collapse
Affiliation(s)
- Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
31
|
Bu W, Li Y. Rat Models of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:123-148. [PMID: 39821024 DOI: 10.1007/978-3-031-70875-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
As the first mammal to be domesticated for research purposes, rats served as the primary animal model for various branches of biomedical research, including breast cancer studies, up until the late 1990s and early 2000s. During this time, genetic engineering of mice, but not rats, became routine, and mice gradually supplanted rats as the preferred rodent model. But recent advances in creating genetically engineered rat models, especially with the assistance of CRISPR/Cas9 technology, have rekindled the significance of rats as a critical model in exploring various facets of breast cancer research. This is particularly pronounced in the study of the formation and progression of the estrogen receptor-positive subtype, which remains challenging to model in mice. In this chapter, we embark on a historical journey through the evolution of rat models in biomedical research and provide an overview of the general and histological characteristics of rat mammary glands. Next, we critically review major rat models for breast cancer research, including those induced by carcinogens, hormones, radiation, germline transgenes, germline knockouts, and intraductal injection of retrovirus/lentivirus to deliver oncogenic drivers into mature mammary glands. We also discuss the advances in building rat models using somatic genome editing powered by CRISPR/Cas9. This chapter concludes with our forward-looking perspective on future applications of advanced rat models in critical areas of breast cancer research that have continued to challenge the mouse model community.
Collapse
Affiliation(s)
- Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
33
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
34
|
Yu J, Zhao N, Wang Y, Ding N, Guo Z, He Z, Zhang Q, Zhang J, Yang X, Zhang M, Du X, Zhang K, Chen L. DCP1A, a MEK substrate, regulates the self-renewal and differentiation of mouse embryonic stem cells. Cell Rep 2024; 43:115058. [PMID: 39671288 DOI: 10.1016/j.celrep.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors are widely applied to maintain pluripotency, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs). To understand the mechanism of MEK in pluripotency maintenance, we first demonstrated that MEK regulates gene expression at post-transcriptional steps. Consistently, many of the 66 MEK substrates identified by quantitative phosphoproteomics analysis are involved in RNA processing. We further confirmed that MEK1 phosphorylates S563 of DCP1A, an mRNA decapping cofactor and processing body (P body) component. DCP1A, as well as two other P body components, EDC4 and DCP2, are required for the self-renewal and differentiation of ESCs, indicating the role of P bodies in ESCs. Dephosphorylation of DCP1A S563 facilitates both self-renewal and differentiation of ESCs through promoting P body formation and RNA storage. In summary, our study identified 66 MEK substrates supporting the extracellular signal-regulated kinase (ERK)-independent function of MEK and revealed that DCP1A, phosphorylated by MEK, regulates ESC self-renewal and differentiation through modulating P body formation.
Collapse
Affiliation(s)
- Jiayu Yu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuying Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenchang Guo
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300203, China
| | - Zichan He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingye Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoqiong Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ming Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300203, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
35
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
36
|
Andrews PW. Germ cell tumors, cell surface markers, and the early search for human pluripotent stem cells. Bioessays 2024; 46:e2400094. [PMID: 39115324 PMCID: PMC11589668 DOI: 10.1002/bies.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 11/27/2024]
Abstract
Many strands of research by different groups, starting from teratocarcinomas in the laboratory mouse, later moving the corresponding human tumors, contributed to the isolation and description of human pluripotent stem cells (PSCs). In this review, I highlight the contributions from my own research, particularly at the Wistar Institute during the 1980s, when with my colleagues we characterized one of the first clonal lines of pluripotent human embryonal carcinoma (EC) cells, the stem cells of teratocarcinomas, and identified key features including cell surface antigen markers that have since found a place in the study and exploitation of human PSC. Much of this research depended upon close teamwork with colleagues, many in other laboratories, who contributed different expertise and experience. It was also often driven by circumstance and chance rather than pursuit of a grand design.
Collapse
Affiliation(s)
- Peter W. Andrews
- The Centre for Stem Cell BiologyThe School of BiosciencesThe University of SheffieldWestern BankSheffieldUK
| |
Collapse
|
37
|
Pera MF. A brief chronicle of research on human pluripotent stem cells. Bioessays 2024; 46:e2400092. [PMID: 39058898 DOI: 10.1002/bies.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Today, human pluripotent stem cell technologies find widespread application across biomedical research, as models for early human development, as platforms for functional human genomics, as tools for the study of disease, drug screening and toxicology, and as a renewable source of cellular therapeutics for a range of intractable diseases. The foundations of this human pluripotent stem cell revolution rest on advances in a wide range of disciplines, including cancer biology, assisted reproduction, cell culture and organoid technology, somatic cell nuclear transfer, primate embryology, single-cell biology, and gene editing. This review surveys the slow emergence of the study of human pluripotency and the exponential growth of the field during the past several decades.
