1
|
Turyn J, Stelmanska E, Szrok-Jurga S. Two Regions with Different Expression of Lipogenic Enzymes in Rats' Posterior Subcutaneous Fat Depot. Int J Mol Sci 2024; 25:11546. [PMID: 39519099 PMCID: PMC11546078 DOI: 10.3390/ijms252111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Lipid metabolism in various adipose tissue depots can differ vastly. This also applies to lipogenesis, the process of synthesizing fatty acids from acetyl-CoA. This study compared the expression of some lipogenic enzymes: fatty acid synthase (FASN), ATP-citrate lyase (ACLY), and malic enzyme 1 (ME1) in different regions of the posterior subcutaneous adipose tissue in rats. Methods and Results: Posterior subcutaneous adipose tissue collected from twelve-month-old Wistar rats was divided into six parts (A-F). The expression of genes encoding lipogenic enzymes was assessed by measuring their activity and mRNA levels using real-time PCR. In the gluteal region of the fat pad, there were much higher levels of activity and mRNA for these lipogenic enzymes compared to the dorsolumbar region. The mRNA level of FASN increased by more than twentyfold, whereas the level of ME1 and ACLY increased eight- and fivefold respectively. This phenomenon was observed in both old and young animals. Furthermore, the lack of uncoupling protein one (Ucp1) expression suggests that neither the presence of brown adipocytes in the gluteal part nor the transformation of white adipocytes into beige contributed to the observed differences. Conclusion: These results indicate that the gluteal white adipose tissue appears to be a unique and separate subcutaneous fat depot.
Collapse
Affiliation(s)
- Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
2
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
3
|
Hu AJ, Li W, Pathak A, Hu GF, Hou X, Farmer SR, Hu MG. CDK6 is essential for mesenchymal stem cell proliferation and adipocyte differentiation. Front Mol Biosci 2023; 10:1146047. [PMID: 37664186 PMCID: PMC10469316 DOI: 10.3389/fmolb.2023.1146047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Overweight or obesity poses a significant risk of many obesity-related metabolic diseases. Among all the potential new therapies, stem cell-based treatments hold great promise for treating many obesity-related metabolic diseases. However, the mechanisms regulating adipocyte stem cells/progenitors (precursors) are unknown. The aim of this study is to investigate if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation. Methods: Cyclin-dependent kinase 6 (Cdk6) mouse models together with stem cells derived from stromal vascular fraction (SVF) or mouse embryonic fibroblasts (MEFs) of Cdk6 mutant mice were used to determine if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation. Results: We found that mice with a kinase inactive CDK6 mutants (K43M) had fewer precursor residents in the SVF of adult white adipose tissue (WAT). Stem cells from the SVF or MEFs of K43M mice had defects in proliferation and differentiation into the functional fat cells. In contrast, mice with a constitutively active kinase CDK6 mutant (R31C) had the opposite traits. Ablation of RUNX1 in both mature and precursor K43M cells, reversed the phenotypes. Conclusion: These results represent a novel role of CDK6 in regulating precursor numbers, proliferation, and differentiation, suggesting a potential pharmacological intervention for using CDK6 inhibitors in the treatment of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Alexander J. Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Wei Li
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Apana Pathak
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Assay Research and Development Department, GRAIL LLC, Menlo Park, CA, United States
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
| | - Xiaoli Hou
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Center for Analysis and Testing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Stephen R. Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Miaofen G. Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Portales AE, Miguel I, Rodriguez MJ, Novaro V, Gambaro SE, Giovambattista A. CDK4/6 are necessary for UCP1-mediated thermogenesis of white adipose tissue. Life Sci 2023; 322:121652. [PMID: 37011871 DOI: 10.1016/j.lfs.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
AIMS In white adipose tissue (WAT) the cell cycle regulators CDK4 and CDK6 (CDK4/6) promote adipogenesis and maintain the adipocyte mature state. Here we aimed to investigate their role in the Ucp1-mediated thermogenesis of WAT depots and in the biogenesis of beige adipocytes. MAIN METHODS We treated mice with the CDK4/6 inhibitor palbociclib at room temperature (RT) or cold and analyzed thermogenic markers in the epididymal (abdominal) and inguinal (subcutaneous) WAT depots. We also assessed the effect of in vivo palbociclib-treatment on the percentage of beige precursors in the stroma vascular fraction (SVF), and on its beige adipogenic potential. Finally, we treated SVFs and mature adipocytes from WAT depots with palbociclib in vitro to study the role of CDK4/6 in beige adipocytes biogenesis. KEY FINDINGS In vivo CDK4/6 inhibition downregulated thermogenesis at RT and impaired cold-induced browning of both WAT depots. It also reduced the percentage of beige precursors and the beige adipogenic potential of the SVF upon differentiation. A similar result was observed with direct CDK4/6 inhibition in the SVF of control mice in vitro. Importantly, CDK4/6 inhibition also downregulated the thermogenic program of beige differentiated- and depots-derived adipocytes. SIGNIFICANCE CDK4/6 modulate Ucp1-mediated thermogenesis of WAT depots in basal and cold-stressing conditions controlling beige adipocytes biogenesis by adipogenesis and transdifferentiation. This shows a pivotal role of CDK4/6 in WAT browning that could be applied to fight obesity or browning-associated hypermetabolic conditions such as cancer cachexia.
Collapse
|
5
|
Kwon J, Yeh YS, Kawarasaki S, Minamino H, Fujita Y, Okamatsu-Ogura Y, Takahashi H, Nomura W, Matsumura S, Yu R, Kimura K, Saito M, Inagaki N, Inoue K, Kawada T, Goto T. Mevalonate biosynthesis pathway regulates the development and survival of brown adipocytes. iScience 2023; 26:106161. [PMID: 36895651 PMCID: PMC9988578 DOI: 10.1016/j.isci.2023.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Yu-Sheng Yeh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hiroto Minamino
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Okamatsu-Ogura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Shigenobu Matsumura
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-0872, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kazuhiro Kimura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Wen J, Deng J, Xiao T, Liu Y, Meng W. Adipose Rheb deficiency promotes miR-182-5p expression via the cAMP/PPARγ signaling pathway. J Genet Genomics 2023; 50:20-26. [PMID: 35550871 DOI: 10.1016/j.jgg.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Dysregulation of microRNAs (miRNAs) in adipocytes plays a critical role in the pathogenesis of obesity. However, the signaling mechanisms regulating miRNAs production in adipose tissue remain largely unclear. Here, we show that adipose tissue-specific knockout of Ras homolog enriched in brain (Rheb), a direct upstream activator of mTOR, increases miR-182-5p level in mouse subcutaneous white adipose tissues. Interestingly, the inhibition of mTOR signaling by rapamycin has no effect on miR-182-5p level in primary subcutaneous white adipocytes, suggesting the presence of a mTOR-independent mechanism regulating Rheb-mediated miR-182-5p expression. Consistent with this view, Rheb-ablation activates the cAMP/PPARγ signaling pathway. In addition, treatment of white adipocytes with pioglitazone, a PPARγ agonist, dramatically upregulates miR-182-5p levels. Our study reveals a unique mechanism by which Rheb regulates miR-182-5p in adipocytes. Given that increasing miR-182-5p in adipose tissue promotes beige fat development, our study also suggests a unique mechanism by which Rheb promotes thermogenesis and energy expenditure.
Collapse
Affiliation(s)
- Jie Wen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiangming Deng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Wen Meng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
7
|
Retinoblastoma patient-derived stem cells-an in vivo model to study the role of RB1 in adipogenesis. Histochem Cell Biol 2022; 158:181-192. [PMID: 35445864 DOI: 10.1007/s00418-022-02105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
Abstract
Retinoblastoma (RB1) protein is a multifunctional protein that plays an important role in cell cycle regulation and cell differentiation, including adipogenesis. A detailed literature search to understand the role of RB1 in adipogenesis revealed that the nature of the RB1 inactivation (in vivo/in vitro) led to differences in adipogenesis. The majority of these studies were animal-based, and the only study in humans employed an in vitro mode of RB1 inactivation. To overcome these differences and lack of human studies, we sought to explore the role of RB1 in adipogenesis using orbital adipose mesenchymal stem cells (OAMSCs) from patients with retinoblastoma that innately carry a heterozygous RB1 mutation. We hypothesized that these patient-derived RB1 mutant OAMSCs can model in vivo RB1 inactivation in humans. Our study revealed increased adipogenesis with a bias toward brown adipogenesis in the RB1 mutant in addition to an increased number of adipocytes in the mitotic phase.
