1
|
Hill E, Zhu Y, Brooks MB, Goggs R. Dogs with sepsis are more hypercoagulable and have higher fibrinolysis inhibitor activities than dogs with non-septic systemic inflammation. Front Vet Sci 2025; 12:1559994. [PMID: 40370829 PMCID: PMC12075940 DOI: 10.3389/fvets.2025.1559994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Hemostatic imbalance in dogs with sepsis is characterized by hypercoagulability and hypofibrinolysis. We aimed to determine whether these abnormalities are unique features of sepsis or are also present in dogs with non-septic critical illness. Secondary aims were to assess relationships between coagulation assay results and circulating markers of neutrophil extracellular traps (NETs), and to relate coagulation assay abnormalities with survival in dogs with sepsis. Methods This prospective single-center observational cohort study enrolled 55 client-owned dogs that satisfied at least 2 systemic inflammatory response syndrome (SIRS) criteria. Dogs with a bacterial infection were categorized as sepsis, those without evidence of infection were categorized as non-infectious systemic inflammation (nSIRS). Clotting times, fibrinogen and D-dimer concentrations, and activities of antithrombin (AT), antiplasmin (AP), thrombin activatable fibrinolysis inhibitor (TAFI), and total and active plasminogen activator inhibitor-1 (PAI-1) were measured. Thrombin generation and overall hemostasis potential assays were performed and concentrations of cell-free DNA (cfDNA) and H3.1 nucleosomes quantitated. Results Compared to dogs with nSIRS, dogs with sepsis had higher fibrinogen concentrations, greater endogenous thrombin potential, higher AP and TAFI activities and greater overall hemostasis and coagulation potential values. H3.1 nucleosome and cfDNA concentrations were strongly correlated and significantly associated with various coagulation variables. In dogs with sepsis, non-survivors had lower AT activity, and higher active PAI-1 and H3.1 nucleosome concentrations. Discussion Relative to non-septic critically ill dogs, dogs with sepsis are hyperfibrinogenemic, hypercoagulable and have higher AP and TAFI activities. Concentrations of H3.1 nucleosomes and active PAI-1 and AT activity might have prognostic value in dogs with sepsis.
Collapse
Affiliation(s)
- Emily Hill
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yao Zhu
- Comparative Coagulation Laboratory, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marjory B. Brooks
- Comparative Coagulation Laboratory, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Comparative Coagulation Laboratory, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Cui H, Huang X. Multi-omics integration reveals YWHAE as a key mediator of ferroptosis in ARDS. Funct Integr Genomics 2025; 25:94. [PMID: 40261442 DOI: 10.1007/s10142-025-01603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterized by severe hypoxemia and high mortality. Ferroptosis, a form of regulated cell death driven by iron accumulation and lipid peroxidation, has emerged as a critical mechanism in ARDS pathogenesis. However, the molecular regulators of ferroptosis in ARDS remain unclear. This study integrates multi-omics analysis and experimental validation to identify ferroptosis-related targets in ARDS. Bronchoalveolar lavage fluid (BALF) samples from ARDS patients and healthy controls were subjected to proteomics and metabolomics analysis. Transcriptomic data from the GSE243066 dataset and ferroptosis-related gene databases were integrated to identify key genes. Functional enrichment analyses were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. An LPS-induced ARDS mouse model was established for experimental validation, including Western blotting, histopathology, and ferroptosis-related biochemical assays. Multi-omics analysis identified YWHAE as a ferroptosis-associated gene significantly upregulated in ARDS. Functional enrichment revealed key pathways, including ferroptosis, hypoxia-inducible factor-1 signaling, and oxidative stress responses. Proteomic and transcriptomic integration highlighted 51 overlapping differentially expressed genes, with YWHAE emerging as a central hub in the protein-protein interaction network. Metabolomics analysis further revealed glutathione and cysteine metabolism as critical pathways linked to ferroptosis. In the ARDS mouse model, ferroptosis inhibitor ferrostatin-1 (Fer-1) attenuated LPS-induced lung injury, reduced oxidative stress markers, and downregulated YWHAE expression. This study identifies YWHAE as a novel ferroptosis-related target in ARDS through multi-omics analysis and experimental validation. These findings provide new insights into the molecular mechanisms of ferroptosis in ARDS and highlight YWHAE as a potential therapeutic target for future interventions.
Collapse
Affiliation(s)
- Honghui Cui
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang, Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xia Huang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
3
|
Xia Y, Chen K, Wang Y, Jiang Q, Du Y, Luo D, Li X, Li S. Importance of Selenoprotein O in Regulating Hmgb1: A New Direction for Modulating ROS-Dependent NETs Formation to Aggravate the Progression of Acute Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9382-9397. [PMID: 40189811 DOI: 10.1021/acs.jafc.5c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Selenoproteins (Sels) are a class of essential biomolecules that play critical roles in cellular homeostasis. SelO was identified as the preferential source of selenium in the liver, implying its potential as a key regulatory factor in hepatic pathophysiology. Bioinformatics analysis of data from GEO data sets revealed marked downregulation of SelO in liver injury. However, its function and regulatory mechanisms in the liver remain unclear. To address this, we investigated the effect of SelO ablation on acute liver inflammation, focusing on its association with inflammation and neutrophil extracellular traps (NETs) formation. Wild-type (WT) and SelO-knockout mice were used to establish a lipopolysaccharide (LPS) exposure model and a coculture model (AML12 cells and neutrophils) in vitro. Our findings revealed that LPS stimulation significantly reduced SelO expression in the WT mouse liver. SelO deletion promoted the expression of Hmgb1 and marker cytokines for chemokines, NETs generation, pyroptosis and inflammation, and induced an imbalance in redox homeostasis. Immunofluorescence, SYTOX staining, and scanning electron microscopy confirmed that SelO silencing promoted reactive oxygen species (ROS)-dependent NETs formation. Moreover, the coculture model demonstrated that excessive NETs formation exacerbated SelO-ablation-induced hepatic inflammation. Importantly, we confirmed the significant involvement of the Hmgb1/ROS axis in the development of acute liver inflammation in the absence of SelO. Our results demonstrated that SelO ablation promoted neutrophil recruitment and enhanced ROS-dependent NETs formation by increasing Hmgb1 expression levels, thereby aggravating LPS-induced pyroptosis and inflammation. This study not only uncovered the crucial biological functions of SelO, but also shed light on its regulatory implications in the inflammatory process.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Animal Science College, Hebei North University, Zhangjiakou 075000, China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi 445000, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Luo J, Li X, Zhang L, Deng M, Zhao J, Zhang J, Tang W, Guo Q, Wang L. 5-deoxy-rutaecarpine protects against LPS-induced acute lung injury via inhibiting NLRP3 inflammasome-related inflammation. Front Pharmacol 2025; 16:1522146. [PMID: 39981175 PMCID: PMC11841402 DOI: 10.3389/fphar.2025.1522146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Acute lung injury (ALI) induced by lipopolysaccharide (LPS) is a significant medical condition characterized by severe pulmonary inflammation and tissue damage. NLRP3 inflammasome-driven inflammation is essential in ALI pathogenesis, inspiring novel therapeutic strategies that focus on NLRP3 and inflammation. In this study, we investigated the therapeutic potential of 5-deoxy-rutaecarpine (5-DR), a rutaecarpine derivative, in attenuating LPS-induced ALI. Methods In this study, we evaluated the effects of 5-DR treatment in mice exposed to LPS, lung tissues, bronchoalveolar lavage fluid, and serum were collected for analysis. LPS-stimulated J774A.1 mouse macrophages were used to further investigate the anti-inflammatory effects of 5-DR in vitro. Various techniques including histopathology, Western blotting, and luciferase reporter assay were employed. Results 5-DR treatment significantly reduced lung edema, inflammatory cell infiltration in mice with LPS burden, and reduced the levels of inflammatory mediators like interleukin-1β in the mice and in LPS-stimulated J774A.1 mouse macrophages. Further western blotting analysis showed 5-DR decreased the levels of NLRP3, cleaved caspase-1, and mature IL-1β in mice and J774A.1 cells exposed to LPS. Additionally, NF-κB pathway activation significantly diminished the inhibition of the NLRP3 inflammasome by 5-DR. Discussion Our findings highlight the therapeutic potential of 5-DR as a promising candidate for treating LPS-induced ALI, offering insights into its underlying mechanism that targets NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Li Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Meijing Deng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jieyang Zhao
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Jinghuan Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Wenyu Tang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Qinghua Guo
