1
|
Momotyuk E, Ebrahim N, Shakirova K, Dashinimaev E. Role of the cytoskeleton in cellular reprogramming: effects of biophysical and biochemical factors. Front Mol Biosci 2025; 12:1538806. [PMID: 40123979 PMCID: PMC11926148 DOI: 10.3389/fmolb.2025.1538806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
The cytoskeleton plays a crucial role in regulating cellular behavior, acting as both a structural framework and a mediator of mechanical and biochemical signals that influence cell fate. In the context of cellular reprogramming, modifications to the cytoskeleton can have profound effects on lineage commitment and differentiation efficiency. This review explores the impact of mechanical forces such as substrate stiffness, topography, extracellular fluid viscosity, and cell seeding density on cytoskeletal organization and mechanotransduction pathways, including Rho/ROCK and YAP/TAZ signaling. Additionally, we examine the influence of biochemical agents that modulate cytoskeletal dynamics, such as actin and microtubule polymerization inhibitors, and their effects on stem cell differentiation. By understanding how cytoskeletal remodeling governs cellular identity, this review highlights potential strategies for improving reprogramming efficiency and directing cell fate by manipulating mechanical and biochemical cues.
Collapse
Affiliation(s)
| | | | | | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Cerce DDP, Cândido GC, de Almeida MB, Silva JL, Dias FGG, Rodrigues MA. Exploring the relationship between histological grading, fibrillar collagen alterations and nuclear phenotypes in canine mammary carcinomas. J Comp Pathol 2025; 218:1-11. [PMID: 40022855 DOI: 10.1016/j.jcpa.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
We evaluated collagen deposition and nuclear phenotypes in non-inflammatory, metastasis-free canine mammary carcinomas at the time of tumour resection. A retrospective cohort analysis was conducted on 68 female dogs diagnosed with mammary carcinomas between January 2013 and December 2021, excluding cases of mammary sarcoma, carcinosarcoma, inflammatory mammary cancer and metastases. Tumours were classified into histological subtypes using the Peña grading system and assigned grades accordingly. Software-assisted video image analysis was utilized to quantitatively assess collagen deposition, organization and nuclear phenotypes. Histological grading was performed by three independent examiners to ensure reproducibility and minimize observer bias. Significant differences in collagen deposition and nuclear phenotypes were observed across histological grades. Grade III carcinomas had significantly greater collagen deposition, both within the tumour core and at the tumour periphery, compared with grades I and II. Collagen organization was markedly increased in grade III carcinomas. Nuclear phenotype analysis revealed distinct features that allowed clear differentiation between grade II and grade III tumours. Software-assisted image analysis effectively identified distinct patterns of collagen deposition, organization and nuclear phenotypes associated with canine mammary carcinomas of various grades, providing important information about tumour biology.
Collapse
Affiliation(s)
- Danielle D P Cerce
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Gabriela C Cândido
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Maysa B de Almeida
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Jhuan L Silva
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Fernanda G G Dias
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Marcela A Rodrigues
- Franca University, UNIFRAN, Avenida Dr. Armando de Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| |
Collapse
|
3
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
4
|
Whitworth CP, Aw WY, Doherty EL, Handler C, Ambekar Y, Sawhney A, Scarcelli G, Polacheck WJ. P300 Modulates Endothelial Mechanotransduction of Fluid Shear Stress. Cell Mol Bioeng 2024; 17:507-523. [PMID: 39513009 PMCID: PMC11538229 DOI: 10.1007/s12195-024-00805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/28/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose P300 is a lysine acetyltransferase that plays a significant role in regulating transcription and the nuclear acetylome. While P300 has been shown to be required for the transcription of certain early flow responsive genes, relatively little is known about its role in the endothelial response to hemodynamic fluid stress. Here we sought to define the role of P300 in mechanotransduction of fluid shear stress in the vascular endothelium. Methods To characterize cellular mechanotransduction and physical properties after perturbation of P300, we performed bulk RNA sequencing, confocal and Brillouin microscopy, and functional assays on HUVEC. Results Inhibition of P300 in HUVEC triggers a hyper-alignment phenotype, with cells aligning to flow sooner and more uniformly in the presence of the P300 inhibitor A-485 compared to load controls. Bulk transcriptomics revealed differential expression of genes related to the actin cytoskeleton and migration in cells exposed to A-485. Scratch wound and bead sprouting assays demonstrated that treatment with A-485 increased 2D and 3D migration of HUVEC. Closer examination of filamentous actin revealed the presence of a perinuclear actin cap in both P300 knockdown HUVEC and HUVEC treated with A-485. Interrogation of cell mechanical properties via Brillouin microscopy demonstrated that HUVEC treated with A-485 had lower Brillouin shifts in both the cell body and the nucleus, suggesting that P300 inhibition triggers an increase in cellular and nuclear compliance. Conclusions Together, these results point to a novel role of P300 in modulating endothelial cell mechanics and mechanotransduction of hemodynamic shear stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00805-2.
