1
|
Chea S, Kreger J, Lopez-Burks ME, MacLean AL, Lander AD, Calof AL. Gastrulation-stage gene expression in Nipbl+/- mouse embryos foreshadows the development of syndromic birth defects. SCIENCE ADVANCES 2024; 10:eadl4239. [PMID: 38507484 PMCID: PMC10954218 DOI: 10.1126/sciadv.adl4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
In animal models, Nipbl deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange syndrome, the most common cause of which is Nipbl haploinsufficiency. Previous studies in Nipbl+/- mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA sequencing on wild-type and Nipbl+/- mouse embryos at gastrulation and early cardiac crescent stages. Nipbl+/- embryos had fewer mesoderm cells than wild-type and altered proportions of mesodermal cell subpopulations. These findings were associated with underexpression of genes implicated in driving specific mesodermal lineages. In addition, Nanog was found to be overexpressed in all germ layers, and many gene expression changes observed in Nipbl+/- embryos could be attributed to Nanog overexpression. These findings establish a link between Nipbl deficiency, Nanog overexpression, and gene expression dysregulation/lineage misallocation, which ultimately manifest as birth defects in Nipbl+/- animals and Cornelia de Lange syndrome.
Collapse
Affiliation(s)
- Stephenson Chea
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Jesse Kreger
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Martha E. Lopez-Burks
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Arthur D. Lander
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Anne L. Calof
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
3
|
Cao C, Li L, Zhang Q, Li H, Wang Z, Wang A, Liu J. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases. Front Cardiovasc Med 2023; 10:1270951. [PMID: 38124890 PMCID: PMC10732152 DOI: 10.3389/fcvm.2023.1270951] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiomyocytes fail to regenerate after birth and respond to mitotic signals through cellular hypertrophy rather than cellular proliferation. Necrotic cardiomyocytes in the infarcted ventricular tissue are eventually replaced by fibroblasts, generating scar tissue. Cardiomyocyte loss causes localized systolic dysfunction. Therefore, achieving the regeneration of cardiomyocytes is of great significance for cardiac function and development. Heart development is a complex biological process. An integral cardiac developmental network plays a decisive role in the regeneration of cardiomyocytes. During this process, genetic epigenetic factors, transcription factors, signaling pathways and small RNAs are involved in regulating the developmental process of the heart. Cardiomyocyte-specific genes largely promote myocardial regeneration, among which the Nkx2.5 transcription factor is one of the earliest markers of cardiac progenitor cells, and the loss or overexpression of Nkx2.5 affects cardiac development and is a promising candidate factor. Nkx2.5 affects the development and function of the heart through its multiple functional domains. However, until now, the specific mechanism of Nkx2.5 in cardiac development and regeneration is not been fully understood. Therefore, this article will review the molecular structure, function and interaction regulation of Nkx2.5 to provide a new direction for cardiac development and the treatment of heart regeneration.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Qian Zhang
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Aoao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Gil CJ, Evans CJ, Li L, Allphin AJ, Tomov ML, Jin L, Vargas M, Hwang B, Wang J, Putaturo V, Kabboul G, Alam AS, Nandwani RK, Wu Y, Sushmit A, Fulton T, Shen M, Kaiser JM, Ning L, Veneziano R, Willet N, Wang G, Drissi H, Weeks ER, Bauser-Heaton HD, Badea CT, Roeder RK, Serpooshan V. Leveraging 3D Bioprinting and Photon-Counting Computed Tomography to Enable Noninvasive Quantitative Tracking of Multifunctional Tissue Engineered Constructs. Adv Healthc Mater 2023; 12:e2302271. [PMID: 37709282 PMCID: PMC10842604 DOI: 10.1002/adhm.202302271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Indexed: 09/16/2023]
Abstract
3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability. Multiple CT-visible hydrogel-based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine-loaded liposome, gold, methacrylated gold (AuMA), and Gd2 O3 ) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2 O3 NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.