- Department of Emergency, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhang M, Zhan M, Song X. Echinacoside attenuates Klebsiella pneumoniae-induced pneumonia via inhibition of the TLR4/NF-κB signaling. APMIS 2025; 133:e13507. [PMID: 39757690 DOI: 10.1111/apm.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The Gram-negative bacterium Klebsiella pneumoniae (K. pneumoniae) is one major causative agent of community- and hospital-acquired pneumonia. Echinacoside (ECH) is a phenylethanoid glycoside isolated from Cistanche deserticola that possesses anti-inflammatory activity. Our research aimed to confirm whether ECH alleviates K. pneumoniae-induced pneumonia and explore the underlying regulatory mechanisms. BEAS-2B cells and BALB/c mice were infected by K. pneumoniae to establish the cellular and animal models, respectively, followed by ECH treatment. Inflammatory cytokine levels were detected by RT-qPCR and ELISA. The lung wet/dry (W/D) weight ratio and the myeloperoxidase (MPO) activity in lung tissues were examined. The pulmonary histopathologic changes were observed through hematoxylin and eosin (H&E) staining. The levels of TLR4/NF-κB pathway-associated molecules were estimated through western blotting, immunohistochemical, and immunohistochemical staining. K. pneumoniae infection caused lung histopathologic damage, enhanced MPO activity, elevated lung W/D weight ratio, and upregulated inflammatory cytokine levels in mice and promoted inflammatory cytokine expression in BEAS-2B cells, which were reversed by ECH treatment. K. pneumoniae infection-induced upregulation in TLR4, phosphorylated (p)-p65, and p-IκBα levels, and downregulation in IκBα levels in BEAS-2B cells and pneumonia mice were overturned by ECH treatment. ECH ameliorates K. pneumoniae-induced pneumonia through suppressing the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Respiratory, Yichang Central People's Hospital, Yichang, China
| | - Ming Zhan
- Department of Respiratory, Yichang Central People's Hospital, Yichang, China
| | - Xinyu Song
- Department of Respiratory, Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
6
|
Somasundaram M, Mathew SK, Paul S, Kurian SJ, Kunhikatta V, Karanth S, Shetty S, Kudru CU, Manu MK, Saravu K, Unnikrishnan MK, Rao M, Miraj SS. Metformin use and its association with various outcomes in COVID-19 patients with diabetes mellitus: a retrospective cohort study in a tertiary care facility. Ann Med 2024; 56:2425829. [PMID: 39520151 PMCID: PMC11552258 DOI: 10.1080/07853890.2024.2425829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Evidence shows that diabetes raises the probability of contracting COVID-19 and associated complications. We hypothesize that metformin, being pleiotropic, may improve COVID-19 in diabetics. METHODS A retrospective cohort study was conducted with 421 COVID-19 patients with diabetes, hospitalized between 1st April 2020 and 31st March 2022 in a tertiary-care hospital. Patients with metformin or its combination constituted the study cohort (SC; n = 221), while other antidiabetics constituted the reference cohort (RC; n = 200). RESULTS SC and RC were matched for mean age ± SD (SC: 53.3 ± 5.7 vs. RC: 54.3 ± 8.2 years). The mean length of hospitalization (days) was significantly shorter in SC (9.0 ± 5.7) than in RC (12.7 ± 6) (p < 0.02). Metformin use was associated with reduction in mortality risk (OR: 0.106, 95% CI = 0.039-0.287; p < 0.001). Moreover, SC also improved levels of LDH (OR: 0.243, 95% CI = 0.104-0.566; p < 0.001), CRP (OR: 0.281, 95% CI = 0.120-0.659; p < 0.004), and D-dimer (OR: 0.220, 95% CI = 0.089-0.539; p < 0.001) than RC. The calculated number needed to treat for metformin was 3.1. CONCLUSION Metformin users have a decrease in hospital stay and mortality rates and improvement in LDH, CRP, and D-dimer levels. Therefore, metformin might protect against mortality in COVID-19 with diabetes.
Collapse
Affiliation(s)
- Muhilvannan Somasundaram
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Sanjay Kurian Mathew
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Soumyajeet Paul
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Vijayanarayana Kunhikatta
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Shubhada Karanth
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Chandrashekar Udyavara Kudru
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Mohan K. Manu
- Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | | | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Saisorn W, Santiworakul C, Phuengmaung P, Siripen N, Rianthavorn P, Leelahavanichkul A. Extracellular traps in peripheral blood mononuclear cell fraction in childhood-onset systemic lupus erythematosus. Sci Rep 2024; 14:23177. [PMID: 39369134 PMCID: PMC11455886 DOI: 10.1038/s41598-024-74705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Although the role of low-density granulocytes (LDGs), neutrophils in the peripheral blood mononuclear cell (PBMC) fraction, and neutrophil extracellular traps (NETs) in assessing lupus disease severity is acknowledged, data specific to childhood-onset lupus remains scarce. This study analyzed 46 patients with childhood-onset systemic lupus erythematosus (82.6% females, mean age 14.5 ± 0.3 years), including 26 cases with normal complement levels and 20 with low complement levels, along with 20 healthy adult volunteers. Key parameters that distinguished healthy volunteers from lupus patients and differentiated between lupus patients with low and normal complement were serum interferon (IFN)-α, serum citrullinated histone 3 (CitH3), and extracellular traps (ETs) in LDGs. However, NETs (assessed by nuclear staining morphology), LDG abundance, and other parameters (such as endotoxemia, cytokines, and double-stranded (ds) DNA) did not show such differentiation. When lipopolysaccharide (LPS) was administered to LDGs in the PBMC fraction, it induced ETs in both low and normal complement groups, indicating the inducible nature of ETs. In adult healthy volunteers, activation by recombinant IFN-α or dsDNA in isolated neutrophils induced LDGs and NETs (identified using immunofluorescent staining for CitH3, myeloperoxidase, and neutrophil elastase) at 45 min and 3 h post-stimulation, respectively. Additionally, approximately half of the LDGs underwent late apoptosis at 3 h post-stimulation, as determined by flow cytometry analysis. Activation by IFN-α or dsDNA in LDGs also led to a more pronounced expression of CD66b, an adhesion molecule, compared to regular-density neutrophils, suggesting higher activity in LDGs. In conclusion, IFN-α and/or dsDNA in serum may transform regular-density neutrophils into LDGs before progressing to NETosis and apoptosis, potentially exacerbating lupus severity through cell death-induced self-antigens. Therefore, LDGs and ETs in LDGs could provide deeper insights into the pathophysiology of childhood-onset lupus.
Collapse
Affiliation(s)
- Wilasinee Saisorn
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanunya Santiworakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nuanpan Siripen
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Rianthavorn
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
9
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Lu J, Xiong G, Li H, Zhang D, Zhang X. Nuclear Factor Erythroid 2-Related Factor 2 Intervenes the Release of Neutrophil Extracellular Traps during Lipopolysaccharide-Induced Acute Lung Injury in Mice. Mediators Inflamm 2024; 2024:8847492. [PMID: 39238946 PMCID: PMC11377114 DOI: 10.1155/2024/8847492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
The pathogenesis of acute lung injury is complex. Studies have demonstrated the role of neutrophil extracellular traps (NETs) in the process of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the underlying mechanism remains unclear. In this study, the regulation of Nrf2 in the formation of NETs, which was pathogenic in LPS-induced ALI, was identified by analyzing the levels of Cit-H3, lung function, lung tissue pathology, lung wet/dry ratio, the inflammatory cells, cytokines and proteins in the bronchoalveolar lavage fluid (BALF) and in addition, the activity of lung myeloperoxidase (MPO) was also measured. Results showed that the levels of Cit-H3 measured by western blot in Nrf2-knockout (KO) mice were higher compared with the WT mice after LPS stimulation. To further investigate the NETs formation was pathogenic during LPS-induced ALI, the Nrf2-KO mice were treated with DNase I. Results showed that DNase I improved lung function and lung tissue pathology and significantly reduced lung wet/dry ratio and proteins in the BALF. Besides, DNase I also attenuated the infiltration of inflammatory cells and the cytokines (TNF-α, IL-1β) production in the BALF and the activity of lung MPO. Therefore, these results together indicate that Nrf2 may intervene in the release of NETs during LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Junying Lu
- Department of Critical Care MedicineThe First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guilan Xiong
- Department of Critical Care MedicineHuazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Hongxiang Li
- Department of Critical Care MedicineThe First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dong Zhang
- Department of Critical Care MedicineThe First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiaohao Zhang
- Department of CardiologyThe Second Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
11
|
Walker GT, Perez-Lopez A, Silva S, Lee MH, Bjånes E, Dillon N, Brandt SL, Gerner RR, Melchior K, Norton GJ, Argueta FA, Dela Pena F, Park L, Sosa-Hernandez VA, Cervantes-Diaz R, Romero-Ramirez S, Cartelle Gestal M, Maravillas-Montero JL, Nuccio SP, Nizet V, Raffatellu M. CCL28 modulates neutrophil responses during infection with mucosal pathogens. eLife 2024; 13:e78206. [PMID: 39193987 PMCID: PMC11444682 DOI: 10.7554/elife.78206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The chemokine CCL28 is highly expressed in mucosal tissues, but its role during infection is not well understood. Here, we show that CCL28 promotes neutrophil accumulation in the gut of mice infected with Salmonella and in the lung of mice infected with Acinetobacter. Neutrophils isolated from the infected mucosa expressed the CCL28 receptors CCR3 and, to a lesser extent, CCR10, on their surface. The functional consequences of CCL28 deficiency varied between the two infections: Ccl28-/- mice were highly susceptible to Salmonella gut infection but highly resistant to otherwise lethal Acinetobacter lung infection. In vitro, unstimulated neutrophils harbored pre-formed intracellular CCR3 that was rapidly mobilized to the cell surface following phagocytosis or inflammatory stimuli. Moreover, CCL28 stimulation enhanced neutrophil antimicrobial activity, production of reactive oxygen species, and formation of extracellular traps, all processes largely dependent on CCR3. Consistent with the different outcomes in the two infection models, neutrophil stimulation with CCL28 boosted the killing of Salmonella but not Acinetobacter. CCL28 thus plays a critical role in the immune response to mucosal pathogens by increasing neutrophil accumulation and activation, which can enhance pathogen clearance but also exacerbate disease depending on the mucosal site and the infectious agent.