Collapse
|
8
|
Hao X, Zhu B, Yang P, Dong D, Sahbaie P, Oliver PL, Shen WJ, Azhar S, Kraemer FB. SNAP25 mutation disrupts metabolic homeostasis, steroid hormone production and central neurobehavior. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166304. [PMID: 34826585 PMCID: PMC8759409 DOI: 10.1016/j.bbadis.2021.166304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE SNAP-25 is one of the key proteins involved in formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that are at the core of hormonal secretion and synaptic transmission. Altered expression or function of SNAP-25 can contribute to the development of neuropsychiatric and metabolic disease. A dominant negative (DN) I67T missense mutation in the b-isoform of SNAP-25 (DN-SNAP25mut) mice leads to abnormal interactions within the SNARE complex and impaired exocytotic vesicle recycling, yet the significance of this mutation to any association between the central nervous system and metabolic homeostasis is unknown. METHODS Here we explored aspects of metabolism, steroid hormone production and neurobehavior of DN-SNAP25mut mice. RESULTS DN-SNAP25mut mice displayed enhanced insulin function through increased Akt phosphorylation, alongside increased adrenal and gonadal hormone production. In addition, increased anxiety behavior and beigeing of white adipose tissue with increased energy expenditure were observed in mutants. CONCLUSIONS Our results show that SNAP25 plays an important role in bridging central neurological systems with peripheral metabolic homeostasis, and provide potential insights between metabolic disease and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Xiao Hao
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology, First Affiliated Hospital of the Medical College of Zhengzhou University, Zhengzhou, China
| | - Bing Zhu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pinglin Yang
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Orthopedics, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, Shaanxi, China
| | - Dachuan Dong
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Peter L Oliver
- Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| |
Collapse
|
9
|
FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Mol Metab 2021; 54:101358. [PMID: 34710640 PMCID: PMC8605413 DOI: 10.1016/j.molmet.2021.101358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast growth factor 2 (FGF2) has been reported to play divergent roles in white adipogenic differentiation, however, whether it regulates thermogenesis of fat tissues remains largely unknown. We therefore aimed to investigate the effect of FGF2 on fat thermogenesis and elucidate the underlying mechanisms. Methods FGF2-KO and wild-type (WT) mice were fed with chow diet and high-fat diet (HFD) for 14 weeks. The brown and white fat mass, thermogenic capability, respiratory exchange ratio, and hepatic fat deposition were determined. In vitro experiments were conducted to compare the thermogenic ability of FGF2-KO- with WT-derived brown and white adipocytes. Exogenous FGF2 was supplemented to in vitro-cultured WT brown and ISO-induced beige adipocytes. The FGFR inhibitor, PPARγ agonist, and PGC-1α expression lentivirus were used with the aid of technologies including Co-IP, ChIP, and luciferase reporter assay to elucidate the mechanisms underlying the FGF2 regulation of thermogenesis. Results FGF2 gene disruption results in increased thermogenic capability in both brown and beige fat, supporting by increased UCP1 expression, enhanced respiratory exchange ratio, and elevated thermogenic potential in response to cold exposure. Thus, the deletion of FGF2 protects mice from high fat-induced adiposity and hepatic steatosis. Mechanistically, in vitro investigations indicated FGF2 acts in autocrine/paracrine fashions. Exogenous FGF2 supplementation inhibits both PGC-1α and PPARγ expression, leading to suppression of UCP1 expression in brown and beige adipocytes. Conclusions These findings demonstrate that FGF2 is a novel thermogenic regulator, suggesting a viable potential strategy for using FGF2-selective inhibitors in combat adiposity and associated hepatic steatosis.
FGF2-KO mice show potentiated stimulation on thermogenic capability under both basal and cold challenge stimulation. FGF2 disruption protected mice against HFD-induced adiposity and hepatic steatosis. FGF2 acts in autocrine/paracrine fashions in vitro. Both PPARγ and PGC-1α play roles in FGF2 suppression of thermogenesis.
Collapse
|
10
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
11
|
Guo F, Seldin M, Péterfy M, Charugundla S, Zhou Z, Lee SD, Mouton A, Rajbhandari P, Zhang W, Pellegrini M, Tontonoz P, Lusis AJ, Shih DM. NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Sci Rep 2021; 11:16409. [PMID: 34385484 PMCID: PMC8361163 DOI: 10.1038/s41598-021-95720-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A β3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C–C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A’s effects on upregulation of TGF-β signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.
Collapse
Affiliation(s)
- Fangfei Guo
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Marcus Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Sarada Charugundla
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Zhiqiang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine Mount Sinai, New York, NY, 10029, USA
| | - Wenchao Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Matteo Pellegrini
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Diana M Shih
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
12
|
Roth CL, Molica F, Kwak BR. Browning of White Adipose Tissue as a Therapeutic Tool in the Fight against Atherosclerosis. Metabolites 2021; 11:319. [PMID: 34069148 PMCID: PMC8156962 DOI: 10.3390/metabo11050319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite continuous medical advances, atherosclerosis remains the prime cause of mortality worldwide. Emerging findings on brown and beige adipocytes highlighted that these fat cells share the specific ability of non-shivering thermogenesis due to the expression of uncoupling protein 1. Brown fat is established during embryogenesis, and beige cells emerge from white adipose tissue exposed to specific stimuli like cold exposure into a process called browning. The consecutive energy expenditure of both thermogenic adipose tissues has shown therapeutic potential in metabolic disorders like obesity and diabetes. The latest data suggest promising effects on atherosclerosis development as well. Upon cold exposure, mice and humans have a physiological increase in brown adipose tissue activation and browning of white adipocytes is promoted. The use of drugs like β3-adrenergic agonists in murine models induces similar effects. With respect to atheroprotection, thermogenic adipose tissue activation has beneficial outcomes in mice by decreasing plasma triglycerides, total cholesterol and low-density lipoproteins, by increasing high-density lipoproteins, and by inducing secretion of atheroprotective adipokines. Atheroprotective effects involve an unaffected hepatic clearance. Latest clinical data tend to find thinner atherosclerotic lesions in patients with higher brown adipose tissue activity. Strategies for preserving healthy arteries are a major concern for public health.
Collapse
Affiliation(s)
| | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (C.L.R.); (B.R.K.)
| | | |
Collapse
|
13
|
Baryshev M, Petrov N, Ryabov V, Popov B. Transient expression of inactive RB in mesenchymal stem cells impairs their adipogenic potential and is associated with hypermethylation of the PPARγ2 promoter. Genes Dis 2020; 9:165-175. [PMID: 35005116 PMCID: PMC8720652 DOI: 10.1016/j.gendis.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022] Open
Abstract
The retinoblastoma gene product (pRb) is a chromatin-associated protein that can either suppress or promote activity of key regulators of tissue-specific differentiation. We found that twelve weeks after transfection of the exogenous active (ΔB/X and Δр34) or inactive (ΔS/N) forms of RB into the 10T1/2 mesenchymal stem cells and clonal selection not a single cell line did contain exogenous RB, despite being G-418 resistant. However, the consequences of the transient production of exogenous RB had different effects on the cell fate. The ΔB/X and Δр34 cells transfected with active form of RB showed elevated levels of inducible adipocyte differentiation (AD). On the contrary, the ΔS/N cells transfected with inactive RB mutant were insensitive to induction of AD associated with abolishing of expression of the PPARγ2. Additionally, the PPARγ2 promoter in undifferentiated ΔS/N cells was hypermethylated, but all except −60 position CpG became mostly demethylated after cells exposure to AD. We conclude that while transient expression of inactive exogenous RB induces long term epigenetic alterations that prevent adipogenesis, production of active exogenous RBs results in an AD-promoting epigenetic state. These results indicate that pRb is involved in the establishment of hereditary epigenetic memory at least by creating a methylation pattern of PPARγ2.
