1
|
Diab AM, Stack HM, McKeown BT, Carleton BC, Goralski KB. Systematic review of Health Canada approved clinical therapeutic trials for the treatment or prevention of coronavirus disease 2019 (COVID-19). Can J Physiol Pharmacol 2025; 103:146-162. [PMID: 40048722 DOI: 10.1139/cjpp-2024-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In response to the COVID-19 pandemic, Canadian clinical researchers pivoted their research programs to investigate repurposing drugs, accelerating the development of experimental therapies, and developing novel disease-specific treatments. This systematic review analyzes the trial design, participant characteristics, and reported outcomes of all Health Canada authorized clinical trials of therapeutics to prevent or treat COVID-19 with published results as of March 2023. We conclude that there is a need for adaptive clinical trial designs, broader pan-Canadian clinical trial networks, more targeted participant recruitment to facilitate increased diversity and inclusion, and standardization in reporting participant characteristics, outcome measurement, and follow-up. Finally, guided by our findings, we make recommendations for improved clinical trial designs when faced with an emerging disease.
Collapse
Affiliation(s)
- Antonios M Diab
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
- Primary Health Care, Nova Scotia Health Authority, Halifax, NS, Canada
| | - Hailey M Stack
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Brendan T McKeown
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Kerry B Goralski
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| |
Collapse
|
2
|
Maglione MA, Klausner JD, Wirnkar PK, Fallarme I, Lak R, Sysawang K, Fu N, Yagyu S, Motala A, Tolentino D, Hempel S. A Rapid Systematic Review of U.S. Food and Drug Administration-Authorized COVID-19 Treatments. Open Forum Infect Dis 2025; 12:ofaf097. [PMID: 40225829 PMCID: PMC11986950 DOI: 10.1093/ofid/ofaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/14/2025] [Indexed: 04/15/2025] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic era saw numerous treatments authorized for emergency use by the United States (US) Food and Drug Administration (FDA). The purpose of the review was to determine if convalescent plasma, antivirals, or monoclonal antibodies are associated with serious adverse events (SAEs) and, if so, which specific populations are at risk. Methods PubMed, ClinicalTrials.gov, and the FDA submission database were searched through December 2023, and the Infectious Diseases Society of America guidelines, international COVID Network Meta-analysis database, and systematic reviews were reference mined to identify controlled studies with at least 1 US site. Reviewers abstracted study characteristics, number of patients experiencing each type of SAE, and methods of adverse event collection and reporting. Results Fifty-four studies met inclusion criteria, including 31 randomized controlled trials. We found insufficient evidence of association of any SAE with antivirals and spike protein receptor-binding antibodies. In patients hospitalized with COVID-19, the monoclonal antibody tocilizumab, an interleukin 6 inhibitor, may be associated with elevated risk of neutropenia (moderate certainty) and infection (limited certainty). Convalescent plasma may be associated with thrombotic events (limited certainty) as well as bleeding events and infection in patients with hematologic cancers (moderate certainty). Inclusion of studies without a US site could potentially change the findings. Conclusions Severe COVID-19 infection may have serious consequences, especially in hospitalized patients with comorbidities. These consequences may be confused with toxicities of the interventions. Based on our analysis, approved treatments for COVID-19 should be prescribed as clinically indicated, although continued vigilance is warranted to identify rare and potentially significant toxicities that may arise in clinical practice. Clinical Trials Registration PROSPERO (CRD42023467821).
Collapse
Affiliation(s)
- Margaret A Maglione
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jeffrey D Klausner
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Patricia K Wirnkar
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ivan Fallarme
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Rozhin Lak
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Kimny Sysawang
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ning Fu
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Sachi Yagyu
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Aneesa Motala
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Danica Tolentino
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Susanne Hempel
- Southern California Evidence Review Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
3
|
Benlarbi M, Kenfack DD, Dionne K, Côté-Chenette M, Beaudoin-Bussières G, Bélanger É, Ding S, Goni OH, Ngoume YF, Tauzin A, Medjahed H, Ghedin E, Duerr R, Finzi A, Tongo M. Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon. Virology 2025; 605:110467. [PMID: 40037139 PMCID: PMC11937844 DOI: 10.1016/j.virol.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In May 2023 the World Health Organization (WHO) declared the end of COVID-19 as a public health emergency. Seroprevalence studies performed in African countries, such as Cameroon, depicted a much higher COVID-19 burden than reported by the WHO. To better understand humoral responses kinetics following infection, we enrolled 333 participants from Yaoundé, Cameroon between March 2020 and January 2022. We measured the levels of antibodies targeting the SARS-CoV-2 receptor-binding-domain (RBD) and the Spike glycoproteins of Delta, Omicron BA.1 and BA.4/5 and the common cold coronavirus HCoV-OC43. We also evaluated plasma capacity to neutralize authentic SARS-CoV-2 virus and to mediate Antibody-Dependent Cellular Cytotoxicity (ADCC). Most individuals mounted a strong antibody response against SARS-CoV-2 Spike. Plasma neutralization waned faster than anti-Spike binding and ADCC. We observed differences in humoral responses by age and circulating variants. Altogether, we show a global overview of antibody dynamics and functionality against SARS-CoV-2 in Cameroon.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dell-Dylan Kenfack
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Côté-Chenette
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Yannick F Ngoume
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, New York, USA; Department of Medicine, NYU Grossman School of Medicine, New York, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon; HIV Pathogenesis Program, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
4
|
Weiss S, Lin HM, Acosta E, Komarova NL, Chen P, Wodarz D, Baine I, Duerr R, Wajnberg A, Gervais A, Bastard P, Casanova JL, Arinsburg SA, Swartz TH, Aberg JA, Bouvier NM, Liu ST, Alvarez RA, Chen BK. Post-transfusion activation of coagulation pathways during severe COVID-19 correlates with COVID-19 convalescent plasma antibody profiles. J Clin Invest 2025; 135:e181136. [PMID: 40091845 PMCID: PMC11910229 DOI: 10.1172/jci181136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Early antibody therapy can prevent severe SARS-CoV-2 infection (COVID-19). However, the effectiveness of COVID-19 convalescent plasma (CCP) therapy in treating severe COVID-19 remains inconclusive. To test a hypothesis that some CCP units are associated with a coagulopathy hazard in severe disease that offsets its benefits, we tracked 304 CCP units administered to 414 hospitalized COVID-19 patients to assess their association with the onset of unfavorable post-transfusion D-dimer trends. CCP recipients with increasing or persistently elevated D-dimer trajectories after transfusion experienced higher mortality than those whose D-dimer levels were persistently low or decreasing after transfusion. Within the CCP donor-recipient network, recipients with increasing or persistently high D-dimer trajectories were skewed toward association with a minority of CCP units. In in vitro assays, CCP from "higher-risk" units had higher cross-reactivity with the spike protein of human seasonal betacoronavirus OC43. "Higher-risk" CCP units also mediated greater Fcγ receptor IIa signaling against cells expressing SARS-CoV-2 spike compared with "lower-risk" units. This study finds that post-transfusion activation of coagulation pathways during severe COVID-19 is associated with specific CCP antibody profiles and supports a potential mechanism of immune complex-activated coagulopathy.
Collapse
Affiliation(s)
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, UCSD, La Jolla, California, USA
| | - Ian Baine
- Department of Transfusion Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ralf Duerr
- Department of Medicine
- Department of Microbiology, and
- Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Ania Wajnberg
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | - Nicole M. Bouvier
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sean T.H. Liu
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
5
|
Hensley MK, Dela Cruz CS. Host-Directed Adjunctive Therapies in Immunocompromised Patients with Pneumonia. Clin Chest Med 2025; 46:37-48. [PMID: 39890291 DOI: 10.1016/j.ccm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Immunocompromised (IC) hosts represent a unique patient population at risk for not only typical pathogens, but also opportunistic microorganisms. While antimicrobials remain the main treatment, new investigations have demonstrated the importance of host-response to pathogens. In this article, we highlight previously discovered and new areas of investigation for adjunctive host-response treatments for IC host pneumonia.
Collapse
Affiliation(s)
- Matthew K Hensley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Charles S Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Nurmi V, Mayne R, Knight C, Almonacid-Mendoza HL, Secret S, Estcourt L, Hepojoki J, Šuštić T, Lamikanra AA, Tsang HP, Menon DK, Shankar-Hari M, van der Schoot CE, Vidarsson G, Roberts DJ, Simmonds P, Hedman K, Harvala H. Individual patient and donor seroprofiles in convalescent plasma treatment of COVID-19 in REMAP-CAP clinical trial. J Infect 2025; 90:106412. [PMID: 39798805 DOI: 10.1016/j.jinf.2025.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
OBJECTIVES Convalescent plasma (CP) treatment of COVID-19 has shown significant therapeutic effect only when administered early. We investigated the importance of patient and CP seroprofiles on treatment outcome in REMAP-CAP CP trial. METHODS We evaluated neutralising antibodies (nAb), anti-spike (S) IgM, IgG, IgG avidity, IgG fucosylation and respiratory viral loads in a sub-set of patients (n=80) and controls (n=51) before and after transfusion, comparing them to those in the CP units (n=157) they received. RESULTS Most patients were SARS-CoV-2 seropositive pre-transfusion (72% nAb; 89% S-IgG seropositivity). The majority (80%) had higher pre-transfusion S-IgG levels (median 1.7×106 arbitrary units (AU); 56%) or S-IgG production rates (median 1.1×106 AU/day; 64%) than they received from CP (median 2.2×105 AU). Only 22% of the patients demonstrated significant (median 24-fold) increase in their S-IgG levels acquired from transfusion. Better outcomes, measured by organ support-free days, were associated with increase in S-IgM levels (p=0.007), decreased S-IgG fucosylation (p<0.001), lower patient age (p<0.001) but not with receiving CP (p=0.337). CONCLUSIONS Based on our data, increased S-antibody levels linked to transfused CP were only observed in pre-seroconversion or immunodeficient patients lacking their own SARS-CoV-2 antibodies, representing the groups where CP treatment has previously shown most benefit.
Collapse
Affiliation(s)
- Visa Nurmi
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Richard Mayne
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Chanice Knight
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Shannah Secret
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Clinical Services, NHS Blood and Transplant, Oxford, UK
| | - Lise Estcourt
- Clinical Services, NHS Blood and Transplant, Oxford, UK; Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Institute of Veterinary Pathology, Vetsuisse faculty, University of Zürich, Zürich, Switzerland
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Abigail A Lamikanra
- Clinical Services, NHS Blood and Transplant, Oxford, UK; Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Hoi Pat Tsang
- Clinical Services, NHS Blood and Transplant, Oxford, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - David J Roberts
- Clinical Services, NHS Blood and Transplant, Oxford, UK; Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Klaus Hedman
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki University Hospital Diagnostics Centre, Helsinki, Finland
| | - Heli Harvala
- Radcliffe Department of Medicine and BRC Haematology Theme, University of Oxford, Oxford, UK; Microbiology Services, NHS Blood and Transplant, Colindale, UK; Infection and Immunity, University College of London, London, UK
| |
Collapse
|
8
|
Pitkänen HH, Helin T, Khawaja T, Pietilä JP, Kajova M, Välimaa H, Vahlberg T, Ihalainen J, Vierikko A, Vapalahti O, Kantele A, Lassila R. Coagulation Profile of Convalescent Plasma Donors and Recipients. Clin Appl Thromb Hemost 2025; 31:10760296251317522. [PMID: 39886886 PMCID: PMC11783493 DOI: 10.1177/10760296251317522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Convalescent plasma (CP) therapy for COVID-19 infection may have favorable safety but varying efficacy, with concerns about its procoagulant impact. We investigated whether administration of CP to hospitalized patients affects their coagulation profile. Fifty-four patients randomized in a double-blinded fashion received either placebo, low-titer CP (LCP) or high-titer CP (HCP). Donor blood samples were obtained at the time of the plasmapheresis, while recipient blood samples were collected before infusion, one day post-infusion and between two and six days after infusion. Routine laboratory follow-up, coagulation biomarkers, antiphospholipid antibodies, and thrombin generation (TG) were assessed. CP donors had normal blood cell counts and coagulation profiles, without differences between LCP and HCP donors at the baseline. All CP recipients were on low-molecular-weight heparin thromboprophylaxis at the time of the infusion. Despite randomization, the HCP group had lower baseline (p = 0.004) and Day 1 platelet counts (p = 0.019) than the LCP group. Von Willebrand antigen (VWF:Ag) levels clearly exceeded normal without differences at baseline. At Day 1, LCP recipients had higher VWF:Ag (mean ± SD 224 ± 15%) than HCP recipients (210 ± 8%) (p = 0.012). In all groups, overall 80% lupus anticoagulant was positive. Baseline TG variables were comparable, but again LCP recipients exhibited higher endogenous thrombin potential (ETP) (1313 ± 535 nM.min) (p = 0.038) and peak TG (184 ± 106 nM) (p = 0.037) than the HCP group (870 ± 425 nM.min and 86 ± 54 nM). Our findings show that LCP increases VWF:Ag levels and enhances TG despite the thromboprophylaxis. These results suggest that HCP induces less hypercoagulability than LCP, which may contribute to the variability in CP efficacy.
