1
|
Dhar M, Das A, Manna U. Deriving Superhydrophobicity Directly and Solely from Molecules: A Facile and Emerging Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19287-19303. [PMID: 39235959 DOI: 10.1021/acs.langmuir.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Nature-inspired superhydrophobic surfaces have gained significant attention due to their various potential applications. Artificial superhydrophobic surfaces were fabricated through co-optimization of topography and low-surface-energy chemistry. In the conventional approach, artificial superhydrophobic surfaces are developed through associating mostly polymer, metal, alloys, nanoparticles, microparticles, etc. and commonly encounter several challenges related to scalability, durability, and complex fabrication processes. In response to these challenges, molecule-based approaches have emerged as a promising alternative, providing several advantages such as prolonged shelf life of depositing solution, higher solvent compatibility, and a simple fabrication process. In this Perspective, we have provided a concise overview of traditional and molecule-based approaches to fabricating superhydrophobic surfaces, highlighting recent advancements and challenges. We have discussed various molecule-based strategies for tailoring water wettability, customizing mechanical properties, developing substrate-independent coatings, prolonging the shelf life of deposition solutions, and so on. Here, we have illustrated the potential of molecule-based approaches in overcoming existing limitations and its importance to diverse and prospective practical applications.
Collapse
Affiliation(s)
- Manideepa Dhar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039 India
| |
Collapse
|
2
|
Sun Y, Zhao Y, Xie X, Li H, Feng W. Printed polymer platform empowering machine-assisted chemical synthesis in stacked droplets. Nat Commun 2024; 15:6759. [PMID: 39117641 PMCID: PMC11310347 DOI: 10.1038/s41467-024-50768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Efficiently exploring organic molecules through multi-step processes demands a transition from conventional laboratory synthesis to automated systems. Existing platforms for machine-assistant synthetic workflows compatible with multiple liquid-phases require substantial engineering investments for setup, thereby hindering quick customization and throughput increasement. Here we present a droplet-based chip that facilitates the self-organization of various liquid phases into stacked layers for conducting chemical transformations. The chip's precision polymer printing capability, enabled by digital micromirror device (DMD)-maskless photolithography and dual post-chemical modifications, allows it to create customized, sub-10 µm featured patterns to confine diverse liquids, regardless of density, within each droplet. The robustness and open design of surface-templated liquid layers actualize machine-assistant droplet manipulation, synchronous reaction triggering, local oscillation, and real-time monitoring of individual layers into a reality. We propose that, with further integration of machine operation line and self-learning, this droplet-based platform holds the potential to become a valuable addition to the toolkit of chemistry process, operating autonomously and with high-throughput.
Collapse
Affiliation(s)
- Yingxue Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanyi Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Hongjiao Li
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China.
- Department State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Qu J, Wang X, Zhang Y, Hu R, Hao Y, Zhao X, Dong C, Yang C, Zhang W, Sui J, Huang Y, Liu P, Yu J, Chen X, Fan Y. Cell reprogramming in a predictable manner on the superhydrophobic microwell array chip. Biomaterials 2023; 301:122215. [PMID: 37406601 DOI: 10.1016/j.biomaterials.2023.122215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Reprogramming of somatic cells into the pluripotent state is stochastic and inefficient using the conventional culture plates. Novel micro-culture systems employing precisely controlled biophysical cues can improve the reprogramming efficiencies dramatically. Here we perform iPSC induction on our previously developed superhydrophobic microwell array chip (SMAR-chip) where cells undergo distinctive morphology change, switching from 2D monolayers to 3D clumps, and develop into bona fide colonies in more than 90% of the microwells. The PDMS substrate, together with the microwell structure and the superhydrophobic layer constitute a well-controlled microenvironment favorable for the morphogenesis and pluripotency induction. Investigation of the molecular roadmap demonstrates that the SMAR-chip promotes the transition from the initiation phase to the maturation phase and overcomes the roadblocks for reprogramming. In addition, the SMAR-chip also promotes the reprogramming of human cells, opening our method for translational applications. In summary, our study provides a novel platform for efficient cell reprogramming and emphasizes the advantages of employing the insoluble microenvironmental cues for the precise control of cell fate conversion.
