1
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Kim E, Park Y, Yun M, Kim B. Functions of Hemp-Induced Exosomes against Periodontal Deterioration Caused by Fine Dust. Int J Mol Sci 2024; 25:10331. [PMID: 39408660 PMCID: PMC11477052 DOI: 10.3390/ijms251910331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Although fine dust is linked to numerous health issues, including cardiovascular, neurological, respiratory, and cancerous diseases, research on its effects on oral health remains limited. In this study, we investigated the protective effects of mature hemp stem extract-induced exosomes (MSEIEs) on periodontal cells exposed to fine dust. Using various methods, including microRNA profiling, PCR, flow cytometry, immunocytochemistry, ELISA, and Alizarin O staining, we found that MSE treatment upregulated key microRNAs, such as hsa-miR-122-5p, hsa-miR-1301-3p, and hsa-let-7e-5p, associated with vital biological functions. MSEIEs exhibited three primary protective functions: suppressing inflammatory genes while activating anti-inflammatory ones, promoting the differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts and other cells, and regulating LL-37 and MCP-1 expression. These findings suggest that MSEIEs have potential as functional biomaterials for applications in pharmaceuticals, cosmetics, and food industries.
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea;
| | - Yoonjin Park
- Department of Bio-Hemp Technology, Andong Science College, Andong 36616, Republic of Korea;
| | - Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
3
|
Yun M, Kim B. Effects of Scutellaria baicalensis Extract-Induced Exosomes on the Periodontal Stem Cells and Immune Cells under Fine Dust. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1396. [PMID: 39269058 PMCID: PMC11397387 DOI: 10.3390/nano14171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In adverse environments, fine dust is linked to a variety of health disorders, including cancers, cardiovascular, neurological, renal, reproductive, motor, systemic, and respiratory diseases. Although PM10 is associated with oral inflammation and cancer, there is limited research on biomaterials that prevent damage caused by fine dust. In this study, we evaluated the effects of biomaterials using microRNA profiling, flow cytometry, conventional PCR, immunocytochemistry, Alizarin O staining, and ELISA. Compared to SBE (Scutellaria baicalensis extract), the preventive effectiveness of SBEIEs (SBE-induced exosomes) against fine dust was approximately two times higher. Furthermore, SBEIEs promoted cellular differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts, periodontal ligament cells (PDLCs), and pulp progenitor cells (PPCs), enhancing immune modulation for oral health against fine dust. In terms of immune modulation, SBEIEs activated the secretion of cytokines such as IL-10, LL-37, and TGF-β in T cells, B cells, and macrophages, while attenuating the secretion of MCP-1 in macrophages. MicroRNA profiling revealed that significantly modulated miRNAs in SBEIEs influenced four biochemical categories: apoptosis, cellular differentiation, immune activation, and anti-inflammation. These findings suggest that SBEIEs are an optimal biomaterial for developing oral health care products. Additionally, this study proposes functional microRNA candidates for the development of pharmaceutical liposomes.
Collapse
Affiliation(s)
- Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong-si 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
4
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
5
|
Kim H, Kim B. Osteogenic Protection against Fine Dust with Erucic Acid-Induced Exosomes. J Funct Biomater 2024; 15:215. [PMID: 39194653 DOI: 10.3390/jfb15080215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such as miRNA profiling, quantitative PCR, flow cytometry, ELISA, and Alizarin O staining. Erucic acid effectively suppresses inflammation and upregulates osteogenic activators in fibroblasts exposed to fine dust. Additionally, erucic acid-induced exosomes (EIEs) strongly counteract the negative effects of fine dust on osteocytic differentiation and inflammation. Despite fine dust exposure, EIEs promoted osteocytic differentiation in adipose-derived stem cells (ASCs) and enhanced osteogenesis and phagocytosis in macrophages. The significant upregulation of RunX2 and BMP7 by EIEs indicates its strong role in osteocytic differentiation and protection against the effects of fine dust. EIEs also boosts immune activity and acts as an osteogenic trigger for macrophages. MicroRNA profiling revealed that EIEs dramatically upregulated miRNAs, including hsa-miRNA-1301-3p, hsa-miRNA-1908-5p, hsa-miRNA-423-5p, and hsa-miRNA-122-5p, which are associated with osteogenic differentiation and immunity. Therefore, EIEs show potential as biomaterials to prevent environment-borne diseases.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
6
|
Shi Y, Yang X, Min J, Kong W, Hu X, Zhang J, Chen L. Advancements in culture technology of adipose-derived stromal/stem cells: implications for diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1343255. [PMID: 38681772 PMCID: PMC11045945 DOI: 10.3389/fendo.2024.1343255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.
