1
|
Iwasaki A, Hatakeyama M, Liu Q, Orimoto A, Fukuda T, Kitaoka T. Proliferation and differentiation of human dental pulp stem cells on phosphorylated cellulose nanofiber scaffolds. Carbohydr Polym 2025; 359:123593. [PMID: 40306767 DOI: 10.1016/j.carbpol.2025.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Human dental pulp stem cells (hDPSCs) are a promising cell source for tooth regeneration therapies. However, conventional culture scaffold materials are often animal-derived, leading to immunogenicity concerns and limited availability. In this study, we explored phosphorylated cellulose nanofibers (P-CNFs), which have a fine fiber morphology and phosphate groups, as a novel scaffold material for cell culture. Immortalized hDPSCs were cultured on P-CNF scaffolds with different phosphate contents (0-1.42 mmol g-1) prepared by varying the molar ratio of urea and diammonium hydrogen phosphate and the reaction time. Cells cultured on unmodified CNFs exhibited poor adhesion and formed spheroids, indicating low bioadaptability. In contrast, P-CNF scaffolds with moderate phosphate content (0.54-0.78 mmol g-1) significantly improved cell adhesion; further increases in phosphate content decreased cell adhesion, indicating a strong dependence on phosphate content. Intriguingly, even in the absence of differentiation inducers, hDPSCs on P-CNF scaffolds with an optimal phosphate content of 0.78 mmol g-1 showed equal or higher expression of hard tissue marker genes compared to collagen scaffolds with differentiation inducers, suggesting that P-CNFs can directly promote hard tissue differentiation. These findings highlight plant-derived, animal-free P-CNFs as a promising biomaterial for advanced dental tissue engineering.
Collapse
Affiliation(s)
- Akihiro Iwasaki
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Qimei Liu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate 020-8551, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Gul MT, Khattak MNK, Qaisar R, Jayakumar MN, Samsudin ABR, Khan AA. The Effects of miR-22-3p on Differentiation of Human Dental Pulp Stem Cells into Neural Progenitor-Like Cells. Mol Neurobiol 2025; 62:7445-7468. [PMID: 39900772 DOI: 10.1007/s12035-025-04702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025]
Abstract
Stem cell treatment shows promise in treating conditions such as neurodegenerative disorders and spinal injuries, but its effectiveness is hampered by cell death and apoptosis. Improving the differentiation of MSCs into neural cells could enhance their therapeutic potential. The role of miR-22-3p in human dental pulp stem cells (HDPSCs), a superior alternative to treat neurodegenerative disorders, and its molecular mechanisms during neural differentiation remain elusive. Therefore, we investigated the miR-22-3p transfections during HDPSC differentiation into neural progenitor-like cells (NPCs) and elucidated the molecular processes through transcriptomic analysis. HDPSCs were differentiated into NPCs after transfection with a miR-22-3p mimic and inhibitor; the differentiation process was assessed by cell viability and expression of Nestin protein. mRNA sequencing on days 1, 3, and 7 of the differentiation process identified several differentially expressed genes (DEGs). Cytoscape and functional enrichment analysis pinpointed central hub genes among the DEGs and uniquely expressed genes. miR-22-3p mimic hindered HDPSC differentiation by reducing proliferation and increasing apoptosis. It downregulated genes linked to extracellular matrix, synaptic and vesicle functions, lipid metabolism, JAK-STAT, and cell cycle pathways across all days while activating proteasome and digestion pathways. In contrast, miR-22-3p inhibition boosts NPC proliferation and elevates Nestin neural marker protein expression. Altogether, miR-22-3p disrupts synapse functioning and lipid metabolism pathways, resulting in apoptosis and death. Conversely, inhibiting miR-22-3p enhances neural differentiation and proliferation of HDPSCs, suggesting its potential application in generating a greater quantity of NPCs and neurons.
Collapse
Affiliation(s)
- Muhammad Tehsil Gul
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Muhammad Nasir Khan Khattak
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rizwan Qaisar
- Cardiovascualr Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - A B Rani Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
Janbaz P, Behzadpour F, Ghanadan K. Evaluation of the Structural, Biological, and Bone Induction Properties of Sol-Gel-Derived Lithium-Doped 68S Bioactive Glass-An in Vitro Study on Human Dental Pulp Stem Cells. Clin Exp Dent Res 2025; 11:e70139. [PMID: 40304308 PMCID: PMC12042117 DOI: 10.1002/cre2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVES Calcium silicate-based bioactive glass shows enhanced ion release capabilities and promotes the formation of hydroxyapatite (HA). This study aimed to synthesize a sol-gel-derived 68S bioactive glass (BAG) incorporating lithium (Li) and evaluate its structural, biological, and osteoinductive properties using human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Two types of 68S BAG were synthesized using the sol-gel method: one containing 5 mol.% lithium nitrate (BGLi5) and a lithium-free control (BG). Structural characterization and HA formation were assessed using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR) before and after immersion in simulated body fluid (SBF) on Days 1, 3, and 7. The dissolution rates of the specimens were evaluated using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and pH analysis. Biological activities were investigated through cell viability (MTT assay), alkaline phosphatase (ALP) enzyme activity, and alizarin red staining to assess mineralization. Additionally, the antimicrobial efficacy of the materials was tested against Streptococcus mutans (SM). RESULTS FTIR and FESEM analyses confirmed the formation of HA crystals in BGLi5 specimens by Day 3 and in BG specimens by Day 7. The MTT assay demonstrated enhanced cell viability in both BG and BGLi5 compared to the control group. ALP activity, a marker of cell differentiation, was significantly elevated in the BGLi5-DM group by Day 14. Alizarin red staining on Day 21 revealed a marked increase in mineralization in both BG and BGLi5, with the BGLi5-DM group showing the highest mineralization levels. Furthermore, both BG and BGLi5 demonstrated significant antimicrobial activity against SM. CONCLUSION The sol-gel-derived 68S BAG containing 5 mol.% Li is a biocompatible material that enhances cell proliferation, differentiation, and mineralization. The combination of BGLi5 with differentiation-specific culture medium synergistically promotes osteogenic differentiation and mineralization, making it a promising candidate for dental and bone tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Janbaz
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| | - Faeze Behzadpour
- Department of pediatric, School of dentistry, Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research InstituteHamadan University of Medical SciencesHamadanIran
| | - Kiana Ghanadan
- Dental Caries Prevention Research CenterQazvin University of Medical SciencesQazvinIran
- Department of Operative Dentistry, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
4
|
Hasani M, Yuan W, Sevari S, Ferreira LDAQ, Chang C, Diniz IMA, Ton-That H, Ansari S, Moshaverinia A. Dopamer: A bioactive polydopamine-containing glass-ionomer cement with mineralizing and antibacterial properties. Dent Mater 2025; 41:666-678. [PMID: 40221335 DOI: 10.1016/j.dental.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
OBJECTIVE To develop and characterize a novel bioactive polydopamine (PDA)-containing glass-ionomer cement (Dopamer) with enhanced mechanical, antibacterial, and mineralization properties for use as a restorative dental material. METHODS Dopamer was developed by coating fluoroaluminosilicate glass particles with polydopamine (PDA) via dopamine polymerization in alkaline solution. The PDA-coated glass particles were then mixed with a polyacrylic polymer. Mechanical properties were assessed through compressive strength, flexural strength, and Vickers microhardness testing using standardized specimens. Fuji XI and Herculite composite resin were used as the control groups. The adhesion to dentin was evaluated using shear bond strength test. Mineralization potential was investigated using Raman spectroscopy and scanning electron microscopy (SEM) to detect apatite formation on the surface and at the dentin-material interface. Cytocompatibility was evaluated using viability and proliferation assays on human dental pulp stem cells (DPSCs). Antibacterial activity against Streptococcus mutans was examined using both colony-forming unit (CFU) counts and live/dead bacterial staining assays on biofilms formed on the material surfaces. Additionally, odontogenic differentiation was examined using gene expression analysis. An in vivo mice molar pulp capping model was used to assess tertiary dentin formation and inflammatory response after placement of the material. All quantitative data were analyzed using one- or two-way ANOVA followed by Tukey's post hoc test, with significance set at p < 0.05. Kruskal-Wallis Test was utilized to evaluate pulp inflammation scores analysis. RESULTS Dopamer exhibited significantly enhanced (p < 0.001) mechanical properties, including improved compressive strength, flexural strength, and microhardness, compared to the conventional glass-ionomer cement (GIC). Shear bond strength to dentin also improved significantly (p < 0.05), demonstrating stronger adhesion. In vitro analyses confirmed in situ mineral formation and dentin mineralization capacity of Dopamer. Raman spectroscopy and SEM-EDS analyses revealed extensive mineral deposition at the interface between Dopamer and dentin, including calcium phosphate-rich layers suggestive of hydroxyapatite formation. Moreover, antibacterial testing demonstrated that Dopamer significantly (p < 0.001) inhibited Streptococcus mutans colonization compared to control (p < 0.001), reducing the risk of recurrent caries. Biocompatibility assays revealed high viability of DPSCs cultured on Dopamer, comparable to or better than the control groups. Dopamer also significantly upregulated odontogenic markers in vitro. In vivo studies showed formation of a continuous layer of tertiary dentin beneath the placed Dopamer, with minimal inflammatory response indicating excellent biocompatibility and regenerative potential. SIGNIFICANCE By combining enhanced mechanical strength, mineralization capacity, and antibacterial properties, Dopamer addresses critical limitations of existing glass-ionomer dental restorative materials, offering a bioactive, durable solution for restorative dentistry. This multifunctional material represents a promising advancement in dental restoration, supporting both clinical performance and long-term oral health.
Collapse
Affiliation(s)
- Mahdi Hasani
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Sevda Sevari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States; Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Chungyu Chang
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, United States
| | - Ivana Márcia Alves Diniz
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States; Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Hung Ton-That
- Division of Oral & Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
5
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2025; 72:229-263. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
6
|
Liu J, Chen Y, Li Z, Li Z, Lyu F, Wang F, Wang A, Liu Z, Liao X, Wu J. Human dental pulp stem cells attenuate airway inflammation in mice with PM 2.5-induced asthma exacerbation by inhibiting the pyroptosis pathway. Stem Cell Res Ther 2025; 16:240. [PMID: 40361181 PMCID: PMC12076901 DOI: 10.1186/s13287-025-04368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) exposure significantly exacerbates respiratory morbidity, particularly in asthmatic individuals, highlighting an urgent need for effective therapeutic interventions. In this study, we evaluated the therapeutic potential and underlying mechanisms of human dental pulp stem cells (hDPSCs), a promising mesenchymal stem cell population, in mitigating airway inflammation in mice with PM2.5-induced asthma exacerbation. METHODS In a PM2.5-exacerbated ovalbumin (OVA)-asthma murine model, hDPSCs were intravenously administered with MCC950 (NLRP3 inhibitor) as positive control, systematically evaluating their therapeutic effects on airway inflammation and pyroptosis through pulmonary function tests, histopathological examination, cytological and molecular analyses. RESULTS The administration of hDPSCs ameliorated airway inflammation. Moreover, hDPSCs further alleviated Th2 inflammation and decreased serum IgE concentrations, along with a decrease in eosinophils in BALF. At the same time, interleukin-1β (IL-1β) and IL-18 levels in BALF and caspase-1 activity in lung tissues were reduced. In addition, immunohistochemistry showed that the expression levels of NLRP3, caspase-1, GSDMD, cleaved capsase-1 and IL-1β were reduced. The western blot results also showed that the expression level of NLRP3/caspase-1/GSDMD/cleaved capsase-1 in the classical pathway of pyroptosis decreased after hDPSCs intervention. CONCLUSIONS These findings provided the first evidence that hDPSCs transplantation attenuated allergic airway inflammation and mucus secretion in mice with PM2.5-induced asthma exacerbation. Thus, hDPSCs exert these protective effects through suppression of the NLRP3/caspase-1/GSDMD-mediated pyroptosis pathway, suggesting their potential as a novel cell-based therapy for PM2.5 inhalation-mediated asthma.