Collapse
Affiliation(s)
- Carmen J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Connor J. Evans
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Lan Li
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Merlyn Vargas
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Jing Wang
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Victor Putaturo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriella Kabboul
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Anjum S. Alam
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Roshni K. Nandwani
- Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - Yuxiao Wu
- Emory University College of Arts and Sciences, Atlanta, GA, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Asif Sushmit
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Travis Fulton
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jarred M. Kaiser
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Nick Willet
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hicham Drissi
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Eric R. Weeks
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
5
|
Arrieta A, Vondriska TM. Nucleosome proteostasis and histone turnover. Front Mol Biosci 2022; 9:990006. [PMID: 36250018 PMCID: PMC9563994 DOI: 10.3389/fmolb.2022.990006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Maintenance of protein folding homeostasis, or proteostasis is critical for cell survival as well as for execution of cell type specific biological processes such as muscle cell contractility, neuronal synapse and memory formation, and cell transition from a mitotic to post-mitotic cell type. Cell type specification is driven largely by chromatin organization, which dictates which genes are turned off or on, depending on cell needs and function. Loss of chromatin organization can have catastrophic consequences either on cell survival or cell type specific function. Chromatin organization is highly dependent on organization of nucleosomes, spatiotemporal nucleosome assembly and disassembly, and histone turnover. In this review our goal is to highlight why nucleosome proteostasis is critical for chromatin organization, how this process is mediated by histone chaperones and ATP-dependent chromatin remodelers and outline potential and established mechanisms of disrupted nucleosome proteostasis during disease. Finally, we highlight how these mechanisms of histone turnover and nucleosome proteostasis may conspire with unfolded protein response programs to drive histone turnover in cell growth and development.
Collapse
Affiliation(s)
- Adrian Arrieta
- Departments of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Adrian Arrieta,
| | - Thomas M. Vondriska
- Departments of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Departments of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Departments of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Razzaq SS, Khan I, Naeem N, Salim A, Begum S, Haneef K. Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells. World J Stem Cells 2022; 14:700-713. [PMID: 36188117 PMCID: PMC9516467 DOI: 10.4252/wjsc.v14.i9.700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Heart diseases are the primary cause of death all over the world. Following myocardial infarction, billions of cells die, resulting in a huge loss of cardiac function. Stem cell-based therapies have appeared as a new area to support heart regeneration. The transcription factors GATA binding protein 4 (GATA-4) and myocyte enhancer factor 2C (MEF2C) are considered prominent factors in the development of the cardiovascular system. AIM To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). METHODS hUC-MSCs were characterized morphologically and immunologically by the presence of specific markers of MSCs via immunocytochemistry and flow cytometry, and by their potential to differentiate into osteocytes and adipocytes. hUC-MSCs were transfected with GATA-4, MEF2C, and their combination to direct the differentiation. Cardiac differentiation was confirmed by semiquantitative real-time polymerase chain reaction and immunocytochemistry. RESULTS hUC-MSCs expressed specific cell surface markers CD105, CD90, CD44, and vimentin but lack the expression of CD45. The transcription factors GATA-4 and MEF2C, and their combination induced differentiation in hUC-MSCs with significant expression of cardiac genes i.e., GATA-4, MEF2C, NK2 homeobox 5 (NKX2.5), MHC, and connexin-43, and cardiac proteins GATA-4, NKX2.5, cardiac troponin T, and connexin-43. CONCLUSION Transfection with GATA-4, MEF2C, and their combination effectively induces cardiac differentiation in hUC-MSCs. These genetically modified MSCs could be a promising treatment option for heart diseases in the future.
Collapse
Affiliation(s)
- Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nadia Naeem
- Dow Research Institute of Biotechnology & Biomedical Sciences (DRIBBS), Dow University of Health Sciences (DUHS), Ojha Campus, Karachi 75200, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi 74200, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
7
|
The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants (Basel) 2022; 11:antiox11050882. [PMID: 35624750 PMCID: PMC9137669 DOI: 10.3390/antiox11050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.