Collapse
Affiliation(s)
- Yinze Shi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xueyang Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiaoyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| |
Collapse
|
7
|
Chen S, Saito Y, Waki Y, Ikemoto T, Teraoku H, Yamada S, Morine Y, Shimada M. Generation of Highly Functional Hepatocyte-like Organoids from Human Adipose-Derived Mesenchymal Stem Cells Cultured with Endothelial Cells. Cells 2024; 13:547. [PMID: 38534391 PMCID: PMC10969286 DOI: 10.3390/cells13060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Previously, we successfully established a highly functional, three-dimensional hepatocyte-like cell (3D-HLC) model from adipose-derived mesenchymal stem cells (ADSCs) via a three-step differentiation protocol. The aim of the present study was to investigate whether generating hepatocyte-like organoids (H-organoids) by adding endothelial cells further improved the liver-like functionality of 3D-HLCs and to assess H-organoids' immunogenicity properties. Genes representing liver maturation and function were detected by quantitative reverse transcription-PCR analysis. The expression of hepatic maturation proteins was measured using immunofluorescence staining. Cytochrome P (CYP)450 metabolism activity and ammonia metabolism tests were used to assess liver function. H-organoids were successfully established by adding human umbilical vein endothelial cells at the beginning of the definitive endoderm stage in our 3D differentiation protocol. The gene expression of alpha-1 antitrypsin, carbamoyl-phosphate synthase 1, and apolipoprotein E, which represent liver maturation state and function, was higher in H-organoids than non-organoid 3D-HLCs. H-organoids possessed higher CYP3A4 metabolism activity and comparable ammonia metabolism capacity than 3D-HLCs. Moreover, although H-organoids expressed human leukocyte antigen class I, they expressed little human leukocyte antigen class II, cluster of differentiation (CD)40, CD80, CD86, and programmed cell death ligand 1, suggesting their immunogenicity properties were not significantly upregulated during differentiation from ADSCs. In conclusion, we successfully established an H-organoid model with higher liver-like functionality than previously established 3D-HLCs and comparable immunogenicity to ADSCs.
Collapse
Affiliation(s)
| | - Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (S.C.); (Y.W.); (T.I.); (H.T.); (S.Y.); (Y.M.); (M.S.)
