1
|
Yuan C, Hu C, Zhou H, Liu W, Lai W, Liu Y, Yin Y, Li G, Zhang R. L-methionine promotes CD8 + T cells killing hepatocellular carcinoma by inhibiting NR1I2/PCSK9 signaling. Neoplasia 2025; 64:101160. [PMID: 40158232 PMCID: PMC11997342 DOI: 10.1016/j.neo.2025.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Liver cancer has consistently high incidence and mortality rates among malignant tumors. PCSK9, a target for hypercholesterolemia therapy, has recently been identified as an inhibitor of anti-tumor immunity, and targeting PCSK9 effectively inhibits tumor progression. However, small molecule inhibitors are lacking due to its flat protein structure. METHODS PCSK9 transcription inhibitor screening was conducted using a PCSK9 promoter-driven td-Tomato plasmid. Quantitative real-time PCR and immunoblotting were employed to assess the effect of L-methionine on PCSK9 expression in HCC cell lines. Co-culture experiments were performed to evaluate the impact of L-methionine on CD8+ T cell-mediated killing of liver cancer cells. RNA sequencing, CUT&Tag, gene editing, and luciferase reporter assays were utilized to identify the transcription factor regulating PCSK9. Additionally, liver cancer xenograft and spontaneous liver cancer mouse models were used to evaluate the anti-cancer efficacy of L-methionine. RESULTS Our study identified L-methionine, an essential amino acid, as a transcriptional inhibitor of PCSK9. The optimal dose of L-methionine to inhibit PCSK9 expression and enhance CD8+ T cell-mediated killing of liver cancer cells in vitro is 50 μM. Furthermore, intraperitoneal injection of 5 mg/kg/day of L-methionine significantly inhibited tumor growth in both liver cancer xenograft and spontaneous liver cancer mouse models. Mechanistically, we identified NR1I2 as a key transcription factor for PCSK9 and their crucial binding site was TGCACCCTGACAC. L-methionine inhibits PCSK9 transcription by downregulating NR1I2. CONCLUSIONS This work demonstrates that L-methionine promotes CD8+ T cell-mediated killing of hepatocellular carcinoma by inhibiting NR1I2/PCSK9 signaling. Our study introduces a novel and convenient approach to inhibit PCSK9 and provides a theoretical basis for the rational supplementation of L-methionine in liver cancer patients.
Collapse
Affiliation(s)
- Chengsha Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yafeng Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yue Yin
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Ma S, Zhu W, Ji X, Liu C, Chen N, Guo D, Song H. Multiplex Methionine Modulating Hydrogel for Cancer Metabolic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420445. [PMID: 40376881 DOI: 10.1002/adma.202420445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/23/2025] [Indexed: 05/18/2025]
Abstract
The reliance on high levels of methionine by tumor cells provides an attractive target for cancer treatment. However, systemic methionine blockade may raise concerns about potential side effects given the broad and essential functions of methionine in cellular metabolism. Here, a combined drug delivery platform for multilayered constraint of methionine within tumor lesions is developed. Small molecule inhibitors PF9366 and adenosine dialdehyde are encapsulated by tumor cell-targeting nanoparticles (NPs) to achieve a cascaded blockage of intracellular methionine metabolism. These NPs are further co-loaded with the extracellular methionine uptake inhibitor JPH203 into a type of reactive oxygen species-sensitive hydrogel, assembling the multiplex methionine modulating hydrogel (3 M Gel). In murine models of triple-negative breast cancer (TNBC), hepatocellular carcinoma, and colorectal cancer, the in situ formed 3 M Gel exhibits superior efficacy in restricting S-adenosyl methionine generation and histone methylation, stimulating immunogenic cell death in tumor cells, thereby eliciting potent innate and adaptive immune responses to restrain tumor progression. Moreover, remodeling of the tumor microenvironment by 3 M Gel overcomes immune checkpoint blockade resistance in TNBC. This study presents a localized triple regulation strategy and paves a new path for amino acid starvation-based cancer therapy.