Collapse
Affiliation(s)
- Hanna H Pitkänen
- Helsinki University Hospital, Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Hematology, Coagulation Disorders Unit, Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuukka Helin
- Department of Clinical Chemistry, HUS Diagnostic Centre, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Tamim Khawaja
- Meilahti Vaccine Research Center, MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- FIMAR, Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Pietilä
- Meilahti Vaccine Research Center, MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- FIMAR, Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Helsinki, Finland
| | - Mikael Kajova
- Meilahti Vaccine Research Center, MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- FIMAR, Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Helsinki, Finland
| | - Hanna Välimaa
- Meilahti Vaccine Research Center, MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | - Olli Vapalahti
- Viral Zoonoses Research Unit, Departments of Virology and Veterinary Biosciences, University of Helsinki and Helsinki University Hospital Diagnostic Center, Helsinki, Finland
| | - Anu Kantele
- Meilahti Vaccine Research Center, MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- FIMAR, Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, University of Helsinki, Helsinki, Finland
| | - Riitta Lassila
- Department of Hematology, Coagulation Disorders Unit, Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Kumar S, Mehra S, Sircar M, Jha O, Gupta R, Sinha S, Kaur R. Evaluation of the efficacy of convalescent plasma in moderate to severe COVID-19 during 2020-2021: a retrospective observational study. Monaldi Arch Chest Dis 2024. [PMID: 39704231 DOI: 10.4081/monaldi.2024.3050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Convalescent plasma therapy (CPT) is one of the treatment modalities used for COVID-19. Initial smaller studies showed the usefulness of CPT in COVID-19, but larger studies showed that it is not effective. This is a retrospective observational study conducted between 1st June 2020 and 31st July 2021 at a tertiary hospital in Noida, India. Our analysis was done on 213 COVID-19 patients, comprising 170 cases who were given convalescent plasma and 43 controls who did not get CPT. Outcomes analyzed were improvement in PaO2:FiO2 ratio (PFR) by day 5 of CPT, 28-day mortality, and level of inflammatory markers. Mean PFR before plasma transfusion was comparable between CPT and control groups (142.11±73.99 vs. 151.11±88.87, p=0.56). There was no significant difference in mean PFR after 5 days of CPT between cases and the control group (187.02±102.34 vs. 160.29±83.39, p=0.206). 28-day mortality was 47.05% in the CPT group and 37.20% in the control group (p=0.246). Mortality amongst the subgroup of patients on invasive mechanical ventilation was 89.74% in cases and 80% in controls (p=0.518). No significant difference was found in levels of serum ferritin, interleukin-6, and C-reactive protein between the two groups. Convalescent plasma does not have a significant effect on day 5 PFR and 28-day mortality. Our study could not find any subgroup of patients who would benefit from CPT. This study reinforces that CPT does not benefit moderate to severe patients with COVID-19.
Collapse
Affiliation(s)
- Sunny Kumar
- Department of Pulmonology and Critical Care, Fortis Hospital, Noida, Uttar Pradesh
| | - Saurabh Mehra
- Department of Pulmonology and Critical Care, Fortis Hospital, Noida, Uttar Pradesh
| | - Mrinal Sircar
- Department of Pulmonology and Critical Care, Fortis Hospital, Noida, Uttar Pradesh
| | - Onkar Jha
- Department of Pulmonary Medicine, Paras HEC Hospital, Ranchi
| | - Rajesh Gupta
- Department of Pulmonology and Critical Care, Fortis Hospital, Greater Noida, Uttar Pradesh
| | - Seema Sinha
- Department of Transfusion Medicine, Fortis Hospital, Noida, Uttar Pradesh
| | - Ravneet Kaur
- Lab Operations and Microbiology, Agilus Diagnostics, Fortis Hospital, Noida, Uttar Pradesh
| |
Collapse
|
10
|
Joyner MJ, Carter RE, Wright RS, Senefeld JW. The Safety Profile of COVID-19 Convalescent Plasma. Curr Top Microbiol Immunol 2024. [PMID: 39692910 DOI: 10.1007/82_2024_282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Despite concerns about potential side effects, based both on historical experience with plasma products and more recent concerns about contemporary use of plasma, COVID-19 convalescent plasma has been shown to be a very safe product. Research early in the COVID-19 pandemic documented-among the very large population of convalescent plasma recipients in the US Convalescent Plasma Study component of the FDA-authorized Expanded Access Program-that the overall risk profile was no different than that seen for fresh frozen plasma, a product used routinely in medical practice. The safety of CCP was further demonstrated using real-world evidence, pragmatic trials, and formal randomized trials. The rates of all serious adverse events were very low, an especially impressive finding in light of the fact that nearly all safety data came from the use of COVID-19 convalescent plasma in patients who were hospitalized, were older, and/or had significant co-morbid cardiopulmonary and metabolic disorders. The well-known complications of blood and plasma transfusions-transfusion-associated circulatory overload and transfusion-related acute lung injury-were found with no higher incidence than with standard use of blood and plasma, nor was there evidence for antibody-dependent enhancement or increased incidence of thromboembolic events. The comprehensive safety profile derived from studies enrolling hundreds of thousands of recipients of COVID-19 convalescent plasma across the world should allay safety fears about the rapid deployment of convalescent plasma in future pandemics.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - R Scott Wright
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Human Research Protection Program, Mayo Clinic, Rochester, MN, USA
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Dutra VDF, Andrade HDD, Nunes VRH, Elia GM, Torres JRD, Bub CB, Yokoyama APH, Kutner JM. Use of convalescent plasma in COVID-19 treatment: is clinical severity more important than the intervention? EINSTEIN-SAO PAULO 2024; 22:eAO0563. [PMID: 39699400 DOI: 10.31744/einstein_journal/2024ao0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE This study compared the outcomes of two cohorts of patients with coronavirus disease 2019 (COVID-19) who received COVID-19 convalescent plasma transfusions between 2020 and 2021. METHODS This retrospective study was conducted at a tertiary hospital in São Paulo, Brazil. We included a retrospective cohort of patients who received convalescent compassionate plasma, and another group of patients from a previous clinical study. We collected clinical and laboratory data on the day of and 5 days after transfusion. Patients with hematological or immunological conditions were excluded. Statistical significance was set at p<0.05. RESULTS COVID-19 convalescent plasma did not affect the outcomes of patients with severe COVID-19 when comparing the two cohorts transfused with different volumes and titers of neutralizing antibodies. Despite improvements in some laboratory parameters, no effect on clinical outcomes was observed. Dialysis negatively affected the length of intensive care unit stay, hospitalization, and mechanical ventilation use. Each higher point on the day 0 World Health Organization scale reduced the probability of hospital and intensive care unit discharge and the risk of mechanical ventilation discontinuation. CONCLUSION Dialysis and the assessed clinical severity represented by the World Health Organization scale on day 0 influenced the outcomes, whereas COVID-19 convalescent plasma transfusion did not.
Collapse
|
12
|
Franchini M, Cruciani M, Mengoli C, Casadevall A, Glingani C, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan DJ, Zani M, Focosi D. Convalescent plasma and predictors of mortality among hospitalized patients with COVID-19: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:1514-1522. [PMID: 39067517 DOI: 10.1016/j.cmi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Plasma collected from recovered patients with COVID-19 (COVID-19 convalescent plasma [CCP]) was the first antibody-based therapy employed to fight the COVID-19 pandemic. While the therapeutic effect of early administration of CCP in COVID-19 outpatients has been recognized, conflicting data exist regarding the efficacy of CCP administration in hospitalized patients. OBJECTIVES To examine the effect of CCP compared to placebo or standard treatment, and to evaluate whether time from onset of symptoms to treatment initiation influenced the effect. DATA SOURCES Electronic databases were searched for studies published from January 2020 to January 2024. STUDY ELIGIBILITY CRITERIA Randomized clinical trials (RCTs) investigating the effect of CCP on COVID-19 mortality in hospitalized patients with COVID-19. PARTICIPANTS Hospitalized patients with COVID-19. INTERVENTIONS CCP versus no CCP. ASSESSMENT OF RISK OF BIAS Cochrane risk of bias tool for RCTs. METHODS OF DATA SYNTHESIS The random-effects model was used to calculate the pooled risk ratio (RR) with 95% CI for the pooled effect estimates of CCP treatment. The Grading of Recommendations Assessment, Development and Evaluation was used to evaluate the certainty of evidence. RESULTS Twenty-seven RCTs were included, representing 18,877 hospitalized patients with COVID-19. When transfused within 7 days from symptom onset, CCP significantly reduced the risk of death compared to standard therapy or placebo (RR, 0.76; 95% CI, 0.61-0.95), while later CCP administration was not associated with a mortality benefit (RR, 0.98; 95% CI, 0.90-1.06). The certainty of the evidence was graded as moderate. Meta-regression analysis demonstrated increasing mortality effects for longer interval to transfusion or worse initial clinical severity. CONCLUSIONS In-hospital transfusion of CCP within 7 days from symptom onset conferred a mortality benefit.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy.
| | - Mario Cruciani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Claudia Glingani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Matteo Zani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
13
|
Singh G, García-Bernalt Diego J, Warang P, Park SC, Chang LA, Noureddine M, Laghlali G, Bykov Y, Prellberg M, Yan V, Singh S, Pache L, Cuadrado-Castano S, Webb B, García-Sastre A, Schotsaert M. Outcome of SARS-CoV-2 reinfection depends on genetic background in female mice. Nat Commun 2024; 15:10178. [PMID: 39580470 PMCID: PMC11585546 DOI: 10.1038/s41467-024-54334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
Antigenically distinct SARS-CoV-2 variants increase the reinfection risk for vaccinated and previously exposed population due to antibody neutralization escape. COVID-19 severity depends on many variables, including host immune responses, which differ depending on genetic predisposition. To address this, we perform immune profiling of female mice with different genetic backgrounds -transgenic K18-hACE2 and wild-type 129S1- infected with the severe B.1.351, 30 days after exposure to the milder BA.1 or severe H1N1. Prior BA.1 infection protects against B.1.351-induced morbidity in K18-hACE2 but aggravates disease in 129S1. H1N1 protects against B.1.351-induced morbidity only in 129S1. Enhanced severity in B.1.351 re-infected 129S1 is characterized by an increase of IL-10, IL-1β, IL-18 and IFN-γ, while in K18-hACE2 the cytokine profile resembles naïve mice undergoing their first viral infection. Enhanced pathology during 129S1 reinfection cannot be attributed to weaker adaptive immune responses to BA.1. Infection with BA.1 causes long-term differential remodeling and transcriptional changes in the bronchioalveolar CD11c+ compartment. K18-hACE2 CD11c+ cells show a strong antiviral defense expression profile whereas 129S1 CD11c+ cells present a more pro-inflammatory response upon restimulation. In conclusion, BA.1 induces cross-reactive adaptive immune responses in K18-hACE2 and 129S1, but reinfection outcome correlates with differential CD11c+ cells responses in the alveolar space.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Juan García-Bernalt Diego
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Laghlali
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Prellberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai New York, New York, NY, USA.