Collapse
|
8
|
Cetnar AD, Tomov ML, Ning L, Jing B, Theus AS, Kumar A, Wijntjes AN, Bhamidipati SR, Pham K, Mantalaris A, Oshinski JN, Avazmohammadi R, Lindsey BD, Bauser-Heaton HD, Serpooshan V. Patient-Specific 3D Bioprinted Models of Developing Human Heart. Adv Healthc Mater 2021; 10:e2001169. [PMID: 33274834 PMCID: PMC8175477 DOI: 10.1002/adhm.202001169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Indexed: 12/19/2022]
Abstract
The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development. This study investigates the use of 3D bioprinting and perfusion bioreactor technologies to create bioartificial constructs that can serve as high-fidelity models of the developing human heart. Bioprinted hydrogel-based, anatomically accurate models of the human embryonic heart tube (e-HT, day 22) and fetal left ventricle (f-LV, week 33) are perfused and analyzed both computationally and experimentally using ultrasound and magnetic resonance imaging. Results demonstrate comparable flow hemodynamic patterns within the 3D space. We demonstrate endothelial cell growth and function within the bioprinted e-HT and f-LV constructs, which varied significantly in varying cardiac geometries and flow. This study introduces the first generation of anatomically accurate, 3D functional models of developing human heart. This platform enables precise tuning of microenvironmental factors, such as flow and geometry, thus allowing the study of normal developmental processes and underlying diseases.
Collapse
Affiliation(s)
- Alexander D. Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Andrea S. Theus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akaash Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Amanda N. Wijntjes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Katherine Pham
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - John N. Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine,Atlanta, Georgia, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brooks D. Lindsey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Hamano M, Nomura S, Iida M, Komuro I, Yamanishi Y. Prediction of single-cell mechanisms for disease progression in hypertrophic remodelling by a trans-omics approach. Sci Rep 2021; 11:8112. [PMID: 33854108 PMCID: PMC8047020 DOI: 10.1038/s41598-021-86821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure is a heterogeneous disease with multiple risk factors and various pathophysiological types, which makes it difficult to understand the molecular mechanisms involved. In this study, we proposed a trans-omics approach for predicting molecular pathological mechanisms of heart failure and identifying marker genes to distinguish heterogeneous phenotypes, by integrating multiple omics data including single-cell RNA-seq, ChIP-seq, and gene interactome data. We detected a significant increase in the expression level of natriuretic peptide A (Nppa), after stress loading with transverse aortic constriction (TAC), and showed that cardiomyocytes with high Nppa expression displayed specific gene expression patterns. Multiple NADH ubiquinone complex family, which are associated with the mitochondrial electron transport system, were negatively correlated with Nppa expression during the early stages of cardiac hypertrophy. Large-scale ChIP-seq data analysis showed that Nkx2-5 and Gtf2b were transcription factors characteristic of high-Nppa-expressing cardiomyocytes. Nppa expression levels may, therefore, represent a useful diagnostic marker for heart failure.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, 153-0041, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
| |
Collapse
|
10
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
de Gannes M, Ko CI, Zhang X, Biesiada J, Niu L, Koch SE, Medvedovic M, Rubinstein J, Puga A. Dioxin Disrupts Dynamic DNA Methylation Patterns in Genes That Govern Cardiomyocyte Maturation. Toxicol Sci 2020; 178:325-337. [PMID: 33017471 DOI: 10.1093/toxsci/kfaa153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Congenital heart disease (CHD), the leading birth defect worldwide, has a largely unknown etiology, likely to result from complex interactions between genetic and environmental factors during heart development, at a time when the heart adapts to diverse physiological and pathophysiological conditions. Crucial among these is the regulation of cardiomyocyte development and postnatal maturation, governed by dynamic changes in DNA methylation. Previous work from our laboratory has shown that exposure to the environmental toxicant tetrachlorodibenzo-p-dioxin (TCDD) disrupts several molecular networks responsible for heart development and function. To test the hypothesis that the disruption caused by TCDD in the heart results from changes in DNA methylation and gene expression patterns of cardiomyocytes, we established a stable mouse embryonic stem cell line expressing a puromycin resistance selectable marker under control of the cardiomyocyte-specific Nkx2-5 promoter. Differentiation of these cells in the presence of puromycin induces the expression of a large suite of cardiomyocyte-specific markers. To assess the consequences of TCDD treatment on gene expression and DNA methylation in these cardiomyocytes, we subjected them to transcriptome and methylome analyses in the presence of TCDD. Unlike control cardiomyocytes maintained in vehicle, the TCDD-treated cardiomyocytes showed extensive gene expression changes, with a significant correlation between differential RNA expression and DNA methylation in 111 genes, many of which are key elements of pathways that regulate cardiovascular development and function. Our findings provide an important clue toward the elucidation of the complex interactions between genetic and epigenetic mechanisms after developmental TCDD exposure that may contribute to CHD.