| | | | | | | | | | | | | |
Collapse
|
8
|
He M, Li Z, Tung VSK, Pan M, Han X, Evgrafov O, Jiang XC. Inhibiting Phosphatidylcholine Remodeling in Adipose Tissue Increases Insulin Sensitivity. Diabetes 2023; 72:1547-1559. [PMID: 37625119 PMCID: PMC10588299 DOI: 10.2337/db23-0317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Cell membrane phosphatidylcholine (PC) composition is regulated by lysophosphatidylcholine acyltransferase (LPCAT); changes in membrane PC saturation are implicated in metabolic disorders. Here, we identified LPCAT3 as the major isoform of LPCAT in adipose tissue and created adipocyte-specific Lpcat3-knockout mice to study adipose tissue lipid metabolism. Transcriptome sequencing and plasma adipokine profiling were used to investigate how LPCAT3 regulates adipose tissue insulin signaling. LPCAT3 deficiency reduced polyunsaturated PCs in adipocyte plasma membranes, increasing insulin sensitivity. LPCAT3 deficiency influenced membrane lipid rafts, which activated insulin receptors and AKT in adipose tissue, and attenuated diet-induced insulin resistance. Conversely, higher LPCAT3 activity in adipose tissue from ob/ob, db/db, and high-fat diet-fed mice reduced insulin signaling. Adding polyunsaturated PCs to mature human or mouse adipocytes in vitro worsened insulin signaling. We suggest that targeting LPCAT3 in adipose tissue to manipulate membrane phospholipid saturation is a new strategy to treat insulin resistance. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mulin He
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Zhiqiang Li
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Victoria Sook Keng Tung
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Oleg Evgrafov
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Xian-Cheng Jiang
- Department of Cell Biology, The State University of New York Downstate Health Sciences University, Brooklyn, NY
- Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, New York, NY
| |
Collapse
|
9
|
Stafeev I, Michurina S, Agareva M, Zubkova E, Sklyanik I, Shestakova E, Gavrilova A, Sineokaya M, Ratner E, Menshikov M, Parfyonova Y, Shestakova M. Visceral mesenchymal stem cells from type 2 diabetes donors activate triglycerides synthesis in healthy adipocytes via metabolites exchange and cytokines secretion. Int J Obes (Lond) 2023:10.1038/s41366-023-01317-1. [PMID: 37100877 DOI: 10.1038/s41366-023-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND In recent years, there has been an increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM). Development of visceral instead of subcutaneous adipose tissue is pathogenic and increases the risk of metabolic abnormalities. We hypothesize that visceral adipocytes and stromal cells are able to deteriorate other fat depots metabolism via secretory mechanisms. METHODS We study the regulatory role of visceral adipose-derived stem cells (vADSC) from donors with obesity and T2DM or normal glucose tolerance (NGT) on healthy subcutaneous ADSC (sADSC) in the Transwell system. Lipid droplets formation during adipogenesis was assessed by confocal microscopy. Cell metabolism was evaluated by 14C-glucose incorporation analysis and western blotting. vADSC secretome was assessed by Milliplex assay. RESULTS We showed that both NGT and T2DM vADSC had mesenchymal phenotype, but expression of CD29 was enhanced, whereas expressions of CD90, CD140b and IGF1R were suppressed in both NGT and T2DM vADSC. Co-differentiation with T2DM vADSC increased lipid droplet size and stimulated accumulation of fatty acids in adipocytes from healthy sADSC. In mature adipocytes T2DM vADSC stimulated triglyceride formation, whereas NGT vADSC activated oxidative metabolism. Secretome of NGT vADSC was pro-inflammatory and pro-angiogenic in comparison with T2DM vADSC. CONCLUSIONS The present study has demonstrated the critical role of secretory interactions between visceral and subcutaneous fat depots both in the level of progenitor and mature cells. Mechanisms of these interactions are related to direct exchange of metabolites and cytokines secretion.
Collapse
Affiliation(s)
- Iurii Stafeev
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia.
| | - Svetlana Michurina
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Margarita Agareva
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Institute of Fine Chemical Technologies named after M.V. Lomonosov, 119571, Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Igor Sklyanik
- Endocrinology Research Centre, 117292, Moscow, Russia
| | | | | | | | - Elizaveta Ratner
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov, 121552, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | | |
Collapse
|
10
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation. Regen Ther 2022; 21:166-174. [PMID: 35891712 PMCID: PMC9294055 DOI: 10.1016/j.reth.2022.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are stem cells with multidirectional differentiation potential isolated from adipose tissue. They have the same immunomodulatory effect as bone marrow mesenchymal stem cells in wound repair and immune regulation as bone marrow. The mechanism of action of ADSCs in skin wound repair has not been elucidated. S100A8 is a calcium and zinc binding protein, but its role in skin wound healing is rarely reported. We herein show that S100A8 overexpression significantly promoted ADSC proliferation and differentiation, whereas S100A8 knockdown yielded the opposite results. A skin injury model with bone exposure was created in rats by surgically removing the skin from the head and exposing the skull. The wounds were treated with S100A8-overexpressing or S100A8-knockdown ADSCs, and wound healing was monitored. The serum levels of the inflammation-related factors tumor necrosis factor-α and interleukin-6 were decreased significantly after S100A8 overexpression, while the angiogenic factor vascular endothelial growth factor and connective tissue generating factor showed the opposite trend. Histological staining revealed that granulation tissue neovascularization was more pronounced in wounds treated with S100A8-overexpressing ADSCs than that in the control group. We conclude that S100A8 promotes the proliferation of ADSCs and inhibits inflammation to improve skin wound healing.