Collapse
Affiliation(s)
- Jianling Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuehua Chen
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Zhongpeng Li
- Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhangwen Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Fengjuan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and the University of Western Australia, School of Medicine, South China University of Technology, Guangzhou, 515000, P.R. China
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, P.R. China
| | - Fang Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Aili Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Zhangquan Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Xiaoyang Liao
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Jian Wu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
He F, Zhu J, Zeng X, Jiang L, Zhang L. Effects of Porphyromonas gingivalis lipopolysaccharide on the behavior of human dental pulp stem cells in vitro and their inflammation-related transcriptomics profile. Arch Oral Biol 2025; 176:106295. [PMID: 40381466 DOI: 10.1016/j.archoralbio.2025.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE The inflammatory microenvironment in pulpitis and periapical periodontitis critically impairs dental pulp stem cells (DPSCs) functionality, yet the underlying molecular mechanisms remain poorly defined. This study aimed to investigate the effects of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) on human DPSCs behavior and elucidate the transcriptomic changes underlying LPS-induced inflammation. DESIGN Human DPSCs were exposed to 1 µg/mL LPS for 24 hours to establish an inflammatory model, with subsequent evaluation of proliferation (CCK-8), migration (Transwell), and odontogenic differentiation (ALP staining, mineralization assays and odontoblast markers expression). Cell cycle progression was quantified through flow cytometry, while RNA sequencing analysis delineated transcriptional alterations. RESULTS LPS exposure significantly attenuated DPSCs proliferative capacity (P < 0.01), suppressed migration (P < 0.01), and impaired odontogenic differentiation, evidenced by diminished ALP activity, mineralized nodule formation and odontoblast markers expression. Cell cycle analysis revealed G0/G1 phase arrest (P < 0.01), indicating proliferative quiescence. Transcriptomic profiling identified 467 differentially expressed genes. P. gingivalis LPS exerts its effects on DPSCs by concurrent activation of both canonical (Toll-like receptors, TLRs) and non-canonical (Nucleotide-binding oligomerization domain-like receptor) signaling pathway. Pathway enrichment revealed the enrichment of the several important signaling pathways such as Phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), tumor necrosis factor (TNF) /Nuclear factor kappa B (NF-κB) and interleukin (IL) -17 signaling under LPS stimulation. CONCLUSION P. gingivalis LPS disrupts DPSCs regenerative functions by modulating inflammatory and developmental signaling pathways, providing mechanistic insights into impaired pulp repair during oral infections.
Collapse
Affiliation(s)
- Fei He
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China.
| | - Jingya Zhu
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China; Department of Stomatology, The Third People's Hospital of Shenzhen, Shenzhen 518112, China
| | - Xiangni Zeng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China; School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Li Jiang
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China; School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Lixia Zhang
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen 518020, China; School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Pelepenko LE, Hewitt B, de Oliveira RB, Moraes BF, Coraça-Huber DC, Janini ACP, Marciano MA. Bismuth release from endodontic materials: Proposed mechanisms for systemic circulation and organ accumulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138580. [PMID: 40367780 DOI: 10.1016/j.jhazmat.2025.138580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Hydraulic calcium silicate-based materials are widely used in the dental field of Endodontics and metallic radiopacifiers are added to these materials enabling imageology identification. Bismuth oxide was added in ProRoot MTA®, a Portland cement-based material available since the 90's, for radiopacifying purposes. This additive (around 20 % weight/weight replacement) elicits crucial local drawbacks such as dentine discolouration, cytotoxicity and gene expression upregulation of metallothioneins (MT1 and MT2A), which indicates a defensive cellular mechanism against metals. Besides, an in vivo study also indicated the presence of bismuth in blood and organs accumulation (liver, brain and kidney) after bismuth-containing materials implantations in an animal model; thus, mechanisms of bismuth accumulation are here proposed for these substrates. For this purpose, an open literature review methodology in databases (PubMed and Embase) was performed for each topic focusing on relevance of bismuth oxide in mechanisms of dentine discolouration, its lack of beneficial role within reparative dentine pathways, its leaching from the material and detection in blood, and accumulation in liver, brain and - mainly - in the kidney. The accumulation of bismuth on kidney from this material was reported as 334.42 and 279.38 ng/g, after 30 days of implantation in subcutaneous tissue and bone, respectively. Worryingly, after long-term implantation mass fractions were still considerably higher than non-exposed controls. Kidney accumulation represented a 160-fold average higher accumulation in comparison with the liver. Other chemical compounds are available as radiopacifiers (i.e., tantalum oxide, calcium tungstate and zirconium oxide) for dental materials. Recent studies pointed out tantalum oxide and zirconium oxide with lower accumulative pattern in the kidneys when compared to controls. Worryingly, these recent studies analyses were performed with several already marketed materials indicating a disregard from the manufacturers towards systemic testing prior to product launching. A stricter testing is advised. As bismuth oxide appeared to be the most systemically unsafe radiopacifier, mechanistic pathways for each site of detected accumulation are here presented.
Collapse
Affiliation(s)
- Lauter Eston Pelepenko
- Departmento de Odontologia Restauradora, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (Unicamp), Avenida Limeira 901, Piracicaba, SP CEP 13414-903, Brazil; State University of Campinas (Unicamp), School of Medical Sciences, Internal Medicine Department, Nephrology Division., Cidade Universitária Zeferino Vaz, Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), Rua Cinco de Junho, 350, Campinas, SP, 13083-033, Brazil.
| | - Benjamin Hewitt
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, BirminghamB15 2TT, UK
| | - Rodrigo Bueno de Oliveira
- State University of Campinas (Unicamp), School of Medical Sciences, Internal Medicine Department, Nephrology Division., Cidade Universitária Zeferino Vaz, Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), Rua Cinco de Junho, 350, Campinas, SP, 13083-033, Brazil
| | - Brenda Fornazaro Moraes
- Departmento de Odontologia Restauradora, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (Unicamp), Avenida Limeira 901, Piracicaba, SP CEP 13414-903, Brazil
| | - Débora C Coraça-Huber
- Medical University Innsbruck, University Hospital for Orthopaedics and Traumatology, Laboratory for Implant-associated Infections - BIOFILM LAB, Müllerstrasse 44, Innsbruck 6020, Austria
| | - Ana Cristina Padilha Janini
- Departmento de Odontologia Restauradora, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (Unicamp), Avenida Limeira 901, Piracicaba, SP CEP 13414-903, Brazil
| | - Marina Angélica Marciano
- Departmento de Odontologia Restauradora, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (Unicamp), Avenida Limeira 901, Piracicaba, SP CEP 13414-903, Brazil
| |
Collapse
|
9
|
Hammouda DA, Mansour AM, Zaher AR, Grawish ME. Impact of dental pulp cells-derived small extracellular vesicles on the properties and behavior of dental pulp cells: an in-vitro study. BMC Oral Health 2025; 25:704. [PMID: 40349046 PMCID: PMC12066064 DOI: 10.1186/s12903-025-06031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Dental pulp cells-derived small extracellular vesicles (DPCs-sEVs) had shown immunomodulatory, anti-inflammatory, and tissue function restorative abilities. Therefore, DPCs-sEVs should be considered as a promising regenerative tool for dentin-pulp complex or whole pulp regeneration. This study aimed to evaluate the effect of DPCs-sEVs on the proliferation rate, migration capability, and expression pattern of DPCs for osteo/odontogenic gene markers in comparison with mineral trioxide aggregate (MTA). METHODS DPCs-sEVs were isolated from rats' incisors by ultracentrifugation technique. Immunophenotypic characterization, morphology, size, and protein concentration of DPCs-sEVs were monitored and analyzed using flow cytometry (FC), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and bicinchoninic acid assay (BCA). In addition, the TSG101, CD63, and the cytosolic protein syntenin of sEVs markers were immunodetected using Western blotting. Cell cultures of DPCs from the third passage were left untreated and considered as a control (group I), whereas other cultured cells were treated with 50 µg/mL DPCs-sEVs (group II), 0.2 mg/mL MTA extract (group III), or their combination (50 µg/mL DPCs-sEVs + 0.2 mg/mL MTA extract (group IV). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, transwell migration assay, and real-time polymerase chain reaction were used for assessing proliferation, migration, and specific gene expression patterns. RESULTS The DPCs-sEVs increased DPCs proliferation, and MTA enhanced their effects. The viability and proliferative capacity of DPCs treated with 50 µg/mL DPCs-sEVs + 0.2 mg/mL MTA-conditioned medium was significantly higher when compared with the other groups. The cell migration was more prominent in the group treated with 0.2 mg/mL MTA-conditioned medium than in the group treated with 50 µg/mL DPCs-sEVs. DPCs treated with 50 µg/mL DPCs-sEVs + 0.2 mg/mL MTA extract showed a significant increase in the migration ability of DPCs in comparison with other ones. Moreover, the combination group showed the greatest expression of dentin sialophosphoprotein (Dspp), osteocalcin (Ocn), collagen type I (Col1), and runt-related transcription factor 2 (Runx2). CONCLUSION MTA and sEVs together could be a powerful combination for regenerative endodontics. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Dina A Hammouda
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Alaa M Mansour
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt.
| | - Ahmed R Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Dakahlia, Egypt
| |
Collapse
|
10
|
Gu X, Wei W, Wu C, Sun J, Wu X, Shen Z, Zhou H, Zhang C, Wang J, Hu L, Chen S, Zhang Y, Wang S, Zhang R. Profiling and functional characterization of long noncoding RNAs during human tooth development. Int J Oral Sci 2025; 17:38. [PMID: 40346090 PMCID: PMC12064826 DOI: 10.1038/s41368-025-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs (lncRNAs). However, the dynamics of lncRNA expression during human tooth development remain poorly understood. In this research, we examined the lncRNAs present in the dental epithelium (DE) and dental mesenchyme (DM) at the late bud, cap, and early bell stages of human fetal tooth development through bulk RNA sequencing. Developmental regulators co-expressed with neighboring lncRNAs were significantly enriched in odontogenesis. Specific lncRNAs expressed in the DE and DM, such as PANCR, MIR205HG, DLX6-AS1, and DNM3OS, were identified through a combination of bulk RNA sequencing and single-cell analysis. Further subcluster analysis revealed lncRNAs specifically expressed in important regions of the tooth germ, such as the inner enamel epithelium and coronal dental papilla (CDP). Functionally, we demonstrated that CDP-specific DLX6-AS1 enhanced odontoblastic differentiation in human tooth germ mesenchymal cells and dental pulp stem cells. These findings suggest that lncRNAs could serve as valuable cell markers for tooth development and potential therapeutic targets for tooth regeneration.