Collapse
Affiliation(s)
- Matthew de Gannes
- Department of Environmental Health and Center for Environmental Genetics
| | - Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics
| | - Xiang Zhang
- Department of Environmental Health and Center for Environmental Genetics
| | - Jacek Biesiada
- Department of Environmental Health and Center for Environmental Genetics
| | - Liang Niu
- Department of Environmental Health and Center for Environmental Genetics
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Mario Medvedovic
- Department of Environmental Health and Center for Environmental Genetics
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics
| |
Collapse
|
12
|
Qazi REM, Naeem N, Khan I, Qadeer Q, Shaheen F, Salim A. Effect of a dianthin G analogue in the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem 2020; 475:27-39. [PMID: 32737770 DOI: 10.1007/s11010-020-03855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Loss of cardiomyocytes due to myocardial infarction results in ventricular remodeling which includes non-contractile scar formation, which can lead to heart failure. Stem cell therapy aims to replace the scar tissue with the functional myocardium. Mesenchymal stem cells (MSCs) are undifferentiated cells capable of self-renewal as well as differentiation into multiple lineages. MSCs can be differentiated into cardiomyocytes by treating them with small molecules and peptides. Here, we report for the first time, the role of a cyclic peptide, an analogue of dianthin G, [Glu2]-dianthin G (1) in the in vitro cardiac differentiation of rat bone marrow MSCs. In this study, [Glu2]-dianthin G (1) was synthesized using solid-phase total synthesis and characterized by NMR spectroscopy. MSCs were treated with two different concentrations (0.025 and 0.05 mM) of the peptide separately for 72 h and then incubated for 15 days to allow the cells to differentiate into cardiomyocytes. Treated cells were analyzed for the expression of cardiac-specific genes and proteins. Results showed significant upregulation of cardiac-specific genes GATA4, cardiac troponin T (cTnT), cardiac troponin I (cTnI), cardiac myosin heavy chain, and connexin 43 in the treated MSCs compared to the untreated control. For cardiac-specific proteins, GATA4, cTnT, and Nkx2.5 were analyzed in the treated cells and were shown to have significant upregulation as compared to the untreated control. In conclusion, this study has demonstrated the cardiac differentiation potential of [Glu2]-dianthin G (1)-treated rat bone marrow MSCs in vitro both at the gene and at the protein levels. Transplantation of pre-differentiated MSCs into the infarcted myocardium may result in the efficient regeneration of cardiac cells and restoration of normal cardiac function.
Collapse
Affiliation(s)
- Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nadia Naeem
- Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri, Suparco Road, KDA Scheme-33, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Quratulain Qadeer
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farzana Shaheen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
13
|
Theus AS, Ning L, Hwang B, Gil C, Chen S, Wombwell A, Mehta R, Serpooshan V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers (Basel) 2020; 12:E2262. [PMID: 33019639 PMCID: PMC7599870 DOI: 10.3390/polym12102262] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes various biomaterials that either contain or interact with living cells and biological systems with the goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These bioinks are typically hydrogel-based hybrid systems with many specific features and requirements. The characterizing and fine tuning of bioink properties before, during, and after printing are therefore essential in developing reproducible and stable bioprinted constructs. To date, myriad computational methods, mechanical testing, and rheological evaluations have been used to predict, measure, and optimize bioinks properties and their printability, but none are properly standardized. There is a lack of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this review, we introduced the concept of bioprintability and discussed the significant roles of various physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the processes related to pre, during, and post printing. Establishing fully characterized, functional bioink solutions would be a big step towards the effective clinical applications of bioprinted products.