Collapse
Affiliation(s)
- Jianan Qu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Xiaoqing Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Yang Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Ruowen Hu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Yunqi Hao
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Xuechen Zhao
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Chunhui Dong
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Chengxi Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Weirong Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Jingchao Sui
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Yan Huang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Yu
- School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China
| | - Xiaofang Chen
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China; School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
| |
Collapse
|
4
|
Xie J, Han D, Xu S, Zhang H, Li Y, Zhang M, Deng Z, Tian J, Ye Q. An Image-Based High-Throughput and High-Content Drug Screening Method Based on Microarray and Expansion Microscopy. ACS NANO 2023; 17:15516-15528. [PMID: 37548636 DOI: 10.1021/acsnano.3c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A high-efficiency drug screening method is urgently needed due to the expanding number of potential targets and the extremely long time required to assess them. To date, high throughput and high content have not been successfully combined in image-based drug screening, which is the main obstacle to improve the efficiency. Here, we establish a high-throughput and high-content drug screening method by preparing a superhydrophobic microwell array plate (SMAP) and combining it with protein-retention expansion microscopy (proExM). Primarily, we described a flexible method to prepare the SMAP based on photolithography. Cells were cultured in the SMAP and treated with different drugs using a microcolumn-microwell sandwiching technology. After drug treatment, proExM was applied to realize super-resolution imaging. As a demonstration, a 7 × 7 image array of microtubules was successfully collected within 3 h with 68 nm resolution using this method. Qualitative and quantitative analyses of microtubule and mitochondria morphological changes after drug treatment suggested that more details were revealed after applying proExM, demonstrating the successful combination of high throughput and high content.
Collapse
Affiliation(s)
- Junfang Xie
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Daobo Han
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Shuai Xu
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Haitong Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Yonghe Li
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Mingshan Zhang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Zhichao Deng
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Wu Y, Li K, Li Y, Sun T, Liu C, Dong C, Zhao T, Tang D, Chen X, Chen X, Liu P. Grouped-seq for integrated phenotypic and transcriptomic screening of patient-derived tumor organoids. Nucleic Acids Res 2021; 50:e28. [PMID: 34893868 PMCID: PMC8934649 DOI: 10.1093/nar/gkab1201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023] Open
Abstract
Patient-derived tumor organoids (PDOs) have emerged as a reliable in vitro model for drug discovery. However, RNA sequencing-based analysis of PDOs treated with drugs has not been realized in a high-throughput format due to the limited quantity of organoids. Here, we translated a newly developed pooled RNA-seq methodology onto a superhydrophobic microwell array chip to realize an assay of genome-wide RNA output unified with phenotypic data (Grouped-seq). Over 10-fold reduction of sample and reagent consumption together with a new ligation-based barcode synthesis method lowers the cost to ∼$2 per RNA-seq sample. Patient-derived colorectal cancer (CRC) organoids with a number of 10 organoids per microwell were treated with four anti-CRC drugs across eight doses and analyzed by the Grouped-seq. Using a phenotype-assisted pathway enrichment analysis (PAPEA) method, the mechanism of actions of the drugs were correctly derived, illustrating the great potential of Grouped-seq for pharmacological screening with tumor organoids.
Collapse
Affiliation(s)
- Yushuai Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiyi Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yaqian Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Tao Sun
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Chang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chunhui Dong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Tian Zhao
- Beijing Organobio Corporation, Beijing 102206, China
| | - Decong Tang
- Beijing NeoAntigen Biotechnology Co. Ltd, Beijing 102206, China
| | - Xiaojie Chen
- Beijing NeoAntigen Biotechnology Co. Ltd, Beijing 102206, China
| | - Xiaofang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,Beijing Organobio Corporation, Beijing 102206, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gong Z, Huang L, Tang X, Chen K, Wu Z, Zhang L, Sun Y, Xia Y, Chen H, Wei Y, Wang F, Guo S. Acoustic Droplet Printing Tumor Organoids for Modeling Bladder Tumor Immune Microenvironment within a Week. Adv Healthc Mater 2021; 10:e2101312. [PMID: 34558233 DOI: 10.1002/adhm.202101312] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Current organoid models are limited by the incapability of rapidly fabricating organoids that can mimic the immune microenvironment for a short term. Here, an acoustic droplet-based platform is presented to facilitate the rapid formation of tumor organoids, which retains the original tumor immune microenvironment and establishes a personalized bladder cancer tumor immunotherapy model. In combination with a hydrophobic substrate, the acoustic droplet printer can yield a large number of homogeneous and highly viable bladder tumor organoids in vitro within a week. The generated organoids consist of all components of bladder tumor, including diverse immune elements and tumor cells. By coculturing tumor organoids with autologous immune cells for 2 days, tumor reactive T cells are induced in vitro. Furthermore, it is also demonstrated that these tumor-reactive T cells can also enhance the killing efficiency of matched organoids. Because of the easy operation, repeatability, and stability, the proposed acoustic droplet platform will provide a reliable approach for personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiyi Gong