Collapse
Affiliation(s)
- Gregory T Walker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Araceli Perez-Lopez
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, United States
- Biomedicine Research Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Steven Silva
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Michael H Lee
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Elisabet Bjånes
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Nicholas Dillon
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Stephanie L Brandt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Romana R Gerner
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- School of Life Sciences, ZIEL - Institute for Food and Health, Freising-Weihenstephan, Technical University of Munich, Munich, Germany
| | - Karine Melchior
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Grant J Norton
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Felix A Argueta
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Frenchesca Dela Pena
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Lauren Park
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
| | - Victor A Sosa-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Diaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Romero-Ramirez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Monica Cartelle Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, United States
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, United States
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, United States
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, United States
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, United States
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSDcMAV), La Jolla, United States
| |
Collapse
|
12
|
Sayson SG, Ashbaugh A, Porollo A, Smulian G, Cushion MT. Pneumocystis murina promotes inflammasome formation and NETosis during Pneumocystis pneumonia. mBio 2024; 15:e0140924. [PMID: 38953359 PMCID: PMC11323544 DOI: 10.1128/mbio.01409-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Pneumocystis jirovecii pneumonia (PjP) poses a serious risk to individuals with compromised immune systems, such as individuals with HIV/AIDS or undergoing immunosuppressive therapies for cancer or solid organ transplants. Severe PjP triggers excessive lung inflammation, resulting in lung function decline and consequential alveolar damage, potentially culminating in acute respiratory distress syndrome. Non-HIV patients face a 30%-60% mortality rate, emphasizing the need for a deeper understanding of inflammatory responses in PjP. Prior research emphasized macrophages in Pneumocystis infections, neglecting neutrophils' role in tissue damage. Consequently, the overemphasis on macrophages led to an incomplete understanding of the role of neutrophils and inflammatory responses. In the current investigation, our RNAseq studies on a murine surrogate model of PjP revealed heightened activation of the NLRP3 inflammasome and NETosis cell death pathways in their lungs. Immunofluorescence staining confirmed neutrophil extracellular trap (NET) presence in the lungs of the P. murina-infected mice, validating our findings. Moreover, isolated neutrophils exhibited NETosis when directly stimulated with P. murina. Isolated NETs compromised P. murina viability in vitro, highlighting the potential role of neutrophils in controlling fungal growth and promoting inflammation during P. murina pneumonia through NLRP3 inflammasome assembly and NETosis. These pathways, essential for inflammation and pathogen elimination, bear the risk of uncontrolled activation leading to excessive tissue damage and persistent inflammation. This pioneering study is the first to identify the formation of NETs and inflammasomes during Pneumocystis infection, paving the way for comprehensive investigations into treatments aimed at mitigating lung damage and augmenting survival rates for individuals with PjP.IMPORTANCEPneumocystis jirovecii pneumonia (PjP) affects individuals with weakened immunity, such as HIV/AIDS, cancer, and organ transplant patients. Severe PjP triggers lung inflammation, impairing function and potentially causing acute respiratory distress syndrome. Non-HIV individuals face a 30%-60% mortality rate, underscoring the need for deeper insight into PjP's inflammatory responses. Past research focused on macrophages in managing Pneumocystis infection and its inflammation, while the role of neutrophils was generally overlooked. In contrast, our findings in P. murina-infected mouse lungs showed neutrophil involvement during inflammation and increased expression of NLRP3 inflammasome and NETosis pathways. Detection of neutrophil extracellular traps further indicated their involvement in the inflammatory process. Although beneficial in combating infection, unregulated neutrophil activation poses a potential threat to lung tissues. Understanding the behavior of neutrophils in Pneumocystis infections is crucial for controlling detrimental reactions and formulating treatments to reduce lung damage, ultimately improving the survival rates of individuals with PjP.
Collapse
Affiliation(s)
- Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Aleksey Porollo
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - George Smulian
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
14
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
15
|
Li L, Ma L, Qian H, Wang Z, Chen M, Wang C, Gu W, Lv T, Jin J. GGPPS Negatively Regulates the Formation of Neutrophil Extracellular Traps in Lipopolysaccharide-Induced Acute Lung Injury. Inflammation 2024:10.1007/s10753-024-02104-4. [PMID: 39052180 DOI: 10.1007/s10753-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are life-threatening diseases. Neutrophil extracellular traps (NETs) play a key role in lung damage. Geranylgeranyl diphosphate synthase (GGPPS) is associated with the development of inflammatory diseases. We aimed to explore the role of GGPPS in NETs formation in ARDS/ALI. First, lung pathological changes in lipopolysaccharide (LPS)-induced ALI mice after myeloid-specific GGPPS deletion were evaluated. The level of NETs formation was analyzed by immunofluorescence, PicoGreen assay and Western blotting. Next, we determined the role of GGPPS in NETs formation and underlying mechanisms using immunofluorescence, flow cytometry, DCFH-DA, and SYTOX GREEN staining in vitro. Finally, the correlation between GGPPS expression incirculating neutrophils and dsDNA levels in plasma was evaluated. Myeloid-specific GGPPS deletion mice showed increased NETs deposition in lung tissue and aggravated histopathological damage of lung tissue. In vitro, GGPPS deficiency in neutrophils resulted in increased NETs formation by Phorbol-12-myristate-13-acetate (PMA), which was reversed by Geranylgeranyl diphosphate (GGPP). In addition, inhibitors blocking protein kinase C (PKC) and NADPH-oxidase (NOX) decreased NETs formation induced by GGPPS deletion. Importantly, GGPPS expression in circulating neutrophils was decreased in ARDS patients compared with the healthy control, and the level of dsDNA in plasma of ARDS patients was negatively correlated with the GGPPS expression. Taken together, GGPPS deficiency in neutrophils aggravates LPS-induced lung injury by promoting NETs formation via PKC/NOX signaling. Thus, neutrophil GGPPS could be a key therapeutic target for ARDS.
Collapse
Affiliation(s)
- Lulu Li
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, No. 305, East Zhongshan Road, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, No. 68, Zhongshan Road, Wuxi, 214086, China
| | - Hong Qian
- Department of Orthopaedic Surgery, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China
| | - Zheng Wang
- Department of Science and Technology, Kangda College, Nanjing Medical University, No. 88, Chunhui Road, Lianyungang, 222000, China
| | - Meizi Chen
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, No. 102, Luojiajing Road, Chenzhou, 423000, China
- Department of Respiratory and Critical Care Medicine, Affiliated the First People's Hospital of Chenzhou, University of South China, No. 102, Luojiajing Road, Chenzhou, 423000, China
| | - Chunlei Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Nantong University, No. 37, Chenggang Road, Nantong, 226001, China
- Department of Endocrinology, The First People's Hospital of Yancheng, No. 66, South Renmin Road, Yancheng, 224006, China
| | - Wei Gu
- Department of Respiration, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, 210006, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China.
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, No. 305, East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
16
|
Gu W, Zeng Q, Wang X, Jasem H, Ma L. Acute Lung Injury and the NLRP3 Inflammasome. J Inflamm Res 2024; 17:3801-3813. [PMID: 38887753 PMCID: PMC11182363 DOI: 10.2147/jir.s464838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Huthaifa Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
17
|
Li X, Wang Y, Chen Y, Lu Z, Sun Y, Zhong C, Lv Z, Pan H, Chen J, Yao D, Huang X, Yu C. Icariside II alleviates lipopolysaccharide-induced acute lung injury by inhibiting lung epithelial inflammatory and immune responses mediated by neutrophil extracellular traps. Life Sci 2024; 346:122648. [PMID: 38631668 DOI: 10.1016/j.lfs.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening lung disease characterized by inflammatory cell infiltration and lung epithelial injury. Icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exhibits anti-inflammatory and immunomodulatory effects. However, the effect and mechanism of ICS II in ALI remain unclear. The purpose of the current study was to investigate the pharmacological effect and underlying mechanism of ICS II in ALI. MAIN METHODS Models of neutrophil-like cells, human peripheral blood neutrophils, and lipopolysaccharide (LPS)-induced ALI mouse model were utilized. RT-qPCR and Western blotting determined the gene and protein expression levels. Protein distribution and quantification were analyzed by immunofluorescence. KEY FINDINGS ICS II significantly reduced lung histopathological damage, edema, and inflammatory cell infiltration, and it reduced pro-inflammatory cytokines in ALI. There is an excessive activation of neutrophils leading to a significant production of NETs in ALI mice, a process mitigated by the administration of ICS II. In vivo and in vitro studies found that ICS II could decrease NET formation by targeting neutrophil C-X-C chemokine receptor type 4 (CXCR4). Further data showed that ICS II reduces the overproduction of dsDNA, a NETs-related component, thereby suppressing cGAS/STING/NF-κB signalling pathway activation and inflammatory mediators release in lung epithelial cells. SIGNIFICANCE This study suggested that ICS II may alleviate LPS-induced ALI by modulating the inflammatory response, indicating its potential as a therapeutic agent for ALI treatment.