Collapse
Affiliation(s)
- Mikhail Baryshev
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, LV-1067, Riga, Latvia
| | - Nikolai Petrov
- Institute of Cytology Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, St. Petersburg, Russia
| | - Vladimir Ryabov
- Institute of Cytology Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, St. Petersburg, Russia
| | - Boris Popov
- Institute of Cytology Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, St. Petersburg, Russia
| |
Collapse
|
14
|
Maurer S, Harms M, Boucher J. The colorful versatility of adipocytes: white-to-brown transdifferentiation and its therapeutic potential in humans. FEBS J 2020; 288:3628-3646. [PMID: 32621398 DOI: 10.1111/febs.15470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
Brown and brite adipocytes contribute to energy expenditure through nonshivering thermogenesis. Though these cell types are thought to arise primarily from the de novo differentiation of precursor cells, their abundance is also controlled through the transdifferentiation of mature white adipocytes. Here, we review recent advances in our understanding of the regulation of white-to-brown transdifferentiation, as well as the conversion of brown and brite adipocytes to dormant, white-like fat cells. Converting mature white adipocytes into brite cells or reactivating dormant brown and brite adipocytes has emerged as a strategy to ameliorate human metabolic disorders. We analyze the evidence of learning from mice and how they translate to humans to ultimately scrutinize the relevance of this concept. Moreover, we estimate that converting a small percentage of existing white fat mass in obese subjects into active brite adipocytes could be sufficient to achieve meaningful benefits in metabolism. In conclusion, novel browning agents have to be identified before adipocyte transdifferentiation can be realized as a safe and efficacious therapy.
Collapse
Affiliation(s)
- Stefanie Maurer
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
16
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
17
|
Bjune JI, Dyer L, Røsland GV, Tronstad KJ, Njølstad PR, Sagen JV, Dankel SN, Mellgren G. The homeobox factor Irx3 maintains adipogenic identity. Metabolism 2020; 103:154014. [PMID: 31751577 DOI: 10.1016/j.metabol.2019.154014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Inhibition of Irx3 and Irx5 has been shown to reduce body weight and white adipose tissue (WAT) mass through cell-autonomous and sympathetic-induced increases in adipocyte beiging and thermogenesis in mice and humans. However, the underlying mechanisms of the Irx control over beiging are still largely unknown, as illustrated by recent reports showing divergent effects of Irx3 on adipocyte metabolism and function. Here, we investigated the role of Irx3 in controlling beige preadipocyte function and differentiation. METHODS Stable knock out of Irx3 in ME3 mouse preadipocytes capable of beiging was performed using a CRISPR-Cas9 system, and the effect on cell differentiation was assessed by qPCR, RNA-seq, Oil-red-O lipid staining and Alcian Blue staining of proteoglycans. Changes in cell identities were validated using cell type enrichment analysis from RNA-seq data. Proliferation and cell cycle progression in undifferentiated cells were measured by WST-1 and flow cytometry, reactive oxygen species (ROS) generation was determined by fluorescence spectrometry and mitochondrial respiration was investigated by Seahorse assay. RESULTS Irx3 was found to be essential for the identity, function and adipogenic differentiation of beige adipocyte precursors. Irx3-KO impaired proliferation, ROS generation and mitochondrial respiration in the preadipocytes. We further observed profound changes in numerous genes during both early and late stages of adipogenic differentiation, including genes important for adipocyte differentiation, cell cycle progression, oxidative phosphorylation (OXPHOS) and morphogenesis. Irx3-KO cells failed to accumulate lipids following adipogenic stimuli, and cell enrichment analysis revealed a loss of preadipocyte identity and a gain of chondrocyte-like identity in Irx3-KO cells during early differentiation. Finally, unlike the control cells, the Irx3-KO cells readily responded to chondrogenic stimuli. CONCLUSIONS Irx3 is required for preadipocyte identity and differentiation capacity. Our findings suggest that, while inhibition of Irx3 may be beneficial during later developmental stages to modulate adipogenesis in the beige direction, constitutive and complete absence of Irx3 in the embryonic fibroblast stage leads to detrimental loss of adipogenic differentiation capacity.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Laurence Dyer
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Karl Johan Tronstad
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Department of Pediatrics and Adolescents, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Jørn V Sagen
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Simon N Dankel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Gunnar Mellgren
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
18
|
Conditionally immortalized brown preadipocytes can switch between proliferative and differentiated states. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158511. [DOI: 10.1016/j.bbalip.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
|
19
|
Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W, Zhou R, He L, Xia X, Yao Z, Fan Y, Wang N, Hu C, Zhao X, Tucker HO, Wang J, Guo X. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun 2019; 10:5070. [PMID: 31699980 PMCID: PMC6838312 DOI: 10.1038/s41467-019-12988-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/02/2019] [Indexed: 01/08/2023] Open
Abstract
β-Adrenergic receptor (β-AR) signaling is a pathway controlling adaptive thermogenesis in brown or beige adipocytes. Here we investigate the biological roles of the transcription factor Foxp1 in brown/beige adipocyte differentiation and thermogenesis. Adipose-specific deletion of Foxp1 leads to an increase of brown adipose activity and browning program of white adipose tissues. The Foxp1-deficient mice show an augmented energy expenditure and are protected from diet-induced obesity and insulin resistance. Consistently, overexpression of Foxp1 in adipocytes impairs adaptive thermogenesis and promotes diet-induced obesity. A robust change in abundance of the β3-adrenergic receptor (β3-AR) is observed in brown/beige adipocytes from both lines of mice. Molecularly, Foxp1 directly represses β3-AR transcription and regulates its desensitization behavior. Taken together, our findings reveal Foxp1 as a master transcriptional repressor of brown/beige adipocyte differentiation and thermogenesis, and provide an important clue for its targeting and treatment of obesity. Beta3-adrenergic receptor (b3-AR) signaling in response to cold activates adipose tissue thermogenesis. Here the authors identify the transcription factor FoxP1 as a direct negative regulator of b3-AR expression and show that loss of FoxP1 leads to enhanced development of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Pei Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Sixia Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shifeng Ling
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuhua Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujiang Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechun Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengju Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Congxia Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haley O Tucker
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xizhi Guo
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Cheng B, Zhang H, Liu C, Chen X, Chen Y, Sun Y, Leng L, Li Y, Luan P, Li H. Functional Intronic Variant in the Retinoblastoma 1 Gene Underlies Broiler Chicken Adiposity by Altering Nuclear Factor-kB and SRY-Related HMG Box Protein 2 Binding Sites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9727-9737. [PMID: 31398034 DOI: 10.1021/acs.jafc.9b01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study aimed to search for chicken abdominal fat deposition-related polymorphisms within RB1 and to provide functional evidence for significantly associated genetic variants. Association analyses showed that 11 single nucleotide polymorphisms (SNPs) in intron 17 of RB1, were significantly associated with both abdominal fat weight (P < 0.05) and abdominal fat percentage (P < 0.05). Functional analysis revealed that the A allele of g.32828A>G repressed the transcriptional efficiency of RB1 in vitro, through binding nuclear factor-kappa B (NF-KB) and SRY-related HMG box protein 2 (SOX2). Furthermore, RB1 mRNA expression levels in the abdominal fat tissue of individuals with the A/A genotype of g.32828A>G were lower than those of individuals with the G/G genotype. Collectively, we propose that the intronic SNP g.32828A>G of RB1 is an obesity-associated variant that directly affects binding with NF-KB and SOX2, leading to changes in RB1 expression which in turn may influence chicken abdominal fat deposition.
Collapse
Affiliation(s)
- Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xi Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yaofeng Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| |
Collapse
|
21
|
Abstract
Brown adipocytes are the key cell type in brown adipose tissue (BAT) that express the genes required for heat production through the process of thermogenesis. Brown adipocyte cell culture models are important for researching the molecular pathways that control cell autonomous processes. In vitro tools for the study of brown adipocytes include BAT explant cultures and BAT primary cultures that are first proliferated and then differentiated. A number of stable brown preadipocyte cell lines have been generated by the expression transforming factors such as SV40 T antigen. The application of these cell lines reduces the requirement for animal tissue which is needed for primary culture and explants. Furthermore, brown adipocyte cell lines that effectively recapitulate the properties of brown adipocytes permit large-scale experimental procedures that are generally unfeasible with primary cultures that undergo a restricted number of cell divisions. Cell lines are valuable for applications such as large-scale endogenous protein expression, ChIP assay, and procedures requiring antibiotic selection over several cell divisions including stable exogenous gene expression and CRISR/Cas9 gene editing.
Collapse
Affiliation(s)
- Mark Christian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
22
|
The Role of RB in Prostate Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:301-318. [PMID: 31900914 DOI: 10.1007/978-3-030-32656-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.