Collapse
Affiliation(s)
- Siyu Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Zhu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Daoxia Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Zhang L, Liang Z, Zhang W, Wang H. Quantification of five intracellular and extracellular methionine pathway intermediates using stable isotope dilution UHPLC-MS/MS. J Chromatogr A 2025; 1755:466036. [PMID: 40398135 DOI: 10.1016/j.chroma.2025.466036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
Unraveling the intricate mechanisms underlying methionine metabolism reprogramming and its extracellular release during apoptosis requires robust and sensitive quantification of key intermediates in both intracellular and extracellular compartments. Here, we developed a highly sensitive and precise stable isotope-dilution UHPLC-MS/MS method for simultaneous quantification of five critical intermediates in methionine cycle and methionine salvage pathway: l-methionine (Met), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), l-homocysteine (Hcy), and 5'-methylthioadenosine (5'-MTA). Through optimizing mobile phase additives and implementing an effective dilution strategy, this method minimizes matrix effects. The recovery rates of the five compounds exceeds 71.6 % in cell cytosol and cell medium samples, under a wide concentration range. The validated method presents good precision and linearity, with limits of detection (LODs) ranging from 1.9 fmol/10⁵ cells (SAH) to 555.4 fmol/10⁵ cells (Hcy) in cytosolic fractions, and from 0.7 fmol/10⁵ cells (SAH) to 52.1 fmol/10⁵ cells (Met) in culture media. Application of this validated method to UV-induced apoptosis in human promyelocytic leukemia HL60 cells revealed significant dynamic alterations in both intracellular and extracellular release of methionine pathway intermediates during apoptotic progression. The quantification method provides a robust tool for investigating the regulation and functions of methionine metabolism across basic research and clinical applications.
Collapse
Affiliation(s)
- Lyuye Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Fang X, Li J, Pang H, Zheng H, Shi X, Feng L, Hu K, Zhou T. Xingxiao pills suppresses lung adenocarcinoma progression by modulating lipid metabolism and inhibiting the PLA2G4A-GLI1-SOX2 Axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156826. [PMID: 40339555 DOI: 10.1016/j.phymed.2025.156826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) remains a leading cause of cancer mortality due to resistance, metastasis, and recurrence. Unlike conventional cytotoxic therapies, Xingxiao Pills (XXP), a classic traditional Chinese medicine formula, offers a complementary approach to treating LUAD, while its non-cytotoxic anti-cancer mechanisms remain unclear. PURPOSE To investigate the effect and mechanism of XXP on LUAD progression and stemness via lipid metabolism regulation. METHOD UHPLC-MS/MS was used to analyze the chemical constituents of XXP. The effects of XXP on LUAD cell proliferation, migration, invasion, and stemness were evaluated using CCK-8, Transwell, and tumor sphere assays. A LUAD xenograft model confirmed XXP's anti-tumor effects. Transcriptomics, metabolomics, ELISA, qRT-PCR, and Western blot were used to investigate the underlying mechanisms. Kaplan-Meier (KM) survival analysis and stemness index scores were performed for LUAD patients based on the TCGA dataset. Statistical analyses were performed using Student's t-test, ANOVA, and KM survival analysis (p< 0.05 considered significant). RESULTS XXP inhibits LUAD progression in mouse and cell models by targeting lipid metabolism reprogramming. It suppresses FA synthesis, elongation, oxidation, and glycerophospholipid (GPL) metabolism while upregulating arachidonic acid (AA) metabolism. Mechanistic studies revealed that XXP attenuates tumor stemness by inhibiting PLA2G4A (cPLA2), lowering AA release, and disrupting SMO/GLI1/SOX2 signaling, an effect also observed with the cPLA2 inhibitor AACOCF3. KM analysis showed that higher PLA2G4A expression correlated with a worse 5-year prognosis in LUAD (p = 0.0047). The low GPL/high AA group (consistent with XXP's metabolic pattern) had better survival (p = 0.0028) and a lower stemness index (p< 0.0001) than the high GPL/low AA unrelated group. CONCLUSION Xingxiao Pill modulates GPL and AA metabolism and downregulates the PLA2G4A (cPLA2)-AA/SMO/GLI1/SOX2 axis. Through this mechanism, XXP effectively inhibits tumor growth and stemness by targeting lipid metabolism.
Collapse
Affiliation(s)
- Xueni Fang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - JingHua Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - HaoYue Pang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zheng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Shi
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Tian Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Huang Z, Chen P, Liu Y. RBM15-mediated the m6A modification of MAT2A promotes osteosarcoma cell proliferation, metastasis and suppresses ferroptosis. Mol Cell Biochem 2025; 480:2923-2933. [PMID: 39527319 DOI: 10.1007/s11010-024-05149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Methionine adenosyltransferase 2 A (MAT2A) has been found to mediate osteosarcoma (OS) progression. Therefore, more roles and mechanisms of MAT2A in the development of OS deserve further exploration. The mRNA and protein levels of MAT2A and RNA binding motif protein 15 (RBM15) were tested by quantitative real-time PCR and western blot (WB). Cell proliferation and metastasis were examined using EdU assay and transwell assay. The protein levels of metastasis-related markers and ferroptosis-related marker were measured by WB. Cell ferroptosis was assessed via testing GSH, ROS, and Fe2+ levels. Mice xenograft model was constructed to explore the roles of MAT2A and RBM15 in vivo. RBM15 and MAT2A interaction was assessed by MeRIP assay and dual-luciferase reporter assay. High expression of MAT2A was observed in OS tumor tissues and cells. MAT2A knockdown reduced OS cell proliferation, migration, invasion and enhanced ferroptosis. Silencing of MAT2A inhibited OS tumor growth in vivo. RBM15 was upregulated in OS tumor tissues and cells, which could promote MAT2A expression by N6-methyladenosine (m6A) modification. Downregulation of RBM15 repressed OS cell behaviors and tumorigenesis by decreasing MAT2A expression. In conclusion, MAT2A, regulated by RBM15-mediated m6A modification, accelerated OS malignant progression by increasing cell proliferation, metastasis and decreasing ferroptosis.