Collapse
Affiliation(s)
- Chloe P. Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina in Chapel Hill, Chapel Hill, NC USA
| | - Wen Y. Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Chenchen Handler
- Department of Mechanical Engineering, University of Maryland, College Park, MD USA
| | - Yogeshwari Ambekar
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - Aanya Sawhney
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
5
|
Dogan E, Galifi CA, Cecen B, Shukla R, Wood TL, Miri AK. Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip. Acta Biomater 2024; 186:156-166. [PMID: 39097123 PMCID: PMC11390304 DOI: 10.1016/j.actbio.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher A Galifi
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Roshni Shukla
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
6
|
Chen YQ, Lee HC, Lee HH. Shp2 contributes to the regulation of nuclear shape and cellular viscoelasticity in response to substrate spatial cues. Biochem Biophys Res Commun 2024; 721:150144. [PMID: 38781661 DOI: 10.1016/j.bbrc.2024.150144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Cell polarization can be guided by substrate topology through space constraints and adhesion induction, which are part of cellular mechanosensing pathways. Here, we demonstrated that protein tyrosine phosphatase Shp2 plays a crucial role in mediating the response of cells to substrate spatial cues. When compared to cells spreading on surfaces coated uniformly with fibronectin (FN), cells attached to 10 μm-width FN-strip micropattern (MP), which provides spatial cues for uniaxial spreading, exhibited elongated focal adhesions (FAs) and aligned stress fibers in the direction of the MP. As a result of uniaxial cell spreading, nuclei became elongated, dependent on ROCK-mediated actomyosin contractility. Additionally, intracellular viscoelasticity also increased. Shp2-deficient cells did not display elongated FAs mediated by MP, well-aligned stress fibers, or changes in nuclear shape and intracellular viscoelasticity. Overall, our data suggest that Shp2 is involved in regulating FAs and the actin cytoskeleton to modulate nuclear shape and intracellular physical properties in response to substrate spatial cues.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Chang Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Dutta S, Muraganadan T, Vasudevan M. Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy. Cytoskeleton (Hoboken) 2024. [PMID: 39091017 DOI: 10.1002/cm.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
- Theomics International Private Limited, Bengaluru, India
| | - T Muraganadan
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
8
|
Inoue S, Nagao J, Kawamoto K, Kan-o K, Fukuyama S, Sasaki S, Kudo S, Okamoto I, Sera T. Overstretching alveolar epithelial type II cells decreases surfactant secretion via actin polymerization and intracellular trafficking alteration. Heliyon 2024; 10:e33499. [PMID: 39040228 PMCID: PMC11260927 DOI: 10.1016/j.heliyon.2024.e33499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary surfactant is essential for maintaining proper lung function. Alveolar epithelial type II (AE2) cells secrete surfactants via lamellar bodies (LBs). In tidal loading during each breath, the physiological cyclic stretching of AE2 cells promotes surfactant secretion. Excessive stretching inhibits surfactant secretion, which is considered to contribute to the development of lung damage. However, its precise mechanism remains unknown. This study tested whether actin polymerization and intracellular transport are required for pulmonary surfactant secretion and the association of actin polymerization and transport in identical human AE2-derived A549 cells using live-cell imaging, not in the bulk cells population. We found that overstretching approximately doubled actin polymerization into filaments (F-actin) and suppressed LB secretion by half in the fluorescent area ratio, compared with physiological stretching (F-actin: 1.495 vs 0.643 (P < 0.01); LB: 0.739 vs 0.332 (P < 0.01)). An inhibitor of actin polymerization increased LB secretion. Intracellular tracking using fluorescent particles revealed that cyclic stretching shifted the particle motion perpendicularly to the direction of stretching according to the orientation of the F-actin (proportion of perpendicular axis motion prior particle: 0h 40.12 % vs 2h 63.13 % (P < 0.01)), and particle motion was restricted over time in the cells subjected to overstretching, indicating that overstretching regulates intracellular transport dynamics (proportion of stop motion particle: 0h 1.01 % vs 2h 11.04 % (P < 0.01)). These findings suggest that overstretching changes secretion through the cytoskeleton: overstretching AE2 cells inhibits pulmonary surfactant secretion, at least through accelerating actin polymerization and decreasing intracellular trafficking, and the change in actin orientation would modulate intracellular trafficking.
Collapse
Affiliation(s)
- Shigesato Inoue
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Junpei Nagao
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Kouhei Kawamoto
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-o
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Fukuyama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, National Hospital Organization Omuta National Hospital, Fukuoka, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
9
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
10
|
Klimovič Š, Beckerová D, Věžník J, Kabanov D, Lacina K, Jelinkova S, Gumulec J, Rotrekl V, Přibyl J. Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells. BIOMATERIALS ADVANCES 2024; 159:213819. [PMID: 38430724 DOI: 10.1016/j.bioadv.2024.213819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Collapse
Affiliation(s)
- Šimon Klimovič
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Věžník
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniil Kabanov
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Lacina
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromír Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Přibyl
- CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
11
|
Nelson T, Vargas-Hernández S, Freire M, Cheng S, Gustavsson AK. Multimodal illumination platform for 3D single-molecule super-resolution imaging throughout mammalian cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:3050-3063. [PMID: 38855669 PMCID: PMC11161355 DOI: 10.1364/boe.521362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 06/11/2024]
Abstract
Single-molecule super-resolution imaging is instrumental in investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise 3D nanoscale studies of a wide range of cellular structures. Here, we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi- and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin - a protein located in the focal adhesion complex - and actin in human osteosarcoma cells.
Collapse
Affiliation(s)
- Tyler Nelson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Margareth Freire
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Siyang Cheng
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Center for Nanoscale Imaging Sciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
12
|
Ma T, Liu X, Su H, Shi Q, He Y, Wu F, Gao C, Li K, Liang Z, Zhang D, Zhang X, Hu K, Li S, Wang L, Wang M, Yue S, Hong W, Chen X, Zhang J, Zheng L, Deng X, Wang P, Fan Y. Coupling of Perinuclear Actin Cap and Nuclear Mechanics in Regulating Flow-Induced Yap Spatiotemporal Nucleocytoplasmic Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305867. [PMID: 38161226 PMCID: PMC10953556 DOI: 10.1002/advs.202305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Mechanical forces, including flow shear stress, govern fundamental cellular processes by modulating nucleocytoplasmic transport of transcription factors like Yes-associated Protein (YAP). However, the underlying mechanical mechanism remains elusive. In this study, it is reported that unidirectional flow induces biphasic YAP transport with initial nuclear import, followed by nuclear export as actin cap formation and nuclear stiffening. Conversely, pathological oscillatory flow induces slight actin cap formation, nuclear softening, and sustained YAP nuclear localization. To elucidate the disparately YAP spatiotemporal distribution, a 3D mechanochemical model is developed, which integrates flow sensing, cytoskeleton organization, nucleus mechanotransduction, and YAP transport. The results unveiled that despite the significant localized nuclear stress imposed by the actin cap, its inherent stiffness counteracts the dispersed contractile stress exerted by conventional fibers on the nuclear membrane. Moreover, alterations in nuclear stiffness synergistically regulate nuclear deformation, thereby governing YAP transport. Furthermore, by expanding the single-cell model to a collective vertex framework, it is revealed that the irregularities in actin cap formation within individual cells have the potential to induce topological defects and spatially heterogeneous YAP distribution in the cellular monolayer. This work unveils a unified mechanism of flow-induced nucleocytoplasmic transport, providing a linkage between transcription factor localization and mechanical stimulation.
Collapse
Affiliation(s)
- Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haoran Su
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Fan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Chenxing Gao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Kexin Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zhuqing Liang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Dongrui Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Ke Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Shangyu Li
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Li Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Min Wang
- Department of Gynecology and ObstetricsStrategic Support Force Medical CenterBeijing100101China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Weili Hong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xun Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
- School of Engineering MedicineBeihang UniversityBeijing100083China
| |
Collapse
|
13
|
Nelson T, Vargas-Hernández S, freire M, Cheng S, Gustavsson AK. Multimodal illumination platform for 3D single-molecule super-resolution imaging throughout mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579549. [PMID: 38405960 PMCID: PMC10888752 DOI: 10.1101/2024.02.08.579549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-molecule super-resolution imaging is instrumental for investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise, 3D nanoscale studies of a wide range of cellular structures. Here we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi-and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin - a protein located in the focal adhesion complex - and actin in human osteosarcoma cells.