Collapse
Affiliation(s)
- Xiuge Gu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wei
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chuan Wu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Sun
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoshan Wu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - Zongshan Shen
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hanzhang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Suwen Chen
- Department of Reproductive Regulation, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Department of Reproductive Regulation, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
- Laboratory of Homeostatic Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Ran Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
11
|
Wang Y, Tu M, Gao H, Deng S. Impacts of Circular RNAs on the Osteogenic Differentiation of Dental Stem Cells. Stem Cells Int 2025; 2025:8338337. [PMID: 40376229 PMCID: PMC12081154 DOI: 10.1155/sci/8338337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Dental stem cells are widely viewed as good options for bone regeneration because of their ease of acquisition, innate ability to renew themselves, and ability to differentiate into different types of cells. However, the process of osteogenic differentiation of dental stem cells is orchestrated by an intricate system of regulatory mechanisms. Recent studies have demonstrated the critical impacts of circular RNAs (circRNAs) on osteogenic differentiation of dental stem cells. Exploring the roles and regulatory pathways of circRNAs in dental stem cells could identify novel targets and approaches for utilizing dental stem cell therapy in clinical settings. This review provides a comprehensive overview of the functions and mechanisms of circRNAs, with a particular focus on their expression patterns and regulatory roles in osteogenic differentiation of various dental stem cell types. Furthermore, this review discusses current research challenges in this field and proposes future directions for advancing our understanding of circRNA-mediated regulation in dental stem cell biology.
Collapse
Affiliation(s)
- Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Meijie Tu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Huihui Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Zamorano M, Aguilar-Gallardo C, Lugo A, Jimenez L, Farias JG, Mantalaris A. Engineering an Integrated Bioprocess to Produce Human Dental Pulp Stem Cell-Alginate-Based Bone Organoids. Int J Mol Sci 2025; 26:4348. [PMID: 40362585 PMCID: PMC12073084 DOI: 10.3390/ijms26094348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Bone tissue engineering (BTE) emerged as a practical approach to tackle prosthetic industry limitations. We merge aspects from developmental biology, engineering and medicine with the aim to produce fully functional bone tissue. Mesenchymal stem cells have the capability of self-renewal and specific lineage differentiation. Herein lies their potential for BTE. Among MSCs, human dental pulp stem cells have a higher proliferation rate, shorter doubling times, lower cellular senescence, and enhanced osteogenesis than hBM-SCs under specific conditions. In addition, these cells are readily accessible and can be extracted through a subtle extraction procedure. Thus, they garner fewer moral concerns than most MSCs available and embody a promising cell source for BTE therapies able to replace hBM-MSCs. Interestingly, their study has been limited. Conversely, there is a need for their further study to harness their true value in BTE, with special emphasis in the design of bioprocesses able to produce viable, homogenous bone constructs in a clinical scale. Here, we study the osteogenic differentiation of hDPSCs encapsulated in alginate hydrogels under suspended culture in a novel perfusion bioreactor. The system is compared with traditional 3D static and fed-batch culture methodologies. The novel system performed better, producing higher alkaline phosphatase activity, and more homogeneous, dense and functional bone constructs. Additionally, cell constructs produced by the in-house-designed system were richer in mature osteoblast-like and mineralizing osteocyte-like cells. In conclusion, this study reports the development of a novel bioprocess able to produce hDPSC-based bone-like constructs, providing new insights into hDPSCs' therapeutic potential and a system able to be transferred from the laboratory bench into medical facilities.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Cristobal Aguilar-Gallardo
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
- Instituto de Investigación Sanitaria Hospital La Fe, Valencia 46026, Spain
| | - Aloyma Lugo
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
| | - Luis Jimenez
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
| | - Jorge G. Farias
- Chemical Engineering Department, Universidad de La Frontera, Temuco 4811230, Chile; (A.L.); (L.J.); (J.G.F.)
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
- Bioprocess Systems Engineering Group, Trinity College Dublin, Dublin A94 X099, Ireland
| |
Collapse
|
13
|
Ni Z, Cai L, Tsai IC, Ding W, Tian C, Li D, Xu Q. NAT10 Regulates LPS-Induced Inflammation via Stabilization of N4-Acetylated PTX3 mRNA in Human Dental Pulp Stem Cells. Int J Mol Sci 2025; 26:4325. [PMID: 40362562 PMCID: PMC12072506 DOI: 10.3390/ijms26094325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Severe dental pulp inflammation can lead to tissue lysis and destruction, underscoring the necessity for effective treatment of pulpitis. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification has recently emerged as a key regulator in inflammatory processes. However, whether NAT10 affects the inflammatory response in human dental pulp stem cells (hDPSCs) remains unelucidated. In this study, elevated NAT10 expression was observed in pulpitis tissues and LPS-stimulated hDPSCs. Knockdown of NAT10 led to reduced inflammatory gene expression and lower reactive oxygen species (ROS) production in LPS-stimulated hDPSCs, while the chemotactic migration of macrophages was also suppressed. Similar results were observed when hDPSCs were treated with Remodelin, an inhibitor of NAT10. Differentially expressed genes identified through RNA sequencing were significantly enriched in inflammatory signaling pathways after NAT10 depletion. Among the differential genes, pentraxins 3 (PTX3) was identified as the potential target gene due to the presence of the ac4C modification site and its known ability to regulate dental pulp inflammation. The mRNA and protein levels of PTX3 were reduced in NAT10-deficient cells, along with a decrease in its mRNA stability. Exogenous PTX3 supplementation partially reversed the inflammatory inhibition induced by NAT10 knockdown. Further evidence in vivo revealed that Remodelin treatment attenuated the severity of dental pulp inflammation in rats with pulpitis. In summary, these data indicated that NAT10 deficiency inhibited the stability of PTX3 mRNA and further inhibited hDPSC inflammation, while Remodelin might be a potential therapeutic agent for pulp capping.
Collapse
Affiliation(s)
- Zihan Ni
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Luhui Cai
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - I-Chen Tsai
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Cheng Tian
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, 56# Lingyuan West Road, Guangzhou 510055, China; (Z.N.); (L.C.); (I.-C.T.); (W.D.); (C.T.); (D.L.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
14
|
Wen R, Huang R, Xu K, Yi X. Insights into the role of histone lysine demethylases in bone homeostasis and skeletal diseases: A review. Int J Biol Macromol 2025; 306:141807. [PMID: 40054804 DOI: 10.1016/j.ijbiomac.2025.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Histone lysine demethylases (KDMs), as important epigenetic regulators, are involved in various biological processes such as energy metabolism, apoptosis, and autophagy. Recent research shows that KDMs activate or silence downstream target genes by removing lysine residues from histone tails, and participate in the regulation of bone marrow mesenchymal stem cells (BM-MSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes and other skeletal cell development, differentiation and formation. Moreover, several members of the KDM family affect the occurrence and development of bone diseases such as osteoporosis (OP), osteoarthritis (OA), osteosarcoma (OS), by regulating target genes. Specific regulation mechanisms of KDMs suggest new strategies for bone disease treatment and prevention. Despite the unique function and importance of KDMs in the skeletal system, previous studies have never systematically summarized their specific role, molecular mechanism, and clinical treatment in bone physiology and pathology. Therefore, this review summarises the expression pattern, intracellular signal transduction, and mechanism of action of the KDM family in several bone physiological and pathological conditions, aiming to highlight the important role of KDMs in bone diseases and provide a reference for the future treatment of bone diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China; School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Hirabae A, Kunimatsu R, Yoshimi Y, Rikitake K, Ogashira S, Nakatani A, Sakata S, Tanimoto K. Effect of Recombinant Human Amelogenin on the Osteogenic Differentiation Potential of SHED. Cells 2025; 14:657. [PMID: 40358181 PMCID: PMC12071429 DOI: 10.3390/cells14090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
This study aimed to explore how amelogenin can improve stem cells from human exfoliated deciduous teeth (SHED)-based bone regeneration and promote tissue healing as a treatment for critical-sized bone defects. SHED was induced into bone differentiation by using osteogenic differentiation medium. Real-time polymerase chain reaction, alkaline phosphatase (ALP) staining and quantification, and Alizarin Red S staining, as well as calcium and osteocalcin quantification were performed to assess differentiation. On day 18, a significant increase was observed in the expression of RUNX2, CBFB, BGLAP, COL1, BMP2, BMP4, NOTCH1, NOTCH2, and NES. Osteocalcin gene expression continued to increase significantly. ALP activity was significantly higher in the amelogenin-treated group than in the control group on days 7, 10, and 14. On day 14, enhanced ALP staining was observed in the amelogenin-treated group. Calcium and osteocalcin levels were significantly higher in the amelogenin-treated group than in the control group on day 21. This study suggests that combining SHED and amelogenin may be effective for bone regeneration, offering a potential new approach in regenerative medicine.
Collapse
Affiliation(s)
| | - Ryo Kunimatsu
- Department of Orthodontics, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (A.H.); (Y.Y.); (K.R.); (S.O.); (A.N.); (S.S.); (K.T.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Jiang W, Duan S, Li W, Yan H, Si C, Xu N, Li Y, Zhang W, Gu S. PDGF-BB overexpressing dental pulp stem cells improve angiogenesis in dental pulp regeneration. Front Bioeng Biotechnol 2025; 13:1578410. [PMID: 40343206 PMCID: PMC12058851 DOI: 10.3389/fbioe.2025.1578410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Angiogenesis represents a critical challenge in dental pulp regeneration due to the tissue's restricted nutrient supply through a 0.5-mm apical foramen. While dental pulp stem cells (DPSCs) hold regenerative potential, their limited vascularization capacity impedes clinical applications. Through Single-cell RNA sequencing (scRNA-seq) analysis of human dental pulp, we discovered a PDGF (+) mesenchymal subset exhibiting enhanced angiogenic signatures, suggesting targeted cell selection could overcome this bottleneck. Methods ScRNA-seq identified PDGF (+) subpopulation in human pulp samples, validated through multiplex immunohistochemical of the localization of PDGF/CD73/CD31. PDGF-BB-overexpressing DPSCs were engineered via lentiviral vectors. Functional assessments included: 1) CCK-8/Edu/cell cycle/transwell assays for proliferation and migration ability 2) HUVECs co-culture models analyzing chemotaxis and tube formation 3) Vascularized tissue formation in rat kidney capsule transplants. Results and Discussion The CD73 (+) PDGF (+) subpopulation demonstrated spatial correlation with CD31 (+) vasculature. PDGF-BB overexpression enhanced DPSCs' proliferative capacity and migration capacity. Co-cultured HUVECs exhibited increased tube formation with PDGF-BB group. In vivo transplants generated more vascular structures containing CD31 (+) endothelia. These findings establish PDGF-BB engineering as an effective strategy to amplify DPSCs' angiogenic potential, while emphasizing the therapeutic value of functionally-defined stem cell subpopulations in pulp regeneration.
Collapse
Affiliation(s)
- Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuhan Duan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Li
- The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Huijiao Yan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenli Si
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningwei Xu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yishuai Li
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
17
|
Naidu P, Das M, Hansda S, Prateeksha P, Howlader MSI, Siraj MA, Das H. Mechanisms of Ellagic Acid (EA)-Mediated Osteogenic Differentiation of Human Dental Pulp-Derived Stem Cells. ACS OMEGA 2025; 10:15229-15242. [PMID: 40290905 PMCID: PMC12019503 DOI: 10.1021/acsomega.4c10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025]
Abstract
Ellagic acid (EA) is a potent antioxidant that reduces oxidative stress and promotes differentiation. By lowering the harmful levels of reactive oxygen species (ROS), EA fosters an environment conducive to the osteoblastic differentiation (OB) of stem cells. In addition, it promotes autophagy and mitophagy, which are vital for promoting differentiation. Effective autophagic activity recycles damaged organelles and proteins, meeting the energy required during differentiation and shielding from apoptosis. However, molecular mechanisms underlying the osteogenic differentiation of mesenchymal stem cells remain inadequately explored. Therefore, the current study aims to define the regulatory role of EA during the OB of dental pulp-derived stem cells (DPSC) and to study how autophagy and mitophagy are being modulated during this differentiation process. Herein, we showed that the expression level of osteoblast-specific markers, autophagy, and mitophagy-associated markers was significantly elevated during EA-mediated OB differentiation of DPSC. Moreover, we found that the EA induced the osteoblastic-specific markers through canonical BMP2 pathway molecules, reduced ROS in both basal and activated states, and induced autophagy and mitophagy molecules along with enhanced mitochondrial functions. Cell cycle analysis revealed that the G1 phase was arrested via phosphorylation of γ-H2AX, ATM, and CHK2 proteins. Furthermore, in silico analysis revealed that EA strongly binds with osteonectin, a crucial noncollagen protein involved in bone remodeling, and confirmed by Western blot analysis. These results support that EA could be a promising natural compound for bone repair and regeneration applications.