- Lipschultz Precision Immunology Institute (PrIISM), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Dragotakes Q, Johnson PW, Buras MR, Carter RE, Joyner MJ, Bloch E, Gebo KA, Hanley DF, Henderson JP, Pirofski LA, Shoham S, Senefeld JW, Tobian AA, Wiggins CC, Wright RS, Paneth NS, Sullivan DJ, Casadevall A. Estimates of actual and potential lives saved in the United States from the use of COVID-19 convalescent plasma. Proc Natl Acad Sci U S A 2024; 121:e2414957121. [PMID: 39352932 PMCID: PMC11474081 DOI: 10.1073/pnas.2414957121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
In the Spring of 2020, the United States of America (USA) deployed COVID-19 convalescent plasma (CCP) to treat hospitalized patients. Over 500,000 patients were treated with CCP during the first year of the pandemic. In this study, we estimated the number of actual inpatient lives saved by CCP treatment in the United States of America based on CCP weekly use, weekly national mortality data, and CCP mortality reduction data from meta-analyses of randomized controlled trials and real-world data. We also estimate the potential number of lives saved if CCP had been deployed for 100% of hospitalized patients or used in 15 to 75% of outpatients. Depending on the assumptions modeled in stratified analyses, we estimated that CCP saved between 16,476 and 66,296 lives. The CCP ideal use might have saved as many as 234,869 lives and prevented 1,136,133 hospitalizations. CCP deployment was a successful strategy for ameliorating the impact of the COVID-19 pandemic in the USA. This experience has important implications for convalescent plasma use in future infectious disease emergencies.
Collapse
Affiliation(s)
- Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Patrick W. Johnson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL32224
| | - Matthew R. Buras
- Division of Biostatistics and Clinical Trials, Department of Quantitative Health Sciences, Scottsdale, AZ85259
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL32224
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN55905
| | - Evan Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Kelly A. Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Daniel F. Hanley
- Department of Neurology, Brain Injury Outcomes Division, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Jeffrey P. Henderson
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Louis, St. Louis, MO63110
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine, New York, NY10461
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Jonathon W. Senefeld
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Chad C. Wiggins
- Department of Kinesiology, Michigan State University, East Lansing, MI48823
| | - R. Scott Wright
- Departments of Cardiovascular Medicine and Human Research Protection Program, Mayo Clinic, Rochester, MN55905
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI48823
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI48823
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD21205
| |
Collapse
|
15
|
Costa T, Aoki M, Ribeiro C, Socca E, Itinose L, Basso R, Blanes L. Efficacy of convalescent plasma in hospitalized COVID-19 patients: findings from a controlled trial. Braz J Med Biol Res 2024; 57:e13627. [PMID: 39383382 PMCID: PMC11463911 DOI: 10.1590/1414-431x2024e13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024] Open
Abstract
The COVID-19 pandemic has driven the search for alternative therapies, including convalescent plasma, historically used in infectious diseases. Despite results in other diseases, its effectiveness against COVID-19 remains uncertain with conflicting results in clinical trials. A pragmatic, single-center, prospective, and open randomized controlled trial was carried out in a hospital in Brazil, with the aim of evaluating the impact of convalescent plasma on the clinical improvement of patients hospitalized with COVID-19. The World Health Organization (WHO) ordinal scale was used to measure clinical improvement, focusing on the reduction in disease severity by up to 2 points, while antibody and C-reactive protein levels were monitored over time. After hospital admission, participants were randomized 1:1 to receive convalescent plasma and standard treatment or to be part of the control group with standard treatment. Follow-up was carried out on days 1, 3, 7, 14 and/or at discharge. From January 14 to April 4, 2022, 38 patients were included, but 3 were excluded due to protocol deviations, resulting in a total of 35 patients: 19 in the control group and 16 in the plasma group. There was no significant difference in clinical improvement between the convalescent plasma group and the control group, nor in secondary outcomes. The study had limitations due to the small number of patients and limited representation of COVID-19 cases. Broader investigations are needed to integrate therapies into medical protocols, both for COVID-19 and other diseases. Conducting randomized studies is challenging due to the complexity of medical conditions and the variety of treatments available.
Collapse
Affiliation(s)
- T.P. Costa
- Diretoria Técnica e Qualidade, Maternidade e Cirurgia Nossa Senhora do Rocio-HR, Campo Largo, PR, Brasil
- Laboratório de Ciência e Tecnologia Aplicada è Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - M. Aoki
- Laboratório de Ciência e Tecnologia Aplicada è Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - C.M. Ribeiro
- Instituto de Pesquisa do Vale da Ciência, São Paulo, SP, Brasil
| | - E. Socca
- Instituto de Pesquisa do Vale da Ciência, São Paulo, SP, Brasil
| | - L. Itinose
- Diretoria Técnica e Qualidade, Maternidade e Cirurgia Nossa Senhora do Rocio-HR, Campo Largo, PR, Brasil
| | - R. Basso
- Diretoria Técnica e Qualidade, Maternidade e Cirurgia Nossa Senhora do Rocio-HR, Campo Largo, PR, Brasil
| | - L. Blanes
- Laboratório de Ciência e Tecnologia Aplicada è Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| |
Collapse
|
16
|
Singh K, Rocco JM, Nussenblatt V. The winding road: Infectious disease considerations for CAR-T and other novel adoptive cellular therapies in the era of COVID-19. Semin Hematol 2024; 61:321-332. [PMID: 39379249 PMCID: PMC11626729 DOI: 10.1053/j.seminhematol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Adoptive cellular therapies (ACT) are novel, promising treatments for life-threatening malignancies. In addition to the better known chimeric antigen receptor (CAR) T cells, ACTs include tumor infiltrating lymphocytes (TIL), cancer antigen-specific T cell receptors (TCRs), and CAR-NK (natural killer) cells. In key historic milestones, several adoptive therapies recently received FDA approvals, including 6 CAR-T products for the treatment of hematologic malignancies and the first TIL therapy for the treatment for metastatic melanoma. The rapid pace of clinical trials in the field and the discoveries they provide are ushering in a new era of cancer immunotherapy. However, the potential complications of these therapies are still not fully understood. In particular, patients receiving ACT may be at increased risk for severe infections due to immunocompromise resulting from their underlying malignancies, which are further compounded by the immune derangements that develop in the setting of cellular immunotherapy and/or the preconditioning treatment needed to enhance ACT efficacy. Moreover, these treatments are being readily implemented at a time following the height of the COVID-19 pandemic, and it remains unclear what additional risks these patients may face from SARS-CoV-2 and similar infections. Here, we examine the evidence for infectious complications with emerging adoptive therapies, and provide a focused review of the epidemiology, complications, and clinical management for COVID-19 in CAR-T recipients to understand the risk this disease may pose to recipients of other forms of ACT.
Collapse
Affiliation(s)
- Kanal Singh
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.
| | - Joseph M Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Veronique Nussenblatt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Luckner KM, Seckel MA. Understanding the Evolving Pathophysiology of Coronavirus Disease 2019 and Adult Nursing Management. Crit Care Nurs Clin North Am 2024; 36:295-321. [PMID: 39069352 DOI: 10.1016/j.cnc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19) was first identified in December 2019 and quickly became a global pandemic. The understanding of the pathophysiology, treatment, and management of the disease has evolved since the beginning of the pandemic in 2020. COVID-19 can be complicated by immune system dysfunction, lung injury with hypoxemia, acute kidney injury, and coagulopathy. The treatment and management of COVID-19 is based on the severity of illness, ranging from asymptomatic to severe and often life-threatening disease. The 3 main recommended medication classes include antivirals, immunomodulators, and anticoagulants. Other supportive therapies include ensuring adequate oxygenation, mechanical ventilation, and prone positioning.
Collapse
|
18
|
Klassen SA, Senefeld JW. Evidence for the Efficacy of COVID-19 Convalescent Plasma. Curr Top Microbiol Immunol 2024. [PMID: 39192049 DOI: 10.1007/82_2024_280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
During the global health emergency caused by the coronavirus disease 2019 (COVID-19), evidence relating to the efficacy of convalescent plasma therapy-evidence critically needed for both public policy and clinical practice-came from multiple levels of the epistemic hierarchy. The challenges of conducting clinical research during a pandemic, combined with the biological complexities of convalescent plasma treatment, required the use of observational data to fully assess the impact of convalescent plasma therapy on COVID symptomatology, hospitalization rates, and mortality rates. Observational studies showing the mortality benefits of convalescent plasma emerged early during the COVID-19 pandemic from multiple continents and were substantiated by real-time pragmatic meta-analyses. Although many randomized clinical trials (RCTs) were initiated at the onset of the pandemic and were designed to provide high-quality evidence, the relative inflexibility in the design of clinical trials meant that findings generally lagged behind other forms of emerging information and ultimately provided inconsistent results on the efficacy of COVID-19 convalescent plasma. In the pandemic framework, it is necessary to emphasize more flexible analytic strategies in clinical trials, including secondary, subgroup, and exploratory analyses. We conclude that in totality, observational studies and clinical trials taken together provide strong evidence of a mortality benefit conferred by COVID-19 convalescent plasma, while acknowledging that some randomized clinical trials examined suboptimal uses of convalescent plasma.
Collapse
Affiliation(s)
- Stephen A Klassen
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Canada.
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Yoon H, Pirofski LA. Generating the Evidence Base for Convalescent Plasma Use for a New Infectious Disease. Curr Top Microbiol Immunol 2024. [PMID: 39117847 DOI: 10.1007/82_2024_275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) swept across the world in the waning months of 2019 and emerged as the cause of the coronavirus disease 19 (COVID-19) pandemic in early 2020. The use of convalescent plasma (CP) for prior respiratory pandemics provided a strong biological rationale for the rapid deployment of COVID-19 convalescent plasma (CCP) in early 2020 when no validated treatments or prior immunity existed. CCP is an antiviral agent, with its activity against SARS-CoV-2 stemming from specific antibodies elicited by the virus. Early efforts to investigate the efficacy of CCP in randomized clinical trials (RCTs) that targeted hospitalized patients with COVID-19 did not demonstrate the overall efficacy of CCP despite signals of benefit in certain subgroups, such as those treated earlier in disease. In contrast, studies adhering to the principles of antibody therapy in their study design, choice of patient population, and product qualification, i.e., those that administered high levels of specific antibody during the viral phase of disease in immunocompromised or very early in immunocompetent individuals, demonstrated benefits. In this chapter, we leverage the knowledge gained from clinical studies of CCP for COVID-19 to propose a framework for future studies of CP for a new infectious disease. This framework includes obtaining high-quality CP and designing clinical studies that adhere to the principles of antibody therapy to generate a robust evidence base for using CP.