Collapse
Affiliation(s)
- Zhong Huang
- Orthopedic Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Haidian Island Peoples Avenue, Meilan District, Haikou, 570208, China
| | - Pengcheng Chen
- Orthopedic Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Haidian Island Peoples Avenue, Meilan District, Haikou, 570208, China
| | - Yiheng Liu
- Orthopedic Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43, Haidian Island Peoples Avenue, Meilan District, Haikou, 570208, China.
| |
Collapse
|
6
|
Zhou F, He Y, Xie X, Guo N, Chen W, Zhao Y. Homocysteine and Multiple Health Outcomes: An Outcome-Wide Umbrella Review of Meta-analyses and Mendelian Randomization Studies. Adv Nutr 2025; 16:100434. [PMID: 40288491 DOI: 10.1016/j.advnut.2025.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Elevated levels of homocysteine (Hcy) are associated with various health outcomes. We aimed to systematically assess the credibility and certainty of evidence of associations of Hcy and Hcy-lowering therapies with various health outcomes. We retrieved observational meta-analyses examining the associations between Hcy and health outcomes, interventional meta-analyses investigating health outcomes related to Hcy-lowering treatments, and Mendelian randomization (MR) studies exploring the causal associations of Hcy with health outcomes to perform an umbrella review. A total of 135 observational meta-analyses, 106 MR studies, and 26 interventional meta-analyses were included. Among observational studies, 10 associations of diseases/outcomes were classified as highly suggestive; only 1 outcome (digestive tract cancer) was supported by convincing evidence (class I; odd ratio = 1.27, 95% confidence interval = 1.16, 1.40; P = 6.79 × 10-7; I2 = 0, 95% prediction interval excluding null, >1000 cases; P > 0.1 for tests of both small-study effects and excess significance bias). In MR studies, 5 outcomes associated with Hcy presented robust evidence (P < 0.01, power >80%). Among 25 outcomes explored by both observational meta-analyses and MR studies, 7 had consistent results, indicating that elevated Hcy is causally associated with an increased risk of these outcomes. The 3 types of studies collectively suggested that the association of stroke with Hcy was supported by observational studies, causally by MR studies, and further validated by intervention meta-analyses showing that Hcy-lowering with folic acid significantly reduced risk of stroke. For dementia and colorectal cancer, Hcy was significantly associated in meta-analyses of observational studies and folic acid decreased disease risks in interventional meta-analyses. The current umbrella review indicates that convincing evidence for a definitive role of Hcy exposure solely exists in the context of digestive tract cancer excluding bias; however, Hcy may not be causal for this disease. All the 3 types of studies collectively support that Hcy is a key causal risk factor, and Hcy-lowering (specifically with folic acid) may serve as an effective intervention for stroke. This trial was registered at PROSPERO as CRD42024541335.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China.
| | - Yue He
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Xinhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Ning Guo
- Department of Dujiakan Outpatient, Jingnan Medical District of PLA General Hospital, Beijing, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
7
|
Zheng B, Liu K, Feng J, Ouyang Q, Jia T, Wang Y, Tian S, Chen X, Cai T, Wen L, Zhang X, Li X, Ma X. GAMT facilitates tumor progression via inhibiting p53 in clear cell renal cell carcinoma. Biol Direct 2025; 20:43. [PMID: 40176130 PMCID: PMC11966922 DOI: 10.1186/s13062-025-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common type of RCC. Even though the targeted drugs for the treatment of ccRCC have a certain therapeutic effect, due to the problem of drug resistance, the search for new targets for targeted therapy of ccRCC remains urgent. GAMT is an enzyme involved in creatine metabolism. However, the precise biological roles and molecular mechanisms of GAMT in ccRCC are not fully understood. RESULTS Here, we found that GAMT was upregulated in ccRCC cells and tissues and associated with poor prognosis. Further, GAMT has pro-oncogenic abilities in promoting ccRCC development and progression. Intriguingly, GAMT exerted biological functions independent of its role in catalyzing creatine synthesis. Mechanistically, GAMT overexpression contributes to the development and progression of ccRCC by inhibiting tumor suppressor p53. Finally, we identified fisetin as a novel GAMT inhibitor and validated its role in suppressing ccRCC progression and sensitizing ccRCC cells to targeted drug axitinib via in vivo and in vitro assays. CONCLUSIONS This study reveals that GAMT has pro-oncogenic abilities in promoting ccRCC development and progression. GAMT exerted its non-enzymatic functions possibly by regulating the expression of p53. Fisetin, the novel GAMT inhibitor identified herein, may serve as a new antitumor drug for ccRCC treatment.