Collapse
Affiliation(s)
- Prathyusha Naidu
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Manjusri Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Surajit Hansda
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Prateeksha Prateeksha
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Sariful Islam Howlader
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Afjalus Siraj
- Department
of Therapeutic Radiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Hiranmoy Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| |
Collapse
|
18
|
Takahara S, Ohkura N, Yoshiba N, Baldeon-Gutierrez R, Gomez-Kasimoto S, Edanami N, Ida T, Takenaka S, Yoshiba K, Noiri Y. Influence of Tooth Maturity on Healing Outcomes in Regenerative Endodontics. J Dent Res 2025:220345251325826. [PMID: 40251757 DOI: 10.1177/00220345251325826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025] Open
Abstract
Regenerative endodontic procedures using blood clots (BC-REP) for immature teeth typically exhibit a periodontal ligament-like healing pattern. However, a pulp-like healing pattern is observed in the presence of residual pulp. This study aimed to clarify the healing phenotype according to tooth maturity when performing BC-REP in the presence of residual pulp, focusing on migrated mesenchymal stem/stromal cells (MSCs). BC-REP rat molar models were created in the presence of residual pulp at ages corresponding to tooth developmental stages, from immature to mature (5 wk: immature, root is still growing; 8 wk: near mature, root has finished growing in length but the apex is not formed; 11 wk: mature, the apex is formed). The healing pattern and histological MSC markers (α-smooth muscle actin [α-SMA], CD73, CD90, and CD146) were investigated. The frequency of periodontal ligament-like healing was higher in mature teeth than in immature teeth. In addition, more healing macrophages were observed at the apical site 28 d after BC-REP, which is the final stage of healing. In immature teeth, double-immunopositive cells for proliferation markers (ki67 and proliferating cell nuclear antigen [PCNA]) and α-SMA were frequently observed in the vicinity of the root canal orifice 7 d after treatment, which is the early stage of healing. By contrast, in mature teeth, the number of CD73-, CD90-, and CD146-immunopositive cells increased at the apical site after 7 and 28 d. CD90- and CD146-immunopositive cells expressed cell proliferation markers (ki67 or PCNA) after 7 d. MSC migration after BC-REP likely varies based on tooth maturity, resulting in different healing phenotypes.
Collapse
Affiliation(s)
- S Takahara
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - R Baldeon-Gutierrez
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Gomez-Kasimoto
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Ida
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Y Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
19
|
Wang X, Wang L, Zhou L, Chen L, Shi J, Ge J, Tian S, Yang Z, Zhou Y, Yu Q, Jin J, Ding C, Pan Y, Zou D. NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming. Int J Oral Sci 2025; 17:34. [PMID: 40246825 PMCID: PMC12006529 DOI: 10.1038/s41368-025-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Collapse
Affiliation(s)
- Xiping Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Li Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayi Shi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zihan Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuqiong Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qihao Yu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jiacheng Jin
- Touro College of Dental Medicine, New York Medical College, New York, USA
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Duohong Zou
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
20
|
Sui Y, Dong X, Tong E, Zhao C, Nie R, Meng X. Artemisinin regulates cell proliferation, apoptosis, and the inflammatory response of human dental pulp stem cells through the p53 signaling pathway under LPS-induced inflammation. Int Immunopharmacol 2025; 152:114396. [PMID: 40056514 DOI: 10.1016/j.intimp.2025.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/26/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects and mechanism of artemisinin (ART) on the proliferation, apoptosis, and inflammatory response of human dental pulp stem cells (HDPSCs) under lipopolysaccharide (LPS)-induced inflammation. METHODS HDPSCs were isolated, cultured, and identified by flow cytometry and three-directional differentiation induction. A suitable concentration of LPS was selected to mimic the inflammatory condition in vitro. After culturing with ART and LPS for 48 h, cell proliferation was observed by CCK-8 assay; cell apoptosis was observed by flow cytometry, western blot, and Caspase-3 activity; and the inflammatory response was observed by qRT-PCR and ELISA. Transcriptome sequencing, immunofluorescence staining, qRT-PCR, western blot, and RITA were used to explore the underlying mechanism. RESULTS HDPSCs were successfully isolated and exhibited the potential for multilineage differentiation. 0.1 μg/mL of LPS was utilized to mimic the inflammatory condition. ART promoted HDPSCs proliferation but repressed apoptosis and the inflammatory response under LPS-induced inflammation. Further, ART exerted its effect through the p53 signaling pathway. CONCLUSION ART inhibited the p53 signaling pathway to promote HDPSCs proliferation, but hinder apoptosis and the inflammatory response under LPS-induced inflammation. CLINICAL SIGNIFICANCE This study demonstrates that ART facilitates the alleviation of inflammation and preserves the viability of HDPSCs. Therefore, ART may serve as a promising therapeutic drug for the repair and regeneration of dental pulp in the treatment of deep caries and reversible pulpitis.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xiaofei Dong
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Enkang Tong
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Cuicui Zhao
- Department of Prosthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Rongrong Nie
- Department of Geriatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Xiangfeng Meng
- Department of Prosthodontic Technology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
21
|
Hoseini SM, Montazeri F. The influence of cell source on the senescence of human mesenchymal stem/stromal cells. Hum Cell 2025; 38:87. [PMID: 40221541 DOI: 10.1007/s13577-025-01213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
While mesenchymal stem/stromal cells (MSCs) exhibit the ability to self-renew, they are not immortal; they eventually reach a point of irreversible growth cessation and functional deterioration following a limited series of population doublings, referred to as replicative senescence. When evaluated according to the criteria set by the International Society for Cell Therapy (ISCT), MSCs show significant differences in their senescence patterns and other characteristics related to their phenotype and function. These differences are attributed to the source of the MSCs and the conditions in which they are grown. MSCs derived from fetal or adult sources have variations in their genome stability, as well as in the expression and epigenetic profile of the cells, which in turn affects their secretome. Understanding the key factors of MSC senescence based on cell source can help to develop effective strategies for regulating senescence and improving the therapeutic potential.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, No. 1. Safaeyeh. Bou-Al Ave., Yazd, 8916877391, Iran.
| |
Collapse
|
22
|
Choudhery MS, Arif T, Mahmood R, Harris DT. Therapeutic Potential of Mesenchymal Stem Cells in Stroke Treatment. Biomolecules 2025; 15:558. [PMID: 40305341 PMCID: PMC12024902 DOI: 10.3390/biom15040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Stroke occurs when the blood flow to the brain is interrupted due to a rupture of blood vessels or blockage in the brain. It is the major cause of physical disabilities in adulthood. Despite advances in surgical and pharmacological therapy, functional recovery from stroke is limited, affecting quality of life. Stem cell therapy, which may treat neurological disorders associated with brain traumas, including stroke, is an important focus in stroke research and treatment. Stem cell therapy has primarily used a type of adult stem cells called mesenchymal stem cells (MSCs) due to their universality and ability to develop into multiple lineages to regenerate brain cells and repair brain tissues. A significant number of clinical studies provide evidence of the potential of MSCs to treat stroke. This review summarizes the therapeutic mechanism and applications of MSCs in stroke treatment. We also highlight the current challenges and future prospects of adult MSC therapy for stroke treatment.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.C.); (T.A.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.C.); (T.A.)
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore 54000, Pakistan;
| | - David T. Harris
- Department of Immunobiology, University of Arizona Health Sciences Biorepository, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
23
|
Chansaenroj J, Kornsuthisopon C, Chansaenroj A, Samaranayake LP, Fan Y, Osathanon T. Potential of Dental Pulp Stem Cell Exosomes: Unveiling miRNA-Driven Regenerative Mechanisms. Int Dent J 2025; 75:415-425. [PMID: 39368923 PMCID: PMC11976581 DOI: 10.1016/j.identj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/07/2024] Open
Abstract
Human dental pulp stem cells (hDPSCs) have emerged as a promising resource in regenerative medicine due to their unique ability to secrete exosomes containing a diverse array of bioactive molecules, particularly microRNAs (miRNAs). These exosomes appear to be essential for stimulating regenerative mechanisms, especially those associated with stem cell pluripotency and tissue repair. However, several challenges such as cargo specificity and delivery efficiency need to be addressed to maximise the therapeutic potential of hDPSC-derived exosomes and miRNA-based therapies. This narrative review explores hDPSCs' potential in regenerative medicine by examining their role in tissue engineering, secretome composition, exosome function, exosomal miRNA in diverse models, and miRNA profiling. Therefore, it is imperative to sustain ongoing research on miRNA to advance clinical applications in the field of regenerative medicine and dentistry. A comprehensive understanding of the specific miRNA composition within hDPSC-derived exosomes is essential to elucidate their mechanistic roles in diverse disease states and to inform the development of innovative therapeutic strategies. These findings hold significant potential for the development of innovative regenerative therapies and emphasises the importance of establishing a strong connection between translational research discoveries and clinical applications. hDPSC-derived exosomes and miRNA-based therapies play a crucial role in immune modulation, regenerative dentistry, and tissue repair.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Ajjima Chansaenroj
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman P Samaranayake
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
24
|
Xu X, Fu J, Yang G, Chen Z, Chen S, Yuan G. Dentin sialoprotein promotes endothelial differentiation of dental pulp stem cells through DSP aa34-50-endoglin-AKT1 axis. J Biol Chem 2025; 301:108380. [PMID: 40049415 PMCID: PMC11997338 DOI: 10.1016/j.jbc.2025.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
Dentin sialoprotein (DSP), a major dentin extracellular matrix noncollagenous protein, is well recognized as an important regulator for dentinogenesis. DSP as a secreted protein can interact with membrane receptors, activate intracellular signaling, and initiate the odontoblastic differentiation of dental papilla cells. In a recent study, we have demonstrated that DSP can induce the endothelial differentiation of dental pulp stem cells (DPSCs), a type of tooth pulp-derived multipotent stem cells, dependent on membrane receptor endoglin (ENG). However, the intimate mechanisms by which DSP-ENG association facilitates the endothelial differentiation of DPSCs remain enigmatic. Here, we find that the amino acid (aa) residues 34-50 of DSP (DSPaa34-50) is responsible for its association with ENG using a series of co-immunoprecipitation assays. Immunofluorescent staining and in situ proximity ligation assay demonstrate that overexpressed ENG in human embryonic kidney 293T cells shows codistribution and proximity ligation assay signals to the supplemented DSPaa34-50 protein but not to DSP without aa34-50 (DSPΔ34-50) on cell surfaces. Moreover, the zona pellucida domain of ENG mediates its association with DSPaa34-50. Further experiments indicate that DSPaa34-50 exhibits equivalent effects to the full-length DSP on the migration and endothelial differentiation of DPSCs dependent on ENG but DSPΔ34-50 does not. Mechanistically, DSPaa34-50 activates AKT1 and triggers the expression of blood vessel development-related genes in DPSCs. Multiple experiments demonstrate that AKT1 inhibition suppresses the DSPaa34-50-induced migration and endothelial differentiation of DPSCs. Thus, AKT1 mediates the cellular and molecular functions of DSPaa34-50-ENG association. Collectively, these findings identify that DSP promotes the endothelial differentiation of DPSCs through the DSPaa34-50-ENG-AKT1 signaling axis.