Collapse
Affiliation(s)
- Xiuchun Li
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yangyue Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yuxin Chen
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ziyi Lu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Yihan Sun
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chuyue Zhong
- Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhanghang Lv
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Haofeng Pan
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Jun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| | - Chang Yu
- Intervention Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
18
|
Tan DSY, Akelew Y, Snelson M, Nguyen J, O’Sullivan KM. Unravelling the Link between the Gut Microbiome and Autoimmune Kidney Diseases: A Potential New Therapeutic Approach. Int J Mol Sci 2024; 25:4817. [PMID: 38732038 PMCID: PMC11084259 DOI: 10.3390/ijms25094817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.
Collapse
Affiliation(s)
- Diana Shu Yee Tan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Yibeltal Akelew
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Matthew Snelson
- School of Biological Science, Monash University, Clayton, VIC 3168, Australia;
| | - Jenny Nguyen
- The Alfred Centre, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kim Maree O’Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| |
Collapse
|
19
|
King PT, Dousha L. Neutrophil Extracellular Traps and Respiratory Disease. J Clin Med 2024; 13:2390. [PMID: 38673662 PMCID: PMC11051312 DOI: 10.3390/jcm13082390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular traps made by neutrophils (NETs) and other leukocytes such as macrophages and eosinophils have a key role in the initial immune response to infection but are highly inflammatory and may contribute to tissue damage. They are particularly relevant to lung disease, with the pulmonary anatomy facilitating their ability to fully extend into the airways/alveolar space. There has been a rapid expansion in the number of published studies demonstrating their role in a variety of important respiratory diseases including chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, asthma, pneumonia, COVID-19, rhinosinusitis, interstitial lung disease and lung cancer. The expression of NETs and other traps is a specific process, and diagnostic tests need to differentiate them from other inflammatory pathways/causes of cell death that are also characterised by the presence of extracellular DNA. The specific targeting of this pathway by relevant therapeutics may have significant clinical benefit; however, current clinical trials/evidence are at a very early stage. This review will provide a broad overview of the role of NETs and their possible treatment in respiratory disease.
Collapse
Affiliation(s)
- Paul T. King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Lovisa Dousha
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, VIC 3168, Australia;
- Department of Medicine, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
20
|
Kuo YM, Kang CM, Lai ZY, Huang TY, Tzeng SJ, Hsu CC, Chen SY, Hsieh SC, Chia JS, Jung CJ, Hsueh PR. Temporal changes in biomarkers of neutrophil extracellular traps and NET-promoting autoantibodies following adenovirus-vectored, mRNA, and recombinant protein COVID-19 vaccination. J Med Virol 2024; 96:e29556. [PMID: 38511554 DOI: 10.1002/jmv.29556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Neutrophil extracellular traps (NETs) play a role in innate pathogen defense and also trigger B-cell response by providing antigens. NETs have been linked to vaccine-induced thrombotic thrombocytopenia. We postulated a potential link between NET biomarkers, NET-promoting autoantibodies, and adverse events (AEs) after COVID-19 vaccine boosters. Healthy donors (HDs) who received ChAdOx1-S (A), mRNA-1273 (M), or recombinant protein (MVC-COV1901) vaccines at the National Taiwan University Hospital between 2021 and 2022 were recruited. We measured serial NET-associated biomarkers, citrullinated-histone3 (citH3), and myeloperoxidase (MPO)-DNA. Serum citH3 and MPO-DNA were significantly or numerically higher in HDs who reported AEs (n = 100, booster Day 0/Day 30, p = 0.01/p = 0.03 and p = 0.30/p = 0.35, respectively). We also observed a positive correlation between rash occurrence in online diaries and elevated citH3. A linear mixed model also revealed significantly higher citH3 levels in mRNA-1273/ChAdOx1-S recipients than MVC-COV1901 recipients. Significant positive correlations were observed between the ratios of anti-heparin platelet factor 4 and citH3 levels on Booster Day 0 and naïve and between the ratios of anti-NET IgM and citH3 on Booster Day 30/Day 0 in the AA-M and MM-M group, respectively. The increased levels of citH3/MPO-DNA accompanied by NET-promoting autoantibodies suggest a potential connection between mRNA-1273/ChAdOx1-S vaccines and cardiovascular complications. These findings provide insights for risk assessments of future vaccines.
Collapse
Affiliation(s)
- Yu-Min Kuo
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Min Kang
- Department of Laboratory Medicine, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yun Lai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Huang
- Department of Internal Medicine, Division of Infection, National Taiwan University, Taipei, Taiwan
| | - Shiang-Jong Tzeng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Chieh Hsu
- Department of Internal Medicine, Division of Infection, National Taiwan University, Taipei, Taiwan
| | - Shey-Ying Chen
- Department of Emergency Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department of Dentistry, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Datla US, Vundurthy B, Hook JS, Menon N, Razmi Bagtash H, Shihabeddin T, Schmidtke DW, Moreland JG, Radic MZ, Jones CN. Quantifying neutrophil extracellular trap release in a combined infection-inflammation NET-array device. LAB ON A CHIP 2024; 24:615-628. [PMID: 38189525 PMCID: PMC10826461 DOI: 10.1039/d3lc00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Excessive release of neutrophil extracellular traps (NETs) has been reported in various human pathologies, including COVID-19 patients. Elevated NET levels serve as a biomarker, indicating increased coagulopathy and immunothrombosis risks in these patients. Traditional immunoassays employed to quantify NET release focus on bulk measurements of released chromatin in simplified microenvironments. In this study, we fabricated a novel NET-array device to quantify NET release from primary human neutrophils with single-cell resolution in the presence of the motile bacteria Pseudomonas aeruginosa PAO1 and inflammatory mediators. The device was engineered to have wide chambers and constricted loops to measure NET release in variably confined spaces. Our open NET-array device enabled immunofluorescent labeling of citrullinated histone H3, a NET release marker. We took time-lapse images of primary healthy human neutrophils releasing NETs in clinically relevant infection and inflammation-rich microenvironments. We then developed a computer-vision-based image processing method to automate the quantification of individual NETs. We showed a significant increase in NET release to Pseudomonas aeruginosa PAO1 when challenged with inflammatory mediators tumor necrosis factor-α [20 ng mL-1] and interleukin-6 [50 ng mL-1], but not leukotriene B4 [20 nM], compared to the infection alone. We also quantified the temporal dynamics of NET release and differences in the relative areas of NETs, showing a high percentage of variable size NET release with combined PAO1 - inflammatory mediator treatment, in the device chambers. Importantly, we demonstrated reduced NET release in the confined loops of our combined infection-inflammation microsystem. Ultimately, our NET-array device stands as a valuable tool, facilitating experiments that enhance our comprehension of the spatiotemporal dynamics of NET release in response to infection within a defined microenvironment. In the future, our system can be used for high throughput and cost-effective screening of novel immunotherapies on human neutrophils in view of the importance of fine-tuning NET release in controlling pathological neutrophil-driven inflammation.
Collapse
Affiliation(s)
- Udaya Sree Datla
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nidhi Menon
- Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hossein Razmi Bagtash
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tarik Shihabeddin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Caroline N Jones
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Zhou X, Jin J, Lv T, Song Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int J Mol Sci 2024; 25:1464. [PMID: 38338744 PMCID: PMC10855305 DOI: 10.3390/ijms25031464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Nowadays, acute respiratory distress syndrome (ARDS) still has a high mortality rate, and the alleviation and treatment of ARDS remains a major research focus. There are various causes of ARDS, among which pneumonia and non-pulmonary sepsis are the most common. Trauma and blood transfusion can also cause ARDS. In ARDS, the aggregation and infiltration of neutrophils in the lungs have a great influence on the development of the disease. Neutrophils regulate inflammatory responses through various pathways, and the release of neutrophils through neutrophil extracellular traps (NETs) is considered to be one of the most important mechanisms. NETs are mainly composed of DNA, histones, and granuloproteins, all of which can mediate downstream signaling pathways that can activate inflammatory responses, generate immune clots, and cause damage to surrounding tissues. At the same time, the components of NETs can also promote the formation and release of NETs, thus forming a vicious cycle that continuously aggravates the progression of the disease. NETs are also associated with cytokine storms and immune balance. Since DNA is the main component of NETs, DNase I is considered a viable drug for removing NETs. Other therapeutic methods to inhibit the formation of NETs are also worthy of further exploration. This review discusses the formation and mechanism of NETs in ARDS. Understanding the association between NETs and ARDS may help to develop new perspectives on the treatment of ARDS.