Collapse
Affiliation(s)
- Bin Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Kan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Ji Feng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Qing Ouyang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tongyu Jia
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Shuo Tian
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinran Chen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Tianwei Cai
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Lequan Wen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Zhang
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiubin Li
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xin Ma
- Department of Urology, The Third Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
8
|
Liu W, Hu K, Fu Y, Zhou T, Zhong Q, Wang W, Gui Y, Zhang P, Yao D, Yang X, Zhu W, Liu Z, Luo D, Xiao Y. Identification of methionine metabolism related prognostic model and tumor suppressive functions of BHMT in hepatocellular carcinoma. Sci Rep 2025; 15:9250. [PMID: 40102459 PMCID: PMC11920202 DOI: 10.1038/s41598-025-93650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
Given the resistance to conventional treatments and limitations of immune checkpoint blockade therapy in hepatocellular carcinoma (HCC), it is imperative to explore novel prognostic models and biomarkers. The dependence of cancer cell on exogenous methionine, known as Hoffman effect, is a hallmark of HCC, with numerous studies reporting a strong correlation between methionine metabolism and tumor development. Betaine-homocysteine S-methyltransferase (BHMT), a critical component of methionine metabolism pathway, has polymorphisms linking to poor prognosis in multiple cancers. Nevertheless, there is little literature regarding the relationship between methionine metabolism and incidence, mortality of HCC, as well as the function of BHMT in HCC progression. In this study, by analyzing multiple datasets, we constructed a methionine metabolism-related prognostic model and thoroughly investigated the influence of BHMT on the prognosis of HCC. Bioinformatics analysis revealed a marked decrease in BHMT expression in HCC, which was linked to adverse clinical outcomes. CIBERSORT results suggest that BHMT promotes infiltration of M1 macrophages. Our results suggest its potential as an ideal prognostic biomarker for anti PD-L1 immunotherapy. In summary, this study innovatively provides first methionine metabolism-related prognostic model and unveils the tumor suppressive function of BHMT in HCC, providing potential mechanism by which BHMT exert its function.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Kaiheng Hu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yaqing Fu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianmin Zhou
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Qingmei Zhong
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Wu Wang
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Yang Gui
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Ping Zhang
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Di Yao
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Yingqun Xiao
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China.
| |
Collapse
|
9
|
Wu B, Cheng Y, Li L, Du Z, Liu Q, Tan X, Li X, Zhao G, Li E. Role of the sulfur-containing amino acid-ROS axis in cancer chemotherapeutic drug resistance. Drug Resist Updat 2025; 81:101238. [PMID: 40107045 DOI: 10.1016/j.drup.2025.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Chemotherapeutic drug resistance remains a major barrier to effective cancer treatment. Drug resistance could be driven in part by adaptive redox remodeling of cancer cells. Paradoxically, drug-resistant malignancies exhibit elevated reactive oxygen species (ROS), as well as amplified antioxidant defenses, which enable cancer cell survival under therapeutic stress. Central to this adaptation is glutathione (GSH), the predominant cellular antioxidant, whose synthesis relies on sulfur-containing amino acids (SAAs) - methionine and cysteine. This review delineates the metabolic interplay between methionine and cysteine in the transsulfuration pathway, highlighting their roles as precursors in GSH biosynthesis. We systematically summarize the key enzymes that drive GSH production and their contributions to resistance against platinum-based drugs and other chemotherapeutics. In addition to GSH synthesis, we summarize the roles of GSH antioxidant systems, including glutathione peroxidases (GPXs), peroxiredoxins (PRDXs), and thioredoxins (TRXs), which are critical in chemotherapeutic drug resistance through ROS scavenging. Recent advances reveal that targeting these enzymes, by pharmacologically inhibiting transsulfuration enzymes or disrupting GSH-dependent antioxidant cascades, can sensitize resistant cancer cells to ROS-mediated therapies. These findings not only clarify the mechanistic links between SAA metabolism and redox adaptation but also provide practical approaches to overcome chemotherapeutic drug resistance. By analyzing metabolic and redox vulnerabilities, this review highlights the therapeutic potential to restore chemosensitivity, offering new options in precision oncology medicine.