Collapse
Affiliation(s)
- Ximin Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| | - Jing Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuo Chen
- Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Li Y, Li P, Xue K, Shi P, Xie X, Wang J, Xu C. LepR-Expressing Cells in Bone and Periodontium. Oral Dis 2025; 31:1065-1072. [PMID: 39748446 DOI: 10.1111/odi.15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE LepR-expressing cells (LepR+ cells), a critical subpopulation of mesenchymal stem cells, have gained increasing attention in the last decade. LepR+ cells have been found to play a crucial role in maintaining bone and periodontal homeostasis. This review summarizes current research advances focusing on the role of LepR+ cells and their underlying regulatory molecular mechanisms in bones and periodontium, aiming to provide a better understanding of the therapeutic potential of this cell lineage. METHODS A literature review was conducted based on publications in PubMed over the past 20 years, summarizing the research progress on LepR+ cells in bone and periodontal tissues. RESULTS Current evidence revealed that LepR+ cells possess the ability of self-renewal and multilineage differentiation and are essential for bone turnover and periodontal tissue remodeling. In addition, LepR+ cells participate in the processes of bone fracture healing and alveolar socket healing. Moreover, under pathological conditions such as osteoporosis, bone marrow fibrosis, and periodontitis, LepR+ cells exhibit enhanced adipogenic or fibrogenic differentiation abilities. CONCLUSION Therapeutic approaches targeting the cell fate of LepR+ cells hold the potential to provide novel insights into bone/periodontal repair and regeneration therapy.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peitong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kun Xue
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
27
|
Peng X, Zhao L, Wang J, Zhang Y, Liu Z, Wang K, Zhang L. Melatonin Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction Through Ameliorating NAD + Homeostasis of hDPSCs for Cell-Based Therapy. J Pineal Res 2025; 77:e70058. [PMID: 40391773 DOI: 10.1111/jpi.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 03/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
Human dental pulp stem cells (hDPSCs) exhibit amazing therapeutic abilities in a variety of diseases due to their remarkable self-renewal capacity and multi-differentiation potential. However, their therapeutic potential could be weakened by various factors such as oxidative stress in cell survival microenvironment In Vivo. Here, we explored the protective effect and mechanism of melatonin (Mel) on hDPSCs transplanted in a type 1 diabetes mellitus (T1DM) rat model. Nicotinamide adenine dinucleotide (NAD+) metabolism and mitochondrial function were remarkably impaired in T1DM rats caused by oxidative stress, while the combination of Mel and post-hDPSCs transplantation could rebalance NAD+ homeostasis through regulating NAMPT-NAD+-SIRT1 axis. Furthermore, Mel significantly reduced intracellular and mitochondrial reactive oxygen species, and alleviated cell senescence and apoptosis of hDPSCs exposed to hydrogen peroxide through ameliorating NAD+ depletion and mitochondrial dysfunction. The protective role of Mel could be extremely essential to stem cells in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiu Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zihan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Sultan N, Camilleri J, Scheven BA. Biocompatibility and antimicrobial effect of demineralised dentin matrix hydrogel for dental pulp preservation. Odontology 2025; 113:585-597. [PMID: 39277551 PMCID: PMC11950143 DOI: 10.1007/s10266-024-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Regeneration of dentin and preserving pulp vitality are essential targets for vital pulp therapy. Our study aimed to evaluate a novel biomimetic pulp capping agent with increased dentin regenerative activities. To produce demineralised dentin matrix (DDM) particles, human extracted teeth were ground and treated with ethylene diamine tetra-acetic acid solution. DDM particles were added to sodium alginate and this combination was dripped into a 5% calcium chloride to obtain DDM hydrogel (DDMH). The eluants of both DDMH and mineral trioxide aggregate (MTA) were tested using an MTT assay to detect their cytotoxic effect on dental pulp stem cells (DPSC). Collagen-I (COL-I) gene expression was analysed on DPSC exposed to different dilutions of pulp capping material eluants by real-time quantitative polymerase chain reaction. Acridine orange staining was used to monitor the cell growth over the tested materials. Agar diffusion assay was utilised to test the antibacterial effect of DDMH and MTA compared to controls. MTT assay revealed that neat eluates of DDMH promoted DPSC viability. However, neat eluates of MTA were cytotoxic on DPSC after 72 h of culture. Moreover, DPSC were capable of growth and attached to the surface of DDMH, while they showed a marked reduction in their number when cultured on the MTA surface for one week, as shown by the acridine orange stain. In DPSC cultured with DDMH eluates, the COL-I gene was overexpressed compared to those cultured with MTA eluants. DDMH had significant antimicrobial activity in comparison to MTA after 24 h incubation. This in vitro study showed that DDMH could be an alternative pulp capping agent for regenerative endodontics.
Collapse
Affiliation(s)
- Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
- Oral Biology and Dental Morphology, Faculty of Dentistry, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Josette Camilleri
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Mueller JL, Hotta R. Current and future state of the management of Hirschsprung disease. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e000860. [PMID: 40177062 PMCID: PMC11962771 DOI: 10.1136/wjps-2024-000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The enteric nervous system (ENS) consists of a network of neurons and glia that control numerous complex functions of the gastrointestinal tract. Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of ENS along variable lengths of distal intestine due to failure of neural crest-derived cells to colonize the distal intestine during embryonic development. A patient with HSCR usually presents with severe constipation in the neonatal period and is diagnosed by rectal suction biopsy, followed by pull-through procedure to surgically remove the affected segment and reconnect the proximal ganglionated intestine to the anus. Outcomes after pull-through surgery are suboptimal and many patients suffer from ongoing issues of dysmotility and bowel dysfunction, suggesting there is room for optimizing the management of this disease. This review focuses on discussing the recent advances to better understand HSCR and leverage them for more accurate and potentially less invasive diagnosis. We also discuss the potential future management of HSCR, particularly cell-based approaches for the treatment of HSCR.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Rezaei F, Shakoori S, Fazlyab M, Esnaashari E, Savadkouhi ST. Effect of low-level laser on proliferation, angiogenic and dentinogenic differentiation of human dental pulp stem cells. BMC Oral Health 2025; 25:441. [PMID: 40148901 PMCID: PMC11948823 DOI: 10.1186/s12903-025-05656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The aim was to evaluate the effect of single and double doses of low-level laser irradiation on proliferation of human dental pulp stem cells (DPSC) and expression of vascular endothelial growth factor (VEGF) and dentine sialoprotein (DSP). METHODS In this experimental in vitro study, after confirming the stemness of DPSCs, the cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) for MTT assay and VEGF-ELISA and osteogenic medium for DSP-ELISA. The wells containing DPSCs were divided into three main groups and 9 subgroups (n = 7). In groups with single low-level laser, 660-nm diode laser was irradiated at 100 mW and 3 J/cm2 energy density for 15 s. In groups with double doses of low-level laser the second identical irradiation was after 48 h. The MTT-assay and ELISA for DSP/VEGF (dentinogenic/angiogenic differentiation) were performed at 1, 7 and 14 days post irradiation. Using the SPSS software 20 (SPSS, Chicago, Ill, USA) with 95% confidence interval (P = 0.05), a two-way ANOVA test with Tukey's post hoc test was used for the effect of LLLI on VEGF and DSP. The One-Way ANOVA was used for of cell proliferation. RESULTS Higher proliferation rate in both single and double low-level laser was reported. The difference was statistically significant for double doses of low-level laser (P = 0.001, P = 0.020 and P = 0.000 for 1, 7 and 14 days, respectively). Also after one, 7 and 14 days, cells in significant increase in DSP (P > 0.05) and VEGF (P > 0.05) was observed that was significantly higher for double doses of low-level laser. CONCLUSIONS Low level laser enhanced the mitochondrial activity and proliferation of DPSCs. Increased production of DSP/VEGF indicates dentinogenic/angiogenic activity. CLINICAL RELEVANCE Low level laser increases the proliferation of DPSCs, elevates the production of VEGF (which means better angiogenesis in regenerative treatments) and increases the production of DSP (which means better dentinogenesis in vital pulp treatments).
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahrzad Shakoori
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahta Fazlyab
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ehsan Esnaashari
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sohrab Tour Savadkouhi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Kim JH, Irfan M, Sreekumar S, Chong K, Hong J, Alapati S, Chung S. Ca 2+/calmodulin-dependent protein kinase II regulates the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling. Front Cell Dev Biol 2025; 13:1558736. [PMID: 40206401 PMCID: PMC11979122 DOI: 10.3389/fcell.2025.1558736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
CaMKII is a serine/threonine-specific protein kinase that plays a crucial role in normal and pathological conditions. However, limited information is available regarding the roles of CaMKII in dentinogenesis, particularly in an inflammatory context. Previously, we demonstrated the pivotal role of TrkB in inflammation-induced differentiation of hDPSCs into odontoblast-like cells. Here, we investigate the interaction between CaMKII and TrkB during hDPSCs odontogenic differentiation. hDPSCs were cultured and subjected to CaMKII knockdown using siRNA, followed by treatment with dentinogenic media. TNFα-stimulated cells were treated with CaMKII- inhibitor, -protein, or TrkB antagonist, CTX-B. Immunocytochemistry and ARS were used to visualize targeted proteins and calcium deposits. Real-time PCR detected expression levels of odontogenic and mineralization markers such as DSPP and DMP-1. Our data indicate that CaMKII inhibition enhances TrkB protein levels and promotes TNFα-induced transcriptional activation of genes associated with odontogenic differentiation. CaMKII knockdown via siRNA and pharmacological inhibition elevated DSPP and DMP-1 protein levels, whereas CaMKII overexpression suppressed their expression. Notably, treatment with TNF-α and a CaMKII inhibitor upregulated DSPP and DMP-1 expression, while co-treatment with CTX-B abolished this effect. Similarly, mRNA expression of DSPP and DMP-1 was reduced at day 10. Mineralization activity exhibited a similar pattern to the expression of these markers. Our findings unveil a novel mechanism underlying the role of CaMKII via TrkB in dentinogenesis, which is vital for the success of hDPSCs engineering strategies.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Sreelekshmi Sreekumar
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | | | | | - Satish Alapati
- Department of Endodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Fang F, Guo X, Liu S, Dang L, Chen Z, Yang Y, Chen L, Lin J, Qiu W, Chen Z, Wu B. LincRNA-ASAO promotes dental pulp repair through interacting with PTBP1 to increase ALPL alternative splicing. Stem Cell Res Ther 2025; 16:149. [PMID: 40140936 PMCID: PMC11948687 DOI: 10.1186/s13287-025-04274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Alternative splicing not only expands the genetic encoding of genes but also determines cellular activities. This study aimed to elucidate the regulation mechanism and biological functions of lincRNA-ASAO in the process of odontogenesis-related genes alternative splicing mediated odontogenic differentiation of hDPSCs. METHODS RACE, RNA-seq, FISH and bioinformatics techniques were used to identify novel lincRNA-ASAO. ALP staining, alizarin red staining, qRT-PCR and western blot were used to identify the role of lincRNA-ASAO in regulating the odontoblast differentiation of hDPSCs. The binding protein PTBP1 of lincRNA-ASAO was screened by RNA-Pulldown, protein profiling and bioinformatics. The target gene ALPL of lincRNA-ASAO/PTBP1 was identified by RNA-seq, bioinformatics technology and DNA agarose gel electrophoresis. FISH, IF, PAR-CLIP and bioinformatics techniques were used to determine the roles of lincRNA-ASAO, PTBP1 and ALPL pre-mRNA in the odontoblast differentiation of hDPSCs. RESULTS We identified a novel lincRNA-ASAO that could promote the odontogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). And, the interaction between lincRNA-ASAO and alternative splicing factor PTBP1 promoted the odontoblast differentiation of hDPSCs. In addition, lincRNA-ASAO forms duplexes with ALPL pre-mRNA, targeting PTBP1 to exonic splicing silencer (ESS) of ALPL and regulating exon 2 skipping. Notably, lincRNA-ASAO/PTBP1 regulated ALPL production to increase the type 2 splice variant, which promoted the odontoblast differentiation of hDPSCs. CONCLUSIONS We have identified the novel lincRNA-ASAO, which can promote the odontoblast differentiation of hDPSCs. The mechanism study found that lincRNA-ASAO/PTBP1 mediated the exon 2 skipping of ALPL pre-mRNA, resulting in the type 2 splice variant of ALPL. Our results enrich the understanding of lncRNAs and alternative splicing in regulating the odontoblast differentiation of hDPSCs, and provide clues to improve the clinical therapeutic potential of hDPSCs for dental pulp restoration.