Collapse
Affiliation(s)
- Tyler Nelson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Margareth freire
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Siyang Cheng
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, 6100 Main St, Houston, TX 77005, USA
- Institute of Biosciences & Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Center for Nanoscale Imaging Sciences, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
14
|
Murali VS, Rajendran D, Isogai T, DeBerardinis RJ, Danuser G. RhoA activation promotes glucose uptake to elevate proliferation in MAPK inhibitor resistant melanoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574940. [PMID: 38260449 PMCID: PMC10802590 DOI: 10.1101/2024.01.09.574940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cutaneous melanomas harboring a B-RafV600E mutation are treated with immune check point inhibitors or kinase inhibitor combination therapies relying on MAPK inhibitors (MAPKi) Dabrafenib and Trametinib (Curti and Faries, 2021). However, cells become resistant to treatments over the timespan of a few months. Resistance to MAPKi has been associated with adoption of an aggressive amoeboid phenotype characterized by elevated RhoA signaling, enhanced contractility and thick cortical filamentous actin (F-actin) structures (Kim et al., 2016; Misek et al., 2020). Targeting active RhoA through Rho-kinase (ROCK) inhibitors, either alone or in combination with immunotherapies, reverts MAPKi-resistance (Misek et al., 2020; Orgaz et al., 2020). Yet, the mechanisms for this behavior remain largely unknown. Given our recent findings of cytoskeleton's role in cancer cell proliferation (Mohan et al., 2019), survival (Weems et al., 2023), and metabolism (Park et al., 2020), we explored possibilities by which RhoA-driven changes in cytoskeleton structure may confer resistance. We confirmed elevated activation of RhoA in a panel of MAPKi-resistant melanoma cell lines, leading to a marked increase in the presence of contractile F-actin bundles. Moreover, these cells had increased glucose uptake and glycolysis, a phenotype disrupted by pharmacological perturbation of ROCK. However, glycolysis was unaffected by disruption of F-actin bundles, indicating that glycolytic stimulation in MAPKi-resistant melanoma is independent of F-actin organization. Instead, our findings highlight a mechanism in which elevated RhoA signaling activates ROCK, leading to the activation of insulin receptor substrate 1 (IRS1) and P85 of the PI3K pathway, which promotes cell surface expression of GLUT1 and elevated glucose uptake. Application of ROCK inhibitor GSK269962A results in reduced glucose uptake and glycolysis, thus impeding cell proliferation. Our study adds a mechanism to the proposed use of ROCK inhibitors for long-term treatments on MAPKi-resistant melanomas.
Collapse
Affiliation(s)
- Vasanth Siruvallur Murali
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute and Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Wang Z, Chen X, Chen N, Yan H, Wu K, Li J, Ru Q, Deng R, Liu X, Kang R. Mechanical Factors Regulate Annulus Fibrosus (AF) Injury Repair and Remodeling: A Review. ACS Biomater Sci Eng 2024; 10:219-233. [PMID: 38149967 DOI: 10.1021/acsbiomaterials.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Nan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Hongjie Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ke Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, Henan Province 466001, P.R. China
| | - Qingyuan Ru
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| |
Collapse
|
16
|
Sgarzi M, Mazzeschi M, Santi S, Montacci E, Panciera T, Ferlizza E, Girone C, Morselli A, Gelfo V, Kuhre RS, Cavallo C, Valente S, Pasquinelli G, Győrffy B, D'Uva G, Romaniello D, Lauriola M. Aberrant MET activation impairs perinuclear actin cap organization with YAP1 cytosolic relocation. Commun Biol 2023; 6:1044. [PMID: 37838732 PMCID: PMC10576810 DOI: 10.1038/s42003-023-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.
Collapse
Affiliation(s)
- Michela Sgarzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
- IRCCS-Institute Orthopaedic Rizzoli, Bologna, Italy
| | - Elisa Montacci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Rikke Sofie Kuhre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory of Preclinical Studies for Regenerative Medicine of the Musculoskeletal System (RAMSES), (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Balazs Győrffy
- Semmelweis University Dept. of Bioinformatics and 2nd Dept. Of Pediatrics, Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy.
| |
Collapse
|
17
|
Wirtz D, Du W, Zhu J, Wu Y, Kiemen A, Wan Z, Hanna E, Sun S. Mechano-induced homotypic patterned domain formation by monocytes. RESEARCH SQUARE 2023:rs.3.rs-3372987. [PMID: 37790337 PMCID: PMC10543314 DOI: 10.21203/rs.3.rs-3372987/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Matrix stiffness and corresponding mechano-signaling play indispensable roles in cellular phenotypes and functions. How tissue stiffness influences the behavior of monocytes, a major circulating leukocyte of the innate system, and how it may promote the emergence of collective cell behavior is less understood. Here, using tunable collagen-coated hydrogels of physiological stiffness, we show that human primary monocytes undergo a dynamic local phase separation to form highly regular, reversible, multicellular, multi-layered domains on soft matrix. Local activation of the β2 integrin initiates inter-cellular adhesion, while global soluble inhibitory factors maintain the steady state domain pattern over days. Patterned domain formation generated by monocytes is unique among other key immune cells, including macrophages, B cells, T cells, and NK cells. While inhibiting their phagocytic capability, domain formation promotes monocytes' survival. We develop a computational model based on the Cahn-Hilliard equation of phase separation, combined with a Turing mechanism of local activation and global inhibition suggested by our experiments, and provides experimentally validated predictions of the role of seeding density and both chemotactic and random cell migration on domain pattern formation. This work reveals that, unlike active matters, cells can generate complex cell phases by exploiting their mechanosensing abilities and combined short-range interactions and long-range signals to enhance their survival.
Collapse
|
18
|
Jun M, Lee YL, Zhou T, Maric M, Burke B, Park S, Low BC, Chiam KH. Subcellular Force Imbalance in Actin Bundles Induces Nuclear Repositioning and Durotaxis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43387-43402. [PMID: 37674326 DOI: 10.1021/acsami.3c07546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Durotaxis is a phenomenon in which cells migrate toward substrates of increasing stiffness. However, how cells assimilate substrate stiffness as a directional cue remains poorly understood. In this study, we experimentally show that mouse embryonic fibroblasts can discriminate between different substrate stiffnesses and develop higher traction forces at regions of the cell adhering to the stiffer pillars. In this way, the cells generate a force imbalance between adhesion sites. It is this traction force imbalance that drives durotaxis by providing directionality for cell migration. Significantly, we found that traction forces are transmitted via LINC complexes to the cell nucleus, which serves to maintain the global force imbalance. In this way, LINC complexes play an essential role in anterograde nuclear movement and durotaxis. This conclusion is supported by the fact that LINC complex-deficient cells are incapable of durotaxis and instead migrate randomly on substrates featuring a stiffness gradient.