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Lanxiang Huang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Xuan Tang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Keke Chen
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Lingling Zhang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yue Sun
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yu Xia
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Hui Chen
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Fubing Wang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Shishang Guo
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
8
|
Selective control of the contact and transport between droplet pairs by electrowetting-on-dielectric for droplet-array sandwiching technology. Sci Rep 2021; 11:12355. [PMID: 34117288 PMCID: PMC8196194 DOI: 10.1038/s41598-021-91219-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
Methodological advances in on-chip technology enable high-throughput drug screening, such as droplet-array sandwiching technology. Droplet-array sandwiching technology involves upper and lower substrates with a droplet-array designed for a one-step process. This technology is, however, limited to batch manipulation of the droplet-array. Here, we propose a method for selective control of individual droplets, which allows different conditions for individual droplet pairs. Electrowetting-on-dielectric (EWOD) technology is introduced to control the height of the droplets so that the contact between droplet-pairs can be individually controlled. Circular patterns 4 mm in diameter composed of electrodes for EWOD and hydrophilic-hydrophobic patterns for droplet formation 4 μl in volume were developed. We demonstrate the selective control of the droplet height by EWOD for an applied voltage up to 160 V and selective control of the contact and transport of substances. Presented results will provide useful method for advanced drug screening, including cell-based screening.
Collapse
|
9
|
Peyravian N, Malekzadeh Kebria M, Kiani J, Brouki Milan P, Mozafari M. CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3164. [PMID: 34207502 PMCID: PMC8226447 DOI: 10.3390/ma14123164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Identifying new and even more precise technologies for modifying and manipulating selectively specific genes has provided a powerful tool for characterizing gene functions in basic research and potential therapeutics for genome regulation. The rapid development of nuclease-based techniques such as CRISPR/Cas systems has revolutionized new genome engineering and medicine possibilities. Additionally, the appropriate delivery procedures regarding CRISPR/Cas systems are critical, and a large number of previous reviews have focused on the CRISPR/Cas9-12 and 13 delivery methods. Still, despite all efforts, the in vivo delivery of the CAS gene systems remains challenging. The transfection of CRISPR components can often be inefficient when applying conventional delivery tools including viral elements and chemical vectors because of the restricted packaging size and incompetency of some cell types. Therefore, physical methods such as microfluidic systems are more applicable for in vitro delivery. This review focuses on the recent advancements of microfluidic systems to deliver CRISPR/Cas systems in clinical and therapy investigations.
Collapse
Affiliation(s)
- Noshad Peyravian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maziar Malekzadeh Kebria
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
10
|
LIANG Y, PAN J, FANG Q. [Research advances of high-throughput cell-based drug screening systems based on microfluidic technique]. Se Pu 2021; 39:567-577. [PMID: 34227317 PMCID: PMC9404090 DOI: 10.3724/sp.j.1123.2020.07014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/01/2022] Open
Abstract
Drug screening is the process of screening new drugs or leading compounds with biological activity from natural products or synthetic compounds, and it plays an essential role in drug discovery. The discovery of innovative drugs requires the screening of a large number of compounds with appropriate drug targets. With the development of genomics, proteomics, metabolomics, combinatorial chemistry, and other disciplines, the library of drug molecules has been largely expanded, and the number of drug targets is continuously increasing. High-throughput screening systems enable the parallel analysis of thousands of reactions through automated operation, thereby enhancing the experimental scale and efficiency of drug screening. Among them, cell-based high-throughput drug screening has become the main screening mode because it can provide a microenvironment similar to human physiological conditions. However, the current high-throughput screening systems are mainly built based on multiwell plates, which have several disadvantages such as simple cell culture conditions, laborious and time-consuming operation, and high reagent consumption. In addition, it is difficult to achieve complex drug combination screening. Therefore, there is an urgent need for rapid and low-cost drug screening methods to reduce the time and cost of drug development. Microfluidic techniques, which can manipulate and control microfluids in microscale channels, have the advantages of low consumption, high efficiency, high throughput, and automation. It can overcome the shortcomings of screening systems based on multi-well plates and provide an efficient and reliable technical solution for establishing high-throughput cell-based screening systems. Moreover, microfluidic systems can be flexibly changed in terms of cell culture materials, chip structure design, and fluid control methods to enable better control and simulation of cell growth microenvironment. Operations such as cell seeding, culture medium replacement or addition, drug addition and cleaning, and cell staining reagent addition are usually involved in cell-based microfluidic screening systems. These operations are all based on the manipulation of microfluids. This paper reviews the research advances in cell-based microfluidic screening systems using different microfluidic manipulation modes, namely perfusion flow mode, droplet mode, and microarray mode. In addition, the advantages and disadvantages of these systems are summarized. Moreover, the development prospects of high-throughput screening systems based on microfluidic techniques has been looked forward. Furthermore, the current problems in this field and the directions to overcome these problems are discussed.