Collapse
Affiliation(s)
- Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sitong Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longrui Dang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China.
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Zeng X, Gan J, Huang D, Zhao Y, Sun L. Recombinant human collagen hydrogels with different stem cell-derived exosomes encapsulation for wound treatment. J Nanobiotechnology 2025; 23:241. [PMID: 40128738 PMCID: PMC11931813 DOI: 10.1186/s12951-025-03319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Exosomes-loaded hydrogels have potential value in wound treatment. Current studies focus on improving hydrogels' biocompatibility and optimizing different stem cell-derived exosomes for better therapeutic effect. Herein, we present a novel biocompatible recombinant human collagen (RHC) hydrogel loading with different MSCs-derived exosomes for promoting wound healing. We modify the RHC with methacrylate anhydride (MA) at optimal concentration, generating collagen hydrogel (RHCMA) with ideal physiochemical properties for exosome delivery (MSC-exos@RHCMA). Exosomes derived from human adipose-derived MSCs (ADSC-exos), bone marrow-derived MSCs (BMSC-exos) and umbilical cord MSCs (ucMSC-exos) are harvested from the culture supernatants and are loaded into RHCMA, respectively. These three hydrogel systems exhibit desired sustained release features, and can significantly improve cell proliferation and migration. In addition, these MSC-exos@RHCMAs show excellent therapeutic performance in treating the wounds of rats. Notably, we have demonstrated that the healing effect occurs best under the treatment of ucMSC-exos@RHCMA, following inflammatory resolution, angiogenesis, and collagen formation. These results would supply important value for the clinical application of MSC-exos in wound treatment in the future.
Collapse
Affiliation(s)
- Xiaoman Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Danqing Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
34
|
Ying LH, Abdullah M, Fuad NA, Seong LG, Azami NH, Noor NSM, Zakaria MN. Biocompatibility of irrigation solutions to dental-derived mesenchymal stem cells in regenerative endodontic procedure: a systematic review of in vitro studies. Odontology 2025:10.1007/s10266-025-01087-4. [PMID: 40111730 DOI: 10.1007/s10266-025-01087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Regenerative endodontic procedures (REPs) offer an alternative to apexification in necrotic immature permanent teeth, promoting continued root development and dentinal wall thickening. Success in REPs requires effective disinfection and the survival of dental-derived mesenchymal stem cells (DMSCs), such as dental pulp stem cells (DPSCs), stem cells from the apical papilla (SCAPs), and periodontal ligament stem cells (PDLSCs). This review investigates the biocompatibility of irrigation solutions, including sodium hypochlorite (NaOCl), ethylenediaminetetraacetic acid (EDTA), and chlorhexidine (CHX), on DMSCs. Following PRISMA guidelines, a comprehensive search was conducted in PubMed, Scopus, Web of Science, Cochrane, and SciELO, with the last update on March 4, 2024. Studies from January 2008 to April 2024 assessing viability, proliferation, migration, differentiation, and mineralization of DMSCs treated with NaOCl, EDTA, and CHX were included. The papers were selected using PICOS criteria and quality was assessed using the PRILE checklist and risk of bias with the Quality Assessment Tool for In Vitro Studies. Of 738 studies identified, 15 met inclusion criteria. The findings suggest that NaOCl and CHX exhibit lower biocompatibility towards DMSCs compared to EDTA. NaOCl and CHX are cytotoxic to DMSCs, while EDTA demonstrates favorable biocompatibility, promoting osteogenic differentiation and mineralization. This highlights potential implications for irrigant selection in regenerative procedures, as appropriate irrigants may enhance cellular survival and improve clinical outcomes.
Collapse
Affiliation(s)
- Lim Hui Ying
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mariam Abdullah
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Natrah Ahmad Fuad
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lim Ghee Seong
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Hayati Azami
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nora Sakina Mohd Noor
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Emad M, Alnatour M, Alshaer W, Gibbs JL, Michot B, Alqudah D, Aljabali AAA, Al-Mrahleh M, Jaradat A, Abuarqoub D. Impact of hydroxyapatite nanoparticles on the cellular processes of stem cells derived from dental tissue sources. Cell Tissue Res 2025:10.1007/s00441-025-03962-6. [PMID: 40100346 DOI: 10.1007/s00441-025-03962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Hydroxyapatite nanoparticle (HANPs) utilization has recently been notable in bone tissue engineering. This surge owes itself to the biocompatibility of HANPs and their striking resemblance to the minerals found in natural bone. Furthermore, dental pulp-derived stem cells (DPSCs) have garnered attention due to their remarkable differentiation potential into multilineages, thus positioning them as a pivotal cell reservoir for regenerative medicine. This study aims to investigate the impact of HANPs on DPSCs cellular processes. The HANPs have been synthesized using the wet chemical precipitation method followed by freeze-drying and characterization using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The size of HANPs was reported to be in the range of 55-67 nm. Our dataset divulges that DPSCs can endure concentrations of HANPs up to ≤ 0.81 mg/mL without incurring any conspicuous alterations in their morphology or the pace of proliferation. Furthermore, the self-renewal potency of HANPs was upheld at concentrations ≤ 0.20 mg/mL. Flow cytometric analysis affirms a significant divergence in cell distribution across all cell cycle phases in DPSCs treated with 0.81 mg/mL HANPs. Intriguingly, no variance surfaced in the migratory capacity of DPSCs exposed to HANPs of ≤ 0.40 mg/mL. For osteogenic differentiation, HANPs at concentrations of ≤ 0.40 mg/mL demonstrated the aptitude to incite osteogenic differentiation within DPSCs, facilitating the formation of calcium deposits. In conclusion, combining HANPs and DPSCs shows promise for restoring damaged hard tissues, like bone and teeth, and enhancing regenerative therapies.
Collapse
Affiliation(s)
- Mais Emad
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammad Alnatour
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Pharmacological and Diagnostic Research Center,, Al-Ahliyya Amman University, amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, USA
| | - Benoît Michot
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, USA
| | - Dana Alqudah
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | | | - Abdolelah Jaradat
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Duaa Abuarqoub
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
36
|
Wang K, Liu X, Jiang X, Chen S, Wang H, Wang Z, Wang Q, Li Z. Human dental pulp stem cells for spinal cord injury. Stem Cell Res Ther 2025; 16:123. [PMID: 40055766 PMCID: PMC11887269 DOI: 10.1186/s13287-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025] Open
Abstract
Spinal cord injury (SCI) is a serious neurological disorder that causes loss of mobility, pain, and autonomic dysfunction, resulting in altered sensation and devastating loss of function. Current treatments for SCI mainly focus on surgery and drug therapy to promote neurological recovery. However, there are virtually no effective remedies for irreversible nerve damage that result in a victim's loss of motor function and sensory changes that occur after an injury. With the continuous development of medical technology, stem-cell-based regenerative medicine provides researchers with new treatment ideas. The effectiveness of mesenchymal stem cells and their derivatives from different sources in treating SCI varies. Recent studies have highlighted that dental pulp stem cells (DPSCs) may contribute to anti-inflammatory regulation, anti-apoptotic regulation, and axonal regeneration in the treatment of SCI patients. In addition, the combination of new biomaterials and dental pulp stem cells is promising in the treatment of SCI. This article reviews the role of DPSCs in SCI treatment in recent years, discusses the advantages of DPSCs, explores potential development directions, and looks forward to providing new insights for future research in this critical field.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Xukai Jiang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Shuang Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Hui Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhenbo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Qiwen Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning Province, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China.
| |
Collapse
|
37
|
Miłek O, Schwarz K, Miletić A, Reisinger J, Kovar A, Behm C, Andrukhov O. Regulation and functional importance of human periodontal ligament mesenchymal stromal cells with various rates of CD146+ cells. Front Cell Dev Biol 2025; 13:1532898. [PMID: 40123853 PMCID: PMC11925893 DOI: 10.3389/fcell.2025.1532898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) with high expression of CD146 have superior properties for tissue regeneration. However, high variability in the rate of CD146+ cells among donors is observed. In this study, the possible reasons behind this variability in human periodontal ligament MSCs (hPDL-MSCs) were explored. Methods hPDL-MSCs were isolated from 22 different donors, and rates of CD146+ cells were analyzed by flow cytometry. Furthermore, populations with various rates of CD146+ cells were isolated with magnetic separation. The dependency of cell proliferation, viability, cell cycle, and osteogenic differentiation on the rates of CD146+ cells was investigated. Besides, the effects of various factors, like cell density, confluence, and inflammatory environment on the CD146+ rate and expression were analyzed. Results The rate of CD146+ cells exhibited high variability between donors, with the percentage of CD146+ cells ranging from 3% to 67%. Higher percentage of CD146+ cells was associated with higher proliferation, presumably due to the higher percentage of cells in the S-phase, and higher osteogenic differentiation potential. Prolonged cell confluence and higher cell seeding density led to the decline in the rate of CD146+ cells. The surface rate of CD146 in hPDL-MSCs was stimulated by the treatment with interleukin-1β and tumor necrosis factor-α, and inhibited by the treatment with interferon-γ. Conclusion These results suggest that hPDL-MSCs with high rate of CD146+ cells are a promising subpopulation for enhancing the effectiveness of MSC-based regenerative therapies, however the rate of CD146 is affected by various factors, which must be considered for cell propagation and their potential application in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Jia Y, Duan M, Yang Y, Li D, Wang D, Tang Z. The local pulsatile parathyroid hormone delivery system induces the osteogenic differentiation of dental pulp mesenchymal stem cells to reconstruct mandibular defects. Stem Cell Res Ther 2025; 16:119. [PMID: 40050973 PMCID: PMC11887249 DOI: 10.1186/s13287-025-04258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Tumors and injuries often lead to large mandibular defects. Accelerating the osteogenesis of large bone defect areas is a major concern in current research. In this study, dental pulp mesenchymal stem cells (DPSCs) were used as seed cells, and the local pulsatile parathyroid hormone (PTH) delivery system was used as an osteogenic-inducing active ingredient to act on DPSCs and osteoblasts, which were applied to the jaw defect area to evaluate its therapeutic effect on bone regeneration. METHODS Pulsatile delivery systems, both with and without PTH, were developed following the protocols outlined in our previous study. In vitro, the biocompatibility of the pulsatile delivery system with DPSCs was assessed using the Cell Counting Kit-8 (CCK8) assay and live/dead cell staining. Osteogenic differentiation was evaluated through alkaline phosphatase staining and alizarin red staining. In vivo, critical bone defects with a diameter of 10 mm were created in the mandibles of white rabbits. The osteogenic effect was further assessed through gross observation, X-ray imaging, and histological examination. RESULTS In vitro experiments using CCK8 assays and live/dead cell staining demonstrated that DPSCs successfully adhered to the surface of the PTH pulsatile delivery system, showing no significant difference compared to the control group. Furthermore, alkaline phosphatase staining and Alizarin Red staining confirmed that the localized pulsatile parathyroid hormone delivery system effectively induced the differentiation of DPSCs into osteoblasts, leading to the secretion of abundant calcium nodules. Animal studies further revealed that the PTH pulsatile delivery system promoted the osteogenic differentiation of DPSCs, facilitating the repair of critical mandibular bone defects. CONCLUSION The rhythmic release of PTH from the pulsatile delivery system effectively induces the osteogenic differentiation of DPSCs. By leveraging the synergistic interaction between PTH and DPSCs, this approach facilitates the repair of extensive mandibular bone defects.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Mianmian Duan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Yan Yang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550000, China
| | - Duchenhui Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Dongxiang Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Zhenglong Tang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|
39
|
Baďurová B, Nystøl K, Michalič TO, Kucháriková V, Statelová D, Nováková S, Strnádel J, Halašová E, Škovierová H. Temporal Profiling of Cellular and Molecular Processes in Osteodifferentiation of Dental Pulp Stem Cells. BIOLOGY 2025; 14:257. [PMID: 40136514 PMCID: PMC11939960 DOI: 10.3390/biology14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Based on the potential of DPSCs as the most promising candidates for bone tissue engineering, we comprehensively investigated the time-dependent cellular and molecular changes that occur during their osteodifferentiation. To analyze this area in-depth, we used both cellular and molecular approaches. Morphological changes were monitored using bright-field microscopy, while the production of mineral deposits was quantified spectrophotometrically. The expression of a key mesenchymal stem cell marker, CD90, was assessed via flow cytometry. Finally, protein-level changes in whole cells were examined by fluorescence microscopy. Our results show successful long-term osteodifferentiation of the patient's DPSCs within 25 days. In differentiated cells, mineralized extracellular matrix production gradually increased; in contrast, the expression of the specific stem cell marker CD90 significantly decreased. We observed dynamic changes in intracellular and extracellular proteins when collagen1 A1 and osteopontin appeared as earlier markers of osteogenesis, while apolipoprotein A2, bone morphogenetic protein 9, dentin sialophosphoprotein, and matrix metalloproteinase 8 were produced mainly in the late stages of this process. A decrease in actin microfilament expression indicated a reduction in cell proliferation, which could be used as another marker of osteogenic initiation. Our results suggest a coordinated process in vitro in which cells synthesize the necessary proteins and matrix components to regulate the growth of hydroxyapatite crystals and form the bone matrix.