Collapse
|
23
|
Madsen L, Myrmel LS, Fjære E, Øyen J, Kristiansen K. Dietary Proteins, Brown Fat, and Adiposity. Front Physiol 2018; 9:1792. [PMID: 30631281 PMCID: PMC6315128 DOI: 10.3389/fphys.2018.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
High protein diets have become popular for body weight maintenance and weight loss despite controversies regarding efficacy and safety. Although both weight gain and weight loss are determined by energy consumption and expenditure, data from rodent trials consistently demonstrate that the protein:carbohydrate ratio in high fat diets strongly influences body and fat mass gain per calorie eaten. Here, we review data from rodent trials examining how high protein diets may modulate energy metabolism and the mechanisms by which energy may be dissipated. We discuss the possible role of activating brown and so-called beige/BRITE adipocytes including non-canonical UCP1-independent thermogenesis and futile cycles, where two opposing metabolic pathways are operating simultaneously. We further review data on how the gut microbiota may affect energy expenditure. Results from human and rodent trials demonstrate that human trials are less consistent than rodent trials, where casein is used almost exclusively as the protein source. The lack of consistency in results from human trials may relate to the specific design of human trials, the possible distinct impact of different protein sources, and/or the differences in the efficiency of high protein diets to attenuate obesity development in lean subjects vs. promoting weight loss in obese subjects.
Collapse
Affiliation(s)
- Lise Madsen
- Institute of Marine Research, Bergen, Norway.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Bjune JI, Haugen C, Gudbrandsen O, Nordbø OP, Nielsen HJ, Våge V, Njølstad PR, Sagen JV, Dankel SN, Mellgren G. IRX5 regulates adipocyte amyloid precursor protein and mitochondrial respiration in obesity. Int J Obes (Lond) 2018; 43:2151-2162. [PMID: 30538277 PMCID: PMC6451637 DOI: 10.1038/s41366-018-0275-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022]
Abstract
Objective A causal obesity risk variant in the FTO locus was recently shown to inhibit adipocyte thermogenesis via increased adipose expression of the homeobox transcription factors IRX3 and IRX5. However, causal effects of IRX5 on fat storage remain to be shown in vivo, and discovery of downstream mediators may open new therapeutic avenues. Methods 17 WT and 13 Irx5 knockout (KO) mice were fed low-fat control (Ctr) or high-fat (HF) diet for 10 weeks. Body weight, energy intake and fat mass were measured. Irx5-dependent gene expression was explored by transcriptome analysis of epididymal white adipose tissue (eWAT), confirmatory obesity-dependent expression in human adipocytes in vivo, and in vitro knock-down, overexpression and transcriptional activation assays. Results Irx5 knock-out mice weighed less, had diminished fat mass, and were protected from diet-induced fat accumulation. Key adipose mitochondrial genes Pparγ coactivator 1-alpha (Pgc-1α) and uncoupling protein 1 (Ucp1) were upregulated, and a gene network centered on amyloid precursor protein (App) was downregulated in adipose tissue of knock-out mice and in isolated mouse adipocytes with stable Irx5 knock-down. An APP-centered network was also enriched in isolated adipocytes from obese compared to lean humans. IRX5 overexpression increased APP promoter activity and both IRX5 and APP inhibited transactivation of PGC-1α and UCP1. Knock-down of Irx5 or App increased mitochondrial respiration in adipocytes. Conclusion Irx5-KO mice were protected from obesity and this can partially be attributed to reduced adipose App and improved mitochondrial respiration. This novel Irx5-App pathway in adipose tissue is a possible therapeutic entry point against obesity.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
| | - Christine Haugen
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
| | - Oddrun Gudbrandsen
- Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
| | - Ole P Nordbø
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
| | - Hans J Nielsen
- Department of Surgery, Voss Hospital, 5704, Voss, Norway
| | - Villy Våge
- Department of Surgery, Voss Hospital, 5704, Voss, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Department of Pediatrics and Adolescents, Haukeland University Hospital, 5021, Bergen, Norway
| | - Jørn V Sagen
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.,Hormone Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
| | - Simon N Dankel
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway. .,Hormone Laboratory, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Gunnar Mellgren
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020, Bergen, Norway. .,Hormone Laboratory, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
25
|
Lee KY, Luong Q, Sharma R, Dreyfuss JM, Ussar S, Kahn CR. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J 2018; 38:embj.201899291. [PMID: 30530479 DOI: 10.15252/embj.201899291] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggest that, even within a single adipose depot, there may be distinct subpopulations of adipocytes. To investigate this cellular heterogeneity, we have developed multiple conditionally immortalized clonal preadipocyte lines from white adipose tissue of mice. Analysis of these clones reveals at least three white adipocyte subpopulations. These subpopulations have differences in metabolism and differentially respond to inflammatory cytokines, insulin, and growth hormones. These also have distinct gene expression profiles and can be tracked by differential expression of three marker genes: Wilms' tumor 1, transgelin, and myxovirus 1. Lineage tracing analysis with dual-fluorescent reporter mice indicates that these adipocyte subpopulations have differences in gene expression and metabolism that mirror those observed in the clonal cell lines. Furthermore, preadipocytes and adipocytes from these subpopulations differ in their abundance in different fat depots. Thus, white adipose tissue, even in a single depot, is comprised of distinct subpopulations of white adipocytes with different physiological phenotypes. These differences in adipocyte composition may contribute to the differences in metabolic behavior and physiology of different fat depots.
Collapse
Affiliation(s)
- Kevin Y Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.,The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.,The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.,The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jonathan M Dreyfuss
- Bioinformatics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,RG Adipocytes & Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
27
|
Rajan A, Shi H, Xue B. Class I and II Histone Deacetylase Inhibitors Differentially Regulate Thermogenic Gene Expression in Brown Adipocytes. Sci Rep 2018; 8:13072. [PMID: 30166563 PMCID: PMC6117331 DOI: 10.1038/s41598-018-31560-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2018] [Indexed: 01/04/2023] Open
Abstract
Class I histone deacetylase inhibitors (HDACis) enhance whole body energy expenditure and attenuate high fat diet-induced insulin resistance. However, it is not clear whether this is exerted directly through activating brown fat thermogenesis. Here, we find that pan-HDACi TSA exerts paradoxical effects on brown fat gene expression, as it inhibits the expression of Ucp1, Pparγ and Prdm16 in brown adipocytes, while promoting the expression of other brown fat-specific genes such as Pgc1α, Pgc1β, Acox1 and Cidea. Further studies indicate that class I HDACi MS-275 significantly increases; whereas class II HDACi MC-1568 markedly reduces, the expression of Ucp1 and other brown fat-specific genes in treated brown adipocytes. ChIP assay reveals an enhanced H3 acetylation at the Pgc1α promoter in MS-275-treated brown adipocytes; whereas the effect of MC-1568 is associated with up-regulation of retinoblastoma protein (Rb) and an enhanced acetylation of H3K27 at the Rb promoter. Loss of function studies indicate that Pgc1α up-regulation largely mediates the stimulatory effect of class I HDACis on the thermogenic program, whereas up-regulation of Rb may be responsible for the inhibitory effect of class II HDACis. Thus, our data suggest that class I and II HDACis have differential effects on brown fat thermogenic gene expression.
Collapse
Affiliation(s)
- Anubama Rajan
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Hang Shi
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Bingzhong Xue
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
28
|
Goupille O, Penglong T, Kadri Z, Granger-Locatelli M, Denis R, Luquet S, Badoual C, Fucharoen S, Maouche-Chrétien L, Leboulch P, Chrétien S. The LXCXE Retinoblastoma Protein-Binding Motif of FOG-2 Regulates Adipogenesis. Cell Rep 2018; 21:3524-3535. [PMID: 29262331 DOI: 10.1016/j.celrep.2017.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023] Open
Abstract
GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. Mammals have six GATA and two FOG factors. We recently demonstrated that interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation. We show here that the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Unlike GATA-1, which inhibits cell division, FOG-2 promotes proliferation. Mice with a knockin of a Fog2 gene bearing a mutated LXCXE pRb-binding site are resistant to obesity and display higher rates of white-to-brown fat conversion. Thus, each component of the GATA/FOG complex (GATA-1 and FOG-2) is involved in pRb/E2F regulation, but these molecules have markedly different roles in the control of tissue homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Tipparat Penglong
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Zahra Kadri
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Marine Granger-Locatelli
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Raphaël Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP-Université Paris Descartes, Paris, France
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Leila Maouche-Chrétien
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; INSERM, Paris, France
| | - Philippe Leboulch
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand; Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Stany Chrétien
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; INSERM, Paris, France.