Collapse
Affiliation(s)
| | | | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (X.Z.); (J.J.)
| |
Collapse
|
23
|
Fowler AA. Vitamin C: Rationale for Its Use in Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS). Antioxidants (Basel) 2024; 13:95. [PMID: 38247519 PMCID: PMC10812524 DOI: 10.3390/antiox13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening event that occurs in patients suffering from bacterial, fungal, or viral sepsis. Research performed over the last five decades showed that ARDS is a consequence of severe unrestrained systemic inflammation, which leads to injury of the lung's microvasculature and alveolar epithelium. ARDS leads to acute hypoxic/hypercapnic respiratory failure and death in a significant number of patients hospitalized in intensive care units worldwide. Basic and clinical research performed during the time since ARDS was first described has been unable to construct a pharmacological agent that will combat the inflammatory fire leading to ARDS. In-depth studies of the molecular pharmacology of vitamin C indicate that it can serve as a potent anti-inflammatory agent capable of attenuating the pathobiological events that lead to acute injury of the lungs and other body organs. This analysis of vitamin C's role in the treatment of ARDS includes a focused systematic review of the literature relevant to the molecular physiology of vitamin C and to the past performance of clinical trials using the agent.
Collapse
Affiliation(s)
- Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
24
|
Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol 2023; 14:1277161. [PMID: 38035100 PMCID: PMC10682474 DOI: 10.3389/fimmu.2023.1277161] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.
Collapse
Affiliation(s)
- Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiying Sheng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiwei Luo
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
25
|
Huang Y, Ding Y, Wang B, Ji Q, Peng C, Tan Q. Neutrophils extracellular traps and ferroptosis in diabetic wounds. Int Wound J 2023; 20:3840-3854. [PMID: 37199077 PMCID: PMC10588347 DOI: 10.1111/iwj.14231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Wound healing is an extremely complex process involving multiple levels of cells and tissues. It is mainly completed through four stages: haemostasis, inflammation, proliferation, and remodelling. When any one of these stages is impaired, it may lead to delayed healing or even transformation into chronic refractory wounds. Diabetes is a kind of common metabolic disease that affects approximately 500 million people worldwide, 25% of whom develop skin ulcers that break down repeatedly and are difficult to heal, making it a growing public health problem. Neutrophils extracellular traps and ferroptosis are new types of programmed cell death identified in recent years and have been found to interact with diabetic wounds. In this paper, the normal wound healing and interfering factors of the diabetic refractory wound were outlined. The mechanism of two kinds of programmed cell death was also described, and the interaction mechanism between different types of programmed cell death and diabetic refractory wounds was discussed.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Youjun Ding
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Emergency SurgeryThe Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People's Hospital)ZhenjiangChina
| | - Beizhi Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Qian Ji
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Chen Peng
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Burns and Plastic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Burns and Plastic SurgeryAnqing Shihua Hospital of Nanjing Drum Tower Hospital GroupAnqingChina
| |
Collapse
|
26
|
Gour A, Dogra A, Verma MK, Bhardwaj M, Kour D, Jamwal A, Gorain B, Kumar M, Vij B, Kumar A, Nandi U. Ayurveda-based phytochemical composition attenuates lung inflammation and precipitates pharmacokinetic interaction with favipiravir: an in vivo investigation using disease-state of acute lung injury. Nat Prod Res 2023; 37:3758-3765. [PMID: 36469694 DOI: 10.1080/14786419.2022.2150620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a critical form of acute lung injury (ALI). Here, we investigated the effect of a defined combination of ten pure phytochemicals in equal proportions of weight (NPM) from plants, recommended by Ayurveda for any protective action against lipopolysaccharide (LPS)-induced ALI. Results indicate that NPM markedly improved protein and neutrophil contents, myeloperoxidase and hydroxyproline levels, oxidative stress markers (glutathione and malonaldehyde), inflammatory cytokines, and genes (IL-6, TNF-α, TGF-β, and NF-κB/IκBα) in BALF/lung tissue. The histopathological examination of the lung revealed the shielding effect of NPM against ALI. NPM exhibited a protective effect on the lung by reducing oxidative stress and inhibiting inflammation. A substantial drop in favipiravir's oral exposure was observed in ALI-state compared to normal-state, but oral exposure upon NPM treatment in ALI-state followed similar behaviour of favipiravir alike normal-state without NPM treatment. Overall, results offer potential insight into Ayurvedic recommendations for immunity boosting during ALI situations.
Collapse
Affiliation(s)
- Abhishek Gour
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashish Dogra
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mahendra K Verma
- Natural Products and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Mahir Bhardwaj
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dilpreet Kour
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashiya Jamwal
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi-835215, India
| | - Mukesh Kumar
- Natural Products and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Bhavna Vij
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajay Kumar
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Utpal Nandi
- PK-PD Toxicology (PPT) Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
27
|
Burkard P, Schonhart C, Vögtle T, Köhler D, Tang L, Johnson D, Hemmen K, Heinze KG, Zarbock A, Hermanns HM, Rosenberger P, Nieswandt B. A key role for platelet GPVI in neutrophil recruitment, migration, and NETosis in the early stages of acute lung injury. Blood 2023; 142:1463-1477. [PMID: 37441848 DOI: 10.1182/blood.2023019940] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality. Excessive neutrophil infiltration into the pulmonary airspace is the main cause for the acute inflammation and lung injury. Platelets have been implicated in the pathogenesis of ALI/ARDS, but the underlying mechanisms are not fully understood. Here, we show that the immunoreceptor tyrosine-based activation motif-coupled immunoglobulin-like platelet receptor, glycoprotein VI (GPVI), plays a key role in the early phase of pulmonary thrombo-inflammation in a model of lipopolysaccharide (LPS)-induced ALI in mice. In wild-type (WT) control mice, intranasal LPS application triggered severe pulmonary and blood neutrophilia, hypothermia, and increased blood lactate levels. In contrast, GPVI-deficient mice as well as anti-GPVI-treated WT mice were markedly protected from pulmonary and systemic compromises and showed no increased pulmonary bleeding. High-resolution multicolor microscopy of lung sections and intravital confocal microcopy of the ventilated lung revealed that anti-GPVI treatment resulted in less stable platelet interactions with neutrophils and overall reduced platelet-neutrophil complex (PNC) formation. Anti-GPVI treatment also reduced neutrophil crawling and adhesion on endothelial cells, resulting in reduced neutrophil transmigration and alveolar infiltrates. Remarkably, neutrophil activation was also diminished in anti-GPVI-treated animals, associated with strongly reduced formation of PNC clusters and neutrophil extracellular traps (NETs) compared with that in control mice. These results establish GPVI as a key mediator of neutrophil recruitment, PNC formation, and NET formation (ie, NETosis) in experimental ALI. Thus, GPVI inhibition might be a promising strategy to reduce the acute pulmonary inflammation that causes ALI/ARDS.