Collapse
Affiliation(s)
- Yixiao LIANG
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianzhang PAN
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun FANG
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
In Situ Vitrification of Lung Cancer Organoids on a Microwell Array. MICROMACHINES 2021; 12:mi12060624. [PMID: 34071266 PMCID: PMC8227627 DOI: 10.3390/mi12060624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Three-dimensional cultured patient-derived cancer organoids (PDOs) represent a powerful tool for anti-cancer drug development due to their similarity to the in vivo tumor tissues. However, the culture and manipulation of PDOs is more difficult than 2D cultured cell lines due to the presence of the culture matrix and the 3D feature of the organoids. In our other study, we established a method for lung cancer organoid (LCO)-based drug sensitivity tests on the superhydrophobic microwell array chip (SMAR-chip). Here, we describe a novel in situ cryopreservation technology on the SMAR-chip to preserve the viability of the organoids for future drug sensitivity tests. We compared two cryopreservation approaches (slow freezing and vitrification) and demonstrated that vitrification performed better at preserving the viability of LCOs. Next, we developed a simple procedure for in situ cryopreservation and thawing of the LCOs on the SMAR-chip. We proved that the on-chip cryopreserved organoids can be recovered successfully and, more importantly, showing similar responses to anti-cancer drugs as the unfrozen controls. This in situ vitrification technology eliminated the harvesting and centrifugation steps in conventional cryopreservation, making the whole freeze–thaw process easier to perform and the preserved LCOs ready to be used for the subsequent drug sensitivity test.
Collapse
|
12
|
Hu Y, Sui X, Song F, Li Y, Li K, Chen Z, Yang F, Chen X, Zhang Y, Wang X, Liu Q, Li C, Zou B, Chen X, Wang J, Liu P. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat Commun 2021; 12:2581. [PMID: 33972544 PMCID: PMC8110811 DOI: 10.1038/s41467-021-22676-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
While the potential of patient-derived organoids (PDOs) to predict patients' responses to anti-cancer treatments has been well recognized, the lengthy time and the low efficiency in establishing PDOs hamper the implementation of PDO-based drug sensitivity tests in clinics. We first adapt a mechanical sample processing method to generate lung cancer organoids (LCOs) from surgically resected and biopsy tumor tissues. The LCOs recapitulate the histological and genetic features of the parental tumors and have the potential to expand indefinitely. By employing an integrated superhydrophobic microwell array chip (InSMAR-chip), we demonstrate hundreds of LCOs, a number that can be generated from most of the samples at passage 0, are sufficient to produce clinically meaningful drug responses within a week. The results prove our one-week drug tests are in good agreement with patient-derived xenografts, genetic mutations of tumors, and clinical outcomes. The LCO model coupled with the microwell device provides a technically feasible means for predicting patient-specific drug responses in clinical settings.
Collapse
Affiliation(s)
- Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xizhao Sui
- Department of Thoracic Surgery, People's Hospital, Peking University, Beijing, China
| | - Fan Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yaqian Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Kaiyi Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhongyao Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, People's Hospital, Peking University, Beijing, China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, People's Hospital, Peking University, Beijing, China
| | - Yaohua Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | | - Qiang Liu
- Department of Thoracic Surgery, Beijing Haidian Hospital, Beijing, China
| | - Cong Li
- Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, China
| | - Binbin Zou
- Beijing NeoAntigen Biotechnology Co. Ltd, Beijing, China
| | - Xiaofang Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Interdisplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China.
| | - Jun Wang
- Department of Thoracic Surgery, People's Hospital, Peking University, Beijing, China.