| |
Collapse
|
29
|
Grigoraş A, Amalinei C, Balan RA, Giuşcă SE, Avădănei ER, Lozneanu L, Căruntu ID. Adipocytes spectrum - From homeostasia to obesity and its associated pathology. Ann Anat 2018; 219:102-120. [PMID: 30049662 DOI: 10.1016/j.aanat.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
Firstly identified by anatomists, the fat tissue is nowadays an area of intense research due to increased global prevalence of obesity and its associated diseases. Histologically, there are four types of fat tissue cells which are currently recognized (white, brown, beige, and perivascular adipocytes). Therefore, in this study we are reviewing the most recent data regarding the origin, structure, and molecular mechanisms involved in the development of adipocytes. White adipocytes can store triglycerides as a consequence of lipogenesis, under the regulation of growth hormone or leptin and adiponectin, and release fatty acids resulted from lipolysis, under the regulation of the sympathetic nervous system, glucocorticoids, TNF-α, insulin, and natriuretic peptides. Brown adipocytes possess a mitochondrial transmembrane protein thermogenin or UCP1 which allows heat generation. Recently, thermogenic, UCP positive adipocytes have been identified in the subcutaneous white adipose tissue and have been named beige adipocytes. The nature of these cells is still controversial, as current theories are suggesting their origin either by transdifferentiation of white adipocytes, or by differentiation from an own precursor cell. Perivascular adipocytes surround most of the arteries, exhibiting a supportive role and being involved in the maintenance of intravascular temperature. Thoracic perivascular adipocytes resemble brown adipocytes, while abdominal ones are more similar to white adipocytes and, consequently, are involved in obesity-induced inflammatory reactions. The factors involved in the regulation of adipose stem cells differentiation may represent potential pathways to inhibit or to divert adipogenesis. Several molecules, such as pro-adipogenic factors (FGF21, BMP7, BMP8b, and Cox-2), cell surface proteins or receptors (Asc-1, PAT2, P2RX5), and hypothalamic receptors (MC4R) have been identified as the most promising targets for the development of future therapies. Further investigations are necessary to complete the knowledge about adipose tissue and the development of a new generation of therapeutic tools based on molecular targets.
Collapse
Affiliation(s)
- Adriana Grigoraş
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania; Department of Histopathology, Institute of Legal Medicine, Iasi, Romania.
| | - Raluca Anca Balan
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Simona Eliza Giuşcă
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Roxana Avădănei
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Irina-Draga Căruntu
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| |
Collapse
|
30
|
ZHANG J, WU H, MA S, JING F, YU C, GAO L, ZHAO J. Transcription Regulators and Hormones Involved in the Development of Brown Fat and White Fat Browning: Transcriptional and Hormonal Control of Brown/Beige Fat Development. Physiol Res 2018. [DOI: 10.33549/physiolres.933650] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high prevalence of obesity and related metabolic complications has inspired research on adipose tissues. Three kinds of adipose tissues are identified in mammals: brown adipose tissue (BAT), beige or brite adipose tissue and white adipose tissue (WAT). Beige adipocytes share some characteristics with brown adipocytes such as the expression of UCP1. Beige adipocytes can be activated by environmental stimuli or pharmacological treatment, and this change is accompanied by an increase in energy consumption. This process is called white browning, and it facilitates the maintenance of a lean and healthy phenotype. Thus, promoting beige adipocyte development in WAT shows promise as a new strategy in treating obesity and related metabolic consequences. In this review, we summarized the current understanding of the regulators and hormones that participate in the development of brown fat and white fat browning.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. ZHAO
- Department of Endocrinology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Lodhi IJ, Dean JM, He A, Park H, Tan M, Feng C, Song H, Hsu FF, Semenkovich CF. PexRAP Inhibits PRDM16-Mediated Thermogenic Gene Expression. Cell Rep 2018; 20:2766-2774. [PMID: 28930673 DOI: 10.1016/j.celrep.2017.08.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/14/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022] Open
Abstract
How the nuclear receptor PPARγ regulates the development of two functionally distinct types of adipose tissue, brown and white fat, as well as the browning of white fat, remains unclear. Our previous studies suggest that PexRAP, a peroxisomal lipid synthetic enzyme, regulates PPARγ signaling and white adipogenesis. Here, we show that PexRAP is an inhibitor of brown adipocyte gene expression. PexRAP inactivation promoted adipocyte browning, increased energy expenditure, and decreased adiposity. Identification of PexRAP-interacting proteins suggests that PexRAP function extends beyond its role as a lipid synthetic enzyme. Notably, PexRAP interacts with importin-β1, a nuclear import factor, and knockdown of PexRAP in adipocytes reduced the levels of nuclear phospholipids. PexRAP also interacts with PPARγ, as well as PRDM16, a critical transcriptional regulator of thermogenesis, and disrupts the PRDM16-PPARγ complex, providing a potential mechanism for PexRAP-mediated inhibition of adipocyte browning. These results identify PexRAP as an important regulator of adipose tissue remodeling.
Collapse
Affiliation(s)
- Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - John M Dean
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hongsuk Park
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Haowei Song
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
32
|
Shao M, Gupta RK. Transcriptional brakes on the road to adipocyte thermogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:20-28. [PMID: 29800720 DOI: 10.1016/j.bbalip.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
White adipocytes represent the principle site for energy storage whereas brown/beige adipocytes emerge from seemingly distinct cellular lineages and burn chemical energy to produce heat. Thermogenic adipocytes utilize cell-type selective master regulatory transcription factors to drive the expression of their adipocyte thermogenic gene program. White adipocytes harbor transcriptional mechanisms to suppress the thermogenic gene program and maintain an energy-storing function. Here, we summarize some of the key developmental and transcriptional mechanisms leading to the postnatal recruitment of thermogenic adipocytes under physiological conditions, with a particular emphasis on the transcriptional "brakes" on the thermogenic gene program. We highlight a number of recent studies, including our own work on the transcription factor, ZFP423, that illustrate the potential to engineer the subcutaneous and visceral white fat lineages to adopt a thermogenic fat cell fate by releasing the inhibition of the adipocyte thermogenic gene program. These transcriptional brakes on adipocyte thermogenesis may represent potential targets of therapeutic interventions designed to combat obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Emont MP, Kim DI, Wu J. Development, activation, and therapeutic potential of thermogenic adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:13-19. [PMID: 29763732 DOI: 10.1016/j.bbalip.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/23/2018] [Accepted: 05/10/2018] [Indexed: 01/28/2023]
Abstract
During the last decade, significant progress has been made in understanding adipocytes with a particular focus on thermogenic fat cells, which effectively convert chemical energy into heat in addition to their other metabolic functions. It has been increasingly recognized that different types and subtypes of adipocytes exist and the developmental origins of various types of fat cells are being intensively investigated. Previous work using immortalized fat cell lines has established an intricate transcriptional network that regulates adipocyte function. Recent work has illustrated how these key transcriptional components mediate thermogenic activation in fat cells. Last but not least, cumulative evidence supports an incontestable role of thermogenic fat in influencing systemic metabolism in humans. Here we summarize the exciting advancements in our understanding of thermogenic fat, discuss the advantages and limitations of the experimental tools currently available, and explore the future directions of this fast-evolving field.
Collapse
Affiliation(s)
- Margo P Emont
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dong-Il Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Elenbaas JS, Cunha JB, Azuero-Dajud R, Nelson B, Oral EA, Williams JA, Stewart CL, Omary MB. Lamin A/C Maintains Exocrine Pancreas Homeostasis by Regulating Stability of RB and Activity of E2F. Gastroenterology 2018; 154:1625-1629.e8. [PMID: 29366840 PMCID: PMC5927841 DOI: 10.1053/j.gastro.2018.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/29/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
Lamins have important roles in nuclear structure and cell signaling. Several diseases are associated with mutations in the lamin A/C gene (LMNA in humans). Patients with familial partial lipodystrophy caused by LMNA mutations develop pancreatitis, but lamin function in the pancreas and how these mutations affect pancreatic regulation are unknown. We generated mice with inducible exocrine pancreas-specific disruption of Lmna and showed that LMNA is lost from most exocrine pancreas cells. LMNA-knockout pancreata develop endoplasmic reticulum stress with loss of acinar cell markers, increased autophagy, apoptosis, and cell proliferation, compared to CreERT2- mice (littermate controls). Disruption of Lmna led to a phenotype that resembled chronic pancreatitis, with increased Sirius Red staining and α-smooth muscle actin in male LMNA-knockout mice compared to littermate males, but not in female mice. LMNA-knockout pancreata have reduced levels of RB and activation of E2F, based on increased expression of E2F target genes. Therefore, lamins maintain pancreatic homeostasis by regulating RB stability and E2F activity.