Collapse
Affiliation(s)
- Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Yinwei Cheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liyan Li
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province 518000, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong 515041, China
| | - Qianlou Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xinyue Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province 515041, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
10
|
Wu J, Ding C, Zhang C, Xu Z, Deng Z, Wei H, He T, Long L, Tang L, Ma J, Liang X. Methionine metabolite spermidine inhibits tumor pyroptosis by enhancing MYO6-mediated endocytosis. Nat Commun 2025; 16:2184. [PMID: 40038267 PMCID: PMC11880502 DOI: 10.1038/s41467-025-57511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
The connection between amino acid metabolism and pyroptosis remains elusive. Herein, we screen the effect of individual amino acid on pyroptosis and identify that methionine inhibits GSDME-mediated pyroptosis. Mechanistic analyses unveil that MYO6, a unique actin-based motor protein, bridges the GSDME N-terminus (GSDME-NT) and the endocytic adaptor AP2, mediating endolysosomal degradation of GSDME-NT. This degradation is increased by the methionine-derived metabolite spermidine noncanonically by direct binding to MYO6, which enhances MYO6 selectivity for GSDME-NT. Moreover, combination targeted therapies using dietary or pharmacological inhibition in methionine-to-spermidine metabolism in the tumor promotes pyroptosis and anti-tumor immunity, leading to a stronger tumor-suppressive effect in in vivo models. Clinically, higher levels of tumor spermidine and expression of methionine-to-spermidine metabolism-related gene signature predict poorer survival. Conclusively, our research identifies an unrecognized mechanism of pyroptotic resistance mediated by methionine-spermidine metabolic axis, providing a fresh angle for cancer treatment.
Collapse
Affiliation(s)
- Jiawei Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Cong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Ultrasound and Electrocardiogram, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuqing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhimin Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenji Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hanmiao Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Tingxiang He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liufen Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Linglong Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Xiaoyu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
11
|
Lin DW, Carranza FG, Borrego S, Lauinger L, Dantas de Paula L, Pulipelli HR, Andronicos A, Hertel KJ, Kaiser P. Nutrient control of splice site selection contributes to methionine addiction of cancer. Mol Metab 2025; 93:102103. [PMID: 39862967 PMCID: PMC11834112 DOI: 10.1016/j.molmet.2025.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood. Here we find that methionine dependence is associated with severe dysregulation of pre-mRNA splicing. METHODS We used triple-negative breast cancer cells and their methionine-independent derivatives R8 to compare RNA expression profiles in methionine and homocysteine growth media. The data set was also analyzed for alternative splicing. RESULTS When tumorigenic cells were cultured in homocysteine medium, cancer cells failed to efficiently methylate the spliceosomal snRNP component SmD1, which resulted in reduced binding to the Survival-of-Motor-Neuron protein SMN leading to aberrant splicing. These effects were specific for cancer cells as neither Sm protein methylation nor splicing fidelity was affected when non-tumorigenic cells were cultured in homocysteine medium. Sm protein methylation is catalyzed by Protein Arginine Methyl Transferase 5 (Prmt5). Reducing methionine concentrations in the culture medium sensitized cancer cells to Prmt5 inhibition supporting a mechanistic link between methionine dependence of cancer and splicing. CONCLUSIONS Our results link nutritional demands to splicing changes and thereby provide a link between the cancer-specific metabolic phenomenon, described as methionine addiction over 40 years ago, with a defined cellular pathway that contributes to cancer cell proliferation.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Francisco G Carranza
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Stacey Borrego
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Linda Lauinger
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Lucas Dantas de Paula
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Harika R Pulipelli
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Anna Andronicos
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA.
| |
Collapse
|
12
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
13
|
Kubota Y, Zhao M, Han Q, Aoki Y, Masaki N, Obara K, Morinaga S, Mizuta K, Sato M, Bouvet M, Kubota K, Tsunoda T, Hoffman RM. Engineered Methioninase-expressing Tumor-targeting Salmonella typhimurium A1-R Inhibits Syngeneic-Cancer Mouse Models by Depleting Tumor Methionine. Cancer Genomics Proteomics 2025; 22:247-257. [PMID: 39993809 PMCID: PMC11880925 DOI: 10.21873/cgp.20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM We previously developed Salmonella typhimurium A1-R, which selectively targets and kills tumors. In the present study, we established recombinant methioninase (rMETase)-producing Salmonella typhimurium A1-R (A1-R-rMETase), by transfer of the Pseudomonas putida methioninase gene, to target methionine addiction of syngeneic-cancer mouse models. MATERIALS AND METHODS A plasmid containing the Pseudomonas putida methioninase gene was extracted from METase-producing recombinant E. coli and inserted into Salmonella typhimurium A1-R using electroporation. Lewis Lung Carcinoma (LLC) cells (106) were injected subcutaneously in male C57BL/6 mice aged 4-6 weeks. We determined that 108 Salmonella typhimurium A1-R-rMETase administered iv was a safe dosage in C57BL/6 mice and was used for efficacy studies on LLC tumors in C57BL/6 mice. Tumor size was measured with calipers three times per week for 3 weeks. On day 22, tumor methionine levels were measured using HPLC in the control mice injected with phosphate-buffered saline (PBS) and the mice injected with Salmonella typhimurium A1-R-rMETase. RESULTS The mean LLC tumor size of each group on day 22 was as follows: PBS control: 741.5 mm3; mice injected with Salmonella typhimurium A1-R: 566.3 mm3 (p=0.370); and mice injected with Salmonella typhimurium A1-R-rMETase: 198.8 mm3 (p=0.0003 vs control and p=0.0117 vs. Salmonella A1-R). The mice injected with Salmonella typhimurium A1-R-rMETase showed a significantly lower mean tumor methionine level than mice injected with PBS (5.9 nM/mg protein vs 11.1 nM/mg protein, p=0.0095). Salmonella typhimurium A1-R-rMETase grew continuously in the tumors but not in the liver or spleen. CONCLUSION Tumor-targeting Salmonella typhimurium A1-R engineered to express the Pseudomonas putida methioninase gene, inhibited LLC tumor growth in a syngeneic mouse model and reduced the methionine level in the tumor. Salmonella typhimurium A1-R-rMETase combines the tumor targeting and killing capability of Salmonella typhimurium A1-R plus rMETase which targets the methionine addiction of cancer.