Collapse
|
12
|
Tokuda K, Ikemoto T, Yamashita S, Miyazaki K, Okikawa S, Yamada S, Saito Y, Morine Y, Shimada M. Syngeneically transplanted insulin producing cells differentiated from adipose derived stem cells undergo delayed damage by autoimmune responses in NOD mice. Sci Rep 2022; 12:5852. [PMID: 35393479 PMCID: PMC8991208 DOI: 10.1038/s41598-022-09838-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-producing cells (IPCs) generated by our established protocol have reached the non-clinical ‘proof of concept’ stage. Our strategy for their clinical application is the autotransplantation of IPCs into patients with type 1 diabetes mellitus (T1DM). In this context, the autoimmunity that characterized T1DM is important, rather than allorejection. We aimed to determine how these IPCs respond to T1DM autoimmunity. IPCs were generated from the subcutaneous fat tissue of non-obese diabetic (NOD) mice using our protocol. IPCs derived from NOD mice were transplanted under the kidney capsules of NOD mice at the onset of diabetes and the subsequent changes in blood glucose concentration were characterized. Blood glucose decreased within 30 days of transplantation, but increased again after 40–60 days in three of four recipient NOD mice. In tissue samples, the numbers of CD4+ and CD8+ T cells were significantly higher 60 days after transplantation than 30 days after transplantation. In conclusion, IPCs significantly ameliorate the diabetes of mice in the short term, but are damaged by autoimmunity in the longer term, as evidenced by local T cells accumulation. This study provides new insights into potential stem cell therapies for T1DM.
Collapse
Affiliation(s)
- Kazunori Tokuda
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan.
| | - Shoko Yamashita
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Katsuki Miyazaki
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Shohei Okikawa
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| |
Collapse
|
13
|
Chen S, Ikemoto T, Tokunaga T, Okikawa S, Miyazaki K, Yamada S, Saito Y, Morine Y, Shimada M. Newly Generated 3D Schwann-Like Cell Spheroids From Human Adipose-Derived Stem Cells Using a Modified Protocol. Cell Transplant 2022; 31:9636897221093312. [PMID: 35469470 PMCID: PMC9087224 DOI: 10.1177/09636897221093312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve injury (PNI) is a relatively frequent type of trauma that results in the suffering of many patients worldwide every year. Schwann cells (SCs) are expected to be applied in cell therapy because of their ability to promote peripheral nerve regeneration. However, the lack of clinically renewable sources of SCs hinders the application of SC-based therapies. Adipose-derived stem cells (ADSCs) have generated great interest in recent years because of their multipotency and ease of harvest, and they have already been verified to differentiate into Schwann-like cells (SLCs) in vitro. However, the efficiency of differentiation and the functions of SLCs remain unsatisfactory. We newly generated three-dimensional (3D) SLC spheroids from ADSCs using a modified protocol with human recombinant peptide (RCP) petaloid μ-piece. Morphological analysis, gene expression analysis by qRT-PCR, ELISA measurement of the secretion capabilities of neurotrophic factors, and neurite formation assay were performed to evaluate the functions of these 3D SLCs in vitro. Motor function recovery was measured in a sciatic nerve injury mouse model to analyze the nerve regeneration-promoting effect of 3D SLCs in vivo. The differentiation efficiency and the secretion of neurotrophic factors were enhanced in 3D SLCs compared with conventional SLCs. 3D SLCs could more effectively promote neurite growth and longer neurite extension in a neuron-like SH-SY5Y model. Additionally, 3D SLCs had a better therapeutic effect on nerve regeneration after transplantation into the sciatic nerve injury mouse model. These findings demonstrated that the potential of ADSC-derived SLCs to promote nerve regeneration could be significantly increased using our modified differentiation protocol and by assembling cells into a 3D sphere conformation. Therefore, these cells have great potential and can be used in the clinical treatment of PNI.