Collapse
Affiliation(s)
- Jared S. Elenbaas
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Rodrigo Azuero-Dajud
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Bradley Nelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elif A. Oral
- Division of Metabolism, Endocrinology and Diabetes Division, Brehm Center for Diabetes, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John A. Williams
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Department of Molecular & Integrative Physiology, 7744 Medical Science Bldg.II, 1137 East Catherine St., Ann Arbor, MI 48109-5622.
| |
Collapse
|
35
|
Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J 2018; 32:4727-4743. [PMID: 29570397 DOI: 10.1096/fj.201701465rr] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cachexia is a complex tissue-wasting syndrome characterized by inflammation, hypermetabolism, increased energy expenditure, and anorexia. Browning of white adipose tissue (WAT) is one of the significant factors that contribute to energy wasting in cachexia. By utilizing a cell implantation model, we demonstrate here that the lipid mobilizing factor zinc-α2-glycoprotein (ZAG) induces WAT browning in mice. Increased circulating levels of ZAG not only induced lipolysis in adipose tissues but also caused robust browning in WAT. Stimulating WAT progenitors with ZAG recombinant protein or expression of ZAG in mouse embryonic fibroblasts (MEFs) strongly enhanced brown-like differentiation. At the molecular level, ZAG stimulated peroxisome proliferator-activated receptor γ (PPARγ) and early B cell factor 2 expression and promoted their recruitment to the PR/SET domain 16 (Prdm16) promoter, leading to enhanced expression of Prdm16, which determines brown cell fate. In brown adipose tissue, ZAG stimulated the expression of PPARγ and PPARγ coactivator 1α and promoted recruitment of PPARγ to the uncoupling protein 1 (Ucp1) promoter, leading to increased expression of Ucp1. Overall, our results reveal a novel function of ZAG in WAT browning and highlight the targeting of ZAG as a potential therapeutic application in humans with cachexia.-Elattar, S., Dimri, M., Satyanarayana, A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.
Collapse
Affiliation(s)
- Sawsan Elattar
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Manali Dimri
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ande Satyanarayana
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
36
|
Hou X, Zhang Y, Li W, Hu AJ, Luo C, Zhou W, Hu JK, Daniele SG, Wang J, Sheng J, Fan Y, Greenberg AS, Farmer SR, Hu MG. CDK6 inhibits white to beige fat transition by suppressing RUNX1. Nat Commun 2018. [PMID: 29523786 PMCID: PMC5845007 DOI: 10.1038/s41467-018-03451-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whereas white adipose tissue depots contribute to the development of metabolic diseases, brown and beige adipose tissue has beneficial metabolic effects. Here we show that CDK6 regulates beige adipocyte formation. We demonstrate that mice lacking the CDK6 protein or its kinase domain (K43M) exhibit significant increases beige cell formation, enhanced energy expenditure, better glucose tolerance, and improved insulin sensitivity, and are more resistant to high-fat diet-induced obesity. Re-expression of CDK6 in Cdk6−/− mature or precursor cells, or ablation of RUNX1 in K43M mature or precursor cells, reverses these phenotypes. Furthermore, RUNX1 positively regulates the expression of Ucp-1 and Pgc1α by binding to proximal promoter regions. Our findings indicate that CDK6 kinase activity negatively regulates the conversion of fat-storing cells into fat-burning cells by suppressing RUNX1, and suggest that CDK6 may be a therapeutic target for the treatment of obesity and related metabolic diseases. Beige adipocytes can arise from transdifferentiation of mature white adipocytes. Here the authors identify CDK6 as a key molecule involved in the white-to-beige adipocyte transdifferentiation and, therefore, as a regulator of organismal energy homeostasis in mice.
Collapse
Affiliation(s)
- Xiaoli Hou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, 310053, P. R. China
| | - Yongzhao Zhang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Wei Li
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, P. R. China
| | - Alexander J Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenhui Zhou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Jamie K Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Yale School of Medicine, MD program for Jamie K. Hu, MD-PhD Program for Stefano G. Daniele, 333 Cedar St, New Haven, CT, 06510, USA
| | - Stefano G Daniele
- Yale School of Medicine, MD program for Jamie K. Hu, MD-PhD Program for Stefano G. Daniele, 333 Cedar St, New Haven, CT, 06510, USA
| | - Jinfeng Wang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Department of Clinical Laboratory, Linyi People's Hospital, 27 jiefang road, Linyi, Shandong Province, 276003, China
| | - Jinghao Sheng
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Institute of Environmental Health, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yongsheng Fan
- Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, 310053, P. R. China
| | - Andrew S Greenberg
- Obesity and Metabolism Laboratory, JM-USDA Human Nutrition Research Center, 711 Washington Street, Boston, MA, 02111, USA
| | - Stephen R Farmer
- Boston University School of Medicine, Department of Biochemistry, 72E Concord St, Boston, MA, 02118, USA
| | - Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
37
|
Lopez-Mejia IC, Castillo-Armengol J, Lagarrigue S, Fajas L. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell Mol Life Sci 2018; 75:975-987. [PMID: 28988292 PMCID: PMC11105252 DOI: 10.1007/s00018-017-2668-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2024]
Abstract
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.
Collapse
Affiliation(s)
- I C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - J Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - S Lagarrigue
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - L Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Neuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis. Stem Cells Int 2018. [PMID: 29535768 PMCID: PMC5845512 DOI: 10.1155/2018/1075156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adipogenesis is regulated by a complex network of molecules, including fibroblast growth factors. Keratinocyte growth factor (KGF) has been previously reported to promote proliferation on rat preadipocytes, although the expression of its specific receptor, FGFR2-IIIb/KGFR, is not actually detected in mesenchymal cells. Here, we demonstrate that human adipose-derived stem cells (ASCs) show increased expression of KGF during adipogenic differentiation, especially in the early steps. Moreover, KGF is able to induce transient activation of ERK and p38 MAPK pathways in these cells. Furthermore, KGF promotes ASC differentiation and supports the activation of differentiation pathways, such as those of PI3K/Akt and the retinoblastoma protein (Rb). Notably, we observed only a low amount of FGFR2-IIIb in ASCs, which seems not to be responsible for KGF activity. Here, we demonstrate for the first time that Neuropilin 1 (NRP1), a transmembrane glycoprotein expressed in ASCs acting as a coreceptor for some growth factors, is responsible for KGF-dependent pathway activation in these cells. Our study contributes to clarify the molecular bases of human adipogenesis, demonstrating a role of KGF in the early steps of this process, and points out a role of NRP1 as a previously unknown mediator of KGF action in ASCs.
Collapse
|
39
|
Ejaz A, Mattesich M, Zwerschke W. Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. Aging (Albany NY) 2017; 9:860-879. [PMID: 28316325 PMCID: PMC5391236 DOI: 10.18632/aging.101197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Abstract
Inhibition of Akt-mTOR signaling protects from obesity and extends life span in animals. In the present study, we analyse the impact of the small GTPase, GTP-binding RAS-like 3 (DIRAS3), a recently identified weight-loss target gene, on cellular senescence in adipose stromal/progenitor cells (ASCs) derived from human subcutaneous white adipose tissue (sWAT). We demonstrate that DIRAS3 knock-down (KD) in ASCs induces activation of Akt-mTOR signaling and proliferation arrest. DIRAS3 KD ASCs lose the potential to form colonies and are negative for Ki-67. Moreover, silencing of DIRAS3 results in a premature senescence phenotype. This is characterized by senescence-associated β-galactosidase positive enlarged ASCs containing increased p16INK4A level and activated retinoblastoma protein. DIRAS3 KD ASCs form senescence-associated heterochromatic foci as shown by increased level of γ-H2A.X positive foci. Furthermore, these cells express a senescence-associated secretory phenotype characterized by increased interleukin-8 secretion. Human DIRAS3 KD ASCs develop also a senescence phenotype in sWAT of SCID mice. Finally, we show that DIRAS3 KD in ASCs stimulates both adipogenic differentiation and premature senescence. In conclusion, our data suggest that silencing of DIRAS3 in ASCs and subsequently hyper-activation of Akt-mTOR drives adipogenesis and premature senescence. Moreover, differentiating ASCs and/or mature adipocytes may acquire features of cellular senescence.