Collapse
Affiliation(s)
- Myeongjun Jun
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Yin Loon Lee
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Tianxun Zhou
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
| | - Martina Maric
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Brian Burke
- A*STAR Skin Research Laboratories, A*STAR, Singapore 138648, Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Boon Chuan Low
- Department of Biological Science, National University of Singapore, Singapore 117558, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117558, Singapore
- NUS college, National University of Singapore, Singapore 117558, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics institute, A*STAR, Singapore 138671, Singapore
| |
Collapse
|
19
|
Du W, Zhu J, Wu Y, Kiemen AL, Sun SX, Wirtz D. Mechano-induced homotypic patterned domain formation by monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550819. [PMID: 37546904 PMCID: PMC10402173 DOI: 10.1101/2023.07.27.550819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Matrix stiffness and corresponding mechano-signaling play indispensable roles in cellular phenotypes and functions. How tissue stiffness influences the behavior of monocytes, a major circulating leukocyte of the innate system, and how it may promote the emergence of collective cell behavior is less understood. Here, using tunable collagen-coated hydrogels of physiological stiffness, we show that human primary monocytes undergo a dynamic local phase separation to form highly patterned multicellular multi-layered domains on soft matrix. Local activation of the β2 integrin initiates inter-cellular adhesion, while global soluble inhibitory factors maintain the steady-state domain pattern over days. Patterned domain formation generated by monocytes is unique among other key immune cells, including macrophages, B cells, T cells, and NK cells. While inhibiting their phagocytic capability, domain formation promotes monocytes' survival. We develop a computational model based on the Cahn-Hilliard equation, which includes combined local activation and global inhibition mechanisms of intercellular adhesion suggested by our experiments, and provides experimentally validated predictions of the role of seeding density and both chemotactic and random cell migration on pattern formation.
Collapse
|
20
|
Mukherjee A, Ron JE, Hu HT, Nishimura T, Hanawa‐Suetsugu K, Behkam B, Mimori‐Kiyosue Y, Gov NS, Suetsugu S, Nain AS. Actin Filaments Couple the Protrusive Tips to the Nucleus through the I-BAR Domain Protein IRSp53 during the Migration of Cells on 1D Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207368. [PMID: 36698307 PMCID: PMC9982589 DOI: 10.1002/advs.202207368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 05/31/2023]
Abstract
The cell migration cycle, well-established in 2D, proceeds with forming new protrusive structures at the cell membrane and subsequent redistribution of contractile machinery. Three-dimensional (3D) environments are complex and composed of 1D fibers, and 1D fibers are shown to recapitulate essential features of 3D migration. However, the establishment of protrusive activity at the cell membrane and contractility in 1D fibrous environments remains partially understood. Here the role of membrane curvature regulator IRSp53 is examined as a coupler between actin filaments and plasma membrane during cell migration on single, suspended 1D fibers. IRSp53 depletion reduced cell-length spanning actin stress fibers that originate from the cell periphery, protrusive activity, and contractility, leading to uncoupling of the nucleus from cellular movements. A theoretical model capable of predicting the observed transition of IRSp53-depleted cells from rapid stick-slip migration to smooth and slower migration due to reduced actin polymerization at the cell edges is developed, which is verified by direct measurements of retrograde actin flow using speckle microscopy. Overall, it is found that IRSp53 mediates actin recruitment at the cellular tips leading to the establishment of cell-length spanning fibers, thus demonstrating a unique role of IRSp53 in controlling cell migration in 3D.
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Jonathan Emanuel Ron
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Hooi Ting Hu
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Tamako Nishimura
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Bahareh Behkam
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Yuko Mimori‐Kiyosue
- Laboratory for Molecular and Cellular DynamicsRIKEN Center for Biosystems Dynamics ResearchMinatojima‐minaminachiChuo‐kuKobeHyogo650‐0047Japan
| | - Nir Shachna Gov
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Shiro Suetsugu
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
- Data Science CenterNara Institute of Science and TechnologyIkoma630‐0192Japan
- Center for Digital Green‐innovationNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | |
Collapse
|
21
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
22
|
Grandy C, Port F, Pfeil J, Oliva MAG, Vassalli M, Gottschalk KE. Cell shape and tension alter focal adhesion structure. BIOMATERIALS ADVANCES 2023; 145:213277. [PMID: 36621197 DOI: 10.1016/j.bioadv.2022.213277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins.
Collapse
Affiliation(s)
- Carolin Grandy
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | - Fabian Port
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | - Jonas Pfeil
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg, 89081, Germany
| | | | - Massimo Vassalli
- University of Glasgow, James Watt School of Engineering, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
23
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
24
|
Zhou J, Corvaisier M, Malycheva D, Alvarado-Kristensson M. Hubbing the Cancer Cell. Cancers (Basel) 2022; 14:5924. [PMID: 36497405 PMCID: PMC9738523 DOI: 10.3390/cancers14235924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Oncogenic transformation drives adaptive changes in a growing tumor that affect the cellular organization of cancerous cells, resulting in the loss of specialized cellular functions in the polarized compartmentalization of cells. The resulting altered metabolic and morphological patterns are used clinically as diagnostic markers. This review recapitulates the known functions of actin, microtubules and the γ-tubulin meshwork in orchestrating cell metabolism and functional cellular asymmetry.
Collapse
Affiliation(s)
| | | | | | - Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Skåne University Hospital Malmö 1, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
25
|
Zalieckas J, Mondragon IR, Pobedinskas P, Kristoffersen AS, Mohamed-Ahmed S, Gjerde C, Høl PJ, Hallan G, Furnes ON, Cimpan MR, Haenen K, Holst B, Greve MM. Polycrystalline Diamond Coating on Orthopedic Implants: Realization and Role of Surface Topology and Chemistry in Adsorption of Proteins and Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44933-44946. [PMID: 36135965 PMCID: PMC9542704 DOI: 10.1021/acsami.2c10121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Polycrystalline diamond has the potential to improve the osseointegration of orthopedic implants compared to conventional materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants, such as those used for hip arthroplasty, is the limitation of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time, we demonstrate diamond growth on titanium acetabular shells using the surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (∼400 °C) on three types of acetabular shells with different surface structures and porosities. We achieved the growth of diamond on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in the attachment and proliferation of mammalian cells, we investigated the adsorption of extracellular matrix proteins and monitored the metabolic activity of fibroblasts, osteoblasts, and bone-marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin and type I collagen with the diamond surfaces was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that the proliferation of osteogenic cells was better on hydrogen-terminated UNCD than on the oxygen-terminated counterpart. These findings correlated with the behavior of collagen on diamond substrates observed by FLIM. Hydrogen-terminated UNCD provided better adhesion and proliferation of osteogenic cells, compared to titanium, while the growth of fibroblasts was poorest on hydrogen-terminated NCD and MSCs behaved similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopedic implants to further improve bone fixation and osseointegration.