Collapse
Affiliation(s)
- Philipp Burkard
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Charlotte Schonhart
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Linyan Tang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Denise Johnson
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Heike M Hermanns
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Peng W, Qi H, Zhu W, Tong L, Rouzi A, Wu Y, Han L, He L, Yan Y, Pan T, Liu J, Wang Q, Jia Z, Song Y, Zhu Q, Zhou J. Lianhua Qingke ameliorates lipopolysaccharide-induced lung injury by inhibiting neutrophil extracellular traps formation and pyroptosis. Pulm Circ 2023; 13:e12295. [PMID: 37808899 PMCID: PMC10557103 DOI: 10.1002/pul2.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
LHQK is a patented Traditional Chinese Medicine (TCM) which is clinically used for acute tracheobronchitis, cough, and other respiratory diseases. Recent studies have proved that LHQK exhibits excellent clinical efficacy in the treatment of acute lung injury (ALI). However, the corresponding mechanisms remain largely unexplored. In this study, we investigated the effects and the underlying mechanisms of LHQK on lipopolysaccharide (LPS)-induced ALI in mice. The pathological examination, inflammatory cytokines assessments, and mucus secretion evaluation indicated that administration of LHQK ameliorated LPS-induced lung injury, and suppressed the secretion of Muc5AC and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in plasma and BALF. Furthermore, the results of cell-free DNA level showed that LHQK significantly inhibited LPS-induced NETs formation. Western blot revealed that LHQK effectively inhibited LPS-triggered pyroptosis in the lung. In addition, RNA-Seq data analysis, relatively bioinformatic analysis, and network pharmacology analysis revealed that LHQK and relative components may play multiple protective functions in LPS-induced ALI/acute respiratory distress syndrome (ARDS) by regulating multiple targets directly or indirectly related to NETs and pyroptosis. In conclusion, LHQK can effectively attenuate lung injury and reduce lung inflammation by inhibiting LPS-induced NETs formation and pyroptosis, which may be regulated directly or indirectly by active compounds of LHQK.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western MedicineHebeiShijiazhuangChina
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ainiwaer Rouzi
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ludan He
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Yu Yan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ting Pan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Zhenhua Jia
- Hebei Academy of Integrated Traditional Chinese and Western MedicineHebeiShijiazhuangChina
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan UniversityFudan UniversityShanghaiChina
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan UniversityFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionFudan UniversityShanghaiChina
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan UniversityFudan UniversityShanghaiChina
| |
Collapse
|
29
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
30
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
31
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
García-Bengoa M, Meurer M, Stehr M, Elamin AA, Singh M, Oehlmann W, Mörgelin M, von Köckritz-Blickwede M. Mycobacterium tuberculosis PE/PPE proteins enhance the production of reactive oxygen species and formation of neutrophil extracellular traps. Front Immunol 2023; 14:1206529. [PMID: 37675111 PMCID: PMC10478095 DOI: 10.3389/fimmu.2023.1206529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Neutrophil granulocytes predominate in the lungs of patients infected with Mycobacterium tuberculosis (Mtb) in earlier stages of the disease. During infection, neutrophils release neutrophil extracellular traps (NETs), an antimicrobial mechanism by which a DNA-backbone spiked with antimicrobial components traps the mycobacteria. However, the specific mycobacterial factors driving NET formation remain unclear. Proteins from the proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family are critical to Mtb pathophysiology and virulence. Methods Here, we investigated NET induction by PE18, PPE26, and PE31 in primary human blood-derived neutrophils. Neutrophils were stimulated with the respective proteins for 3h, and NET formation was subsequently assessed using confocal fluorescence microscopy. Intracellular ROS levels and cell necrosis were estimated by flow cytometry. Additionally, the influence of phorbol-12-myristate-13-acetate (PMA), a known NADPH oxidase enhancer, on NET formation was examined. Neutrophil integrity following incubation with the PE/PPE proteins was evaluated using transmission electron microscopy. Results For the first time, we report that stimulation of primary human blood-derived neutrophils with Mtb proteins PE18, PPE26, and PE31 resulted in the formation of NETs, which correlated with an increase in intracellular ROS levels. Notably, the presence of PMA further amplified this effect. Following incubation with the PE/PPE proteins, neutrophils were found to remain viable and structurally intact, as verified through transmission electron microscopy, indicating the occurrence of vital NET formation. Discussion These findings offer valuable insights that contribute to a better understanding of host-pathogen interactions during Mtb infection. Moreover, they underscore the significance of these particular Mtb antigens in triggering NET formation, representing a distinctive and previously unrecognized function of PE/PPE antigens.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Matthias Stehr
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | | | | | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
33
|
Ziganshina MM, Shilova NV, Khalturina EO, Dolgushina NV, V Borisevich S, Yarotskaya EL, Bovin NV, Sukhikh GT. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023; 15:1584. [PMID: 37515270 PMCID: PMC10384250 DOI: 10.3390/v15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon where virus-specific antibodies paradoxically cause enhanced viral replication and/or excessive immune responses, leading to infection exacerbation, tissue damage, and multiple organ failure. ADE has been observed in many viral infections and is supposed to complicate the course of COVID-19. However, the evidence is insufficient. Since no specific laboratory markers have been described, the prediction and confirmation of ADE are very challenging. The only possible predictor is the presence of already existing (after previous infection) antibodies that can bind to viral epitopes and promote the disease enhancement. At the same time, the virus-specific antibodies are also a part of immune response against a pathogen. These opposite effects of antibodies make ADE research controversial. The assignment of immunoglobulins to ADE-associated or virus neutralizing is based on their affinity, avidity, and content in blood. However, these criteria are not clearly defined. Another debatable issue (rather terminological, but no less important) is that in most publications about ADE, all immunoglobulins produced by the immune system against pathogens are qualified as pre-existing antibodies, thus ignoring the conventional use of this term for natural antibodies produced without any stimulation by pathogens. Anti-glycan antibodies (AGA) make up a significant part of the natural immunoglobulins pool, and there is some evidence of their antiviral effect, particularly in COVID-19. AGA have been shown to be involved in ADE in bacterial infections, but their role in the development of ADE in viral infections has not been studied. This review focuses on pros and cons for AGA as an ADE trigger. We also present the results of our pilot studies, suggesting that AGAs, which bind to complex epitopes (glycan plus something else in tight proximity), may be involved in the development of the ADE phenomenon.
Collapse
Affiliation(s)
- Marina M Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nadezhda V Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eugenia O Khalturina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Natalya V Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | | | - Ekaterina L Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
34
|
Yang L, Liu T, Zhuo Y, Li D, Li D, Liu J, Gao H, Zhang L, Lin J, Wang X. Verbenalin alleviates acute lung injury induced by sepsis and IgG immune complex through GPR18 receptor. Cell Signal 2023:110768. [PMID: 37315751 DOI: 10.1016/j.cellsig.2023.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Acute lung injury is significantly associated with the aberrant activation and pyroptosis of alveolar macrophages. Targeting the GPR18 receptor presents a potential therapeutic approach to mitigate inflammation. Verbenalin, a prominent component of Verbena in Xuanfeibaidu (XFBD) granules, is recommended for treating COVID-19. In this study, we demonstrate the therapeutic effect of verbenalin on lung injury through direct binding to the GPR18 receptor. Verbenalin inhibits the activation of inflammatory signaling pathways induced by lipopolysaccharide (LPS) and IgG immune complex (IgG IC) via GPR18 receptor activation. The structural basis for verbenalin's effect on GPR18 activation is elucidated through molecular docking and molecular dynamics simulations. Furthermore, we establish that IgG IC induces macrophage pyroptosis by upregulating the expression of GSDME and GSDMD through CEBP-δ activation, while verbenalin inhibits this process. Additionally, we provide the first evidence that IgG IC promotes the formation of neutrophil extracellular traps (NETs), and verbenalin suppresses NETs formation. Collectively, our findings indicate that verbenalin functions as a "phytoresolvin" to promote inflammation regression and suggests that targeting the C/EBP-δ/GSDMD/GSDME axis to inhibit macrophage pyroptosis may represent a novel strategy for treating acute lung injury and sepsis.
Collapse
Affiliation(s)
- Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Tianyu Liu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Dongmei Li
- College of Pharmacy, Nankai University, Tianjin, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Junhong Liu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Hejun Gao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| | - Jianping Lin
- College of Pharmacy, Nankai University, Tianjin, China.
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin University, Tianjin, China.
| |
Collapse
|
35
|
Wu Y, Wei S, Wu X, Li Y, Han X. Neutrophil extracellular traps in acute coronary syndrome. J Inflamm (Lond) 2023; 20:17. [PMID: 37165396 PMCID: PMC10171160 DOI: 10.1186/s12950-023-00344-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Acute coronary syndrome (ACS) is a group of clinical syndromes caused by acute myocardial ischemia, which can cause heart failure, arrhythmia and even sudden death. It is the major cause of disability and death worldwide. Neutrophil extracellular traps (NETs) are reticular structures released by neutrophils activation and have various biological functions. NETs are closely related to the occurrence and development of ACS and also the subsequent damage after myocardial infarction. The mechanisms are complex and interdependent on various pathways, which require further exploration. This article reviewed the role and mechanism of NETs in ACS, thereby providing a valuable reference for the diagnosis and clinical treatment of ACS.
Collapse
Affiliation(s)
- Yawen Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| | - Xue Han
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
36
|
Zhao J, Zhen N, Zhou Q, Lou J, Cui W, Zhang G, Tian B. NETs Promote Inflammatory Injury by Activating cGAS-STING Pathway in Acute Lung Injury. Int J Mol Sci 2023; 24:ijms24065125. [PMID: 36982193 PMCID: PMC10049640 DOI: 10.3390/ijms24065125] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) threatens the survival of critically ill patients, the mechanisms of which are still unclear. Neutrophil extracellular traps (NETs) released by activated neutrophils play a critical role in inflammatory injury. We investigated the role of NETs and the underlying mechanism involved in acute lung injury (ALI). We found a higher expression of NETs and cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) in the airways, which was reduced by Deoxyribonuclease I (DNase I) in ALI. The administration of the STING inhibitor H-151 also significantly relieved inflammatory lung injury, but failed to affect the high expression of NETs in ALI. We isolated murine neutrophils from bone marrow and acquired human neutrophils by inducing HL-60 to differentiate. After the PMA interventions, exogenous NETs were obtained from such extracted neutrophils. Exogenous NETs intervention in vitro and in vivo resulted in airway injury, and such inflammatory lung injury was reversed upon degrading NETs with or inhibiting cGAS-STING with H-151 as well as siRNA STING. In conclusion, cGAS-STING participates in regulating NETs-mediated inflammatory pulmonary injury, which is expected to be a new therapeutic target for ARDS/ALI.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Ningxin Zhen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Qichao Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Jian Lou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
- Correspondence: (G.Z.); (B.T.)
| | - Baoping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd., Hangzhou 310009, China
- Correspondence: (G.Z.); (B.T.)
| |
Collapse
|
37
|
Poli V, Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol 2023; 31:280-293. [PMID: 36344311 PMCID: PMC9974585 DOI: 10.1016/j.tim.2022.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Neutrophil extracellular traps (NETs) evolved to protect the host against microbial infections and are formed by a web-like structure of DNA that is decorated with antimicrobial effectors. Due to their potent inflammatory functions, NETs also cause tissue damage and can favor and/or aggravate inflammatory diseases. This multipronged activity of NETs requires that the induction, release, and degradation of NETs are tightly regulated. Here we describe the key pathways that are intrinsic to neutrophils and regulate NETosis, and we review the most recent findings on how neutrophil extrinsic factors participate in the formation of NETs. In particular, we emphasize how bystander cells contribute to modifying the capacity of neutrophils to undergo NETosis. Finally, we discuss how these neutrophil extrinsic processes can be harnessed to protect the host against the excessive inflammation elicited by uncontrolled NET release.