Collapse
Affiliation(s)
- Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Carmen Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Shuai Chen
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Allison Wombwell
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Fetal Hypoxia Impacts on Proliferation and Differentiation of Sca-1 + Cardiac Progenitor Cells and Maturation of Cardiomyocytes: A Role of MicroRNA-210. Genes (Basel) 2020; 11:genes11030328. [PMID: 32244901 PMCID: PMC7140790 DOI: 10.3390/genes11030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is one of the most frequent and severe stresses to an organism’s homeostatic mechanisms, and hypoxia during gestation has profound adverse effects on the heart development increasing the occurrence of congenital heart defects (CHDs). Cardiac progenitor cells (CPCs) are responsible for early heart development and the later occurrence of heart disease. However, the mechanism of how hypoxic stress affects CPC fate decisions and contributes to CHDs remains a topic of debate. Here we examined the effect of hypoxic stress on the regulations of CPC fate decisions and the potential mechanism. We found that experimental induction of hypoxic responses compromised CPC function by regulating CPC proliferation and differentiation and restraining cardiomyocyte maturation. In addition, echocardiography indicated that fetal hypoxia reduced interventricular septum thickness at diastole and the ejection time, but increased the heart rate, in mouse young adult offspring with a gender-related difference. Further study revealed that hypoxia upregulated microRNA-210 expression in Sca-1+ CPCs and impeded the cell differentiation. Blockage of microRNA-210 with LNA-anti-microRNA-210 significantly promoted differentiation of Sca-1+ CPCs into cardiomyocytes. Thus, the present findings provide clear evidence that hypoxia alters CPC fate decisions and reveal a novel mechanism of microRNA-210 in the hypoxic effect, raising the possibility of microRNA-210 as a potential therapeutic target for heart disease.
Collapse
|
15
|
Ge M, Bai X, Liu A, Liu L, Tian J, Lu T. An eIF3a gene mutation dysregulates myocardium growth with left ventricular noncompaction via the p-ERK1/2 pathway. Genes Dis 2020; 8:545-554. [PMID: 34179316 PMCID: PMC8209309 DOI: 10.1016/j.gendis.2020.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Left ventricular noncompaction (LVNC) is a heterogeneous disorder with unclear genetic causes and an unknown mechanism. eIF3a, an important member of the Eukaryotic translation initiation factor 3 (eIF3) family, is involved in multiple biological processes, including cell proliferation and migration during myocardial development, suggesting it could play a role in LVNC development. To investigate the association between a novel variant (c.1145 A- > G) in eIF3a and LVNC, and explore potential mechanisms that could lead to the development of LVNC. A novel eIF3a variant, c.1145 A- > G, was identified by whole-exome sequencing in a familial pedigree with LVNC. Adenovirus vectors containing wild-type eIF3a and the mutated version were constructed and co-infected into H9C2 cells. Cell proliferation, apoptosis, cell migration, and differentiation, as well as phosphorylation of ERK1/2 were studied and were measured by proliferation assays, flow cytometry, real-time PCR and Western blot, respectively. The eIF3a mutation inhibited the proliferation of H9C2 cells, induced apoptosis, promoted cell migration, and inhibited the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The effect of the eIF3a mutation may be attributed to a decrease in expression of p-ERK1/2. A novel eIF3a gene mutation disrupted the p-ERK1/2 pathway and caused decreased myocardium proliferation, differentiation, accelerated migration.This finding may provide some insight into the mechanism involved in LVNC development.
Collapse
Affiliation(s)
- Mei Ge
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Xuehan Bai
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Aoyi Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| | - Tiewei Lu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,China International Science and Technology Cooperation Center for Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 401122, PR China
| |
Collapse
|
16
|
Abstract
Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFβ)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.