Collapse
Affiliation(s)
- Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
40
|
An Y, Wang G, Diao Y, Long Y, Fu X, Weng M, Zhou L, Sun K, Cheung TH, Ip NY, Sun H, Wang H, Wu Z. A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Dev Cell 2017; 41:382-391.e5. [PMID: 28535373 DOI: 10.1016/j.devcel.2017.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
During mouse embryo development, both muscle progenitor cells (MPCs) and brown adipocytes (BAs) are known to derive from the same Pax7+/Myf5+ progenitor cells. However, the underlying mechanisms for the cell fate control remain unclear. In Pax7-null MPCs from young mice, several BA-specific genes, including Prdm16 and Ucp1 and many other adipocyte-related genes, were upregulated with a concomitant reduction of Myod and Myf5, two muscle lineage-determining genes. This suggests a cell fate switch from MPC to BA. Consistently, freshly isolated Pax7-null but not wild-type MPCs formed lipid-droplet-containing UCP1+ BA in culture. Mechanistically, MyoD and Myf5, both known transcription targets of Pax7 in MPC, potently repress Prdm16, a BA-specific lineage-determining gene, via the E2F4/p107/p130 transcription repressor complex. Importantly, inducible Pax7 ablation in developing mouse embryos promoted brown fat development. Thus, the MyoD/Myf5-E2F4/p107/p130 axis functions in both the Pax7+/Myf5+ embryonic progenitor cells and postnatal myoblasts to repress the alternative BA fate.
Collapse
Affiliation(s)
- Yitai An
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Gang Wang
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yarui Diao
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yanyang Long
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Xinrong Fu
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Mingxi Weng
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Liang Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kun Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenguo Wu
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Scheele C, Nielsen S. Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biol 2017; 12:770-775. [PMID: 28431377 PMCID: PMC5397125 DOI: 10.1016/j.redox.2017.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/02/2022] Open
Abstract
Activation of brown adipose tissue (BAT) in adult humans increase glucose and fatty acid clearance as well as resting metabolic rate, whereas a prolonged elevation of BAT activity improves insulin sensitivity. However, substantial reductions in body weight following BAT activation has not yet been shown in humans. This observation raise the possibility for feedback mechanisms in adult humans in terms of a brown fat-brain crosstalk, possibly mediated by batokines, factors produced by and secreted from brown fat. Batokines also seems to be involved in BAT recruitment by stimulating proliferation and differentiation of brown fat progenitors. Increasing human BAT capacity could thus include inducing brown fat biogenesis as well as identifying novel batokines. Another attractive approach would be to induce a brown fat phenotype, the so-called brite or beige fat, within the white fat depots. In adult humans, white fat tissue transformation into beige has been observed in patients with pheochromocytoma, a norepinephrine-producing tumor. Interestingly, human beige fat is predominantly induced in regions that were BAT during early childhood, possibly reflecting that a presence of human beige progenitors is depot specific and originating from BAT. In conclusion, to utilize the anti-obesity potential of human BAT focus should be directed towards identifying novel regulators of brown and beige fat progenitor cells, as well as feedback mechanisms of BAT activation. This would allow for identification of novel anti-obesity targets.
Collapse
Affiliation(s)
- Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark; The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark.
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Denmark
| |
Collapse
|
42
|
Patil M, Sharma BK, Elattar S, Chang J, Kapil S, Yuan J, Satyanarayana A. Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning. Diabetes 2017; 66:1611-1625. [PMID: 28270523 PMCID: PMC5440025 DOI: 10.2337/db16-1079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
Obesity results from increased energy intake or defects in energy expenditure. Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) controls BAT-mediated thermogenesis by regulating the expression of Ucp1 Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays an important role in cell proliferation and differentiation. We demonstrate a novel function of Id1 in BAT thermogenesis and programming of beige adipocytes in white adipose tissue (WAT). We found that adipose tissue-specific overexpression of Id1 causes age-associated and high-fat diet-induced obesity in mice. Id1 suppresses BAT thermogenesis by binding to and suppressing PGC1α transcriptional activity. In WAT, Id1 is mainly localized in the stromal vascular fraction, where the adipose progenitor/precursors reside. Lack of Id1 increases beige gene and Ucp1 expression in the WAT in response to cold exposure. Furthermore, brown-like differentiation is increased in Id1-deficient mouse embryonic fibroblasts. At the molecular level, Id1 directly interacts with and suppresses Ebf2 transcriptional activity, leading to reduced expression of Prdm16, which determines beige/brown adipocyte cell fate. Overall, the study highlights the existence of novel regulatory mechanisms between Id1/PGC1α and Id1/Ebf2 in controlling brown fat metabolism, which has significant implications in the treatment of obesity and its associated diseases, such as diabetes.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| | - Bal Krishan Sharma
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| | - Sawsan Elattar
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| | - Judith Chang
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| | - Shweta Kapil
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| | - Jinling Yuan
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| | - Ande Satyanarayana
- Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Augusta University, Augusta, GA
| |
Collapse
|
43
|
Kwan HY, Wu J, Su T, Chao XJ, Liu B, Fu X, Chan CL, Lau RHY, Tse AKW, Han QB, Fong WF, Yu ZL. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep 2017; 7:2447. [PMID: 28550279 PMCID: PMC5446408 DOI: 10.1038/s41598-017-02263-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/10/2017] [Indexed: 11/24/2022] Open
Abstract
Browning is the process of increasing the number of brite cells, which helps to increase energy expenditure and reduce obesity. Consumption of natural and non-toxic herbal extracts that possess the browning effect is an attractive anti-obesity strategy. In this study, we examined the browning effect of cinnamon extract. We found that cinnamon extract (CE) induced typical brown adipocyte multiocular phenotype in 3T3-L1 adipocytes. The treatment also increased brown adipocytes markers and reduced white adipocytes markers in the 3T3-L1 adipocytes. In ex vivo studies, we found that CE increased brown adipocytes markers in the subcutaneous adipocytes isolated from db/db mice and diet-induced obesity (DIO) mice. However, CE did not significantly affect UCP1 expression in the adipocytes isolated from perinephric adipose tissue and epididymal adipose tissue. β3-adernergic receptor (β3-AR) antagonist reduced the CE-enhanced UCP1 expression, suggesting an involvement of the β3-AR activity. Oral administration of CE significantly increased UCP1 expression in the subcutaneous adipose tissue in vivo and reduced the body weight of the DIO mice. Taken together, our data suggest that CE has a browning effect in subcutaneous adipocytes. Our study suggests a natural non-toxic herbal remedy to reduce obesity.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| | - Jiahui Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiao-Juan Chao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiuqiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Chi Leung Chan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Rebecca Hiu Ying Lau
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Quan Bin Han
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Wang Fun Fong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China. .,Institute of Integrated Bioinfomedicine & Translational Science, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
44
|
Molecular connections of obesity and aging: a focus on adipose protein 53 and retinoblastoma protein. Biogerontology 2017; 18:321-332. [PMID: 28357524 DOI: 10.1007/s10522-017-9698-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
Obesity is an induced health problem that human beings have been facing with non-optimal treatment so far. Humans are on average getting fatter with age, and obesity and aging interact each other to shorten lifetime and decrease life quality. Obesity also causes several aging related-disorders such as cancer, strokes, cardiovascular disease, high blood pressure and type 2 diabetes. So, the molecular connections between aging and obesity are promising targets for bio-medical researches and innovative therapies of many health problems. In this review, we discuss the findings of adipose p53 and Rb-two central molecular linkages between aging and obesity-on lipid metabolism and obesity.
Collapse
|
45
|
Pradhan RN, Zachara M, Deplancke B. A systems perspective on brown adipogenesis and metabolic activation. Obes Rev 2017; 18 Suppl 1:65-81. [PMID: 28164456 DOI: 10.1111/obr.12512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
Brown adipocytes regulate energy expenditure via mitochondrial uncoupling. This makes these fat cells attractive therapeutic targets to tackle the burgeoning issue of obesity, which itself is coupled to insulin resistance, type 2 diabetes, cardiovascular and fatty liver disease. Recent research has revealed a complex network underlying brown fat cell differentiation and thermogenic activation, involving secreted factors, signal transduction, metabolic pathways and gene regulatory components. Given that brown fat is now reported to be present in adult humans, it is desirable to harness the knowledge from each network module to design effective therapeutic strategies. In this review, we will present a systems perspective on brown adipogenesis and the subsequent metabolic activation of brown adipocytes by integrating signaling, metabolic and gene regulatory modules with a specific focus on known 'druggable' targets within each module.