Collapse
Affiliation(s)
- Martin F Pera
- JAX Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
38
|
Lancaster MA. Pluripotent stem cell-derived organoids: A brief history of curiosity-led discoveries. Bioessays 2024; 46:e2400105. [PMID: 39101295 PMCID: PMC11589667 DOI: 10.1002/bies.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024]
Abstract
Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.
Collapse
|
39
|
Papaioannou VE. Mouse embryos, chimeras, and embryonal carcinoma stem cells-Reflections on the winding road to gene manipulation. Bioessays 2024; 46:e2400061. [PMID: 38884196 DOI: 10.1002/bies.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
The relationship of embryonal carcinoma (EC) cells, the stem cells of germ cell- or embryo-derived teratocarcinoma tumors, to early embryonic cells came under intense scrutiny in the early 1970s when mouse chimeras were produced between EC cells and embryos. These chimeras raised tantalizing possibilities and high hopes for different areas of research. The normalization of EC cells by the embryo lent validity to their use as in vitro models for embryogenesis and indicated that they might reveal information about the relationship between malignancy and differentiation. Chimeras also showed the way for the potential introduction of genes, selected in EC cells in vitro, into the germ line of mice. Although EC cells provided material for the elucidation of early embryonic events and stimulated many studies of early molecular differentiation, after years of intense scrutiny, they fell short as the means of genetic manipulation of the germ line, although arguably they pointed the way to the development of embryonic stem (ES) cells that eventually fulfilled this goal.
Collapse
|
40
|
Andrews PW. From cancer to pluripotent stem cells-A long and winding road. Bioessays 2024; 46:e2400192. [PMID: 39587968 DOI: 10.1002/bies.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 11/27/2024]
Affiliation(s)
- Peter W Andrews
- The Centre for Stem Cell Biology, The School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Ying Q, Nichols J. Relationship of PSC to embryos: Extending and refining capture of PSC lines from mammalian embryos. Bioessays 2024; 46:e2400077. [PMID: 39400400 PMCID: PMC11589693 DOI: 10.1002/bies.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024]
Abstract
Pluripotent stem cell lines derived from preimplantation mouse embryos have opened opportunities for the study of early mammalian development and generation of genetically uncompromised material for differentiation into specific cell types. Murine embryonic stem cells are highly versatile and can be engineered and introduced into host embryos, transferred to recipient females, and gestated to investigate gene function at multiple levels as well as developmental mechanisms, including lineage segregation and cell competition. In this review, we summarize the biomedical motivation driving the incremental modification to culture regimes and analyses that have advanced stem cell research to its current state. Ongoing investigation into divergent mechanisms of early developmental processes adopted by other species, such as agriculturally beneficial mammals and birds, will continue to enrich knowledge and inform strategies for future in vitro models.
Collapse
Affiliation(s)
- Qi‐Long Ying
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute for Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
42
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
43
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
44
|
Park J, Kim J, Shin B, Schöler HR, Kim J, Kim KP. Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances. Int J Stem Cells 2024; 17:363-373. [PMID: 38281813 PMCID: PMC11612216 DOI: 10.15283/ijsc23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.
Collapse
Affiliation(s)
- Junmyeong Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jueun Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Borami Shin
- Department of General Pediatrics, University of Children’s Hospital Münster, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- The Center for Cardiovascular Regeneration and Immunology, TRON-Translational Oncology, The University Medical Center of The Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Kee-Pyo Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
45
|
Matsuyama M, Iwamiya T. Novel and effective plasmid transfection protocols for functional analysis of genetic elements in human cardiac fibroblasts. PLoS One 2024; 19:e0309566. [PMID: 39591455 PMCID: PMC11594401 DOI: 10.1371/journal.pone.0309566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiac fibroblasts, have lower gene transfer efficiency compared to dermal fibroblasts, posing challenges for plasmid-based gene transfer methods. A higher transfer efficiency could enable improved insight into heart pathology and development of novel therapeutic targets. In this study we compared eleven commercially available transfection reagents and eight plasmid purification methods. Finally, we systematically evaluated 150 unique transfection conditions (incubation times, addition of innate immune inhibitors, reagent to plasmid ratios etc) to optimize the methodology. The aim was to develop an optimized plasmid transfection protocol specifically tailored for primary human cardiac fibroblasts with high efficiency and minimal toxicity. While the actual transfection efficiency, indicated by the expression of fluorescent proteins, was less than 5%, our optimized protocol was sufficient for achieving significant gene expression levels needed for experimental applications such as luciferase enhancer-promoter assays. Leveraging our newly developed methodology, we could perform comprehensive profiling of nine viral and native enhancer/promoters, revealing regulatory sequences governing classical fibroblast marker (VIM) and resident cardiac fibroblast marker (TCF21) expression. We believe that these findings can help advance many aspects of cardiovascular research. In conclusion, we here report for the first time a plasmid transfection protocol for cardiac fibroblasts with minimal cell toxicity and sufficient efficiency for functional genomic studies.