Collapse
Affiliation(s)
- Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| |
Collapse
|
17
|
Deutsch MA, Doppler SA, Li X, Lahm H, Santamaria G, Cuda G, Eichhorn S, Ratschiller T, Dzilic E, Dreßen M, Eckart A, Stark K, Massberg S, Bartels A, Rischpler C, Gilsbach R, Hein L, Fleischmann BK, Wu SM, Lange R, Krane M. Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis. Cardiovasc Res 2019; 114:1098-1114. [PMID: 29579159 DOI: 10.1093/cvr/cvy069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Aims The contribution of resident stem or progenitor cells to cardiomyocyte renewal after injury in adult mammalian hearts remains a matter of considerable debate. We evaluated a cell population in the adult mouse heart induced by myocardial infarction (MI) and characterized by an activated Nkx2.5 enhancer element that is specific for multipotent cardiac progenitor cells (CPCs) during embryonic development. We hypothesized that these MI-induced cells (MICs) harbour cardiomyogenic properties similar to their embryonic counterparts. Methods and results MICs reside in the heart and mainly localize to the infarction area and border zone. Interestingly, gene expression profiling of purified MICs 1 week after infarction revealed increased expression of stem cell markers and embryonic cardiac transcription factors (TFs) in these cells as compared to the non-mycoyte cell fraction of adult hearts. A subsequent global transcriptome comparison with embryonic CPCs and fibroblasts and in vitro culture of MICs unveiled that (myo-)fibroblastic features predominated and that cardiac TFs were only expressed at background levels. Conclusions Adult injury-induced reactivation of a cardiac-specific Nkx2.5 enhancer element known to specifically mark myocardial progenitor cells during embryonic development does not reflect hypothesized embryonic cardiomyogenic properties. Our data suggest a decreasing plasticity of cardiac progenitor (-like) cell populations with increasing age. A re-expression of embryonic, stem or progenitor cell features in the adult heart must be interpreted very carefully with respect to the definition of cardiac resident progenitor cells. Albeit, the abundance of scar formation after cardiac injury suggests a potential to target predestinated activated profibrotic cells to push them towards cardiomyogenic differentiation to improve regeneration.
Collapse
Affiliation(s)
- Marcus-André Deutsch
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany
| | - Xinghai Li
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany
| | - Gianluca Santamaria
- Stem Cell Laboratory, Department of Experimental and Clinical Medicine, Research Center of Advanced Biochemistry and Molecular Biology.,CIS (Centro Interdisciplinare Servizi), University 'Magna Graecia' of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Stem Cell Laboratory, Department of Experimental and Clinical Medicine, Research Center of Advanced Biochemistry and Molecular Biology
| | - Stefan Eichhorn
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany
| | - Thomas Ratschiller
- Department of Cardiothoracic and Vascular Surgery, Kepler University Hospital, 4021 Linz, Austria
| | - Elda Dzilic
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany
| | - Annekathrin Eckart
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Konstantin Stark
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Steffen Massberg
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Anna Bartels
- Nuklearmedizinische Klinik des Klinikums Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Christoph Rischpler
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Nuklearmedizinische Klinik des Klinikums Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Sean M Wu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, Lazarettstraße 36, 80636 Munich, Germany.,Department of Cardiovascular Surgery, German Heart Center, Insure (Institute for Translational Cardiac Surgery), Technische Universität München, Lothstraße 11, 80636 Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Tomov ML, Gil CJ, Cetnar A, Theus AS, Lima BJ, Nish JE, Bauser-Heaton HD, Serpooshan V. Engineering Functional Cardiac Tissues for Regenerative Medicine Applications. Curr Cardiol Rep 2019; 21:105. [PMID: 31367922 PMCID: PMC7153535 DOI: 10.1007/s11886-019-1178-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo. RECENT FINDINGS Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling. To date, a variety of approaches have been used to bioengineer functional cardiac constructs, including biomaterial-based, cell-based, and hybrid (using cells and biomaterials) approaches. While some major progress has been made using cellular approaches, with multiple ongoing clinical trials, cell-free cardiac tissue engineering approaches have also accomplished multiple breakthroughs, although drawbacks remain. This review summarizes the most promising methods that have been employed to generate cardiovascular tissue constructs for basic science or clinical applications. Further, we outline the strengths and challenges that are inherent to this field as a whole and for each highlighted technology.