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
13
|
Sun G, Teng Y, Zhao Z, Cheow LF, Yu H, Chen CH. Functional Stem Cell Sorting via Integrative Droplet Synchronization. Anal Chem 2020; 92:7915-7923. [DOI: 10.1021/acs.analchem.0c01312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guoyun Sun
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
| | - Zixuan Zhao
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, The Nanos 07-01, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 04-01, Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR China
| |
Collapse
|
14
|
Shear Stress Promotes Arterial Endothelium-Oriented Differentiation of Mouse-Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:1847098. [PMID: 31827524 PMCID: PMC6881757 DOI: 10.1155/2019/1847098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/05/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Establishment of a functional vascular network, which is required in tissue repair and regeneration, needs large-scale production of specific arterial or venous endothelial cells (ECs) from stem cells. Previous in vitro studies by us and others revealed that shear stress induces EC differentiation of bone marrow-derived mesenchymal stem cells and embryonic stem cells. In this study, we focused on the impact of different magnitudes of shear stress on the differentiation of mouse-induced pluripotent stem cells (iPSCs) towards arterial or venous ECs. When iPSCs were exposed to shear stress (5, 10, and 15 dyne/cm2) with 50 ng/mL vascular endothelial growth factor and 10 ng/mL fibroblast growth factor, the expression levels of the general EC markers and the arterial markers increased, and the stress amplitude of 10 dyne/cm2 could be regarded as a proper promoter, whereas the venous and lymphatic markers had little or no expression. Further, shear stress caused cells to align parallel to the direction of the flow, induced cells forming functional tubes, and increased the secretion of nitric oxide. In addition, Notch1 was significantly upregulated, and the Notch ligand Delta-like 4 was activated in response to shear stress, while inhibition of Notch signaling by DAPT remarkably abolished the shear stress-induced arterial epithelium differentiation. Taken together, our results indicate that exposure to appropriate shear stress facilitated the differentiation of mouse iPSCs towards arterial ECs via Notch signaling pathways, which have potential applications for both disease modeling and regenerative medicine.
Collapse
|
15
|
Kim JA, Hong S, Rhee WJ. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J Stem Cells 2019; 11:803-816. [PMID: 31693013 PMCID: PMC6828593 DOI: 10.4252/wjsc.v11.i10.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Soohyun Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
16
|
Zhang J, Hu Y, Wang X, Liu P, Chen X. High-Throughput Platform for Efficient Chemical Transfection, Virus Packaging, and Transduction. MICROMACHINES 2019; 10:mi10060387. [PMID: 31185602 PMCID: PMC6631631 DOI: 10.3390/mi10060387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023]
Abstract
Intracellular gene delivery is normally required to study gene functions. A versatile platform able to perform both chemical transfection and viral transduction to achieve efficient gene modification in most cell types is needed. Here we demonstrated that high throughput chemical transfection, virus packaging, and transduction can be conducted efficiently on our previously developed superhydrophobic microwell array chip (SMAR-chip). A total of 169 chemical transfections were successfully performed on the chip in physically separated microwells through a few simple steps, contributing to the convenience of DNA delivery and media change on the SMAR-chip. Efficiencies comparable to the traditional transfection in multi-well plates (~65%) were achieved while the manual operations were largely reduced. Two transfection procedures, the dry method amenable for the long term storage of the transfection material and the wet method for higher efficiencies were developed. Multiple transfections in a scheduled manner were performed to further increase the transfection efficiencies or deliver multiple genes at different time points. In addition, high throughput virus packaging integrated with target cell transduction were also proved which resulted in a transgene expression efficiency of >70% in NIH 3T3 cells. In summary, the SMAR-chip based high throughput gene delivery is efficient and versatile, which can be used for large scale genetic modifications in a variety of cell types.
Collapse
Affiliation(s)
- Jianxiong Zhang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Xiaoqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Xiaofang Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
17
|
Chen X, Li J, Huang Y, Liu P, Fan Y. Insoluble Microenvironment Facilitating the Generation and Maintenance of Pluripotency. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:267-278. [PMID: 29327674 DOI: 10.1089/ten.teb.2017.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential as a tool to generate cells for tissue engineering and regenerative medicine. Since the initial report of iPSCs in 2006, many different methods have been developed to enhance the safety and efficiency of this technology. Recent studies indicate that the extracellular signals can promote the production of iPSCs, and even replace the Yamanaka factors. Noticeably, abundant evidences suggest that the insoluble microenvironment, including the culture substrate and neighboring cells, directly regulates the expression of core pluripotency genes and the epigenetic modification of the chromatins, hence, impacts the reprogramming dynamics. These studies provide new strategies for developing safer and more efficient method for iPSC generation. In this review, we examine the publications addressing the insoluble extracellular microenvironment that boosts iPSC generation and self-renewal. We also discuss cell adhesion-mediated molecular mechanisms, through which the insoluble extracellular cues interplay with reprogramming.