Collapse
Affiliation(s)
- Makoto Matsuyama
- Research & Development Department, Metcela Inc., Kanagawa, Japan
| | - Takahiro Iwamiya
- Research & Development Department, Metcela Inc., Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
46
|
Baranwal G, Mukhtar H, Kane J, Lemieux A, Misra S. Advancements in Mesenchymal Stem Cell-Based Therapy for Enhancing Arteriovenous Fistula Patency. Int J Mol Sci 2024; 25:12719. [PMID: 39684430 DOI: 10.3390/ijms252312719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the world's population. Hemodialysis, along with peritoneal dialysis and renal transplant, is one of the renal replacement therapies offered to patients with CKD/end-stage renal disease (ESRD). To proceed with hemodialysis, vascular access is required. The two means of long-term access are arteriovenous fistula (AVF) and arteriovenous graft (AVG). Multiple therapies have been created to help the long-term patency of AVFs. These therapies are needed as 40% of AVFs fail within the first year and additional intervention is required. Much of the existing research has focused on biomarkers, immune cells, hypoxia, and cell-based therapies. Regeneration therapy using mesenchymal stem cells seeks to investigate other ways that we can treat AVF failure. Mesenchymal stem cells are harvested as two main types, fetal and adult. Fetal cells are harvested at different times in fetal gestation and from multiple sources, placental blood, Whartons jelly, and amniotic stem cell fluid. Taken together, this review summarizes the different preclinical/clinical studies conducted using different types of MSCs towards vascular regenerative medicine and further highlights its potential to be a suitable alternative approach to enhance AVF patency.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haseeb Mukhtar
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jamie Kane
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alaura Lemieux
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
47
|
Wong KW, Zeng Y, Tay E, Teo JHJ, Cipta NO, Hamashima K, Yi Y, Liu H, Warrier T, Le MTN, Ng SC, Li QJ, Li H, Loh YH. Nuclear receptor-SINE B1 network modulates expanded pluripotency in blastoids and blastocysts. Nat Commun 2024; 15:10011. [PMID: 39562549 PMCID: PMC11577042 DOI: 10.1038/s41467-024-54381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic stem cells possess the remarkable ability to self-organize into blastocyst-like structures upon induction. These stem cell-based embryo models serve as invaluable platforms for studying embryogenesis and therapeutic developments. Nevertheless, the specific intrinsic regulators that govern this potential for blastoid formation remain unknown. Here we demonstrate an intrinsic program that plays a crucial role in both blastoids and blastocysts across multiple species. We first establish metrics for grading the resemblance of blastoids to mouse blastocysts, and identify the differential activation of gene regulons involved in lineage specification among various blastoid grades. Notably, abrogation of nuclear receptor subfamily 1, group H, member 2 (Nr1h2) drastically reduces blastoid formation. Nr1h2 activation alone is sufficient to rewire conventional ESC into a distinct pluripotency state, enabling them to form blastoids with enhanced implantation capacity in the uterus and contribute to both embryonic and extraembryonic lineages in vivo. Through integrative multi-omics analyses, we uncover the broad regulatory role of Nr1h2 in the transcriptome, chromatin accessibility and epigenome, targeting genes associated with embryonic lineage and the transposable element SINE-B1. The Nr1h2-centred intrinsic program governs and drives the development of both blastoids and early embryos.