Collapse
Affiliation(s)
- Hyunah Yoon
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
20
|
Beaudoin-Bussières G, Finzi A. Deciphering Fc-effector functions against SARS-CoV-2. Trends Microbiol 2024; 32:756-768. [PMID: 38365562 DOI: 10.1016/j.tim.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada
| | - Andrés Finzi
- Centre de recherche du CHUM, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec H2X 0A9, Canada.
| |
Collapse
|
21
|
Brito AAMP, Pati S, Schreiber M. The effects of the COVID-19 pandemic blood shortage on trauma patients. Transfusion 2024; 64:1323-1330. [PMID: 38899841 DOI: 10.1111/trf.17925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 06/21/2024]
Affiliation(s)
- Alexandra Alex Marie Pawliuk Brito
- Donald D. Trunkey Center for Civilian and Combat Casualty Care, Oregon Health and Science University, Portland, Oregon, USA
- The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Shibani Pati
- University of California San Francisco, San Francisco, California, USA
| | - Martin Schreiber
- Donald D. Trunkey Center for Civilian and Combat Casualty Care, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
22
|
Bhimraj A, Morgan RL, Shumaker AH, Baden L, Cheng VCC, Edwards KM, Gallagher JC, Gandhi RT, Muller WJ, Nakamura MM, O’Horo JC, Shafer RW, Shoham S, Murad MH, Mustafa RA, Sultan S, Falck-Ytter Y. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With COVID-19 (September 2022). Clin Infect Dis 2024; 78:e250-e349. [PMID: 36063397 PMCID: PMC9494372 DOI: 10.1093/cid/ciac724] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
There are many pharmacologic therapies that are being used or considered for treatment of coronavirus disease 2019 (COVID-19), with rapidly changing efficacy and safety evidence from trials. The objective was to develop evidence-based, rapid, living guidelines intended to support patients, clinicians, and other healthcare professionals in their decisions about treatment and management of patients with COVID-19. In March 2020, the Infectious Diseases Society of America (IDSA) formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise to regularly review the evidence and make recommendations about the treatment and management of persons with COVID-19. The process used a living guideline approach and followed a rapid recommendation development checklist. The panel prioritized questions and outcomes. A systematic review of the peer-reviewed and grey literature was conducted at regular intervals. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. Based on the most recent search conducted on 31 May 2022, the IDSA guideline panel has made 32 recommendations for the treatment and management of the following groups/populations: pre- and postexposure prophylaxis, ambulatory with mild-to-moderate disease, and hospitalized with mild-to-moderate, severe but not critical, and critical disease. As these are living guidelines, the most recent recommendations can be found online at: https://idsociety.org/COVID19guidelines. At the inception of its work, the panel has expressed the overarching goal that patients be recruited into ongoing trials. Since then, many trials were conducted that provided much-needed evidence for COVID-19 therapies. There still remain many unanswered questions as the pandemic evolved, which we hope future trials can answer.
Collapse
Affiliation(s)
- Adarsh Bhimraj
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Amy Hirsch Shumaker
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | | | - Vincent Chi Chung Cheng
- Queen Mary Hospital, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kathryn M Edwards
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center,Nashville, Tennessee
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, Pennsylvania
| | - Rajesh T Gandhi
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - William J Muller
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University, Chicago, Illinois
| | - Mari M Nakamura
- Antimicrobial Stewardship Program and Division of Infectious Diseases, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - John C O’Horo
- Division of Infectious Diseases, Joint Appointment Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Palo Alto, California
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio
- VA Northeast Ohio Healthcare System, Cleveland, Ohio
| |
Collapse
|
23
|
Franchini M, Mengoli C, Casadevall A, Focosi D. Exploring Study Design Foibles in Randomized Controlled Trials on Convalescent Plasma in Hospitalized COVID-19 Patients. Life (Basel) 2024; 14:792. [PMID: 39063547 PMCID: PMC11278192 DOI: 10.3390/life14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Sample size estimation is an essential step in the design of randomized controlled trials (RCTs) evaluating a treatment effect. Sample size is a critical variable in determining statistical significance and, thus, it significantly influences RCTs' success or failure. During the COVID-19 pandemic, many RCTs tested the efficacy of COVID-19 convalescent plasma (CCP) in hospitalized patients but reported different efficacies, which could be attributed to, in addition to timing and dose, inadequate sample size estimates. Methods: To assess the sample size estimation in RCTs evaluating the effect of treatment with CCP in hospitalized COVID-19 patients, we searched the medical literature between January 2020 and March 2024 through PubMed and other electronic databases, extracting information on expected size effect, statistical power, significance level, and measured efficacy. Results: A total of 32 RCTs were identified. While power and significance level were highly consistent, heterogeneity in the expected size effect was relevant. Approximately one third of the RCTs did not reach the planned sample size for various reasons, with the most important one being slow patient recruitment during the pandemic's peaks. RCTs with a primary outcome in favor of CCP treatment had a significant lower median absolute difference in the expected size effect than unfavorable RCTs (20.0% versus 33.9%, P = 0.04). Conclusions: The analyses of sample sizes in RCTs of CCP treatment in hospitalized COVID-19 patients reveal that many underestimated the number of participants needed because of excessively high expectations on efficacy, and thus, these studies had low statistical power. This, in combination with a lower-than-planned recruitment of cases and controls, could have further negatively influenced the primary outcomes of the RCTs.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
24
|
Lamontagne F, Masse MH, Yarnell C, Camirand-Lemyre F, Lévesque S, Domingue MP, O'Hearn K, Watpool I, Hoogenes J, Sprague S, Ménard J, Lemaire-Paquette S, Hébert-Dufresne L, Cook D, Hébert P, Rowan K, Yada N, Menon K, Fowler R, Fox-Robichaud A, Boutin D, Marshall J, Kho ME. The response of Canada's clinical health research ecosystem to the COVID-19 pandemic. CMAJ 2024; 196:E779-E788. [PMID: 38885975 PMCID: PMC11182674 DOI: 10.1503/cmaj.230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The response of Canada's research community to the COVID-19 pandemic provides a unique opportunity to examine the country's clinical health research ecosystem. We sought to describe patterns of enrolment across Canadian Institutes of Health Research (CIHR)-funded studies on COVID-19. METHODS We identified COVID-19 studies funded by the CIHR and that enrolled participants from Canadian acute care hospitals between January 2020 and April 2023. We collected information on study-and site-level variables from study leads, site investigators, and public domain sources. We described and evaluated factors associated with cumulative enrolment. RESULTS We obtained information for 23 out of 26 (88%) eligible CIHR-funded studies (16 randomized controlled trials [RCTs] and 7 cohort studies). The 23 studies were managed by 12 Canadian and 3 international coordinating centres. Of 419 Canadian hospitals, 97 (23%) enrolled a total of 28 973 participants - 3876 in RCTs across 78 hospitals (median cumulative enrolment per hospital 30, interquartile range [IQR] 10-61), and 25 097 in cohort studies across 62 hospitals (median cumulative enrolment per hospital 158, IQR 6-348). Of 78 hospitals recruiting participants in RCTs, 13 (17%) enrolled 50% of all RCT participants, whereas 6 of 62 hospitals (9.7%) recruited 54% of participants in cohort studies. INTERPRETATION A minority of Canadian hospitals enrolled the majority of participants in CIHR-funded studies on COVID-19. This analysis sheds light on the Canadian health research ecosystem and provides information for multiple key partners to consider ways to realize the full research potential of Canada's health systems.
Collapse
Affiliation(s)
- François Lamontagne
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que.
| | - Marie-Hélène Masse
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Christopher Yarnell
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Félix Camirand-Lemyre
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Simon Lévesque
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Marie-Pier Domingue
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Katie O'Hearn
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Irene Watpool
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Jennifer Hoogenes
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Sheila Sprague
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Julie Ménard
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Samuel Lemaire-Paquette
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Laurent Hébert-Dufresne
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Deborah Cook
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Paul Hébert
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Kathryn Rowan
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Nicole Yada
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Kusum Menon
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Robert Fowler
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Alison Fox-Robichaud
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Denis Boutin
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - John Marshall
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| | - Michelle E Kho
- Université de Sherbrooke (Lamontagne, Camirand-Lemyre, Lévesque, Domingue); Centre de recherche du Centre hospitalier universitaire de Sherbrooke (Lamontagne, Masse, Camirand-Lemyre, Lévesque, Domingue, Ménard, Lemaire-Paquette), Sherbrooke, Que.; Department of Critical Care Medicine and Research Institute (Yarnell), Scarborough Health Network, Toronto, Ont.; Children's Hospital of Eastern Ontario Research Institute (O'Hearn, Menon); Ottawa Hospital Research Institute (Watpool), Ottawa, Ont.; McMaster University School of Rehabilitation Science (Hoogenes, Kho); McMaster University (Sprague, Cook, Fox-Robichaud); Hamilton, Ont.; University of Vermont (Hébert-Dufresne), Burlington, Vt.; Bruyère Research Institute (Hébert), Ottawa, Ont.; Intensive Care National Audit and Research Centre (Rowan), London, UK; Unity Health Toronto (Yada), Toronto, Ont.; Children's Hospital of Eastern Ontario (Menon); University of Ottawa (Menon), Ottawa, Ont.; University of Toronto (Yada, Fowler, Marshall); Sunnybrook Hospital (Fowler), Toronto, Ont.; Patient with lived experience (Boutin), Sherbrooke, Que
| |
Collapse
|
25
|
Glueck OM, Liang X, Badell I, Wratil PR, Graf A, Krebs S, Blum H, Hellmuth JC, Scherer C, Hollaus A, Spaeth PM, Karakoc B, Fuchs T, Zimmermann J, Kauke T, Moosmann A, Keppler OT, Schneider C, Muenchhoff M. Impaired immune responses and prolonged viral replication in lung allograft recipients infected with SARS-CoV-2 in the early phase after transplantation. Infection 2024; 52:847-855. [PMID: 37922037 PMCID: PMC11143031 DOI: 10.1007/s15010-023-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE Lung transplant recipients are at increased risk of severe disease following infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) due to high-dose immunosuppressive drugs and the lung is the main organ affected by Coronavirus disease 2019 (COVID-19). Several studies have confirmed increased SARS-CoV-2-related mortality and morbidity in patients living with lung allografts; however, detailed immunological studies of patients with SARS-CoV-2 infection in the early phase following transplantation remain scarce. METHODS We investigated patients who were infected with SARS-CoV-2 in the early phase (18-103 days) after receiving double-lung allografts (n = 4, LuTx) in comparison to immunocompetent patients who had not received solid organ transplants (n = 88, noTx). We analyzed SARS-CoV-2-specific antibody responses against the SARS-CoV-2 spike and nucleocapsid proteins using enzyme-linked immunosorbent assays (ELISA), chemiluminescence immunoassays (CLIA), and immunoblot assays. T cell responses were investigated using Elispot assays. RESULTS One LuTx patient suffered from persistent infection with fatal outcome 122 days post-infection despite multiple interventions including remdesivir, convalescent plasma, and the monoclonal antibody bamlanivimab. Two patients experienced clinically mild disease with prolonged viral shedding (47 and 79 days), and one patient remained asymptomatic. Antibody and T cell responses were significantly reduced or undetectable in all LuTx patients compared to noTx patients. CONCLUSION Patients in the early phase following lung allograft transplantation are vulnerable to infection with SARS-CoV-2 due to impaired immune responses. This patient population should be vaccinated before LuTx, protected from infection post-LuTx, and in case of infection treated generously with currently available interventions.
Collapse
Affiliation(s)
- Olaf M Glueck
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Xiaoling Liang
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Irina Badell
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Paul R Wratil
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Johannes C Hellmuth
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Clemens Scherer
- Department of Medicine I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Hollaus
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Helmholtz Munich, Munich, Germany
| | - Patricia M Spaeth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Burak Karakoc
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Thimo Fuchs
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Julia Zimmermann
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Teresa Kauke
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Moosmann
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- Helmholtz Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Oliver T Keppler
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christian Schneider
- Division of Thoracic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Muenchhoff
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University of Munich, Pettenkoferstr. 9a, 80336, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
26
|
Franchini M, Focosi D. Towards the identification of the correct place for convalescent plasma among COVID-19 therapies. Infect Dis (Lond) 2024; 56:421-422. [PMID: 38549506 DOI: 10.1080/23744235.2024.2333977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024] Open
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
27
|
Lewin A, McGowan E, Ou-Yang J, Boateng LA, Dinardo CL, Mandal S, Almozain N, Ribeiro J, Sasongko SL. The future of blood services amid a tight balance between the supply and demand of blood products: Perspectives from the ISBT Young Professional Council. Vox Sang 2024; 119:505-513. [PMID: 38272856 DOI: 10.1111/vox.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood services manage the increasingly tight balance between the supply and demand of blood products, and their role in health research is expanding. This review explores the themes that may define the future of blood banking. MATERIALS AND METHODS We reviewed the PubMed database for articles on emerging/new blood-derived products and the utilization of blood donors in health research. RESULTS In high-income countries (HICs), blood services may consider offering these products: whole blood, cold-stored platelets, synthetic blood components, convalescent plasma, lyophilized plasma and cryopreserved/lyophilized platelets. Many low- and middle-income countries (LMICs) aim to establish a pool of volunteer, non-remunerated blood donors and wean themselves off family replacement donors; and many HICs are relaxing the deferral criteria targeting racial and sexual minorities. Blood services in HICs could achieve plasma self-sufficiency by building plasma-dedicated centres, in collaboration with the private sector. Lastly, blood services should expand their involvement in health research by establishing donor cohorts, conducting serosurveys, studying non-infectious diseases and participating in clinical trials. CONCLUSION This article provides a vision of the future for blood services. The introduction of some of these changes will be slower in LMICs, where addressing key operational challenges will likely be prioritized.