Collapse
Affiliation(s)
- Xiaofang Chen
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Jiaqi Li
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Yan Huang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Peng Liu
- 3 Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
- 4 National Research Center for Rehabilitation Technical Aids , Beijing, China
| |
Collapse
|
18
|
Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays. MICROMACHINES 2018; 9:mi9060286. [PMID: 30424219 PMCID: PMC6187582 DOI: 10.3390/mi9060286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
Microfluidic systems have been regarded as a potential platform for high-throughput screening technology in drug discovery due to their low sample consumption, high integration, and easy operation. The handling of small-volume liquid is an essential operation in microfluidic systems, especially in investigating large-scale combination conditions. Here, we develop a nanoliter centrifugal liquid dispenser (NanoCLD) coupled with superhydrophobic microwell array chips for high-throughput cell-based assays in the nanoliter scale. The NanoCLD consists of a plastic stock block with an array of drilled through holes, a reagent microwell array chip (reagent chip), and an alignment bottom assembled together in a fixture. A simple centrifugation at 800 rpm can dispense ~160 nL reagents into microwells in 5 min. The dispensed reagents are then delivered to cells by sandwiching the reagent chip upside down with another microwell array chip (cell chip) on which cells are cultured. A gradient of doxorubicin is then dispensed to the cell chip using the NanoCLD for validating the feasibility of performing drug tests on our microchip platform. This novel nanoliter-volume liquid dispensing method is simple, easy to operate, and especially suitable for repeatedly dispensing many different reagents simultaneously to microwells.
Collapse
|
19
|
Yang X, Breedveld V, Choi WT, Liu X, Song J, Hess DW. Underwater Curvature-Driven Transport between Oil Droplets on Patterned Substrates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15258-15269. [PMID: 29630334 DOI: 10.1021/acsami.8b02413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Roughness contrast patterns were generated on copper surfaces by a simple one-step site-selective oxidation process using a felt-tipped ink pen masking method. The patterned surface exhibited strong underwater oil wettability contrast which allows oil droplet confinement. Oil droplets placed on two patterned smooth dots (reservoirs) connected by a patterned smooth channel will spontaneously exchange liquid as a result of Laplace pressure differences until their shapes have reached equilibrium. In our experiments, residual solubility of the oil in water was overcome by using saturated oil-in-water solutions as the aqueous medium. In the saturated solution, the dependence of pattern geometry and oil viscosity on transported volume and the flow rate in the underwater oil transport process was investigated for dichloromethane and hexadecane. Experimental results were in good agreement with a simple model for Laplace pressure-driven flow. Depending on droplet curvatures, oil can be transported from large to small reservoirs or vice versa. The model predictions enable the design of reservoir and channel dimensions to control liquid transport in the water-solid surface-oil system. The patterning technique was extended to more complex patterns with multiple reservoirs for smart oil separation and mixing processes. The concepts demonstrated in this study can be employed to seed droplet arrays with specific initial drop volumes and achieve subsequent droplet mixing at controlled flow rates for potential lab-on-a-chip applications ranging from oil-droplet-based miniature reactors and sensors to high-throughput assays.