Collapse
Affiliation(s)
- Justas Zalieckas
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Ivan R. Mondragon
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Paulius Pobedinskas
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC,
Interuniversity MicroElectronics Center (IMEC) vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Arne S. Kristoffersen
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Samih Mohamed-Ahmed
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Cecilie Gjerde
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Paul J. Høl
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Geir Hallan
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Ove N. Furnes
- Department
of Orthopaedic Surgery, Haukeland University
Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Department
of Clinical Medicine, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Mihaela Roxana Cimpan
- Department
for Clinical Dentistry, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Ken Haenen
- Institute
for Materials Research (IMO), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- IMOMEC,
Interuniversity MicroElectronics Center (IMEC) vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Bodil Holst
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| | - Martin M. Greve
- Department
of Physics and Technology, University of
Bergen, Allegaten 55, 5007 Bergen, Norway
| |
Collapse
|
26
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
A role for nuclear stretching and NPCs changes in the cytoplasmic-nuclear trafficking of YAP: An experimental and numerical modelling approach. Mater Today Bio 2022; 15:100335. [PMID: 35813578 PMCID: PMC9263995 DOI: 10.1016/j.mtbio.2022.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Mechanical forces, acting on eukaryotic cells, are responsible for cell shape, cell proliferation, cell polarity, and cell differentiation thanks to two cells abilities known as mechanosensing and mechanotransduction. Mechanosensing consists of the ability of a cell to sense mechanical cues, while mechanotransduction is the capacity of a cell to respond to these signals by translating mechanical stimuli into biochemical ones. These signals propagate from the extracellular matrix to the nucleus with different well known physical connections, but how the mechanical signals are transduced into biochemical ones remains an open challenge. Recent findings showed that the cell-generated forces affect the translocation of transcription factors (TFs) from the cytoplasm to the nucleus. This mechanism is affected by the features of nuclear pore complexes. Owing to the complex patterns of strains and stresses of the nuclear envelope caused by cytoskeletal forces, it is likely that the morphology of NPC changes as cytoskeleton assemblies’ change. This may ultimately affect molecular transport through the nucleus, hence altering cell functions. Among the various TFs, Yes-associated protein (YAP), which is typically involved in cell proliferation, survival, and differentiation, is able to activate specific pathways when entrapped into the cell nucleus. Here, starting from experimental results, we develop a multiscale finite element (FE) model aimed to simulate the macroscopic cell spreading and consequent changes in the cell mechanical behaviour to be related to the NPCs changes and YAP nuclear transport.
Collapse
|
28
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
29
|
Vahabikashi A, Adam SA, Medalia O, Goldman RD. Nuclear lamins: Structure and function in mechanobiology. APL Bioeng 2022; 6:011503. [PMID: 35146235 PMCID: PMC8810204 DOI: 10.1063/5.0082656] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
30
|
Swoger M, Gupta S, Charrier EE, Bates M, Hehnly H, Patteson AE. Vimentin Intermediate Filaments Mediate Cell Morphology on Viscoelastic Substrates. ACS APPLIED BIO MATERIALS 2022; 5:552-561. [PMID: 34995457 PMCID: PMC8864613 DOI: 10.1021/acsabm.1c01046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
The ability of cells to take and change shape is a fundamental feature underlying development, wound repair, and tissue maintenance. Central to this process is physical and signaling interactions between the three cytoskeletal polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that is essential to the mechanical resilience of cells and regulates cross-talk among the cytoskeleton, but its role in how cells sense and respond to the surrounding extracellular matrix is largely unclear. To investigate vimentin's role in substrate sensing, we designed polyacrylamide hydrogels that mimic the elastic and viscoelastic nature of in vivo tissues. Using wild-type and vimentin-null mouse embryonic fibroblasts, we show that vimentin enhances cell spreading on viscoelastic substrates, even though it has little effect in the limit of purely elastic substrates. Our results provide compelling evidence that vimentin modulates how cells sense and respond to their environment and thus plays a key role in cell mechanosensing.
Collapse
Affiliation(s)
- Maxx Swoger
- Physics
Department, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Sarthak Gupta
- Physics
Department, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Elisabeth E. Charrier
- Institute
of Medicine and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 13210, United States
| | - Michael Bates
- Biology
Department, Syracuse University, Syracuse, New York 13244, United States
| | - Heidi Hehnly
- Biology
Department, Syracuse University, Syracuse, New York 13244, United States
| | - Alison E. Patteson
- Physics
Department, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
31
|
Shoaib Z, Fan TM, Irudayaraj J. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol 2021; 179:201-217. [PMID: 34679192 PMCID: PMC9305477 DOI: 10.1111/bph.15713] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma (OS) is the one of the most common primary tumors of bone with less than a 20% 5-year survival rate after the development of metastases. OS is highly predisposed in Paget's disease (PD) of bone, and both have common characteristic skeletal features due to rapid bone remodeling. OS prognosis is location dependent which further emphasizes the likely contribution of the bone microenvironment in its pathogenesis. Mechanobiology is the phenomenon when mechanical cues from the changing physical microenvironment of bone are transduced to biological pathways through mechanosensitive cellular components. Mechanobiology-driven therapies have been used for curbing tumor progression by direct alteration of the physical microenvironment or inhibition of metastasis-associated mechanosensitive proteins. This review emphasizes the contribution of mechanobiology to OS progression, and sheds light on current mechanobiology-based therapies and potential new targets for improving disease management. Additionally, the variety of 3D models currently used to study OS mechanobiology are summarized.