Collapse
Affiliation(s)
- Valentina Poli
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, Boston, MA, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, Boston, MA, USA.
| |
Collapse
|
38
|
Cui Y, Yang Y, Tao W, Peng W, Luo D, Zhao N, Li S, Qian K, Liu F. Neutrophil Extracellular Traps Induce Alveolar Macrophage Pyroptosis by Regulating NLRP3 Deubiquitination, Aggravating the Development of Septic Lung Injury. J Inflamm Res 2023; 16:861-877. [PMID: 36876152 PMCID: PMC9983334 DOI: 10.2147/jir.s366436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/30/2022] [Indexed: 03/03/2023] Open
Abstract
Background Uncontrolled inflammation is a typical feature of sepsis-related lung injury. The key event in the progression of lung injury is Caspase-1-dependent alveolar macrophage (AM) pyroptosis. Similarly, neutrophils are stimulated to release neutrophil extracellular traps (NETs) to participate in the innate immune response. This study aims to illustrate the specific mechanisms by which NETs activate AM at the post-translational level and maintain lung inflammation. Methods We established a septic lung injury model by caecal ligation and puncture. We found elevated NETs and interleukin-1b (IL-1β) levels in the lung tissues of septic mice. Western blot and immunofluorescence analyses was utilized to determine whether NETs promote AM pyroptosis and whether degrading NETs or targeting the NLRP3 inflammasome had protective effects on AM pyroptosis and lung injury. Flow cytometric and co-immunoprecipitation analyses verified intracellular reactive oxygen species (ROS) levels and the binding of NLRP3 and ubiquitin (UB) molecules, respectively. Results Increased NETs production and IL-1β release in septic mice were correlated with the degree of lung injury. NETs upregulated the level of NLRP3, followed by NLRP3 inflammasome assembly and caspase-1 activation, leading to AM pyroptosis executed by the activated fragment of full-length gasdermin D (FH-GSDMD). However, the opposite effect was observed in the context of NETs degradation. Furthermore, NETs markedly elicited an increase in ROS, which facilitated the activation of NLRP3 deubiquitination and the subsequent pyroptosis pathway in AM. Removal of ROS could promote the binding of NLRP3 and ubiquitin, inhibit NLRP3 binding to apoptosis-associated spotted proteins (ASC) and further alleviate the inflammatory changes in the lungs. Conclusion In summary, these findings indicate that NETs prime ROS generation, which promotes NLRP3 inflammasome activation at the post-translational level to mediate AM pyroptosis and sustain lung injury in septic mice.
Collapse
Affiliation(s)
- Yamei Cui
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ying Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wenqiang Tao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wei Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Deqiang Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ning Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Shuangyan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kejian Qian
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
39
|
Zhu W, Zhang Y, Wang Y. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines. Front Pharmacol 2022; 13:1103309. [PMID: 36618910 PMCID: PMC9815466 DOI: 10.3389/fphar.2022.1103309] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a disastrous condition, which can be caused by a wide range of diseases, such as pneumonia, sepsis, traumas, and the most recent, COVID-19. Even though we have gained an improved understanding of acute lung injury/acute respiratory distress syndrome pathogenesis and treatment mechanism, there is still no effective treatment for acute lung injury/acute respiratory distress syndrome, which is partly responsible for the unacceptable mortality rate. In the pathogenesis of acute lung injury, the inflammatory storm is the main pathological feature. More and more evidences show that immune cells and cytokines secreted by immune cells play an irreplaceable role in the pathogenesis of acute lung injury. Therefore, here we mainly reviewed the role of various immune cells in acute lung injury from the perspective of immunotherapy, and elaborated the crosstalk of immune cells and cytokines, aiming to provide novel ideas and targets for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Wenfang Zhu
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China
| | - Yiwen Zhang
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| | - Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| |
Collapse
|
40
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Methods for the Assessment of NET Formation: From Neutrophil Biology to Translational Research. Int J Mol Sci 2022; 23:ijms232415823. [PMID: 36555464 PMCID: PMC9781911 DOI: 10.3390/ijms232415823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Several studies have indicated that a neutrophil extracellular trap (NET) formation, apart from its role in host defense, can contribute to or drive pathogenesis in a wide range of inflammatory and thrombotic disorders. Therefore, NETs may serve as a therapeutic target or/and a diagnostic tool. Here, we compare the most commonly used techniques for the assessment of NET formation. Furthermore, we review recent data from the literature on the application of basic laboratory tools for detecting NET release and discuss the challenges and the advantages of these strategies in NET evaluation. Taken together, we provide some important insights into the qualitative and quantitative molecular analysis of NETs in translational medicine today.
Collapse
|
42
|
Veljković M, Pavlović DR, Stojanović NM, Džopalić T, Popović Dragonjić L. Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention-What Have We Learned Up to Now? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1686. [PMID: 36422225 PMCID: PMC9695647 DOI: 10.3390/medicina58111686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 08/10/2023]
Abstract
The massive expansion of the new coronavirus SARS-CoV-2 has urged countries to introduce lockdowns and set restrictive actions worldwide. The focus of the studies was to determine how COVID-19 induces damage to the lungs in order to find an alternative or adjuvant therapy that could lead to preventing COVID-19 or at least ameliorating it. This paper aims to survey the literature and provide new insights into behavioral and dietary habits that could influence the prevention of COVID-19. Maintaining an adequate mental health status, sleep, and taking moderate exercise are often disrupted in the conditions of lockdown and are followed by weakened immunity. Mediterranean and vegetarian diets are superior to other eating patterns in terms of immunity boosting and fighting COVID-19. Our study showed how adequate hydration, green tea intake, and supplementation with vitamins D, C, and E can increase our chances of avoiding the infection and even help us sleep better. Another focus of the research was on determining what level of hygiene really increases one's chances of not contracting SARS-CoV-2, but this seems a little counter-intuitive at first. Since an immunocompromised state is a familiar predisposing factor for all contagious diseases, maintaining healthy behavioral and dietary habits could be a crucial step in boosting immunity and preventing COVID-19.
Collapse
Affiliation(s)
- Milica Veljković
- Department of Physiology, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | - Dragana R. Pavlović
- Department of Pharmacy, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | | | - Tanja Džopalić
- Department of Immunology, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | - Lidija Popović Dragonjić
- Department of Infectious Diseases and Epidemiology, Medical Faculty, University of Niš, 18000 Niš, Serbia
- Clinic for Infectology, University Clinical Center Niš, 18000 Niš, Serbia
| |
Collapse
|
43
|
Shang T, Zhang ZS, Wang XT, Chang J, Zhou ME, Lyu M, He S, Yang J, Chang YX, Wang Y, Li MC, Gao X, Zhu Y, Feng Y. Xuebijing injection inhibited neutrophil extracellular traps to reverse lung injury in sepsis mice via reducing Gasdermin D. Front Pharmacol 2022; 13:1054176. [PMID: 36467039 PMCID: PMC9710739 DOI: 10.3389/fphar.2022.1054176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 09/11/2023] Open
Abstract
The mortality of sepsis and septic shock remains high worldwide. Neutrophil extracellular traps (NETs) release is a major cause of organ failure and mortality in sepsis. Targeting Gasdermin D (GSDMD) can restrain NETs formation, which is promising for sepsis management. However, no medicine is identified without severe safety concerns for this purpose. Xuebijing injection (XBJ) has been demonstrated to alleviate the clinical symptoms of COVID-19 and sepsis patients, but there are not enough animal studies to reveal its mechanisms in depth. Therefore, we wondered whether XBJ relieved pulmonary damage in sepsis by suppressing NETs formation and adopted a clinically relevant polymicrobial infection model to test this hypothesis. Firstly, XBJ effectively reversed lung injury caused by sepsis and restrained neutrophils recruitment to lung by down-regulating proinflammatory chemokines, such as CSF-3, CXCL-2, and CXCR-2. Strikingly, we found that XBJ significantly reduced the expressions of NETs component proteins, including citrullinated histone H3 (CitH3), myeloperoxidase (MPO), and neutrophil elastase (NE). GSDMD contributes to the production of NETs in sepsis. Notably, XBJ exhibited a reduced effect on the expressions of GSDMD and its upstream regulators. Besides, we also revealed that XBJ reversed NETs formation by inhibiting the expressions of GSDMD-related genes. Collectively, we demonstrated XBJ protected against sepsis-induced lung injury by reversing GSDMD-related pathway to inhibit NETs formation.