Collapse
Affiliation(s)
- Shuhai Chen
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shouhei Okikawa
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
14
|
Mannino G, Cristaldi M, Giurdanella G, Perrotta RE, Lo Furno D, Giuffrida R, Rusciano D. ARPE-19 conditioned medium promotes neural differentiation of adipose-derived mesenchymal stem cells. World J Stem Cells 2021; 13:1783-1796. [PMID: 34909123 PMCID: PMC8641022 DOI: 10.4252/wjsc.v13.i11.1783] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells. AIM To test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19). METHODS ASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco's Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP). RESULTS Depending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSION The presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | | | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | - Rosario Emanuele Perrotta
- Department of General Surgery and Medical-Surgery Specialties, University of Catania, Catania 95100, CT, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | - Dario Rusciano
- Research Center, SOOFT-Italia S.p.A., Catania 95123, CT, Italy
| |
Collapse
|
15
|
Chen S, Ikemoto T, Tokunaga T, Okikawa S, Miyazaki K, Tokuda K, Yamada S, Saito Y, Imura S, Morine Y, Shimada M. Effective in vitro differentiation of adipose-derived stem cells into Schwann-like cells with folic acid supplementation. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 68:347-353. [PMID: 34759157 DOI: 10.2152/jmi.68.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injury (PNI) after pelvic surgery is a common issue with a significant impact on patients. Autologous nerve grafting is the gold standard treatment for PNI, but this technique cannot be applied to fine nerve fibers in the pelvis. Schwann-like cell (SLC) differentiation is a novel therapeutic strategy for this clinical condition. However, the efficiency of SLC differentiation remains unsatisfactory. We modified an SLC differentiation protocol using adipose-derived stem cells (ADSCs) and folic acid. Morphology, gene expression and secretion of neurotrophic factors were examined to assess the differentiation quality and phenotypic characteristics. Our new modified protocol effectively induced a Schwann cell (SC) phenotype in ADSCs as assessed by morphology and expression of SC markers [S100 calcium-binding protein B (S100B), P < 0.01 ; p75 neurotrophic receptor (p75NTR), P < 0.05]. SLCs produced by the new protocol displayed a repair phenotype with decreased expression of ERBB2 and early growth response protein 2 (EGR2) / KROX20 (P < 0.01). Furthermore, our new protocol enhanced both mRNA expression and secretion of nerve growth factors by SLCs (P < 0.01). This protocol enhanced the SC characteristics and functions of ADSC-derived SLCs. This promising protocol requires further research and may contribute to SC-based nerve regeneration. J. Med. Invest. 68 : 347-353, August, 2021.
Collapse
Affiliation(s)
- Shuhai Chen
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shohei Okikawa
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Kazunori Tokuda
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Satoru Imura
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
16
|
Wysong A, Ortiz P, Bittel D, Ott L, Karanu F, Filla M, Stehno-Bittel L. Viability, yield and expansion capability of feline MSCs obtained from subcutaneous and reproductive organ adipose depots. BMC Vet Res 2021; 17:244. [PMID: 34266445 PMCID: PMC8281647 DOI: 10.1186/s12917-021-02948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures. RESULTS The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability. CONCLUSIONS While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.