Collapse
Affiliation(s)
- Yutaro Kubota
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Ming Zhao
- AntiCancer Inc., San Diego, CA, U.S.A
| | | | - Yusuke Aoki
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Noriyuki Masaki
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Koya Obara
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Motokazu Sato
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Koichi Kubota
- Department of Microbiology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takuya Tsunoda
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A.;
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
14
|
Cai S, Xue B, Li S, Wang X, Zeng X, Zhu Z, Fan X, Zou Y, Yu H, Qiao S, Zeng X. Methionine regulates maternal-fetal immune tolerance and endometrial receptivity by enhancing embryonic IL-5 secretion. Cell Rep 2025; 44:115291. [PMID: 39937648 DOI: 10.1016/j.celrep.2025.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/25/2024] [Accepted: 01/17/2025] [Indexed: 02/14/2025] Open
Abstract
Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4+ T cells to IL-5+ Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Bangxin Xue
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xinyin Fan
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Yijin Zou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, China.
| |
Collapse
|
15
|
Jiang Y, Tao Q, Qiao X, Yang Y, Peng C, Han M, Dong K, Zhang W, Xu M, Wang D, Zhu W, Li X. Targeting amino acid metabolism to inhibit gastric cancer progression and promote anti-tumor immunity: a review. Front Immunol 2025; 16:1508730. [PMID: 40018041 PMCID: PMC11864927 DOI: 10.3389/fimmu.2025.1508730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
The incidence of gastric cancer remains high and poses a serious threat to human health. Recent comprehensive investigations into amino acid metabolism and immune system components within the tumor microenvironment have elucidated the functional interactions between tumor cells, immune cells, and amino acid metabolism. This study reviews the characteristics of amino acid metabolism in gastric cancer, with a particular focus on the metabolism of methionine, cysteine, glutamic acid, serine, taurine, and other amino acids. It discusses the relationship between these metabolic processes, tumor development, and the body's anti-tumor immunity, and analyzes the importance of targeting amino acid metabolism in gastric cancer for chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuchun Jiang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kebin Dong
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Wen Zhu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Pham DX, Hsu T. Tumor-initiating and metastasis-initiating cells of clear-cell renal cell carcinoma. J Biomed Sci 2025; 32:17. [PMID: 39920694 PMCID: PMC11806631 DOI: 10.1186/s12929-024-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of kidney malignancy. ccRCC is considered a major health concern worldwide because its numbers of incidences and deaths continue to rise and are predicted to continue rising in the foreseeable future. Therefore new strategy for early diagnosis and therapeutics for this disease is urgently needed. The discovery of cancer stem cells (CSCs) offers hope for early cancer detection and treatment. However, there has been no definitive identification of these cancer progenitors for ccRCC. A majority of ccRCC is characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene function. Recent advances in genome analyses of ccRCC indicate that in ccRCC, tumor-initiating cells (TICs) and metastasis-initiating cells (MICs) are two distinct groups of progenitors. MICs result from various genetic changes during subclonal evolution, while TICs reside in the stem of the ccRCC phylogenetic tree of clonal development. TICs likely originate from kidney tubule progenitor cells bearing VHL gene inactivation, including chromatin 3p loss. Recent studies also point to the importance of microenvironment reconstituted by the VHL-deficient kidney tubule cells in promoting ccRCC initiation and progression. These understandings should help define the progenitors of ccRCC and facilitate early detection and treatment of this disease.
Collapse
Affiliation(s)
- Dinh-Xuan Pham
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, ROC
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan, ROC.