Collapse
Affiliation(s)
- Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhi-Sen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xin-Tong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jing Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Meng-En Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Ming Lyu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yan-Xu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming-Chun Li
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
44
|
Yu J, Zhang N, Zhang Z, Li Y, Gao J, Chen C, Wen Z. Exploring predisposing factors and pathogenesis contributing to injuries of donor lungs. Expert Rev Respir Med 2022; 16:1191-1203. [PMID: 36480922 DOI: 10.1080/17476348.2022.2157264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Lung transplantation (LTx) remains the only therapeutic strategy for patients with incurable lung diseases. However, its use has been severely limited by the narrow donor pool and potential concerns of inferior quality of donor lungs, which are more susceptible to external influence than other transplant organs. Multiple insults, including various causes of death and a series of perimortem events, may act together on donor lungs and eventually culminate in primary graft dysfunction (PGD) after transplantation as well as other poor short-term outcomes. AREAS COVERED This review focuses on the predisposing factors contributing to injuries to the donor lungs, specifically focusing on the pathogenesis of these injuries and their impact on post-transplant outcomes. Additionally, various maneuvers to mitigate donor lung injuries have been proposed. EXPERT OPINION The selection criteria for eligible donors vary and may be poor discriminators of lung injury. Not all transplanted lungs are in ideal condition. With the rapidly increasing waiting list for LTx, the trend of using marginal donors has become more apparent, underscoring the need to gain a deeper understanding of donor lung injuries and discover more donor resources.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Yuping Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, Zhejiang, China
| |
Collapse
|
45
|
Biological Effects of Intravenous Vitamin C on Neutrophil Extracellular Traps and the Endothelial Glycocalyx in Patients with Sepsis-Induced ARDS. Nutrients 2022; 14:nu14204415. [PMID: 36297099 PMCID: PMC9610384 DOI: 10.3390/nu14204415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
(1) Background: The disease-modifying mechanisms of high-dose intravenous vitamin C (HDIVC) in sepsis induced acute respiratory distress syndrome (ARDS) is unclear. (2) Methods: We performed a post hoc study of plasma biomarkers from subjects enrolled in the randomized placebo-controlled trial CITRIS-ALI. We explored the effects of HDIVC on cell-free DNA (cfDNA) and syndecan-1, surrogates for neutrophil extracellular trap (NET) formation and degradation of the endothelial glycocalyx, respectively. (3) Results: In 167 study subjects, baseline cfDNA levels in HDIVC (84 subjects) and placebo (83 subjects) were 2.18 ng/µL (SD 4.20 ng/µL) and 2.65 ng/µL (SD 3.87 ng/µL), respectively, p = 0.45. At 48-h, the cfDNA reduction was 1.02 ng/µL greater in HDIVC than placebo, p = 0.05. Mean baseline syndecan-1 levels in HDIVC and placebo were 9.49 ng/mL (SD 5.57 ng/mL) and 10.83 ng/mL (SD 5.95 ng/mL), respectively, p = 0.14. At 48 h, placebo subjects exhibited a 1.53 ng/mL (95% CI, 0.96 to 2.11) increase in syndecan-1 vs. 0.75 ng/mL (95% CI, 0.21 to 1.29, p = 0.05), in HDIVC subjects. (4) Conclusions: HDIVC infusion attenuated cell-free DNA and syndecan-1, biomarkers associated with sepsis-induced ARDS. Improvement of these biomarkers suggests amelioration of NETosis and shedding of the vascular endothelial glycocalyx, respectively.
Collapse
|
46
|
Huang P, Zhang J, Duan W, Jiao J, Leng A, Qu J. Plant polysaccharides with anti-lung injury effects as a potential therapeutic strategy for COVID-19. Front Pharmacol 2022; 13:982893. [DOI: 10.3389/fphar.2022.982893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
When coronavirus disease 2019 (COVID-19) develops into the severe phase, lung injury, acute respiratory distress syndrome, and/or respiratory failure could develop within a few days. As a result of pulmonary tissue injury, pathomorphological changes usually present endothelial dysfunction, inflammatory cell infiltration of the lung interstitium, defective gas exchange, and wall leakage. Consequently, COVID-19 may progress to tremendous lung injury, ongoing lung failure, and death. Exploring the treatment drugs has important implications. Recently, the application of traditional Chinese medicine had better performance in reducing fatalities, relieving symptoms, and curtailing hospitalization. Through constant research and study, plant polysaccharides may emerge as a crucial resource against lung injury with high potency and low side effects. However, the absence of a comprehensive understanding of lung-protective mechanisms impedes further investigation of polysaccharides. In the present article, a comprehensive review of research into plant polysaccharides in the past 5 years was performed. In total, 30 types of polysaccharides from 19 kinds of plants have shown lung-protective effects through the pathological processes of inflammation, oxidative stress, apoptosis, autophagy, epithelial–mesenchymal transition, and immunomodulation by mediating mucin and aquaporins, macrophage, endoplasmic reticulum stress, neutrophil, TGF-β1 pathways, Nrf2 pathway, and other mechanisms. Moreover, the deficiencies of the current studies and the future research direction are also tentatively discussed. This research provides a comprehensive perspective for better understanding the mechanism and development of polysaccharides against lung injury for the treatment of COVID-19.
Collapse
|
47
|
Yamamoto Y, Kadoya K, Terkawi MA, Endo T, Konno K, Watanabe M, Ichihara S, Hara A, Kaneko K, Iwasaki N, Ishijima M. Neutrophils delay repair process in Wallerian degeneration by releasing NETs outside the parenchyma. Life Sci Alliance 2022; 5:e202201399. [PMID: 35961782 PMCID: PMC9375156 DOI: 10.26508/lsa.202201399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/05/2022] Open
Abstract
Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Ichihara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Akira Hara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
The Controversial Role of LPS in Platelet Activation In Vitro. Int J Mol Sci 2022; 23:ijms231810900. [PMID: 36142813 PMCID: PMC9505944 DOI: 10.3390/ijms231810900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circulating platelets are responsible for hemostasis and thrombosis but are also primary sensors of pathogens and are involved in innate immunity, inflammation, and sepsis. Sepsis is commonly caused by an exaggerated immune response to bacterial, viral, and fungal infections, and leads to severe thrombotic complications. Among others, the endotoxin lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria is the most common trigger of sepsis. Since the discovery of the expression of the LPS receptor TLR4 in platelets, several studies have investigated the ability of LPS to induce platelet activation and to contribute to a prothrombotic phenotype, per se or in combination with plasma proteins and platelet agonists. This issue, however, is still controversial, as different sources, purity, and concentrations of LPS, different platelet-purification protocols, and different methods of analysis have been used in the past two decades, giving contradictory results. This review summarizes and critically analyzes past and recent publications about LPS-induced platelet activation in vitro. A methodological section illustrates the principal platelet preparation protocols and significant differences. The ability of various sources of LPS to elicit platelet activation in terms of aggregation, granule secretion, cytokine release, ROS production, and interaction with leukocytes and NET formation is discussed.
Collapse
|
49
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
50
|
Xue Y, Zhang Y, Chen L, Wang Y, Lv Z, Yang LQ, Li S. Citrulline protects against LPS‑induced acute lung injury by inhibiting ROS/NLRP3‑dependent pyroptosis and apoptosis via the Nrf2 signaling pathway. Exp Ther Med 2022; 24:632. [PMID: 36160882 PMCID: PMC9468793 DOI: 10.3892/etm.2022.11569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with sepsis and is accompanied by high mortality. The present study aimed to investigate if the organic compound citrulline has a protective against lipopolysaccharide (LPS)-stimulated ALI and its potential mechanisms. ALI was induced in mice by intraperitoneal (i.p.) injection of LPS (10 mg/kg). Citrulline (1 g/kg/day) was administrated i.p. 7 days prior to LPS injection. Mouse lung vascular endothelial cells (MLVECs) were divided into five groups: Control, LPS, LPS + Cit, LPS + N-acetyl-L-cysteine (NAC) and LPS + Cit + ML385. Lung injury was determined by morphology changes. Apoptosis and pyroptosis were detected using western blot analysis and immunofluorescence. The present results indicated that citrulline can significantly attenuate ALI. Citrulline pretreatment decreased the expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and decreased pyroptosis and apoptosis. Intervention with the total reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine attenuated NLRP3 inflammasome-associated pyroptosis and apoptosis in LPS-treated MLVECs. Citrulline pretreatment inhibited pyroptotic cell death and apoptosis induced by LPS. Citrulline decreased accumulation of intracellular ROS and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Furthermore, the Nrf2 inhibitor ML385 reversed ROS generation, NLRP3 inflammasome-mediated pyroptosis and apoptosis suppressed by citrulline. In summary, the present data demonstrated that citrulline may confer protection against ALI via inhibition of ROS/NLRP3 inflammasome-dependent pyroptosis and apoptosis via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yao Xue
- Department of Anesthesiology, The Affiliated Shenmu Hospital of Northwest University, Shenmu, Shaanxi 719300, P.R. China
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Li Chen
- Department of Anesthesiology, Suqian Hospital of Nanjing Drum‑Tower Hospital Group, Suqian, Jiangsu 223865, P.R. China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Li-Qiao Yang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|