Collapse
Affiliation(s)
- Martin L Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Carmen J Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Alexander Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Andrea S Theus
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Bryanna J Lima
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Joy E Nish
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA
| | - Holly D Bauser-Heaton
- Division of Pediatric Cardiology, Children's Healthcare of Atlanta Sibley Heart Center, Atlanta, GA, 30322, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30309, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Cai X, Zhu Z, Zhang Y, Tian X. SDF-1α promotes repair of myocardial ischemic necrosis zones in rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1956-1967. [PMID: 31934018 PMCID: PMC6949651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To explore the repair effect of stromal cell-derived factor-1α (SDF-1α) on myocardial ischemic necrosis zones. METHODS Lentivirus (LV-SDF-1α-GFP) containing SDF-1α target gene was established, the separated and cultured neonatal rat cardiac fibroblasts were transfected, and caudal intravenous injection of isoproterenol was conducted to prepare a rat model of myocardial ischemia. Small animal ultrasound was used to evaluate the effect on cardiac functions. Morphology and immunofluorescence were used to observe the change of ischemic necrosis zones and expressions of stem cellular markers c-kit, CD34, nkx2.5, and nanog, and a quantitative analysis was performed. RESULTS The established LV-SDF-1α-GFP was used to transfect myocardial fibroblasts which presented GFP green fluorescent expression and could secrete SDF-1α. The small animal ultrasound system showed that rat cardiac functions of the lentivirus group and cell group were improved to different degrees, myocardial ischemic necrosis zones of lentivirus group and cell group were reduced, and differences had statistical significances (P<0.05). Immunofluorescence showed that expressions of stem cellular markers c-kit, CD34, nkx2.5 and nanog in myocardial tissue ischemic zones in both the lentivirus group and cell group increased, and differences through inter-group comparison had statistical significances (P<0.05). CONCLUSION SDF-1α can promote migration and proliferation of stem cells into the myocardial ischemic necrosis zone, participate in repair of the myocardial necrosis zone, and improve cardiac function.
Collapse
Affiliation(s)
- Xinhua Cai
- Department of Histology and Embryology, Xinxiang Medical UniversityXinxiang 453003, Henan Province, China
| | - Zhanzhan Zhu
- The 7th People’s Hospital of ZhengzhouZhengzhou 450006, Henan Province, China
| | - Yongchun Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan Province, China
| | - Xiangqin Tian
- Department of Histology and Embryology, Xinxiang Medical UniversityXinxiang 453003, Henan Province, China
| |
Collapse
|
20
|
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019; 124:1184-1197. [PMID: 30744497 DOI: 10.1161/circresaha.118.314063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Cell Biology (K.E.H.), University of Miami, Miller School of Medicine, FL
| | - Adam R Williams
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Surgery (A.R.W.), University of Miami, Miller School of Medicine, FL
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.R.W.)
| | - Derek Dykxhoorn
- Department of Human Genetics (D.D.), University of Miami, Miller School of Medicine, FL
- John P. Hussman Institute for Human Genomics (D.D.), University of Miami, Miller School of Medicine, FL
| | - Michael A Bellio
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wendou Yu
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Pediatrics (W.Y.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Molecular and Cellular Pharmacology (J.M.H.), University of Miami, Miller School of Medicine, FL
- Cardiology Division, Department of Medicine (J.M.H.), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
21
|
Bhattacharyya S, Sathe AA, Bhakta M, Xing C, Munshi NV. PAN-INTACT enables direct isolation of lineage-specific nuclei from fibrous tissues. PLoS One 2019; 14:e0214677. [PMID: 30939177 PMCID: PMC6445515 DOI: 10.1371/journal.pone.0214677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
Recent studies have highlighted the extraordinary cell type diversity that exists within mammalian organs, yet the molecular drivers of such heterogeneity remain elusive. To address this issue, much attention has been focused on profiling the transcriptome and epigenome of individual cell types. However, standard cell type isolation methods based on surface or fluorescent markers remain problematic for cells residing within organs with significant connective tissue. Since the nucleus contains both genomic and transcriptomic information, the isolation of nuclei tagged in specific cell types (INTACT) method provides an attractive solution. Although INTACT has been successfully applied to plants, flies, zebrafish, frogs, and mouse brain and adipose tissue, broad use across mammalian organs remains challenging. Here we describe the PAN-INTACT method, which can be used to isolate cell type specific nuclei from fibrous mouse organs, which are particularly problematic. As a proof-of-concept, we demonstrate successful isolation of cell type-specific nuclei from the mouse heart, which contains substantial connective tissue and harbors multiple cell types, including cardiomyocytes, fibroblasts, endothelial cells, and epicardial cells. Compared to established techniques, PAN-INTACT allows more rapid isolation of cardiac nuclei to facilitate downstream applications. We show cell type-specific isolation of nuclei from the hearts of Nkx2-5Cre/+; R26Sun1-2xsf-GFP-6xmyc/+ mice, which we confirm by expression of lineage markers. Furthermore, we perform Assay for Transposase Accessible Chromatin (ATAC)-Seq to provide high-fidelity chromatin accessibility maps of Nkx2-5+ nuclei. To extend the applicability of PAN-INTACT, we also demonstrate successful isolation of Wt1+ podocytes from adult kidney. Taken together, our data suggest that PAN-INTACT is broadly applicable for profiling the transcriptional and epigenetic landscape of specific cell types. Thus, we envision that our method can be used to systematically probe mechanistic details of cell type-specific functions within individual organs of intact mice.