- Graduate Institute of Biomedical Sciences, China Medical University-Taiwan, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
17
|
Fernández-Ramos D, Lopitz-Otsoa F, Lu SC, Mato JM. S-Adenosylmethionine: A Multifaceted Regulator in Cancer Pathogenesis and Therapy. Cancers (Basel) 2025; 17:535. [PMID: 39941901 PMCID: PMC11816870 DOI: 10.3390/cancers17030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
S-adenosylmethionine (SAMe) is a key methyl donor that plays a critical role in a variety of cellular processes, such as DNA, RNA and protein methylation, essential for maintaining genomic stability, regulating gene expression and maintaining cellular homeostasis. The involvement of SAMe in cancer pathogenesis is multifaceted, as through its multiple cellular functions, it can influence tumor initiation, progression and therapeutic resistance. In addition, the connection of SAMe with polyamine synthesis and oxidative stress management further underscores its importance in cancer biology. Recent studies have highlighted the potential of SAMe as a biomarker for cancer diagnosis and prognosis. Furthermore, the therapeutic implications of SAMe are promising, with evidence suggesting that SAMe supplementation or modulation could improve the efficacy of existing cancer treatments by restoring proper methylation patterns and mitigating oxidative damage and protect against damage induced by chemotherapeutic drugs. Moreover, targeting methionine cycle enzymes to both regulate SAMe availability and SAMe-independent regulatory effects, particularly in methionine-dependent cancers such as colorectal and lung cancer, presents a promising therapeutic approach. Additionally, exploring epitranscriptomic regulations, such as m6A modifications, and their interaction with non-coding RNAs could enhance our understanding of tumor progression and resistance mechanisms. Precision medicine approaches integrating patient subtyping and combination therapies with chemotherapeutics, such as decitabine or doxorubicin, together with SAMe, can enhance chemosensitivity and modulate epigenomics, showing promising results that may improve treatment outcomes. This review comprehensively examines the various roles of SAMe in cancer pathogenesis, its potential as a diagnostic and prognostic marker, and its emerging therapeutic applications. While SAMe modulation holds significant promise, challenges such as bioavailability, patient stratification and context-dependent effects must be addressed before clinical implementation. In addition, better validation of the obtained results into specific cancer animal models would also help to bridge the gap between research and clinical practice.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - José M. Mato
- Precision Medicine and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain; (D.F.-R.); (F.L.-O.)
| |
Collapse
|
18
|
Aoki Y, Kubota Y, Masaki N, Tome Y, Bouvet M, Nishida K, Hoffman RM. Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease. Cancers (Basel) 2025; 17:506. [PMID: 39941872 PMCID: PMC11817422 DOI: 10.3390/cancers17030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Chemotherapy resistance in osteosarcoma results in a very poor patient prognosis, with the 5-year survival rate of approximately 20%, which not improved for over three decades; thus, the development of novel therapeutic strategies is required. Methionine addiction is a fundamental and general hallmark of cancer, termed the Hoffman effect. Cancer cells need larger amounts of exogenous methionine in order to grow compared to normal cells, despite their ability to synthesize normal or greater amounts of methionine from homocysteine, due to increased transmethylation reactions in cancer cells. Methionine restriction therapy, including recombinant methioninase (rMETase), arrests cancer cells in the late-S/G2 phase of the cell cycle by targeting methionine addiction. First-line chemotherapy for osteosarcoma, including methotrexate (MTX), doxorubicin (DOX), and cisplatinum (CDDP), targets cells in the S/G2-phase, where cancer cells are also inhibited by methionine restriction, resulting in the synergy of methionine restriction to overcome drug resistance. In the present review, we describe the synergistic efficacy of conventional chemotherapy and methionine restriction therapy, including rMETase, in overcoming the drug resistance of osteosarcoma. The clinical potential of this new paradigm to overcome the drug resistance of osteosarcoma is discussed.