Collapse
Affiliation(s)
- Zunaira Shoaib
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, IL, USA.,Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
32
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
33
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
34
|
A Loss of Nuclear-Cytoskeletal Interactions in Vascular Smooth Muscle Cell Differentiation Induced by a Micro-Grooved Collagen Substrate Enabling the Modeling of an In Vivo Cell Arrangement. Bioengineering (Basel) 2021; 8:bioengineering8090124. [PMID: 34562946 PMCID: PMC8470899 DOI: 10.3390/bioengineering8090124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) remodel vascular walls actively owing to mechanical cues and dedifferentiate to the synthetic phenotype from contractile phenotype in pathological conditions. It is crucial to clarify the mechanisms behind the VSMC phenotypic transition for elucidating their role in the vascular adaptation and repair and for designing engineered tissues. We recently developed novel micro-grooved collagen substrates with “wavy wrinkle” grooves to induce cell–substrate adhesion, morphological polarization, and a tissue-like cell arrangement with cytoskeletal rearrangements similar to those in vascular tissue in vivo. We found that cultivation with this micro-grooved collagen significantly induced VSMC contractile differentiation. Nonetheless, the detailed mechanism underlying the promotion of such VSMC differentiation by micro-grooved collagen has not been clarified yet. Here, we investigated the detailed mechanism of the cell arrangement into a tissue and contractile-differentiation improvement by our micro-grooved collagen substrates in terms of nuclear–cytoskeletal interactions that possibly affect the nuclear mechanotransduction involved in the activation of transcription factors. We found that VSMCs on micro-grooved collagen manifested significant cell arrangement into a tissue and nucleus slimming with a volume reduction in response to the remodeling of the actin cytoskeleton, with consequent inhibition of nuclear shuttling of a transcriptional coactivator, Yes-associated protein (YAP), and improved contractile differentiation. Furthermore, VSMC nuclei rarely deformed during macroscopic cell stretching and featured a loss of nesprin-1–mediated nuclear–cytoskeletal interactions. These results indicate that our micro-grooved collagen induces a cell alignment mimicking in vivo VSMC tissue and promotes contractile differentiation. In such processes of contractile differentiation, mechanical interaction between the nucleus and actin cytoskeleton may diminish to prevent a nuclear disturbance from the excess mechanical stress that might be essential for maintaining vascular functions.
Collapse
|
35
|
El-Rashidy AA, El Moshy S, Radwan IA, Rady D, Abbass MMS, Dörfer CE, Fawzy El-Sayed KM. Effect of Polymeric Matrix Stiffness on Osteogenic Differentiation of Mesenchymal Stem/Progenitor Cells: Concise Review. Polymers (Basel) 2021; 13:2950. [PMID: 34502988 PMCID: PMC8434088 DOI: 10.3390/polym13172950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) have a multi-differentiation potential into specialized cell types, with remarkable regenerative and therapeutic results. Several factors could trigger the differentiation of MSCs into specific lineages, among them the biophysical and chemical characteristics of the extracellular matrix (ECM), including its stiffness, composition, topography, and mechanical properties. MSCs can sense and assess the stiffness of extracellular substrates through the process of mechanotransduction. Through this process, the extracellular matrix can govern and direct MSCs' lineage commitment through complex intracellular pathways. Hence, various biomimetic natural and synthetic polymeric matrices of tunable stiffness were developed and further investigated to mimic the MSCs' native tissues. Customizing scaffold materials to mimic cells' natural environment is of utmost importance during the process of tissue engineering. This review aims to highlight the regulatory role of matrix stiffness in directing the osteogenic differentiation of MSCs, addressing how MSCs sense and respond to their ECM, in addition to listing different polymeric biomaterials and methods used to alter their stiffness to dictate MSCs' differentiation towards the osteogenic lineage.
Collapse
Affiliation(s)
- Aiah A. El-Rashidy
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt;
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (S.E.M.); (I.A.R.); (D.R.); (M.M.S.A.)
| | - Sara El Moshy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (S.E.M.); (I.A.R.); (D.R.); (M.M.S.A.)
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Israa Ahmed Radwan
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (S.E.M.); (I.A.R.); (D.R.); (M.M.S.A.)
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Dina Rady
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (S.E.M.); (I.A.R.); (D.R.); (M.M.S.A.)
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Marwa M. S. Abbass
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (S.E.M.); (I.A.R.); (D.R.); (M.M.S.A.)
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (S.E.M.); (I.A.R.); (D.R.); (M.M.S.A.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
36
|
Dondi C, Bertin B, Da Ponte JP, Wojtowicz I, Jagla K, Junion G. A polarized nucleus-cytoskeleton-ECM connection in migrating cardioblasts controls heart tube formation in Drosophila. Development 2021; 148:271094. [PMID: 34323270 DOI: 10.1242/dev.192146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The formation of the cardiac tube is a remarkable example of complex morphogenetic processes conserved from invertebrates to humans. It involves coordinated collective migration of contralateral rows of cardiac cells. The molecular processes underlying the specification of cardioblasts (CBs) prior to migration are well established and significant advances have been made in understanding the process of lumen formation. However, the mechanisms of collective cardiac cells migration remain elusive. Here, we have identified CAP and MSP300 as novel actors involved during CB migration. They both exhibit highly similar temporal and spatial expression patterns in Drosophila migrating cardiac cells, and are necessary for the correct number and alignment of CBs, a prerequisite for the coordination of their collective migration. Our data suggest that CAP and MSP300 are part of a protein complex linking focal adhesion sites to nuclei via the actin cytoskeleton that maintains post-mitotic state and correct alignment of CBs.
Collapse
Affiliation(s)
- Cristiana Dondi
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Benjamin Bertin
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Jean-Philippe Da Ponte
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Inga Wojtowicz
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Guillaume Junion
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proc Natl Acad Sci U S A 2021; 118:2021571118. [PMID: 33990464 DOI: 10.1073/pnas.2021571118] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.
Collapse
|
38
|
Joshi A, Kaur T, Singh N. Exploiting Substrate Cues for Co-Culturing Cells in a Micropattern. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4933-4942. [PMID: 33870690 DOI: 10.1021/acs.langmuir.1c00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spatial distribution of cells and their interactions between neighboring cells in native microenvironments are of fundamental importance in determining cell fate decisions such as migration, growth, and differentiation. Controlling the spatial distribution of different cell types in defined geometries can replicate these native environments, which can be a useful model for several studies. While spatiotemporal control over multiple cell arrangements is required to achieve the complex tissue architecture, unfortunately, conventional cell patterning techniques usually allow only single patterning with a single cell type. In the present study, we introduce a simple lithographic method to pattern multiple cell types in a spatially controlled manner by utilizing the biophysical cues present at the corners of the patterned geometry. By fabricating micropatterns of different shapes, we demonstrate how the cell can be constrained to pattern along the corners of patterned geometries owing to the presence of topographical cues, leaving empty voids in the center that can be further utilized for patterning a second cell type. We also demonstrate that the cell alignment along the pattern is a dynamic process and the cells migrate from a more uniform cell-adhesive region toward the topographical cues. The cytoskeleton arrangement was geometry-dependent, which was confirmed through a series of in vitro evaluations, such as scanning electron microscopy and fluorescence microscopy. These findings have not only helped us in exploring the importance of these cues in guiding the cell fate but have also allowed us to develop a technique, which self-patterns the cells without any expensive exogenous cues and can be used as a model protocol to eventually organize cells into a specific pattern with micron-scale precision in vitro.