Collapse
Affiliation(s)
- Samadrita Bhattacharyya
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adwait A. Sathe
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Hamon Center for Regenerative Science and Medicine, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hu JB, Tomov ML, Buikema JW, Chen C, Mahmoudi M, Wu SM, Serpooshan V. Cardiovascular tissue bioprinting: Physical and chemical processes. APPLIED PHYSICS REVIEWS 2018; 5:041106. [PMID: 32550960 PMCID: PMC7187889 DOI: 10.1063/1.5048807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/24/2018] [Indexed: 05/08/2023]
Abstract
Three-dimensional (3D) cardiac tissue bioprinting occupies a critical crossroads position between the fields of materials engineering, cardiovascular biology, 3D printing, and rational organ replacement design. This complex area of research therefore requires expertise from all those disciplines and it poses some unique considerations that must be accounted for. One of the chief hurdles is that there is a relatively limited systematic organization of the physical and chemical characteristics of bioinks that would make them applicable to cardiac bioprinting. This is of great significance, as heart tissue is functionally complex and the in vivo extracellular niche is under stringent controls with little room for variability before a cardiomyopathy manifests. This review explores the critical parameters that are necessary for biologically relevant bioinks to successfully be leveraged for functional cardiac tissue engineering, which can have applications in in vitro heart tissue models, cardiotoxicity studies, and implantable constructs that can be used to treat a range of cardiomyopathies, or in regenerative medicine.
Collapse
Affiliation(s)
- James B. Hu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | - Caressa Chen
- Department of General Surgery, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | - Vahid Serpooshan
- Author to whom correspondence should be addressed: . Present address: 1760 Haygood Dr. NE, HSRB Bldg., Suite E480, Atlanta, Georgia 30322, USA. Telephone: 404-712-9717. Fax: 404-727-9873
| |
Collapse
|
23
|
Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Sci Rep 2018; 8:6618. [PMID: 29700394 PMCID: PMC5920079 DOI: 10.1038/s41598-018-24954-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Bioactive lipids such as sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) regulate diverse processes including cell proliferation, differentiation, and migration. However, their roles in cardiac differentiation and cardiomyocyte proliferation have not been explored. Using a 96-well differentiation platform for generating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) we found that S1P and LPA can independently enhance cardiomyocyte generation when administered at an early stage of differentiation. We showed that the combined S1P and LPA treatment of undifferentiated hiPSCs resulted in increased nuclear accumulation of β-catenin, the canonical Wnt signaling pathway mediator, and synergized with CHIR99021, a glycogen synthase kinase 3 beta inhibitor, to enhance mesodermal induction and subsequent cardiac differentiation. At later stages of cardiac differentiation, the addition of S1P and LPA resulted in cell cycle initiation in hiPSC-CMs, an effect mediated through increased ERK signaling. Although the addition of S1P and LPA alone was insufficient to induce cell division, it was able to enhance β-catenin-mediated hiPSC-CM proliferation. In summary, we demonstrated a developmental stage-specific effect of bioactive lipids to enhance hiPSC-CM differentiation and proliferation via modulating the effect of canonical Wnt/β-catenin and ERK signaling. These findings may improve hiPSC-CM generation for cardiac disease modeling, precision medicine, and regenerative therapies.
Collapse
|