Collapse
Affiliation(s)
- Antoine Lewin
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada
- Medicine faculty and health science, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Eunike McGowan
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Australia
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Lilian Antwi Boateng
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Immunohaematology laboratory, University Health Services, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Saikat Mandal
- Medical Oncology, Hull York Medical School, University of Hull, Hull, UK
| | - Nour Almozain
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jannison Ribeiro
- Centro de Hematologia e Hemoterapia do Ceará - Hemoce, Fortaleza, Brazil
- Instituto Pró-Hemo Saúde - IPH, Fortaleza, Brazil
| | - Syeldy Langi Sasongko
- Department of Public and Occupational Health, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
29
|
Tse P, Yan J, Liu Y, Jamula E, Heddle N, Bazin R, Robitaille N, Cook R, Turgeon A, Fergusson D, Glesby M, Loftsgard KC, Cushing M, Chassé M, Daneman N, Finzi A, Sachais B, Bégin P, Callum J, Arnold DM, Xie F. Quality of life and cost-effectiveness of convalescent plasma compared to standard care for hospitalized COVID-19 patients in the CONCOR-1 trial. Transfusion 2024; 64:606-614. [PMID: 38511889 DOI: 10.1111/trf.17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The CONvalescent Plasma for Hospitalized Adults With COVID-19 Respiratory Illness (CONCOR-1) trial was a multicenter randomized controlled trial assessing convalescent plasma in hospitalized COVID-19 patients. This study evaluates the cost-effectiveness of convalescent plasma and its impact on quality-of-life to provide insight into its potential as an alternative treatment in resource-constrained settings. METHODS Individual patient data on health outcomes and resource utilization from the CONCOR-1 trial were used to conduct the analysis from the Canadian public payer's perspective with a time horizon of 30 days post-randomization. Baseline and 30-day EQ-5D-5L were measured to calculate quality-adjusted survival. All costs are presented in 2021 Canadian dollars. The base case assessed the EQ-5D-5L scores of hospitalized inpatients reporting at both timepoints, and a utility score of 0 was assigned for patients who died within 30 days. Costs for all patients enrolled were used. The sensitivity analysis utilizes EQ-5D-5L scores from the same population but only uses costs from this population. RESULTS 940 patients were randomized: 627 received CCP and 313 received standard care. The total costs were $28,716 (standard deviation, $25,380) and $24,258 ($22,939) for the convalescent plasma and standard care arms respectively. EQ-5D-5L scores were 0.61 in both arms (p = .85) at baseline. At 30 days, EQ-5D-5L scores were 0.63 and 0.64 for patients in the convalescent plasma and standard care arms, respectively (p = .46). The incremental cost was $4458 and the incremental quality-adjusted life day was -0.078. DISCUSSION Convalescent plasma was less effective and more costly than standard care in treating hospitalized COVID-19.
Collapse
Affiliation(s)
- Preston Tse
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Jiajun Yan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Erin Jamula
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Nancy Heddle
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, Québec City, Québec, Canada
| | - Nancy Robitaille
- Héma-Québec, Montreal, Québec, Canada
- Division of Hematology-Oncology, Department of Pediatrics, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Richard Cook
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Alexis Turgeon
- Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Université Laval, Québec City, Québec, Canada
| | - Dean Fergusson
- Canadian Blood Services, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marshall Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kent Cadogan Loftsgard
- UBC Health Team-Based Care, Vancouver, British Columbia, USA
- CIHR-Strategy for Patient-Oriented Research, Ottawa, Ontario, Canada
| | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michaël Chassé
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Québec, Canada
- Innovation Hub, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Québec, Canada
| | - Nick Daneman
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
| | - Bruce Sachais
- New York Blood Center, New York, New York, USA
- Weil Cornell Medical College, New York, New York, USA
| | - Philippe Bégin
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Québec, Canada
- Department of Pediatrics, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Jeannie Callum
- Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen's University, Kingston, Ontario, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Donald M Arnold
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Feng Xie
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Willis ZI, Oliveira CR, Abzug MJ, Anosike BI, Ardura MI, Bio LL, Boguniewicz J, Chiotos K, Downes K, Grapentine SP, Hersh AL, Heston SM, Hijano DR, Huskins WC, James SH, Jones S, Lockowitz CR, Lloyd EC, MacBrayne C, Maron GM, Hayes McDonough M, Miller CM, Morton TH, Olivero RM, Orscheln RC, Schwenk HT, Singh P, Soma VL, Sue PK, Vora SB, Nakamura MM, Wolf J. Guidance for prevention and management of COVID-19 in children and adolescents: A consensus statement from the Pediatric Infectious Diseases Society Pediatric COVID-19 Therapies Taskforce. J Pediatric Infect Dis Soc 2024; 13:159-185. [PMID: 38339996 PMCID: PMC11494238 DOI: 10.1093/jpids/piad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND Since November 2019, the SARS-CoV-2 pandemic has created challenges for preventing and managing COVID-19 in children and adolescents. Most research to develop new therapeutic interventions or to repurpose existing ones has been undertaken in adults, and although most cases of infection in pediatric populations are mild, there have been many cases of critical and fatal infection. Understanding the risk factors for severe illness and the evidence for safety, efficacy, and effectiveness of therapies for COVID-19 in children is necessary to optimize therapy. METHODS A panel of experts in pediatric infectious diseases, pediatric infectious diseases pharmacology, and pediatric intensive care medicine from 21 geographically diverse North American institutions was re-convened. Through a series of teleconferences and web-based surveys and a systematic review with meta-analysis of data for risk factors, a guidance statement comprising a series of recommendations for risk stratification, treatment, and prevention of COVID-19 was developed and refined based on expert consensus. RESULTS There are identifiable clinical characteristics that enable risk stratification for patients at risk for severe COVID-19. These risk factors can be used to guide the treatment of hospitalized and non-hospitalized children and adolescents with COVID-19 and to guide preventative therapy where options remain available.
Collapse
Affiliation(s)
- Zachary I Willis
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Carlos R Oliveira
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mark J Abzug
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Brenda I Anosike
- Department of Pediatrics, The Children’s Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica I Ardura
- Department of Pediatrics, ID Host Defense Program, Nationwide Children’s Hospital & The Ohio State University, Columbus, OH, USA
| | - Laura L Bio
- Department of Pharmacy, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Juri Boguniewicz
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Kathleen Chiotos
- Departments of Anesthesiology, Critical Care Medicine, and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Divisions of Critical Care Medicine and Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Downes
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven P Grapentine
- Department of Pharmacy, University of California San Francisco Benioff Children’s Hospital, San Francisco, CA, USA
| | - Adam L Hersh
- Department of Pediatrics, Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA
| | - Sarah M Heston
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Diego R Hijano
- Department of Infectious Diseases, St. Jude Children’s Research Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - W Charles Huskins
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah Jones
- Department of Pharmacy, Boston Children’s Hospital, Boston, MA, USA
| | | | - Elizabeth C Lloyd
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Gabriela M Maron
- Department of Infectious Diseases, St. Jude Children’s Research Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Molly Hayes McDonough
- Center for Healthcare Quality & Analytics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christine M Miller
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Theodore H Morton
- Department of Pharmacy, St Jude’s Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rosemary M Olivero
- Department of Pediatrics and Human Development, Michigan State College of Human Medicine and Helen DeVos Children’s Hospital of Corewell Health, Grand Rapids, MI, USA
| | | | - Hayden T Schwenk
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Prachi Singh
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Vijaya L Soma
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Paul K Sue
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Surabhi B Vora
- Department of Pediatrics, University of Washington School of Medicine, and Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, WA, USA
| | - Mari M Nakamura
- Antimicrobial Stewardship Program and Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
31
|
Franchini M, Focosi D, Cruciani M, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan DJ, Casadevall A. Safety and Efficacy of Convalescent Plasma Combined with Other Pharmaceutical Agents for Treatment of COVID-19 in Hospitalized Patients: A Systematic Review and Meta-Analysis. Diseases 2024; 12:41. [PMID: 38534965 PMCID: PMC10969279 DOI: 10.3390/diseases12030041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 01/06/2025] Open
Abstract
Plasma collected from people recovered from COVID-19 (COVID-19 convalescent plasma, CCP) was the first antibody-based therapy employed to fight the pandemic. CCP was, however, often employed in combination with other drugs, such as the antiviral remdesivir and glucocorticoids. The possible effect of such interaction has never been investigated systematically. To assess the safety and efficacy of CCP combined with other agents for treatment of patients hospitalized for COVID-19, a systematic literature search using appropriate Medical Subject Heading (MeSH) terms was performed through PubMed, EMBASE, Cochrane central, medRxiv and bioRxiv. The main outcomes considered were mortality and safety of CCP combined with other treatments versus CCP alone. This review was carried out in accordance with Cochrane methodology including risk of bias assessment and grading of the quality of evidence. Measure of treatment effect was the risk ratio (RR) together with 95% confidence intervals (CIs). A total of 11 studies (8 randomized controlled trials [RCTs] and 3 observational) were included in the systematic review, 4 studies with CCP combined with remdesivir and 6 studies with CCP combined with corticosteroids, all involving hospitalized patients. One RCT reported information on both remdesivir and steroids use with CCP. The use of CCP combined with remdesivir was associated with a significantly reduced risk of death (RR 0.74; 95% CI 0.56-0.97; p = 0.03; moderate certainty of evidence), while the use of steroids with CCP did not modify the mortality risk (RR 0.72; 95% CI 0.34-1.51; p = 0.38; very low certainty of evidence). Not enough safety data were retrieved form the systematic literature analysis. The current evidence from the literature suggests a potential beneficial effect on mortality of combined CCP plus remdesivir compared to CCP alone in hospitalized COVID-19 patients. No significant clinical interaction was found between CCP and steroids.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Mario Cruciani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy;
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, USA;
| | - Jonathon W. Senefeld
- Department of Kinesiology and Community Healthy, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA;
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (D.J.S.); (A.C.)