Collapse
Affiliation(s)
- Xiaolong Yang
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , People's Republic of China
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive NW , Atlanta , Georgia 30332 , United States
| | - Victor Breedveld
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive NW , Atlanta , Georgia 30332 , United States
| | - Won Tae Choi
- School of Materials Science and Engineering , Georgia Institute of Technology , 500 10th Street, Northwest , Atlanta , Georgia 30332 , United States
| | - Xin Liu
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , People's Republic of China
| | - Jinlong Song
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , People's Republic of China
| | - Dennis W Hess
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive NW , Atlanta , Georgia 30332 , United States
| |
Collapse
|
20
|
Xie X, Tian F, Hu X, Chen T, Xu X. Dynamic sessile micro-droplet evaporation monitored by electric impedance sensing. RSC Adv 2018; 8:13772-13779. [PMID: 35539335 PMCID: PMC9079842 DOI: 10.1039/c8ra01451e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Studies of liquid evaporation on a solid surface are useful for wettability phenomena-related research, and can be applied in a series of scientific and industrial areas. However, traditional methods are not easy to be intergrated into small size to monitor evaporation process of a micro-droplet. In this paper, a micro-electrode array was used to measure the impedance of an electrolyte droplet, indicating the dynamic process of evaporation. This method uses the relationship between concentration and conductivity of the water solution to dynamically monitor the evaporation process. The dynamic impedance results were compared to weight and imaging data of droplet evaporation and demonstrate high correlation coefficient of the earlier 90% part of the sodium chloride droplet evaporation process (R 2 = 0.99). Our study proved that the height of the droplet will affect the impedance sensing result, and the solution used for droplet evaporation can be expanded to mixture of strong electrolyte solution such as phosphate buffered solution. Then the "impedance imaging" of the array monitored the evaporating speed differences of different sites of a sessile droplet. As the electrode array can be integrated into small size, this method is compatible for many other experimental systems and can be further used for evaporation studies and corresponding application areas.
Collapse
Affiliation(s)
- Xinwu Xie
- Institute of Medical Equipment, Academy of Military Medical Sciences Tianjin 300161 China +86-20-84656705 +86-20-84656705.,Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China.,National Bio-protection Engineering Center Tianjin 300161 China
| | - Feng Tian
- Institute of Medical Equipment, Academy of Military Medical Sciences Tianjin 300161 China +86-20-84656705 +86-20-84656705
| | - Xiao Hu
- Institute of Medical Equipment, Academy of Military Medical Sciences Tianjin 300161 China +86-20-84656705 +86-20-84656705.,Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazards, Logistics University of Chinese People's Armed Police Forces China
| | - Tongxin Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Xinxi Xu
- Institute of Medical Equipment, Academy of Military Medical Sciences Tianjin 300161 China +86-20-84656705 +86-20-84656705
| |
Collapse
|
21
|
Wilmoth JL, Doak PW, Timm A, Halsted M, Anderson JD, Ginovart M, Prats C, Portell X, Retterer ST, Fuentes-Cabrera M. A Microfluidics and Agent-Based Modeling Framework for Investigating Spatial Organization in Bacterial Colonies: The Case of Pseudomonas Aeruginosa and H1-Type VI Secretion Interactions. Front Microbiol 2018; 9:33. [PMID: 29467721 PMCID: PMC5808251 DOI: 10.3389/fmicb.2018.00033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
The factors leading to changes in the organization of microbial assemblages at fine spatial scales are not well characterized or understood. However, they are expected to guide the succession of community development and function toward specific outcomes that could impact human health and the environment. In this study, we put forward a combined experimental and agent-based modeling framework and use it to interpret unique spatial organization patterns of H1-Type VI secretion system (T6SS) mutants of P. aeruginosa under spatial confinement. We find that key parameters, such as T6SS-mediated cell contact and lysis, spatial localization, relative species abundance, cell density and local concentrations of growth substrates and metabolites are influenced by spatial confinement. The model, written in the accessible programming language NetLogo, can be adapted to a variety of biological systems of interest and used to simulate experiments across a broad parameter space. It was implemented and run in a high-throughput mode by deploying it across multiple CPUs, with each simulation representing an individual well within a high-throughput microwell array experimental platform. The microfluidics and agent-based modeling framework we present in this paper provides an effective means by which to connect experimental studies in microbiology to model development. The work demonstrates progress in coupling experimental results to simulation while also highlighting potential sources of discrepancies between real-world experiments and idealized models.