Collapse
Affiliation(s)
- Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
39
|
Manfrevola F, Guillou F, Fasano S, Pierantoni R, Chianese R. LINCking the Nuclear Envelope to Sperm Architecture. Genes (Basel) 2021; 12:genes12050658. [PMID: 33925685 PMCID: PMC8145172 DOI: 10.3390/genes12050658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear architecture undergoes an extensive remodeling during spermatogenesis, especially at levels of spermatocytes (SPC) and spermatids (SPT). Interestingly, typical events of spermiogenesis, such as nuclear elongation, acrosome biogenesis, and flagellum formation, need a functional cooperation between proteins of the nuclear envelope and acroplaxome/manchette structures. In addition, nuclear envelope plays a key role in chromosome distribution. In this scenario, special attention has been focused on the LINC (linker of nucleoskeleton and cytoskeleton) complex, a nuclear envelope-bridge structure involved in the connection of the nucleoskeleton to the cytoskeleton, governing mechanotransduction. It includes two integral proteins: KASH- and SUN-domain proteins, on the outer (ONM) and inner (INM) nuclear membrane, respectively. The LINC complex is involved in several functions fundamental to the correct development of sperm cells such as head formation and head to tail connection, and, therefore, it seems to be important in determining male fertility. This review provides a global overview of the main LINC complex components, with a special attention to their subcellular localization in sperm cells, their roles in the regulation of sperm morphological maturation, and, lastly, LINC complex alterations associated to male infertility.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Florian Guillou
- PRC, CNRS, IFCE, INRAE, University of Tours, 37380 Nouzilly, France;
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
- Correspondence:
| |
Collapse
|
40
|
Déjardin T, Carollo PS, Sipieter F, Davidson PM, Seiler C, Cuvelier D, Cadot B, Sykes C, Gomes ER, Borghi N. Nesprins are mechanotransducers that discriminate epithelial-mesenchymal transition programs. J Cell Biol 2021; 219:152020. [PMID: 32790861 PMCID: PMC7659719 DOI: 10.1083/jcb.201908036] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Abstract
LINC complexes are transmembrane protein assemblies that physically connect the nucleoskeleton and cytoskeleton through the nuclear envelope. Dysfunctions of LINC complexes are associated with pathologies such as cancer and muscular disorders. The mechanical roles of LINC complexes are poorly understood. To address this, we used genetically encoded FRET biosensors of molecular tension in a nesprin protein of the LINC complex of fibroblastic and epithelial cells in culture. We exposed cells to mechanical, genetic, and pharmacological perturbations, mimicking a range of physiological and pathological situations. We show that nesprin experiences tension generated by the cytoskeleton and acts as a mechanical sensor of cell packing. Moreover, nesprin discriminates between inductions of partial and complete epithelial–mesenchymal transitions. We identify the implicated mechanisms, which involve α-catenin capture at the nuclear envelope by nesprin upon its relaxation, thereby regulating β-catenin transcription. Our data thus implicate LINC complex proteins as mechanotransducers that fine-tune β-catenin signaling in a manner dependent on the epithelial–mesenchymal transition program.
Collapse
Affiliation(s)
- Théophile Déjardin
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Pietro Salvatore Carollo
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - François Sipieter
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Patricia M Davidson
- Laboratoire Physico-Chimie Curie, Institut Curie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 168, Sorbonne Universités, Université Paris Sciences et Lettres, Paris, France
| | - Cynthia Seiler
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Damien Cuvelier
- Institut Curie and Institut Pierre Gilles de Gennes, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique Unité Mixte de Rercherche 144, Paris, France
| | - Bruno Cadot
- Center for Research in Myology, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 974, Sorbonne Universités, Paris, France
| | - Cecile Sykes
- Laboratoire Physico-Chimie Curie, Institut Curie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 168, Sorbonne Universités, Université Paris Sciences et Lettres, Paris, France
| | - Edgar R Gomes
- Center for Research in Myology, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 974, Sorbonne Universités, Paris, France.,Instituto de Medecina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nicolas Borghi
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
41
|
The nuclear import of the transcription factor MyoD is reduced in mesenchymal stem cells grown in a 3D micro-engineered niche. Sci Rep 2021; 11:3021. [PMID: 33542304 PMCID: PMC7862644 DOI: 10.1038/s41598-021-81920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Smart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates. Therefore, our results support the hypothesis that in stem cell differentiation, the nuclear import of gene-regulating transcription factors is controlled by a strain-dependent nuclear envelope permeability, probably related to the reorganization of stretch-activated nuclear pore complexes.
Collapse
|
42
|
McCreery KP, Xu X, Scott AK, Fajrial AK, Calve S, Ding X, Neu CP. Nuclear Stiffness Decreases with Disruption of the Extracellular Matrix in Living Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006699. [PMID: 33470544 PMCID: PMC7891867 DOI: 10.1002/smll.202006699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Indexed: 05/04/2023]
Abstract
Reciprocal interactions between the cell nucleus and the extracellular matrix lead to macroscale tissue phenotype changes. However, little is known about how the extracellular matrix environment affects gene expression and cellular phenotype in the native tissue environment. Here, it is hypothesized that enzymatic disruption of the tissue matrix results in a softer tissue, affecting the stiffness of embedded cell and nuclear structures. The aim is to directly measure nuclear mechanics without perturbing the native tissue structure to better understand nuclear interplay with the cell and tissue microenvironments. To accomplish this, an atomic force microscopy needle-tip probe technique that probes nuclear stiffness in cultured cells to measure the nuclear envelope and cell membrane stiffness within native tissue is expanded. This technique is validated by imaging needle penetration and subsequent repair of the plasma and nuclear membranes of HeLa cells stably expressing the membrane repair protein CHMP4B-GFP. In the native tissue environment ex vivo, it is found that while enzymatic degradation of viable cartilage tissues with collagenase 3 (MMP-13) and aggrecanase-1 (ADAMTS-4) decreased tissue matrix stiffness, cell and nuclear membrane stiffness is also decreased. Finally, the capability for cell and nucleus elastography using the AFM needle-tip technique is demonstrated. These results demonstrate disruption of the native tissue environment that propagates to the plasma membrane and interior nuclear envelope structures of viable cells.