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (D.J.S.); (A.C.)
| |
Collapse
|
32
|
Franchini M, Cruciani M, Casadevall A, Joyner MJ, Senefeld JW, Sullivan DJ, Zani M, Focosi D. Safety of COVID-19 convalescent plasma: A definitive systematic review and meta-analysis of randomized controlled trials. Transfusion 2024; 64:388-399. [PMID: 38156374 DOI: 10.1111/trf.17701] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Mario Cruciani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Healthy, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Matteo Zani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
33
|
Roubinian NH, Greene J, Liu VX, Lee C, Mark DG, Vinson DR, Spencer BR, Bruhn R, Bravo M, Stone M, Custer B, Kleinman S, Busch MP, Norris PJ. Clinical outcomes in hospitalized plasma and platelet transfusion recipients prior to and following widespread blood donor SARS-CoV-2 infection and vaccination. Transfusion 2024; 64:53-67. [PMID: 38054619 PMCID: PMC10842807 DOI: 10.1111/trf.17616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The safety of transfusion of SARS-CoV-2 antibodies in high plasma volume blood components to recipients without COVID-19 is not established. We assessed whether transfusion of plasma or platelet products during periods of increasing prevalence of blood donor SARS-CoV-2 infection and vaccination was associated with changes in outcomes in hospitalized patients without COVID-19. METHODS We conducted a retrospective cohort study of hospitalized adults who received plasma or platelet transfusions at 21 hospitals during pre-COVID-19 (3/1/2018-2/29/2020), COVID-19 pre-vaccine (3/1/2020-2/28/2021), and COVID-19 post-vaccine (3/1/2021-8/31/2022) study periods. We used multivariable logistic regression with generalized estimating equations to adjust for demographics and comorbidities to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Among 21,750 hospitalizations of 18,584 transfusion recipients without COVID-19, there were 697 post-transfusion thrombotic events, and oxygen requirements were increased in 1751 hospitalizations. Intensive care unit length of stay (n = 11,683) was 3 days (interquartile range 1-5), hospital mortality occurred in 3223 (14.8%), and 30-day rehospitalization in 4144 (23.7%). Comparing the pre-COVID, pre-vaccine and post-vaccine study periods, there were no trends in thromboses (OR 0.9 [95% CI 0.8, 1.1]; p = .22) or oxygen requirements (OR 1.0 [95% CI 0.9, 1.1]; p = .41). In parallel, there were no trends across study periods for ICU length of stay (p = .83), adjusted hospital mortality (OR 1.0 [95% CI 0.9-1.0]; p = .36), or 30-day rehospitalization (p = .29). DISCUSSION Transfusion of plasma and platelet blood components collected during the pre-vaccine and post-vaccine periods of the COVID-19 pandemic was not associated with increased adverse outcomes in transfusion recipients without COVID-19.
Collapse
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - John Greene
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Vincent X Liu
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Catherine Lee
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Dustin G Mark
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - David R Vinson
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Bryan R Spencer
- American Red Cross, Scientific Affairs, Dedham, Massachusetts, USA
| | - Roberta Bruhn
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Steve Kleinman
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
34
|
Wang S, Guirakhoo F, Periasamy S, Ryan V, Wiggins J, Subramani C, Thibodeaux B, Sahni J, Hellerstein M, Kuzmina NA, Bukreyev A, Dodart JC, Rumyantsev A. RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques. Vaccines (Basel) 2023; 12:40. [PMID: 38250853 PMCID: PMC10818657 DOI: 10.3390/vaccines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.
Collapse
Affiliation(s)
- Shixia Wang
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Farshad Guirakhoo
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Valorie Ryan
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jonathan Wiggins
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Brett Thibodeaux
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jaya Sahni
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Michael Hellerstein
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Alexander Rumyantsev
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| |
Collapse
|
35
|
Siripongboonsitti T, Nontawong N, Tawinprai K, Suptawiwat O, Soonklang K, Poovorawan Y, Mahanonda N. Efficacy of combined COVID-19 convalescent plasma with oral RNA-dependent RNA polymerase inhibitor treatment versus neutralizing monoclonal antibody therapy in COVID-19 outpatients: a multi-center, non-inferiority, open-label randomized controlled trial (PlasMab). Microbiol Spectr 2023; 11:e0325723. [PMID: 37975699 PMCID: PMC10714803 DOI: 10.1128/spectrum.03257-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
This pivotal study reveals that high neutralizing titer COVID-19 convalescent plasma therapy (CPT) combined with favipiravir (FPV) is non-inferior to sotrovimab in preventing hospitalization and severe outcomes in outpatients with mild-to-moderate COVID-19 and high-risk comorbidities. It underscores the potential of CPT-FPV as a viable alternative to neutralizing monoclonal antibodies like sotrovimab, especially amid emerging variants with spike protein mutations. The study's unique approach, comparing a monoclonal antibody with CPT, demonstrates the efficacy of early intervention using high neutralizing antibody titer CPT, even in populations with a significant proportion of elderly patients. These findings are crucial, considering the alternative treatment challenges, especially in resource-limited countries, posed by the rapidly mutating SARS-CoV-2 virus and the need for adaptable therapeutic strategies.
Collapse
Affiliation(s)
- Taweegrit Siripongboonsitti
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Kriangkrai Tawinprai
- Division of Infectious Diseases, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn 60th Birthday Anniversary, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nithi Mahanonda
- Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
36
|
Yang X. Passive antibody therapy in emerging infectious diseases. Front Med 2023; 17:1117-1134. [PMID: 38040914 DOI: 10.1007/s11684-023-1021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 12/03/2023]
Abstract
The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
Collapse
Affiliation(s)
- Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China.
- China National Biotec Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
37
|
Camirand Lemyre F, Honfo SH, Caya C, Cheng MP, Colwill K, Corsini R, Gingras AC, Jassem A, Krajden M, Márquez AC, Mazer BD, McLennan M, Renaud C, Yansouni CP, Papenburg J, Lewin A. Two-phase Bayesian latent class analysis to assess diagnostic test performance in the absence of a gold standard: COVID-19 serological assays as a proof of concept. Vox Sang 2023; 118:1069-1077. [PMID: 37850270 DOI: 10.1111/vox.13545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND OBJECTIVES In this proof-of-concept study, which included blood donor samples, we aimed to demonstrate how Bayesian latent class models (BLCMs) could be used to estimate SARS-CoV-2 seroprevalence in the absence of a gold standard assay under a two-phase sampling design. MATERIALS AND METHODS To this end, 6810 plasma samples from blood donors who resided in Québec (Canada) were collected from May to July 2020 and tested for anti-SARS-CoV-2 antibodies using seven serological assays (five commercial and two non-commercial). RESULTS SARS-CoV-2 seroprevalence was estimated at 0.71% (95% credible interval [CrI] = 0.53%-0.92%). The cPass assay had the lowest sensitivity estimate (88.7%; 95% CrI = 80.6%-94.7%), while the Héma-Québec assay had the highest (98.7%; 95% CrI = 97.0%-99.6%). CONCLUSION The estimated low seroprevalence (which indicates a relatively limited spread of SARS-CoV-2 in Quebec) might change rapidly-and this tool, developed using blood donors, could enable a rapid update of the prevalence estimate in the absence of a gold standard. Further, the present analysis illustrates how a two-stage BLCM sampling design, along with blood donor samples, can be used to estimate the performance of new diagnostic tests and inform public health decisions regarding a new or emerging disease for which a perfect reference standard does not exist.
Collapse
Affiliation(s)
- Felix Camirand Lemyre
- Faculté des sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sewanou Hermann Honfo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Chelsea Caya
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Matthew P Cheng
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Rachel Corsini
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Agatha Jassem
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Ana Citlali Márquez
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce D Mazer
- COVID-19 Immunity Task Force, Secretariat, McGill University, Montreal, Quebec, Canada
- Division of Allergy and Immunology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Meghan McLennan
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Christian Renaud
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| | - Cedric P Yansouni
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- J.D. MacLean Centre for Tropical Diseases, McGill University, Montreal, Quebec, Canada
| | - Jesse Papenburg
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Optilab Montreal - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children's Hospital, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, School of Population and Global Health, McGill University, Montreal, Quebec, Canada
| | - Antoine Lewin
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Affaires Médicales et Innovation, Héma-Québec, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Gu X, Wang S, Zhang W, Li C, Guo L, Wang Z, Li H, Zhang H, Zhou Y, Liang W, Li H, Liu Y, Wang Y, Huang L, Dong T, Zhang D, Wong CCL, Cao B. Probing long COVID through a proteomic lens: a comprehensive two-year longitudinal cohort study of hospitalised survivors. EBioMedicine 2023; 98:104851. [PMID: 37924708 PMCID: PMC10660018 DOI: 10.1016/j.ebiom.2023.104851] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND As a debilitating condition that can impact a whole spectrum of people and involve multi-organ systems, long COVID has aroused the most attention than ever. However, mechanisms of long COVID are not clearly understood, and underlying biomarkers that can affect the long-term consequences of COVID-19 are paramount to be identified. METHODS Participants for the current study were from a cohort study of COVID-19 survivors discharged from hospital between Jan 7, and May 29, 2020. We profiled the proteomic of plasma samples from hospitalised COVID-19 survivors at 6-month, 1-year, and 2-year after symptom onset and age and sex matched healthy controls. Fold-change of >2 or <0.5, and false-discovery rate adjusted P value of 0.05 were used to filter differentially expressed proteins (DEPs). In-genuity pathway analysis was performed to explore the down-stream effects in the dataset of significantly up- or down-regulated proteins. Proteins were integrated with long-term consequences of COVID-19 survivors to explore potential biomarkers of long COVID. FINDINGS The proteomic of 709 plasma samples from 181 COVID-19 survivors and 181 matched healthy controls was profiled. In both COVID-19 and control group, 114 (63%) were male. The results indicated four major recovery modes of biological processes. Pathways related to cell-matrix interactions and cytoskeletal remodeling and hypertrophic cardiomyopathy and dilated cardiomyopathy pathways recovered relatively earlier which was before 1-year after infection. Majority of immune response pathways, complement and coagulation cascade, and cholesterol metabolism returned to similar status of matched healthy controls later but before 2-year after infection. Fc receptor signaling pathway still did not return to status similar to healthy controls at 2-year follow-up. Pathways related to neuron generation and differentiation showed persistent suppression across 2-year after infection. Among 98 DEPs from the above pathways, evidence was found for association of 11 proteins with lung function recovery, with the associations consistent at two consecutive or all three follow-ups. These proteins were mainly enriched in complement and coagulation (COMP, PLG, SERPINE1, SRGN, COL1A1, FLNA, and APOE) and hypertrophic/dilated cardiomyopathy (TPM2, TPM1, and AGT) pathways. Two DEPs (APOA4 and LRP1) involved in both neuron and cholesterol pathways showed associations with smell disorder. INTERPRETATION The study findings provided molecular insights into potential mechanism of long COVID, and put forward biomarkers for more precise intervention to reduce burden of long COVID. FUNDING National Natural Science Foundation of China; Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences; Clinical Research Operating Fund of Central High Level Hospitals; the Talent Program of the Chinese Academy of Medical Science; Training Program of the Big Science Strategy Plan; Ministry of Science and Technology of the People's Republic of China; New Cornerstone Science Foundation; Peking Union Medical College Education Foundation; Research Funds from Health@InnoHK Program.