Collapse
Affiliation(s)
- R N Pradhan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - M Zachara
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - B Deplancke
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
46
|
Chung YW, Ahmad F, Tang Y, Hockman SC, Kee HJ, Berger K, Guirguis E, Choi YH, Schimel DM, Aponte AM, Park S, Degerman E, Manganiello VC. White to beige conversion in PDE3B KO adipose tissue through activation of AMPK signaling and mitochondrial function. Sci Rep 2017; 7:40445. [PMID: 28084425 PMCID: PMC5234021 DOI: 10.1038/srep40445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Understanding mechanisms by which a population of beige adipocytes is increased in white adipose tissue (WAT) reflects a potential strategy in the fight against obesity and diabetes. Cyclic adenosine monophosphate (cAMP) is very important in the development of the beige phenotype and activation of its thermogenic program. To study effects of cyclic nucleotides on energy homeostatic mechanisms, mice were generated by targeted inactivation of cyclic nucleotide phosphodiesterase 3b (Pde3b) gene, which encodes PDE3B, an enzyme that catalyzes hydrolysis of cAMP and cGMP and is highly expressed in tissues that regulate energy homeostasis, including adipose tissue, liver, and pancreas. In epididymal white adipose tissue (eWAT) of PDE3B KO mice on a SvJ129 background, cAMP/protein kinase A (PKA) and AMP-activated protein kinase (AMPK) signaling pathways are activated, resulting in “browning” phenotype, with a smaller increases in body weight under high-fat diet, smaller fat deposits, increased β-oxidation of fatty acids (FAO) and oxygen consumption. Results reported here suggest that PDE3B and/or its downstream signaling partners might be important regulators of energy metabolism in adipose tissue, and potential therapeutic targets for treating obesity, diabetes and their associated metabolic disorders.
Collapse
Affiliation(s)
- Youn Wook Chung
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.,Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Yan Tang
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Steven C Hockman
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Hyun Jung Kee
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Karin Berger
- Lund University Diabetes Center, Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden
| | - Emilia Guirguis
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Young Hun Choi
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Dan M Schimel
- NIH MRI Research Facility, NIH, Bethesda, Maryland, 20892, USA
| | - Angel M Aponte
- Proteomics Core Facility, NHLBI, NIH, Bethesda, Maryland, 20892, USA
| | - Sunhee Park
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Eva Degerman
- Lund University Diabetes Center, Department of Experimental Medical Sciences, Lund University, S-221 84 Lund, Sweden
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch (CPB), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
47
|
Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM. Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans. Cell Metab 2017; 25:166-181. [PMID: 27889388 PMCID: PMC5226893 DOI: 10.1016/j.cmet.2016.10.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cold temperatures induce progenitor cells within white adipose tissue to form beige adipocytes that burn energy and generate heat; this is a potential anti-diabesity therapy. However, the potential to form cold-induced beige adipocytes declines with age. This creates a clinical roadblock to potential therapeutic use in older individuals, who constitute a large percentage of the obesity epidemic. Here we show that aging murine and human beige progenitor cells display a cellular aging, senescence-like phenotype that accounts for their age-dependent failure. Activating the senescence pathway, either genetically or pharmacologically, in young beige progenitors induces premature cellular senescence and blocks their potential to form cold-induced beige adipocytes. Conversely, genetically or pharmacologically reversing cellular aging by targeting the p38/MAPK-p16Ink4a pathway in aged mouse or human beige progenitor cells rejuvenates cold-induced beiging. This in turn increases glucose sensitivity. Collectively, these data indicate that anti-aging or senescence modalities could be a strategy to induce beiging, thereby improving metabolic health in aging humans.
Collapse
Affiliation(s)
- Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L Close
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aki Uchida
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Reading
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric D Berglund
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Kyba
- Lillehei Heart Institute, University Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Glucocorticoid Receptor Accelerates, but Is Dispensable for, Adipogenesis. Mol Cell Biol 2017; 37:MCB.00260-16. [PMID: 27777311 DOI: 10.1128/mcb.00260-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022] Open
Abstract
Dexamethasone (DEX), a synthetic ligand for glucocorticoid receptor (GR), is routinely used to stimulate adipogenesis in culture. GR-depleted preadipocytes show adipogenesis defects 1 week after induction of differentiation. However, it has remained unclear whether GR is required for adipogenesis in vivo By deleting GR in precursors of brown adipocytes, we found unexpectedly that GR is dispensable for brown adipose tissue development in mice. In culture, GR-deficient primary or immortalized white and brown preadipocytes showed severely delayed adipogenesis 1 week after induction of differentiation. However, when differentiation was extended to 3 weeks, GR-deficient preadipocytes showed levels of adipogenesis marker expression and lipid accumulation similar to those of the wild-type cells, indicating that DEX-bound GR accelerates, but is dispensable for, adipogenesis. Consistently, DEX accelerates, but is dispensable for, adipogenesis in culture. We show that DEX-bound GR accelerates adipogenesis by directly promoting the expression of adipogenic transcription factors CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, C/EBPδ, KLF5, KLF9, and peroxisome proliferator-activated receptor γ (PPARγ) in the early phase of differentiation. Mechanistically, DEX-bound GR recruits histone H3K27 acetyltransferase CBP to promote activation of C/EBPβ-primed enhancers of adipogenic genes. These results clarify the role of GR in adipogenesis in vivo and demonstrate that DEX-mediated activation of GR accelerates, but is dispensable for, adipogenesis.
Collapse
|
49
|
Denechaud PD, Fajas L, Giralt A. E2F1, a Novel Regulator of Metabolism. Front Endocrinol (Lausanne) 2017; 8:311. [PMID: 29176962 PMCID: PMC5686046 DOI: 10.3389/fendo.2017.00311] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
In the past years, several lines of evidence have shown that cell cycle regulatory proteins also can modulate metabolic processes. The transcription factor E2F1 is a central player involved in cell cycle progression, DNA-damage response, and apoptosis. Its crucial role in the control of cell fate has been extensively studied and reviewed before; however, here, we focus on the participation of E2F1 in the regulation of metabolism. We summarize recent findings about the cell cycle-independent roles of E2F1 in various tissues that contribute to global metabolic homeostasis and highlight that E2F1 activity is increased during obesity. Finally, coming back to the pivotal role of E2F1 in cancer development, we discuss how E2F1 links cell cycle progression with different metabolic adaptations required for cell growth and survival.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Albert Giralt
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Albert Giralt,
| |
Collapse
|
50
|
Yadav PS, Khan MP, Prashar P, Duggal S, Rath SK, Chattopadhyay N, Bandyopadhyay A. Characterization of BMP signaling dependent osteogenesis using a BMP depletable avianized bone marrow stromal cell line (TVA-BMSC). Bone 2016; 91:39-52. [PMID: 27424936 DOI: 10.1016/j.bone.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023]
Abstract
Adipogenesis, chondrogenesis and osteogenesis are BMP signaling dependent differentiation processes. However, the molecular networks operating downstream of BMP signaling to bring about these distinct fates are yet to be fully elucidated. We have developed a novel Bone Marrow Stromal Cell (BMSC) derived mouse cell line as a powerful in vitro platform to conduct such experiments. This cell line is a derivative of BMSCs isolated from a tamoxifen inducible Bmp2 and Bmp4 double conditional knock-out mouse strain. These BMSCs are immortalized and stably transfected with avian retroviral receptor TVA (TVA-BMSCs), enabling an easy method for stable transduction of multiple genes in these cells. In TVA-BMSCs multiple components of BMP signaling pathway can be manipulated simultaneously. Using this cell line we have demonstrated that for osteogenesis, BMP signaling is required only for the first three days. We have further demonstrated that Klf10, an osteogenic transcription factor which is transcribed in developing bones in a BMP signaling dependent manner, can largely compensate for the loss of BMP signaling during osteogenesis of BMSCs. TVA-BMSCs can undergo chondrogenesis and adipogenesis, and hence may be used for dissection of the molecular networks downstream of BMP signaling in these differentiation processes as well.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Mohd Parvez Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Paritosh Prashar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivali Duggal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Srikanta Kumar Rath
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Naibedya Chattopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|