Collapse
Affiliation(s)
- Kaitlin P. McCreery
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Adrienne K. Scott
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Apresio K. Fajrial
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Address correspondence to
| |
Collapse
|
43
|
Lehtimäki JI, Rajakylä EK, Tojkander S, Lappalainen P. Generation of stress fibers through myosin-driven reorganization of the actin cortex. eLife 2021; 10:60710. [PMID: 33506761 PMCID: PMC7877910 DOI: 10.7554/elife.60710] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Contractile actomyosin bundles, stress fibers, govern key cellular processes including migration, adhesion, and mechanosensing. Stress fibers are thus critical for developmental morphogenesis. The most prominent actomyosin bundles, ventral stress fibers, are generated through coalescence of pre-existing stress fiber precursors. However, whether stress fibers can assemble through other mechanisms has remained elusive. We report that stress fibers can also form without requirement of pre-existing actomyosin bundles. These structures, which we named cortical stress fibers, are embedded in the cell cortex and assemble preferentially underneath the nucleus. In this process, non-muscle myosin II pulses orchestrate the reorganization of cortical actin meshwork into regular bundles, which promote reinforcement of nascent focal adhesions, and subsequent stabilization of the cortical stress fibers. These results identify a new mechanism by which stress fibers can be generated de novo from the actin cortex and establish role for stochastic myosin pulses in the assembly of functional actomyosin bundles.
Collapse
Affiliation(s)
- Jaakko I Lehtimäki
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Goldblatt ZE, Cirka HA, Billiar KL. Mechanical Regulation of Apoptosis in the Cardiovascular System. Ann Biomed Eng 2021; 49:75-97. [PMID: 33169343 PMCID: PMC7775273 DOI: 10.1007/s10439-020-02659-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Apoptosis is a highly conserved physiological process of programmed cell death which is critical for proper organism development, tissue maintenance, and overall organism homeostasis. Proper regulation of cell removal is crucial, as both excessive and reduced apoptotic rates can lead to the onset of a variety of diseases. Apoptosis can be induced in cells in response to biochemical, electrical, and mechanical stimuli. Here, we review literature on specific mechanical stimuli that regulate apoptosis and the current understanding of how mechanotransduction plays a role in apoptotic signaling. We focus on how insufficient or excessive mechanical forces may induce apoptosis in the cardiovascular system and thus contribute to cardiovascular disease. Although studies have demonstrated that a broad range of mechanical stimuli initiate and/or potentiate apoptosis, they are predominantly correlative, and no mechanisms have been established. In this review, we attempt to establish a unifying mechanism for how various mechanical stimuli initiate a single cellular response, i.e. apoptosis. We hypothesize that the cytoskeleton plays a central role in this process as it does in determining myriad cell behaviors in response to mechanical inputs. We also describe potential approaches of using mechanomedicines to treat various diseases by altering apoptotic rates in specific cells. The goal of this review is to summarize the current state of the mechanobiology field and suggest potential avenues where future research can explore.
Collapse
|
45
|
Owens DJ, Messéant J, Moog S, Viggars M, Ferry A, Mamchaoui K, Lacène E, Roméro N, Brull A, Bonne G, Butler-Browne G, Coirault C. Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. Int J Mol Sci 2020; 22:ijms22010306. [PMID: 33396724 PMCID: PMC7795708 DOI: 10.3390/ijms22010306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.
Collapse
Affiliation(s)
- Daniel J. Owens
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Julien Messéant
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | | | - Mark Viggars
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Arnaud Ferry
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Université de Paris, 75006 Paris, France
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Emmanuelle Lacène
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Norma Roméro
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
- APHP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, 75013 Paris, France
| | - Astrid Brull
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gisèle Bonne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Catherine Coirault
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Correspondence: ; Tel.: +33-1-1-4216-5708
| |
Collapse
|
46
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
47
|
Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release. Sci Rep 2020; 10:18684. [PMID: 33122754 PMCID: PMC7596055 DOI: 10.1038/s41598-020-75791-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclic stretch applied to cells induces the reorganization of stress fibers. However, the correlation between the reorganization of stress fiber subtypes and strain-dependent responses of the cytoplasm and nucleus has remained unclear. Here, we investigated the dynamic involvement of stress fiber subtypes in the orientation and elongation of cyclically stretched epithelial cells. We applied uniaxial cyclic stretches at 5%, 10%, and 15% strains to cells followed by the release of the mechanical stretch. Dorsal, transverse arcs, and peripheral stress fibers were mainly involved in the cytoplasm responses whereas perinuclear cap fibers were associated with the reorientation and elongation of the nucleus. Dorsal stress fibers and transverse arcs rapidly responded within 15 min regardless of the strain magnitude to facilitate the subsequent changes in the orientation and elongation of the cytoplasm. The cyclic stretches induced the additional formation of perinuclear cap fibers and their increased number was almost maintained with a slight decline after 2-h-long stretch release. The slow formation and high stability of perinuclear cap fibers were linked to the slow reorientation kinetics and partial morphology recovery of nucleus in the presence or absence of cyclic stretches. The reorganization of stress fiber subtypes occurred in accordance with the reversible distribution of myosin II. These findings allowed us to propose a model for stretch-induced responses of the cytoplasm and nucleus in epithelial cells based on different mechanoadaptive properties of stress fiber subtypes.
Collapse
|
48
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
49
|
Park JW, Han SB, Hah J, Lee G, Kim JK, Kim SH, Kim DH. Biological Aging Modulates Cell Migration via Lamin A/C-Dependent Nuclear Motion. MICROMACHINES 2020; 11:E801. [PMID: 32847135 PMCID: PMC7570206 DOI: 10.3390/mi11090801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Aging is a progressive functional decline in organs and tissues over time and typically represents the accumulation of psychological and social changes in a human being. Diverse diseases, such as cardiovascular, musculoskeletal, and neurodegenerative disorders, are now understood to be caused by aging. While biological assessment of aging mainly focuses on the gradual changes that occur either on the molecular scale, for example, alteration of gene expression and epigenetic modification, or on larger scales, for example, changes in muscle strength and cardiac function, the mechanics that regulates the behavior of individual cells and interactions between the internal elements of cells, are largely missing. In this study, we show that the dynamic features of migrating cells across different human ages could help to establish the underlying mechanism of biological age-dependent cellular functional decline. To determine the relationship between cellular dynamics and human age, we identify the characteristic relationship between cell migration and nuclear motion which is tightly regulated by nucleus-bound cytoskeletal organization. This analysis demonstrates that actomyosin contractility-dependent nuclear motion plays a key role in cell migration. We anticipate this study to provide noble biophysical insights on biological aging in order to precisely diagnose age-related chronic diseases.
Collapse
Affiliation(s)
- Jung-Won Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Geonhui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (J.-W.P.); (S.-B.H.); (J.H.); (G.L.); (J.-K.K.); (S.H.K.)
| |
Collapse
|
50
|
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:283. [PMID: 32678016 PMCID: PMC7364498 DOI: 10.1186/s13287-020-01789-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|