Collapse
Affiliation(s)
- Xiaoying Gu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China; Changping Laboratory, Beijing, PR China
| | - Siyuan Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Wanying Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Caihong Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, PR China
| | - Li Guo
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Zai Wang
- Changping Laboratory, Beijing, PR China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haibo Li
- Changping Laboratory, Beijing, PR China; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China
| | - Hui Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, PR China
| | - Yuhan Zhou
- Foreseen Biotechnology, Beijing, PR China
| | | | - Hui Li
- Changping Laboratory, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Yan Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China; Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Yeming Wang
- Changping Laboratory, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China
| | - Lixue Huang
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Tao Dong
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, PR China; Hubei Clinical Research Center for Infectious Diseases, Wuhan, Hubei Province, PR China.
| | - Catherine C L Wong
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, PR China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, PR China.
| | - Bin Cao
- Changping Laboratory, Beijing, PR China; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, PR China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing, PR China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, PR China.
| |
Collapse
|
39
|
O’Reilly S, Kenny G, Alrawahneh T, Francois N, Gu L, Angeliadis M, de Masson d’Autume V, Garcia Leon A, Feeney ER, Yousif O, Cotter A, de Barra E, Horgan M, Mallon PWG, Gautier V. Development of a novel medium throughput flow-cytometry based micro-neutralisation test for SARS-CoV-2 with applications in clinical vaccine trials and antibody screening. PLoS One 2023; 18:e0294262. [PMID: 38033116 PMCID: PMC10688860 DOI: 10.1371/journal.pone.0294262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Quantifying neutralising capacity of circulating SARS-COV-2 antibodies is critical in evaluating protective humoral immune responses generated post-infection/post-vaccination. Here we describe a novel medium-throughput flow cytometry-based micro-neutralisation test to evaluate Neutralising Antibody (NAb) responses against live SARS-CoV-2 Wild Type and Variants of Concern (VOC) in convalescent/vaccinated populations. Flow Cytometry-Based Micro-Neutralisation Test (Micro-NT) was performed in 96-well plates using clinical isolates WT-B, WT-B.1.177.18 and/or VOCs Beta and Omicron. Plasma samples (All Ireland Infectious Diseases (AIID) Cohort) were serially diluted (8 points, half-log) from 1:20 and pre-incubated with SARS-CoV-2 (1h, 37°C). Virus-plasma mixture were added onto Vero E6 or Vero E6/TMPRSS2 cells for 18h. Percentage infected cells was analysed by automated flow cytometry following trypsinisation, fixation and SARS-CoV-2 Nucleoprotein intracellular staining. Half-maximal Neutralisation Titres (NT50) were determined using non-linear regression. Our assay was compared to Plaque Reduction Neutralisation Test (PRNT) and validated against the First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Both Micro-NT and PRNT achieved comparable NT50 values. Further validation showed adequate correlation with PRNT using a panel of secondary standards of clinical convalescent and vaccinated plasma samples. We found the assay to be reproducible through measuring both repeatability and intermediate precision. Screening 190 convalescent samples and 11 COVID-19 naive controls (AIID cohort) we demonstrated that Micro-NT has broad dynamic range differentiating NT50s <1/20 to >1/5000. We could also characterise immune-escape VOC Beta and Omicron BA.5, achieving fold-reductions in neutralising capacity similar to those published. Our flow cytometry-based Micro-NT is a robust and reliable assay to quantify NAb titres, and has been selected as an endpoint in clinical trials.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Tamara Alrawahneh
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Nathan Francois
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew Angeliadis
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Valentin de Masson d’Autume
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Obada Yousif
- Endocrinology Department, Wexford General Hospital, Carricklawn, Wexford, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Eccles St, Dublin, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Beaumont, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Cork, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Singh G, Warang P, García-Bernalt Diego J, Chang L, Bykov Y, Singh S, Pache L, Cuadrado-Castano S, Webb B, Garcia-Sastre A, Schotsaert M. Host immune responses associated with SARS-CoV-2 Omicron infection result in protection or pathology during reinfection depending on mouse genetic background. RESEARCH SQUARE 2023:rs.3.rs-3637405. [PMID: 38077015 PMCID: PMC10705603 DOI: 10.21203/rs.3.rs-3637405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1β, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarabjot Singh
- RT-PCR COVID-19 Laboratory, Civil Hospital, Moga, Punjab, India
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute
| | | | - Brett Webb
- Department of Veterinary Sciences, University of Wyoming
| | | | | |
Collapse
|
41
|
Vanderven HA, Kent SJ. Fc-mediated functions and the treatment of severe respiratory viral infections with passive immunotherapy - a balancing act. Front Immunol 2023; 14:1307398. [PMID: 38077353 PMCID: PMC10710136 DOI: 10.3389/fimmu.2023.1307398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Passive immunotherapies have been used to treat severe respiratory infections for over a century, with convalescent blood products from recovered individuals given to patients with influenza-related pneumonia as long ago as the Spanish flu pandemic. However, passive immunotherapy with convalescent plasma or hyperimmune intravenous immunoglobulin (hIVIG) has not provided unequivocal evidence of a clinical benefit for severe respiratory infections including influenza and COVID-19. Efficacy trials, primarily conducted in late-stage disease, have demonstrated inconsistent efficacy and clinical benefit for hIVIG treatment of severe respiratory infections. To date, most serological analyses of convalescent plasma and hIVIG trial samples have focused on the measurement of neutralizing antibody titres. There is, however, increasing evidence that baseline antibody levels and extra-neutralizing antibody functions influence the outcome of passive immunotherapy in humans. In this perspective, findings from convalescent plasma and hIVIG trials for severe influenza, COVID-19 and respiratory syncytial virus (RSV) will be described. Clinical trial results will be discussed in the context of the potential beneficial and deleterious roles of antibodies with Fc-mediated effector functions, with a focus on natural killer cells and antibody-dependent cellular cytotoxicity. Overall, we postulate that treating respiratory viral infections with hIVIG represents a delicate balance between protection and immunopathology.
Collapse
Affiliation(s)
- Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Carlton, VIC, Australia
| |
Collapse
|
42
|
Chatterton B, Ascher SB, Duan N, Kravitz RL. Does haste make waste? Prevalence and types of errors reported after publication of studies of COVID-19 therapeutics. Syst Rev 2023; 12:216. [PMID: 37968691 PMCID: PMC10652527 DOI: 10.1186/s13643-023-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic spurred publication of a rapid proliferation of studies on potential therapeutic agents. While important for the advancement of clinical care, pressure to collect, analyze, and report data in an expedited manner could potentially increase the rate of important errors, some of which would be captured in published errata. We hypothesized that COVID-19 therapeutic studies published in the early years of the pandemic would be associated with a high rate of published errata and that, within these errata, there would be a high prevalence of serious errors. METHODS We performed a review of published errata associated with empirical studies of COVID-19 treatments. Errata were identified via a MEDLINE and Embase search spanning January 2020 through September 2022. Errors located within each published erratum were characterized by location within publication, error type, and error seriousness. RESULTS Of 47 studies on COVID-19 treatments with published errata, 18 met inclusion criteria. Median time from publication of the original article to publication of the associated erratum was 76 days (range, 12-511 days). A majority of errata addressed issues with author attribution or conflict of interest disclosures (39.5%) or numerical results (25.6%). Only one erratum contained a serious error: a typographical error which could have misled readers into believing that the treatment in question had serious adverse effects when in fact it did not. CONCLUSIONS Despite accelerated publication times, we found among studies of COVID-19 treatments the majority of errata (17/18) reported minor errors that did not lead to misinterpretation of the study results. Retractions, an indicator of scientific misdirection even more concerning than errata, were beyond the scope of this review.
Collapse
Affiliation(s)
- Brittany Chatterton
- Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA.
- Center for Healthcare Policy and Research, University of California, Davis, Sacramento, CA, USA.
| | - Simon B Ascher
- Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
| | - Naihua Duan
- Division of Mental Health Data Science, Department of Psychiatry, Columbia University, New York City, NY, USA
| | - Richard L Kravitz
- Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
- Center for Healthcare Policy and Research, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
43
|
Luchian ML, Higny J, Benoit M, Robaye B, Berners Y, Henry JP, Colle B, Xhaët O, Blommaert D, Droogmans S, Motoc AI, Cosyns B, Gabriel L, Guedes A, Demeure F. Unmasking Pandemic Echoes: An In-Depth Review of Long COVID's Unabated Cardiovascular Consequences beyond 2020. Diagnostics (Basel) 2023; 13:3368. [PMID: 37958264 PMCID: PMC10647305 DOI: 10.3390/diagnostics13213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
At the beginning of 2020, coronavirus disease 2019 (COVID-19) emerged as a new pandemic, leading to a worldwide health crisis and overwhelming healthcare systems due to high numbers of hospital admissions, insufficient resources, and a lack of standardized therapeutic protocols. Multiple genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been detected since its first public declaration in 2020, some of them being considered variants of concern (VOCs) corresponding to several pandemic waves. Nevertheless, a growing number of COVID-19 patients are continuously discharged from hospitals, remaining symptomatic even months after their first episode of COVID-19 infection. Long COVID-19 or 'post-acute COVID-19 syndrome' emerged as the new pandemic, being characterized by a high variability of clinical manifestations ranging from cardiorespiratory and neurological symptoms such as chest pain, exertional dyspnoea or cognitive disturbance to psychological disturbances, e.g., depression, anxiety or sleep disturbance with a crucial impact on patients' quality of life. Moreover, Long COVID is viewed as a new cardiovascular risk factor capable of modifying the trajectory of current and future cardiovascular diseases, altering the patients' prognosis. Therefore, in this review we address the current definitions of Long COVID and its pathophysiology, with a focus on cardiovascular manifestations. Furthermore, we aim to review the mechanisms of acute and chronic cardiac injury and the variety of cardiovascular sequelae observed in recovered COVID-19 patients, in addition to the potential role of Long COVID clinics in the medical management of this new condition. We will further address the role of future research for a better understanding of the actual impact of Long COVID and future therapeutic directions.
Collapse
Affiliation(s)
- Maria-Luiza Luchian
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Julien Higny
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Martin Benoit
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benoit Robaye
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Yannick Berners
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Jean-Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Benjamin Colle
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Olivier Xhaët
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Dominique Blommaert
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Steven Droogmans
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andreea Iulia Motoc
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bernard Cosyns
- Department of Cardiology, Centrum voor Hart-en Vaatziekten, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Laurence Gabriel
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Antoine Guedes
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| | - Fabian Demeure
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur Site Godinne, Av. Dr. G. Thérasse, 1, 5530 Yvoir, Belgium (A.G.); (F.D.)
| |
Collapse
|
44
|
Escobedo-Sánchez PE, de la Cruz-Hernández I, Ramos-García M, Sánchez-Yedra I, García-Vázquez C, Guzmán-Priego CG, García-Vidrios MV, Olvera-Hernández V, Mendoza-García Y, Ble-Castillo JL. [Efficacy and safety of convalescent plasma administration in patients with COVID-19 infection]. Med Clin (Barc) 2023; 161:323-329. [PMID: 37423879 PMCID: PMC10277849 DOI: 10.1016/j.medcli.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION During the COVID-19 pandemic, several strategies were suggested for the management of the disease, including pharmacological and non-pharmacological treatments such as convalescent plasma (CP). The use of CP was suggested due to the beneficial results shown in treating other viral diseases. OBJECTIVE To determine the efficacy and safety of CP obtained from whole blood in patients with COVID-19. METHODS Pilot clinical trial in patients with COVID-19 from a general hospital. The subjects were separated into three groups that received the transfusion of 400ml of CP (n=23) or 400ml of standard plasma (SP) (n=19) and a non-transfused group (NT) (n=37). Patients also received the standard available medical treatment for COVID-19. Subjects were followed up daily from admission to day 21. RESULTS The CP did not improve the survival curve in moderate and severe variants of COVID-19, nor did it reduce the degree of severity of the disease evaluated with the COVID-19 WHO and SOFA clinical progression scale. No patient had a severe post-transfusion reaction to CP. CONCLUSIONS Treatment with CP does not reduce the mortality of patients even when its administration has a high degree of safety.
Collapse
Affiliation(s)
- Priscila Edith Escobedo-Sánchez
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Ibis de la Cruz-Hernández
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Meztli Ramos-García
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Iván Sánchez-Yedra
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Carlos García-Vázquez
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | | | | | - Viridiana Olvera-Hernández
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Yolanda Mendoza-García
- Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa, Tabasco, México
| | - Jorge Luis Ble-Castillo
- División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México.
| |
Collapse
|
45
|
Zeng B, Zhou J, Peng D, Dong C, Qin Q. The prevention and treatment of COVID-19 in patients treated with hemodialysis. Eur J Med Res 2023; 28:410. [PMID: 37814329 PMCID: PMC10563282 DOI: 10.1186/s40001-023-01389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Patients treated with hemodialysis are often immunocompromised due to concomitant disease. As a result, this population is at high risk of infection and mortality from COVID-19. In addition to symptomatic treatment, a series of antiviral drugs targeting COVID-19 are now emerging. However, these antivirals are used mainly in mild or moderate patients with high-risk factors for progression to severe disease and are not available as pre- or post-exposure prophylaxis for COVID-19. There is a lack of clinical data on the use of anti-COVID-19 drugs, especially in patients treated with hemodialysis, therefore, vaccination remains the main measure to prevent SARS-CoV-2 infection in these patients. Here, we review the clinical features and prognosis of patients on hemodialysis infected with SARS-CoV-2, the main anti-COVID-19 drugs currently available for clinical use, and the safety and efficacy of anti-COVID-19 drugs or COVID-19 vaccination in patients treated with hemodialysis. This information will provide a reference for the treatment and vaccination of COVID-19 in patients treated with hemodialysis and maximize the health benefits of these patients during the outbreak.