Collapse
Affiliation(s)
- Bibiána Baďurová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4D, 036 01 Martin, Slovakia
| | - Kristina Nystøl
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Terézia Okajček Michalič
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Veronika Kucháriková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4D, 036 01 Martin, Slovakia
| | - Dagmar Statelová
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (B.B.); (K.N.); (T.O.M.); (V.K.); (S.N.); (J.S.); (E.H.)
| |
Collapse
|
40
|
Wang W, Wang Y, Gao L. Stem Cells Treatment for Subarachnoid Hemorrhage. Neurologist 2025; 30:80-86. [PMID: 39450602 DOI: 10.1097/nrl.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) refers to bleeding in the subarachnoid space, which is a serious neurologic emergency. However, the treatment effects of SAH are limited. In recent years, stem cell (SC) therapy has gradually become a very promising therapeutic method and advanced scientific research area for SAH. REVIEW SUMMARY The SCs used for SAH treatment are mainly bone marrow mesenchymal stem cells (BMSCs), umbilical cord mesenchymal stem cells (hUC-MSCs), dental pulp stem cells (DPSCs), neural stem cells (NSCs)/neural progenitor cell (NPC), and endothelial progenitor cell (EPC). The mechanisms mainly included differentiation and migration of SCs for tissue repair; alleviating neuronal apoptosis; anti-inflammatory effects; and blood-brain barrier (BBB) protection. The dosage of SCs was generally 10 6 orders of magnitude. The administration methods included intravenous injection, nasal, occipital foramen magnum, and intraventricular administration. The administration time is generally 1 hour after SAH modeling, but it may be as late as 24 hours or 6 days. Existing studies have confirmed the neuroprotective effect of SCs in the treatment of SAH. CONCLUSIONS SC has great potential application value in SAH treatment, a few case reports have provided support for this. However, the relevant research is still insufficient and there is still a lack of clinical research on the SC treatment for SAH to further evaluate the effectiveness and safety before it can go from experiment to clinical application.
Collapse
Affiliation(s)
| | | | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Su W, Liao C, Liu X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int Endod J 2025; 58:391-410. [PMID: 39660369 DOI: 10.1111/iej.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Dental pulp tissue engineering is expected to become an ideal treatment for irreversible pulpitis and apical periodontitis. However, angiogenesis and neurogenesis for functional pulp regeneration have not yet met the standard for large-scale clinical application, and need further research. OBJECTIVE This review focused on the potential mechanisms of angiogenesis and neurogenesis in pulp regeneration, including stem cell types, upstream and downstream regulatory molecules and cascade signalling pathways, thereby providing a theoretical basis and inspiring new ideas to improve the effectiveness of dental pulp tissue engineering. METHODS An electronic literature search was carried out using the keywords of 'pulp regeneration', 'stem cell transplantation', 'dental pulp stem cells', 'angiogenesis' and 'neurogenesis'. The resulting literature was screened and reviewed. RESULTS Stem cells used in dental pulp tissue engineering can be classified as dental-derived and non-dental-derived stem cells, amongst which dental pulp stem cells (DPSC) have achieved promising results in animal experiments and clinical trials. Multiple molecules and signalling pathways are involved in the process of DPSC-mediated angiogenic and neurogenetic regeneration. In order to promote angiogenesis and neurogenesis in pulp regeneration, feasible measures include the addition of growth factors, the modulation of transcription factors and signalling pathways, the use of extracellular vesicles and the modification of bioscaffold materials. CONCLUSION Dental pulp tissue engineering has had breakthroughs in preclinical and clinical studies in vivo. Overcoming difficulties in pulpal angiogenesis and neurogenesis, and achieving functional pulp regeneration will lead to a significant impact in endodontics.
Collapse
Affiliation(s)
- Wanting Su
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Mutlu Özçınar B, Özükoç C, Türkmen E, Çakır R. Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) isolation, characterization and the effectiveness of allantoin as bioactive molecule for dental regeneration. J Dent 2025; 154:105604. [PMID: 39904472 DOI: 10.1016/j.jdent.2025.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION Dental stem cells are valuable tools in regenerative medicine due to their pluripotency and self-renewal properties. This study aimed to investigate the effects of allantoin (Al) on Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDSCs), and periodontal ligament stem cells (PDLSCs) regarding cytotoxicity, proliferation, wound healing, and osteogenic differentiation. METHODS Human dental stem cells were isolated from three dental tissues using the explant culture method and cultured in DMEM-F12 medium supplemented with 15 % fetal bovine serum (FBS) and antibiotics. The cytotoxicity and proliferation of allantoin were assessed using the XTT cell viability assay at concentrations ranging from 0.25 to 5 mg/mL. Wound healing was evaluated through a scratch assay at 1 mg/mL, and osteogenic differentiation was assessed using Alizarin Red S staining at 0.5 mg/mL and 1 mg/mL. RESULTS Al exhibited no cytotoxic effects across the tested concentrations. It enhanced cell proliferation, particularly in SHEDSCs at 5 mg/mL. DPSCs also showed significant improvement in wound healing in the scratch assay. At 1 mg/mL, Al inhibited osteogenic differentiation in DPSCs and PDLSCs, as indicated by reduced mineralization. CONCLUSION Al shows potential as a non-cytotoxic agent for enhancing the proliferation of dental stem cells, especially SHEDSCs. However, its limited effect on wound healing of SHEDSCs and PDLSCs and inhibition of osteogenic differentiation at higher concentrations suggest that further optimization is required for its application in bone regeneration. STATEMENT OF CLINICAL RELEVANCE Evaluation of the effects of plant-based therapeutic compounds on various types of dental stem cells may have the potential to increase the success of stem cell-based therapies in clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Betül Mutlu Özçınar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey.
| | - Can Özükoç
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | - Emrah Türkmen
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | - Rabia Çakır
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
43
|
Rosa V, Cavalcanti BN, Nör JE, Tezvergil-Mutluay A, Silikas N, Bottino MC, Kishen A, Soares DG, Franca CM, Cooper PR, Duncan HF, Ferracane JL, Watts DC. Guidance for evaluating biomaterials' properties and biological potential for dental pulp tissue engineering and regeneration research. Dent Mater 2025; 41:248-264. [PMID: 39674710 PMCID: PMC11875114 DOI: 10.1016/j.dental.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Dental pulp regeneration is a complex and advancing field that requires biomaterials capable of supporting the pulp's diverse functions, including immune defense, sensory perception, vascularization, and reparative dentinogenesis. Regeneration involves orchestrating the formation of soft connective tissues, neurons, blood vessels, and mineralized structures, necessitating materials with tailored biological and mechanical properties. Numerous biomaterials have entered clinical practice, while others are being developed for tissue engineering applications. The composition and a broad range of material properties, such as surface characteristics, degradation rate, and mechanical strength, significantly influence cellular behavior and tissue outcomes. This underscores the importance of employing robust evaluation methods and ensuring precise and comprehensive reporting of findings to advance research and clinical translation. AIMS This article aims to present the biological foundations of dental pulp tissue engineering alongside potential testing methodologies and their advantages and limitations. It provides guidance for developing research protocols to evaluate the properties of biomaterials and their influences on cell and tissue behavior, supporting progress toward effective dental pulp regeneration strategies.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Bruno Neves Cavalcanti
- Department of Cariology, Restorative Sciences, and Endodontics, Division of Endodontics, School of Dentistry, University of Michigan, Ann Arbor, United States.
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, and Endodontics, Division of Endodontics, School of Dentistry, University of Michigan, Ann Arbor, United States.
| | - Arzu Tezvergil-Mutluay
- Department of Cariology and Restorative Dentistry, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, Turku, Finland.
| | - Nikolaos Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, Division of Endodontics, School of Dentistry, University of Michigan, Ann Arbor, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, United States.
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Canada; Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital, Toronto, Canada.