Collapse
Affiliation(s)
- Amy Wysong
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | | | - Douglas Bittel
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Francis Karanu
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Michael Filla
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lisa Stehno-Bittel
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.
- Department of Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd, KS, 66160, Kansas City, USA.
| |
Collapse
|
17
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
18
|
Dai P, Li J, Chen Y, Zhang L, Zhang X, Wang J, Qi G, Zhang Y. Novel Functional Genes Involved in Transdifferentiation of Canine ADMSCs Into Insulin-Producing Cells, as Determined by Absolute Quantitative Transcriptome Sequencing Analysis. Front Cell Dev Biol 2021; 9:685494. [PMID: 34262902 PMCID: PMC8273515 DOI: 10.3389/fcell.2021.685494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
The transdifferentiation of adipose-derived mesenchymal stem cells (ADMSCs) into insulin-producing cells (IPCs) is a potential resource for the treatment of diabetes. However, the changes of genes and metabolic pathways on the transdifferentiation of ADMSCs into IPCs are largely unknown. In this study, the transdifferentiation of canine ADMSCs into IPCs was completed using five types of procedures. Absolute Quantitative Transcriptome Sequencing Analysis was performed at different stages of the optimal procedure. A total of 60,151 transcripts were obtained. Differentially expressed genes (DEGs) were divided into five groups: IPC1 vs. ADSC (1169 upregulated genes and 1377 downregulated genes), IPC2 vs. IPC1 (1323 upregulated genes and 803 downregulated genes), IPC3 vs. IPC2 (722 upregulated genes and 680 downregulated genes), IPC4 vs. IPC3 (539 upregulated genes and 1561 downregulated genes), and Beta_cell vs. IPC4 (2816 upregulated genes and 4571 downregulated genes). The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs revealed that many genes and signaling pathways that are essential for transdifferentiation. Hnf1B, Dll1, Pbx1, Rfx3, and Foxa1 were screened out, and the functions of five genes were verified further by overexpression and silence. Foxa1, Pbx1, and Rfx3 exhibited significant effects, can be used as specific key regulatory factors in the transdifferentiation of ADMSCs into IPCs. This study provides a foundation for future work to understand the mechanisms of the transdifferentiation of ADMSCs into IPCs and acquire IPCs with high maturity.
Collapse
Affiliation(s)
- Pengxiu Dai
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiakai Li
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yijing Chen
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Luwen Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinke Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jinglu Wang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guixiang Qi
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yihua Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Zhai Y, Wu W, Xi X, Yu R. Adipose-Derived Stem Cells Promote Proliferation and Invasion in Cervical Cancer by Targeting the HGF/c-MET Pathway. Cancer Manag Res 2020; 12:11823-11832. [PMID: 33244265 PMCID: PMC7685249 DOI: 10.2147/cmar.s277130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cervical cancer is a serious female malignancy affecting women's health worldwide. The HGF/c-MET signaling pathway is activated in cervical cancer. Adipose-derived stem cells (ADSCs) with multipotential differentiation can carry out paracrine secretion of hepatocyte growth factor (HGF). Here, we investigated the effect and underlying mechanism of ADSCs on the promotion and invasion of cervical cancer in vitro and in vivo. Materials and Methods ADSCs were isolated, identified, and co-cultured with cervical cancer cells. HGF was detected using ELISA, and the HGF and c-MET signaling pathway was assessed with Western blot. The proliferation and invasion of human cervical cancer cell lines (HeLa and CaSki cells) were measured using CCK-8 and transwell assays. A HeLa xenograft mouse model was established to determine the effect of ADSCs on tumor growth in vivo. Results ADSCs secreted a high level of HGF into the supernatant, while co-culture of ADSCs and cervical cancer cells increased the supernatant level of HGF. The HGF/c-MET pathway was activated in HeLa and CaSki cells co-cultured with ADSCs. Both co-culture with ADSCs and use of ADSC-derived conditioned medium (ADSCs-CM) significantly promoted the proliferation and invasion of cervical cancer cells in vitro, an effect that was reduced by inhibiting tumor cell c-MET expression. Furthermore, ADSCs-CM promoted HeLa cervical tumor growth in vivo, which could be suppressed by intratumoral c-MET siRNA injection. Conclusion ADSCs promote cervical cancer growth and invasion through paracrine secretion of HGF and involvement of the HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