Collapse
Affiliation(s)
- Binyu Zeng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Jia Zhou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Daizhuang Peng
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Chengmei Dong
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China
| | - Qun Qin
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha, China.
| |
Collapse
|
46
|
Maor Y, Shinar E, Izak M, Rahav G, Brosh-Nissimov T, Kessler A, Rahimi-Levene N, Benin-Goren O, Cohen D, Zohar I, Alagem N, Castro S, Zimhony O. A Randomized Controlled Study Assessing Convalescent Immunoglobulins vs Convalescent Plasma for Hospitalized Patients With Coronavirus 2019. Clin Infect Dis 2023; 77:964-971. [PMID: 37220751 PMCID: PMC10552585 DOI: 10.1093/cid/ciad305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND It is unknown whether convalescent immunoglobulins (cIgGs) are better than convalescent plasma (CP) for patients with coronavirus 2019 (COVID-19). METHODS In this randomized controlled trial, we assigned high risk COVID-19 patients with ≤10 days of symptoms, to receive cIgGs or CP. The primary endpoint was improvement on day 14 according to the World Health Organization scale. Secondary endpoints were survival on day 14, and improvement, survival, and percent of ventilated patients on day 28, and treatment response in unvaccinated and vaccinated patients. RESULTS A total of 319 patients were included: 166 received cIgGs and 153 CP. Median age was 64 to 66 years. A total of 112 patients (67.5%) in the cIgG group and 103 patients (67.3%) in the CP group reached the primary endpoint. Difference between groups was 0.1 (95% confidence interval, -10.1 to 10.4; P = .026), failing to reach noninferiority. More patients receiving cIgG improved by day 28 (136 patients [81.9%] and 108 patients [70.6%], respectively; 95% confidence interval, 1.9-20.7; P < .001; for superiority P = .018). Seventeen patients in the cIgG group (10.2%) and 25 patients (16.3%) in the CP group required mechanical ventilation (P = .136). Sixteen (9.6%) and 23 (15%) patients, respectively, died (P = .172). More unvaccinated patients improved by day 28 in the cIgG group (84.1% vs 66.1%; P = .024), and survival was better in the cIgG group (89.9% vs 77.4%; P = .066). CONCLUSIONS cIgGs failed to reach the primary noninferiority endpoint on day 14 but was superior to CP on day 28. Survival and improvement by day 28 in unvaccinated patients treated with cIgGs were better. In the face of new variants, cIgGs are a viable option for treating COVID-19. TRIAL REGISTRATION NUMBER My Trials MOH_2021-01-14_009667.
Collapse
Affiliation(s)
- Yasmin Maor
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilat Shinar
- Magen David Adom, National Blood Services, Ramat Gan, Israel
| | - Marina Izak
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Magen David Adom, National Blood Services, Ramat Gan, Israel
| | - Galia Rahav
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Tal Brosh-Nissimov
- Infectious Diseases Unit, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Asa Kessler
- Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University and Hadassah, Jerusalem, Israel
| | | | | | - Dani Cohen
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Iris Zohar
- Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Oren Zimhony
- Faculty of Medicine, Hebrew University and Hadassah, Jerusalem, Israel
- Infectious Diseases Unit, Kaplan Medical Center, Rehovot, Israel
| |
Collapse
|
47
|
Naik R, Avula S, Palleti SK, Gummadi J, Ramachandran R, Chandramohan D, Dhillon G, Gill AS, Paiwal K, Shaik B, Balachandran M, Patel B, Gurugubelli S, Mariswamy Arun Kumar AK, Nanjundappa A, Bellamkonda M, Rathi K, Sakhamuri PL, Nassar M, Bali A. From Emergence to Endemicity: A Comprehensive Review of COVID-19. Cureus 2023; 15:e48046. [PMID: 37916248 PMCID: PMC10617653 DOI: 10.7759/cureus.48046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later renamed coronavirus disease 2019 (COVID-19), was first identified in Wuhan, China, in early December 2019. Initially, the China office of the World Health Organization was informed of numerous cases of pneumonia of unidentified etiology in Wuhan, Hubei Province at the end of 2019. This would subsequently result in a global pandemic with millions of confirmed cases of COVID-19 and millions of deaths reported to the WHO. We have analyzed most of the data published since the beginning of the pandemic to compile this comprehensive review of SARS-CoV-2. We looked at the core ideas, such as the etiology, epidemiology, pathogenesis, clinical symptoms, diagnostics, histopathologic findings, consequences, therapies, and vaccines. We have also included the long-term effects and myths associated with some therapeutics of COVID-19. This study presents a comprehensive assessment of the SARS-CoV-2 virology, vaccines, medicines, and significant variants identified during the course of the pandemic. Our review article is intended to provide medical practitioners with a better understanding of the fundamental sciences, clinical treatment, and prevention of COVID-19. As of May 2023, this paper contains the most recent data made accessible.
Collapse
Affiliation(s)
- Roopa Naik
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
- Internal Medicine/Hospital Medicine, Geisinger Health System, Wilkes Barre, USA
| | - Sreekant Avula
- Diabetes, Endocrinology, and Metabolism, University of Minnesota, Minneapolis, USA
| | - Sujith K Palleti
- Nephrology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jyotsna Gummadi
- Internal Medicine, MedStar Franklin Square Medical Center, Baltimore, USA
| | | | | | - Gagandeep Dhillon
- Physician Executive MBA, University of Tennessee, Knoxville, USA
- Internal Medicine, University of Maryland Baltimore Washington Medical Center, Glen Burnie, USA
| | | | - Kapil Paiwal
- Oral & Maxillofacial Pathology, Daswani Dental College & Research Center, Kota, IND
| | - Bushra Shaik
- Internal Medicine, Onslow Memorial Hospital, Jacksonville, USA
| | | | - Bhumika Patel
- Oral Medicine and Radiology, Howard University, Washington, D.C., USA
| | | | | | | | - Mahita Bellamkonda
- Hospital Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Kanika Rathi
- Internal Medicine, University of Florida, Gainesville, USA
| | | | - Mahmoud Nassar
- Endocrinology, Diabetes, and Metabolism, Jacobs School of Medicine and Biomedical Sciences, Buffalo, USA
| | - Atul Bali
- Internal Medicine/Nephrology, Geisinger Medical Center, Danville, USA
- Internal Medicine/Nephrology, Geisinger Health System, Wilkes-Barre, USA
- Medicine, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
48
|
Senefeld JW, Gorman EK, Johnson PW, Moir ME, Klassen SA, Carter RE, Paneth NS, Sullivan DJ, Morkeberg OH, Wright RS, Fairweather D, Bruno KA, Shoham S, Bloch EM, Focosi D, Henderson JP, Juskewitch JE, Pirofski LA, Grossman BJ, Tobian AA, Franchini M, Ganesh R, Hurt RT, Kay NE, Parikh SA, Baker SE, Buchholtz ZA, Buras MR, Clayburn AJ, Dennis JJ, Diaz Soto JC, Herasevich V, Klompas AM, Kunze KL, Larson KF, Mills JR, Regimbal RJ, Ripoll JG, Sexton MA, Shepherd JR, Stubbs JR, Theel ES, van Buskirk CM, van Helmond N, Vogt MN, Whelan ER, Wiggins CC, Winters JL, Casadevall A, Joyner MJ. Rates Among Hospitalized Patients With COVID-19 Treated With Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin Proc Innov Qual Outcomes 2023; 7:499-513. [PMID: 37859995 PMCID: PMC10582279 DOI: 10.1016/j.mayocpiqo.2023.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Objective To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. Patients and Methods On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature from January 1, 2020, to October 26, 2022. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of 5 reviewers. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using an inverse-variance random effects model. The prespecified end point was all-cause mortality during hospitalization. Results Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses reported that transfusion of COVID-19 convalescent plasma was associated with a decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio [OR], 0.87; 95% CI, 0.76-1.00) and matched cohort studies (OR, 0.76; 95% CI, 0.66-0.88). The meta-analysis of subgroups revealed 2 important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared with convalescent plasma containing low antibody levels (OR, 0.85; 95% CI, 0.73 to 0.99). Second, earlier treatment with COVID-19 convalescent plasma was associated with a decrease in mortality compared with the later treatment cohort (OR, 0.63; 95% CI, 0.48 to 0.82). Conclusion During COVID-19 convalescent plasma use was associated with a 13% reduced risk of mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.
Collapse
Affiliation(s)
- Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Patrick W. Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - M. Erin Moir
- Department of Kinesiology, University of Wisconsin-Madison, Madison
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Nigel S. Paneth
- Department of Epidemiology and Biostatistics and Department of Pediatrics and Human Development, Michigan State University, East Lansing
| | - David J. Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - R. Scott Wright
- Human Research Protection Program, Mayo Clinic, Rochester, MN
| | | | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
- Division of Cardiovascular Medicine, University of Florida, Gainesville
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Italy
| | - Jeffrey P. Henderson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, MO
| | | | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, MO
| | - Aaron A.R. Tobian
- Department of Pathology Johns Hopkins University School of Medicine, Baltimore, ML
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ravindra Ganesh
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T. Hurt
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary A. Buchholtz
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew R. Buras
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | - Andrew J. Clayburn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joshua J. Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan C. Diaz Soto
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Allan M. Klompas
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Katie L. Kunze
- Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ
| | | | - John R. Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew A. Sexton
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - John R.A. Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - James R. Stubbs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Noud van Helmond
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Matthew N.P. Vogt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey L. Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, ML
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
49
|
Stricker M. Managing hospitalized patients with COVID-19. JAAPA 2023; 36:16-20. [PMID: 37751251 DOI: 10.1097/01.jaa.0000977664.94343.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
ABSTRACT Treatment for COVID-19 has significantly changed since the beginning of the pandemic and continues to change as new evidence is published. This article describes which COVID-19 patients require hospitalization and how to manage hospitalized patients based on current evidence from randomized clinical trials.
Collapse
Affiliation(s)
- Mike Stricker
- Mike Stricker practices in hospital medicine at the Cleveland (Ohio) Clinic. The author has disclosed no potential conflicts of interest, financial or otherwise
| |
Collapse
|
50
|
Hederman AP, Natarajan H, Heyndrickx L, Ariën KK, Wiener JA, Wright PF, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Rottenstreich A, Zarbiv G, Wolf D, Goetghebuer T, Marchant A, Ackerman ME. SARS-CoV-2 vaccination elicits broad and potent antibody effector functions to variants of concern in vulnerable populations. Nat Commun 2023; 14:5171. [PMID: 37620337 PMCID: PMC10449910 DOI: 10.1038/s41467-023-40960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
SARS-CoV-2 variants have continuously emerged in the face of effective vaccines. Reduced neutralization against variants raises questions as to whether other antibody functions are similarly compromised, or if they might compensate for lost neutralization activity. Here, the breadth and potency of antibody recognition and effector function is surveyed following either infection or vaccination. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observe similar binding and functional breadth for healthy and immunologically vulnerable populations, but considerably greater functional antibody breadth and potency across variants associated with vaccination. In contrast, greater antibody functional activity targeting the endemic coronavirus OC43 is noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains associated with exposure history. This analysis of antibody functions suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as novel variants continue to evolve.
Collapse
Affiliation(s)
| | - Harini Natarajan
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Leo Heyndrickx
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joshua A Wiener
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel N Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gila Zarbiv
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
- Pediatric Department, CHU St Pierre, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|