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, School of Dentistry, São Paulo University, Bauru, Brazil.
| | - Cristiane M Franca
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, USA; Knight Cancer Precision Biofabrication Hub, Oregon Health & Science University (OHSU), Portland, USA.
| | - Paul Roy Cooper
- Sir John Walsh Research Institute, Department of Oral Sciences, Faculty of Dentistry, University of Otago, New Zealand.
| | - Henry F Duncan
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland.
| | - Jack L Ferracane
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, USA.
| | - David C Watts
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
44
|
Orimoto A, Wang Z, Ono M, Kitamura C, Ono K. Gene expression profiles in human dental pulp stem cells treated short-term with lipopolysaccharides before and after osteoinduction. J Oral Biosci 2025; 67:100603. [PMID: 39710093 DOI: 10.1016/j.job.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding theblood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear. This study aimed to compare the expression profiles of immortalized undifferentiated and osteo-differentiated human DPSCs (hDPSCs) treated with and without lipopolysaccharide (LPS) to elucidate the molecular regulatory mechanisms involved in inflammatory conditions. METHODS We investigated the differences between undifferentiated and osteodifferentiated hDPSCs in response to LPS. RNA-seq analyses of undifferentiated and osteodifferentiated hDPSCs were performed with and without LPS. RESULTS Whole-transcriptome profiling revealed distinct differences in the expression patterns of LPS-treated undifferentiated and osteodifferentiated DPSCs. Death-associated protein kinase 1 levels downregulated in LPS-treated osteodifferentiated cells, inhibiting apoptosis and enhancing cell survival After LPS treatment, osteodifferentiated DPSCs exhibited higher expression levels of various inflammatory cytokines and chemokines than undifferentiated DPSCs. CONCLUSION This study provides valuable transcriptomic data as a critical resource for uncovering potential therapeutic targets to enhance cell survival and regulate inflammation within the dental pulp. By elucidating the key molecular mechanisms and identifying specific gene expression changes linked to inflammatory and immune responses, these findings provide significant insights into osteo-differentiated hDPSCs.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
45
|
Narvekar S, Baliga SD, Angadi PV. Dental pulp stem cells as a novel antifibrotic therapy for oral submucous fibrosis: An in vitro study. J Oral Biol Craniofac Res 2025; 15:383-389. [PMID: 40034371 PMCID: PMC11872489 DOI: 10.1016/j.jobcr.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Background Oral submucous fibrosis (OSMF) is a chronic, potentially malignant disorder associated with areca nut consumption. It is characterized by progressive fibrosis, trismus, and a significant risk of malignancy, with limited treatment options primarily offering symptomatic relief. Dental pulp stem cells (DPSCs), a type of mesenchymal stem cells (MSCs), have shown potential for modulating fibrotic conditions through their immunomodulatory and regenerative properties. This study evaluates the antifibrotic potential of DPSCs on OSMF fibroblasts in an in vitro model. Methods DPSCs were isolated from healthy permanent teeth and characterized using flow cytometry for MSC markers (CD73, CD90, CD44, CD105). Fibroblasts were cultured from OSMF biopsy samples and validated through magnetic sorting and morphological analysis. The antifibrotic effects of DPSCs on fibroblasts were evaluated using assays for collagen gel contraction, proliferation, TGF-β1 secretion, and morphological changes. Data were analyzed for statistical significance using appropriate tests. Results The mean collagen gel size decreased from 3.235 mm (95 % CI: 1.65-4.82 mm) in the control group to 1.00 mm (95 % CI: -0.27 - 2.27 mm) in the DPSC-treated group. Fibroblast viability declined significantly over 72 h (p < 0.05). TGF-β1 secretion was markedly lower in DPSC-treated fibroblasts (339.38 pg/mL vs 637.61 pg/mL, p = 0.000393, Cohen's d = 19.15). Conclusion DPSCs exhibit strong antifibrotic properties by inhibiting collagen contraction, suppressing fibroblast proliferation, and reducing TGF-β1 secretion. These findings suggest DPSCs as a promising cell-based therapy for OSMF. Further in vivo studies are warranted for clinical translation. Trial registration number Not applicable.
Collapse
Affiliation(s)
- Snehalata Narvekar
- Department of Oral and Maxillofacial Surgery,KLE V K Institute of Dental Sciences, K LE Academy of Higher Education and Research, Belagavi, India
| | - Shridhar D. Baliga
- Department of Oral and Maxillofacial Surgery, KLE V K Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, India
| | - Punnya V Angadi
- Department of Oral and Maxillofacial Pathology and Microbiology, KLE V K Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, India
| |
Collapse
|
46
|
Kang MH, Kim HB, Chung JH, Choung PH. Parameter-Tuned Pulsed Wave Photobiomodulation Enhances Stem Cells From Apical Papilla Differentiation: Evidence From Gene and Protein Analyses. JOURNAL OF BIOPHOTONICS 2025; 18:e202400348. [PMID: 39807665 DOI: 10.1002/jbio.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
This study examines the effects of pulsed wave photobiomodulation (pwPBM) on the osteogenic differentiation of stem cells from the apical papilla (SCAP). Using 810 nm near-infrared (NIR) light with 300 Hz pulses and a 30% duty cycle, pwPBM was applied at a total energy density of 750 mJ/cm2. Osteogenesis was evaluated through both in vitro and in vivo analyses. In vitro experiments demonstrated significant enhancement of alkaline phosphatase (ALP) activity, along with upregulation of key osteogenesis-related genes and proteins, as confirmed by real-time polymerase chain reaction (PCR) and Western blot analyses. In vivo, histological assessments following SCAP transplantation revealed increased bone tissue formation, further corroborated by osteocalcin staining. These findings underscore the potential of pwPBM as an innovative and effective tool for dental tissue regeneration and engineering.
Collapse
Affiliation(s)
- Moon-Ho Kang
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- BioEngineering Institute of Chang Healthcare, co. Ltd, Seoul, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Pill-Hoon Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Mohammad Mirzapour S, Jalali F. Stem cell therapy for regenerating periodontal bony defects: A narrative review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2025; 17:1-14. [PMID: 40265031 PMCID: PMC12010474 DOI: 10.34172/japid.025.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 04/24/2025]
Abstract
Periodontal bony defects pose a significant challenge in periodontology, necessitating advanced regenerative approaches to restore the lost structures. Stem cell-based therapies have emerged as a promising solution due to their ability to differentiate into various cells, modulating the regenerative microenvironment. This narrative review explores the potential of stem cells derived from multiple sources in treating periodontal bony defects. Additionally, we examine evidence from both animal and human studies, highlighting advancements, clinical outcomes, and limitations. By investigating these findings, this article provides a comprehensive overview of the advantages of stem cell-based therapies compared to other regenerative techniques in addressing periodontal bony defects and discusses the limitations of their translation into routine clinical practice.
Collapse
Affiliation(s)
- Samira Mohammad Mirzapour
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Jalali
- Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Fukutome A, Sakamoto T, Asawa Y, Riu D, Kawakami H, Hoshi K, Hikita A. Establishment of a mouse organ culture model of fetal cleft lip for the evaluation of adipose-derived stem cell therapy. Regen Ther 2025; 28:41-50. [PMID: 39687332 PMCID: PMC11647479 DOI: 10.1016/j.reth.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Cleft lip and cleft palate are congenital disorders resulting from abnormal facial development. Current treatments require multiple surgeries, which have risks of scar formation and facial deformities. Recently, fetal treatments utilizing "scarless healing" have gained attention, as early intervention shows potential to suppress scarring. In the field of regenerative medicine, mesenchymal stem cell therapies using cell sheets have advanced, by which promotion of tissue repair is expected. However, researches for fetal treatment using small animal models of cleft lip are challenging due to the high fetal mortality caused by surgical invasiveness. Although organ culture methods may offer an alternative approach, no organ culture system for fetal cleft lip research has been reported. Methods In this study, a cleft lip was surgically created on the upper left side lip of E15.5 mouse fetuses. These fetuses were cultured for four days using an organ culture system. Histological evaluation was performed to evaluate cell density, tissue morphology, and epithelialization. Additionally, adipose-derived stem cell (ADSC) sheets were transplanted two days after cleft lip creation to evaluate their effect on tissue repair. Results The histological analysis showed that cell density and tissue morphology were stably maintained in the four-day culture period. Epithelialization of the incision site was observed two days after surgery, confirming the completion of cleft formation. In the ADSC-transplanted group, epithelialization of the cleft site was observed, which indicates that the stem cell sheets contributed to tissue repair. Conclusion This research demonstrates the successful development of a cleft lip organ culture model and highlights the potential of ADSC sheets in promoting tissue repair. These findings provide a foundation for future regenerative medicine strategies in fetal cleft lip therapy.
Collapse
Affiliation(s)
- Ayane Fukutome
- Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiyo Asawa
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Dan Riu
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kawakami
- Division of Dentistry and Oral Surgery, Mitsui Memorial Hospital, 1 Kanda Izumicho, Chiyoda-ku, Tokyo 101-8643, Japan
| | - Kazuto Hoshi
- Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
49
|
Hou H, Qiu Z, Che J, Li Y, Sun J, Zhang W, Ma J, Zhang S, Li M, Niu Y, He L. Effects of simulated microgravity on dental pulp stem cell stemness. J Mol Histol 2025; 56:97. [PMID: 40011255 DOI: 10.1007/s10735-025-10377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Dental pulp stem cells (DPSCs), a subset of tooth-derived mesenchymal stem cells (MSCs), demonstrate significant promise in clinical stem cell therapy. However, prolonged in vitro expansion commonly results in compromised stemness, limiting therapeutic efficacy. Thus, maintaining the stemness of DPSCs during expansion and culture is a key challenge for regenerative medicine. In the current study, the impact of simulated microgravity (SMG) on DPSC stemness was investigated using the three-dimensional clinostat Cellspace-3D. After SMG treatment for 3 days, DPSCs demonstrated markedly enhanced replicative activity, proliferation efficiency, self-renewal capacity, and effective inhibition of the senescence process. Under specific differentiation induction conditions, DPSCs in the SMG group exhibited superior osteogenic, adipogenic, chondrogenic, and neural differentiation potentials. Additionally, DPSCs exhibited higher expression levels of the MSC surface markers Stro-1 and CD146 and stemness maintenance-related genes Oct4, Nanog, and Sox2 in the SMG group compared to those from the normal gravity (NG) group. To elucidate the potential molecular mechanisms by which SMG influences the stemness of DPSCs, transcriptome sequencing of total RNA was performed, and identified that differentially expressed genes (DEGs) are closely associated with the MAPK signaling pathway. Further verification experiments demonstrated that the MAPK/ERK signaling pathway was activated in the SMG group. In conclusion, SMG effectively maintains the stemness of DPSCs cultivated in vitro, and its mechanism of action may be associated with the activation of the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Huailong Hou
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Zhengjun Qiu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Jingyi Che
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Yanping Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Jingxuan Sun
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Weiwei Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Jinjie Ma
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Mengdi Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China.
| | - Lina He
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China.
| |
Collapse
|
50
|
Fang C, Zeng Z, Ye J, Ni B, Zou J, Zhang G. Progress of mesenchymal stem cells affecting extracellular matrix metabolism in the treatment of female stress urinary incontinence. Stem Cell Res Ther 2025; 16:95. [PMID: 40001265 PMCID: PMC11863768 DOI: 10.1186/s13287-025-04220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Stress urinary incontinence (SUI) is a prevalent pelvic floor dysfunction in women post-pregnancy. Currently, conservative treatment options have low success rates, while surgical interventions often result in multiple complications. The altered state of the extracellular matrix (ECM) is a pivotal factor in the onset of various diseases and likely plays a significant role in the pathogenesis of SUI, particularly through changes in collagen and elastin levels. Recent advances in mesenchymal stem cells (MSCs) therapy have shown considerable promise in treating SUI by modulating ECM remodeling, thereby enhancing the supportive tissues of the female pelvic floor. MSCs exhibit substantial potential in enhancing urethral sphincter function, modulating connective tissue architecture, and stimulating fibroblast activity. They play a pivotal role in the reconstruction and functional recovery of the ECM by influencing various signaling pathways, including TGF-β/SMAD, JAK/STAT, Wnt/β-catenin, PI3K/AKT, and ERK/MAPK. We have reviewed the advancements in MSC-mediated ECM metabolism in SUI and, by integrating the functions of ECM in other diseases and how MSCs can ameliorate conditions through their impact on ECM metabolism, we have projected the future trajectory of SUI treatment development.
Collapse
Affiliation(s)
- Chunyun Fang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zitao Zeng
- First Clinical College of Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bin Ni
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Junrong Zou
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China
| | - Guoxi Zhang
- Department of Urology, Institute of Urology, First Affiliated Hospital of Gannan Medical University, Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|