- Yongning Zhai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China.,Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Wangfei Wu
- Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, People's Republic of China
| | - Rongbin Yu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
20
|
Generation of Insulin-Producing Cells from Canine Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8841865. [PMID: 33133196 PMCID: PMC7591982 DOI: 10.1155/2020/8841865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
The potential of mesenchymal stem cells (MSCs) to differentiate into nonmesodermal cells such as pancreatic beta cells has been reported. New cell-based therapy using MSCs for diabetes mellitus is anticipated as an alternative treatment option to insulin injection or islet transplantation in both human and veterinary medicine. Several protocols were reported for differentiation of MSCs into insulin-producing cells (IPCs), but no studies have reported IPCs generated from canine MSCs. The purpose of this study was to generate IPCs from canine adipose tissue-derived MSCs (AT-MSCs) in vitro and to investigate the effects of IPC transplantation on diabetic mice in vivo. Culturing AT-MSCs with the differentiation protocol under a two-dimensional culture system did not produce IPCs. However, spheroid-like small clusters consisting of canine AT-MSCs and human recombinant peptide μ-pieces developed under a three-dimensional (3D) culture system were successfully differentiated into IPCs. The generated IPCs under 3D culture condition were stained with dithizone and anti-insulin antibody. Canine IPCs also showed gene expression typical for pancreatic beta cells and increased insulin secretion in response to glucose stimulation. The blood glucose levels in streptozotocin-induced diabetic mice were decreased after injection with the supernatant of canine IPCs, but the hyperglycemic states of diabetic mice were not improved after transplanting IPCs subcutaneously or intramesenterically. The histological examination showed that the transplanted small clusters of IPCs were successfully engrafted to the mice and included cells positive for insulin by immunofluorescence. Several factors, such as the transplanted cell number, the origin of AT-MSCs, and the differentiation protocol, were considered potential reasons for the inability to improve the hyperglycemic state after IPC transplantation. These findings suggest that canine AT-MSCs can be differentiated into IPCs under a 3D culture system and IPC transplantation may be a new treatment option for dogs with diabetes mellitus.
Collapse
|
21
|
Abstract
OBJECTIVES We aimed to determine whether responsive insulin-producing cells (IPCs) could be generated from adipose-derived stem cells (ADSCs) isolated from patients with type 1 diabetes mellitus (T1DM). METHODS We isolated ADSCs from adipose tissue of 4 patients (one patient with T1DM and 3 nondiabetic patients), who underwent surgery and differentiated them into IPCs with using a 2-step xeno-antigen free, 3-dimensional culture method. Characteristics of isolated ADSCs, in vitro cell quality, programmed cell death ligand-1 (PDL-1) expression, and transplantation into streptozotocin induced diabetic nude mice were investigated. RESULTS Adipose-derived stem cells from T1DM patients and commercially obtained ADSCs showed the same surface markers; CD31CD34CD45CD90CD105CD146. Moreover, the generated IPCs at day 21 demonstrated appropriate autonomous insulin secretion (stimulation index, 3.5; standard deviation, 0.8). Nonfasting blood glucose concentrations of IPC-transplanted mice were normal at 30 days. The normalized rate of IPC-transplanted mice was significantly higher than that of the sham-operated group (P < 0.05). Insulin-producing cells generated from T1DM adipose tissue expressed high levels of PDL-1. CONCLUSIONS Insulin-producing cells obtained from adipose tissue of T1DM patients are capable of secreting insulin long-term and achieve normoglycemia after transplantation. Expression of PDL-1 suggests the potential for immune circumvention.
Collapse
|