Collapse
Grants
- R03 OD038392 NIH HHS
- U19 AG074879 NIA NIH HHS
- P30 CA015083 NCI NIH HHS
- P30 DK084567 NIDDK NIH HHS
- P50 CA136393 NCI NIH HHS
- National Research Foundation, Singapore (NRF) Investigatorship award [NRFI2018- 02]; National Medical Research Council [NMRC/OFIRG21nov-0088]; Singapore Food Story (SFS) R&D Programme [W22W3D0007]; A*STAR Biomedical Research Council, Central Research Fund, Use-Inspired Basic Research (CRF UIBR); Competitive Research Programme (CRP) [NRF-CRP29-2022-0005]; Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0095, H23J2a0097].
- NMRC grant MOH-000937-00 and A*STAR grant C210812003
- M.T.N.L. was supported by the Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0097].
- H.L. was supported by grants from the Mayo Clinic Center for Biomedical Discovery, Center for Individualized Medicine, the Mayo Clinic Comprehensive Cancer Center (NIH; P30CA015083), the Mayo Clinic Center for Cell Signaling in Gastroenterology (NIH: P30DK084567), the Mayo Clinic Nutrition Obesity Research Program, the Glenn Foundation for Medical Research, the Eric & Wendy Schmidt Fund for AI Research & Innovation and the National Institutes of Health (NIH; U19AG74879, P50CA136393, R03OD038392).
Collapse
Affiliation(s)
- Ka Wai Wong
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Edison Tay
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jia Hao Jackie Teo
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadia Omega Cipta
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yao Yi
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Haijun Liu
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Soon Chye Ng
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Sincere Healthcare Group, Singapore, Republic of Singapore
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
48
|
Zhao Y, Yin N, Yang R, Faiola F. Recent advances in environmental toxicology: Exploring gene editing, organ-on-a-chip, chimeric animals, and in silico models. Food Chem Toxicol 2024; 193:115022. [PMID: 39326696 DOI: 10.1016/j.fct.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
In our daily life, we are exposed to various environmental pollutants in multiple ways. At present, we mainly rely on animal models and two-dimensional cell culture models to evaluate the toxicity of environmental pollutants. Nevertheless, results in animal models do not always apply to humans because of differences between species, while two-dimensional cell culture models cannot replicate the in vivo microenvironments, making it difficult to predict the true toxic response of environmental pollutants in humans. The development of various high-end technologies in recent years has provided new opportunities for environmental toxicology research. The application of these high-end technologies in environmental toxicology can complement the limitations of traditional environmental toxicology screening and more accurately predict the toxicity of environmental pollutants. In this review, we first introduce the advantages and disadvantages of traditional environmental toxicology methods, then review the principles and development of four high-end technologies, such as gene editing, organ-on-a-chip, chimeric animals, and in silico models, summarize their application in toxicity testing, and finally emphasize their importance/potential in environmental toxicology.
Collapse
Affiliation(s)
- Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Nai S, Wang M, Yang J, Ling B, Dong Q, Yang X, Du X, Lu M, Liu L, Yu Z, Chen L. Novel role for Ddx39 in differentiation and telomere length regulation of embryonic stem cells. Cell Death Differ 2024; 31:1534-1544. [PMID: 39107495 PMCID: PMC11519497 DOI: 10.1038/s41418-024-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 10/30/2024] Open
Abstract
Erk signaling is indispensable for the self-renewal and differentiation of mouse embryonic stem cells (ESCs), as well as telomere homeostasis. But how Erk regulates these biological processes remains unclear. We identified 132 Erk2 interacting proteins by co-immunoprecipitation and mass spectrometric analysis, and focused on Ddx39 as a potential Erk2 substrate. We demonstrated that Erk2 phosphorylates Ddx39 on Y132 and Y138. Ddx39 knockout (KO) ESCs are defective in differentiation, due to reduced H3K27ac level upon differentiation. Phosphorylation of Ddx39 promotes the recruitment of Hat1 to acetylate H3K27 and activate differentiation genes. In addition, Ddx39 KO leads to telomere elongation in ESCs. Ddx39 is recruited to telomeres by the telomere-binding protein Trf1, consequently disrupting the DNA loop formed by Trf1 and suppressing the alternative lengthening of telomeres (ALT). Phosphorylation of Ddx39 weakens its interaction with Trf1, releasing it from telomeres. Thus, ALT activity is enhanced, and telomeres are elongated. Altogether, our studies reveal an essential role of Ddx39 in the differentiation and telomere homeostasis of ESCs.
Collapse
Affiliation(s)
- Shanshan Nai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Meijie Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Ling
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Qiman Dong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoqiong Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Man Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|