Collapse
Affiliation(s)
- Jared L Wilmoth
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Peter W Doak
- Computational Sciences and Engineering Division, Oak Ridge, TN, United States
| | - Andrea Timm
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Michelle Halsted
- The Bredesen Center, University of Tennessee, Knoxville, TN, United States
| | - John D Anderson
- The Bredesen Center, University of Tennessee, Knoxville, TN, United States
| | - Marta Ginovart
- Department of Mathematics, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Clara Prats
- Department of Physics, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Xavier Portell
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Scott T Retterer
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States.,Computational Sciences and Engineering Division, Oak Ridge, TN, United States
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering Division, Oak Ridge, TN, United States.,Computational Sciences and Engineering Division, Oak Ridge, TN, United States
| |
Collapse
|
22
|
Yang X, Liu X, Hess DW, Breedveld V. Underwater Oil Droplet Splitting on a Patterned Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13522-13529. [PMID: 29120647 DOI: 10.1021/acs.langmuir.7b03604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Underwater oil droplets stretched and pinned by dual-dot oleophilic patterns on a superoleophobic substrate have been split into two nearly equal-volume daughter droplets using an underwater superoleophobic blade at substantially lower cutting speeds than reported in previous studies. A "liquid exchange model" based on Laplace pressure-driven liquid transport has been proposed to explain the mechanism of the underwater droplet split process. The dependence of droplet geometrical shape (curvature) and liquid properties (surface tension, viscosity) on the critical cutting speed that allows equal-volume split was investigated. Results demonstrate that critical cutting speed increases with increased curvature and surface tension of the split droplet, and decreases with increased droplet viscosity, which agrees with the proposed model. The ability to reproducibly split a single bulk oil droplet into daughter droplets with nearly equal volume facilitates the development of new functions for underwater microreactors.
Collapse
Affiliation(s)
- Xiaolong Yang
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology , Dalian 116023, People's Republic of China
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Xin Liu
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology , Dalian 116023, People's Republic of China
| | - Dennis W Hess
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Victor Breedveld
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Chen Q, Chen YC, Zhang Z, Wu B, Coleman R, Fan X. An integrated microwell array platform for cell lasing analysis. LAB ON A CHIP 2017; 17:2814-2820. [PMID: 28714506 DOI: 10.1039/c7lc00539c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological cell lasers are emerging as a novel technology in biological studies and biomedical engineering. The heterogeneity of cells, however, can result in various lasing behaviors from cell to cell. Thus, the capability to track individual cells during laser investigation is highly desired. In this work, a microwell array was integrated with high-quality Fabry-Pérot cavities for addressable and automated cell laser studies. Cells were captured in the microwells and the corresponding cell lasing was achieved and analyzed using SYTO9-stained Sf9 cells as a model system. It is found that the presence of the microwells does not affect the lasing performance, but the cell lasers exhibit strong heterogeneity due to different cell sizes, cycle stages and polyploidy. Time series laser measurements were also performed automatically with the integrated microarray, which not only enables the tracking and multiplexed detection of individual cells, but also helps identify "abnormal" cells that deviate from a large normal cell population in their lasing performance. The microarrayed cell laser platform developed here could provide a powerful tool in single cell analysis using lasing emission that complements conventional fluorescence-based cell analysis.
Collapse
Affiliation(s)
- Qiushu Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Bian S, Zhou Y, Hu Y, Cheng J, Chen X, Xu Y, Liu P. High-throughput in situ cell electroporation microsystem for parallel delivery of single guide RNAs into mammalian cells. Sci Rep 2017; 7:42512. [PMID: 28211892 PMCID: PMC5304186 DOI: 10.1038/srep42512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Arrayed genetic screens mediated by the CRISPR/Cas9 technology with single guide RNA (sgRNA) libraries demand a high-throughput platform capable of transfecting diverse cell types at a high efficiency in a genome-wide scale for detection and analysis of sophisticated cellular phenotypes. Here we developed a high-throughput in situ cell electroporation (HiCEP) microsystem which leveraged the superhydrophobic feature of the microwell array to achieve individually controlled conditions in each microwell and coupled an interdigital electrode array chip with the microwells in a modular-based scheme for highly efficient delivery of exogenous molecules into cells. Two plasmids encoding enhanced green and red fluorescent proteins (EGFP and ERFP), respectively, were successfully electroporated into attached HeLa cells on a 169-microwell array chip with transfection efficiencies of 71.6 ± 11.4% and 62.9 ± 2.7%, and a cell viability above 95%. We also successfully conducted selective electroporation of sgRNA into 293T cells expressing the Cas9 nuclease in a high-throughput manner and observed the four-fold increase of the GFP intensities due to the repair of the protein coding sequences mediated by the CRISPR/Cas9 system. This study proved that this HiCEP system has the great potential to be used for arrayed functional screens with genome-wide CRISPR libraries on hard-to-transfect cells in the future.
Collapse
Affiliation(s)
- Shengtai Bian
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yicen Zhou
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yawei Hu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Xiaofang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Youchun Xu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Peng Liu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| |
Collapse
|