Collapse
Affiliation(s)
- Yusuke Aoki
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Yutaro Kubota
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Noriyuki Masaki
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| |
Collapse
|
19
|
Chew EG, Liu Z, Li Z, Chung SJ, Lian MM, Tandiono M, Heng YJ, Ng EY, Tan LC, Chng WL, Tan TJ, Peh EK, Ho YS, Chen XY, Lim EY, Chang CH, Leong JJ, Peh TX, Chan LL, Chao Y, Au WL, Prakash KM, Lim JL, Tay YW, Mok V, Chan AY, Lin JJ, Jeon BS, Song K, Tham CC, Pang CP, Ahn J, Park KH, Wiggs JL, Aung T, Tan AH, Ahmad Annuar A, Makarious MB, Blauwendraat C, Nalls MA, Robak LA, Alcalay RN, Gan-Or Z, Reynolds R, Lim SY, Xia Y, Khor CC, Tan EK, Wang Z, Foo JN. Exome sequencing in Asian populations identifies low-frequency and rare coding variation influencing Parkinson's disease risk. NATURE AGING 2025; 5:205-218. [PMID: 39572736 PMCID: PMC11839463 DOI: 10.1038/s43587-024-00760-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/24/2024] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is an incurable, progressive and common movement disorder that is increasing in incidence globally because of population aging. We hypothesized that the landscape of rare, protein-altering variants could provide further insights into disease pathogenesis. Here we performed whole-exome sequencing followed by gene-based tests on 4,298 PD cases and 5,512 controls of Asian ancestry. We showed that GBA1 and SMPD1 were significantly associated with PD risk, with replication in a further 5,585 PD cases and 5,642 controls. We further refined variant classification using in vitro assays and showed that SMPD1 variants with reduced enzymatic activity display the strongest association (<44% activity, odds ratio (OR) = 2.24, P = 1.25 × 10-15) with PD risk. Moreover, 80.5% of SMPD1 carriers harbored the Asian-specific p.Pro332Arg variant (OR = 2.16; P = 4.47 × 10-8). Our findings highlight the utility of performing exome sequencing in diverse ancestry groups to identify rare protein-altering variants in genes previously unassociated with disease.
Collapse
Grants
- MOE-T2EP30220-0008 Ministry of Education - Singapore (MOE)
- MOH-000435 MOH | National Medical Research Council (NMRC)
- MOH-001110 MOH | National Medical Research Council (NMRC)
- OT2 OD032100 NIH HHS
- OT2 OD027060 NIH HHS
- MOH-000207 MOH | National Medical Research Council (NMRC)
- R01 EY015473 NEI NIH HHS
- MOH-001329 Ministry of Health -Singapore (MOH)
- MOH-001110 Ministry of Health -Singapore (MOH)
- MOE-MOET32020-0004 Ministry of Education - Singapore (MOE)
- MOH-001072 MOH | National Medical Research Council (NMRC)
- MOH-000559 MOH | National Medical Research Council (NMRC)
- OT2 OD027852 NIH HHS
- MOE-T2EP30220-0005 Ministry of Education - Singapore (MOE)
- P30 EY014104 NEI NIH HHS
- MOH-001214 MOH | National Medical Research Council (NMRC)
- Agency for Science, Technology and Research (A*STAR)
- University of Malaya Parkinson’s Disease and Movement Disorders Research Program (PV035-2017)
- Intramural Research Program of the NIH, National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project number ZO1 AG000534, the National Institute of Neurological Disorders and Stroke, the Office of Intramural research, Office of the director NIH, and utilized the computational resources of the NIH STRIDES Initiative (https://cloud.nih.gov) through the Other Transaction agreement - Azure: OT2OD032100, Google Cloud Platform: OT2OD027060, Amazon Web Services: OT2OD027852, and the NIH HPC Biowulf cluster (https://hpc.nih.gov).
- Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- Parkinson's Foundation (Parkinson's Foundation, Inc.)
- Silverstein Foundation
- Singapore National Research Foundation (NRF-NRFI2018-01)
Collapse
Affiliation(s)
- Elaine Gy Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhehao Liu
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yue Jing Heng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ebonne Y Ng
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Louis Cs Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Wee Ling Chng
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Tiak Ju Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Esther Kl Peh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xiao Yin Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Erin Yt Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jonavan J Leong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Ting Xuan Peh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ling Ling Chan
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Yinxia Chao
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kumar M Prakash
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vincent Mok
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, Li Ka Shing Institute of Health Sciences, Hong Kong, China
| | - Anne Yy Chan
- Department of Medicine and Therapeutics, Division of Neurology, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Lui Che Woo Institute of Innovative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Juei-Jueng Lin
- Department of Neurology, Chushang Show-Chwan Hospital, Nantou, Taiwan
| | - Beom S Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul, South Korea
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-National University of Singapore Medical School, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Bethesda, MD, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Richard Reynolds
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Eng-King Tan
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore.
| | - Zhenxun Wang
- Duke-National University of Singapore Medical School, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
20
|
Liu X, Wang X, Ren J, Fang Y, Gu M, Zhou F, Xiao R, Luo X, Bai J, Jiang D, Tang Y, Ren B, You L, Zhao Y. Machine learning based identification of an amino acid metabolism related signature for predicting prognosis and immune microenvironment in pancreatic cancer. BMC Cancer 2025; 25:6. [PMID: 39754071 PMCID: PMC11697724 DOI: 10.1186/s12885-024-13374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes. METHODS A comprehensive analysis integrating 10 machine learning algorithms was executed to pinpoint amino acid metabolic signature. The signature was validated across both internal and external cohorts. Subsequent GSEA was employed to unveil the enriched gene sets and signaling pathways within high- and low-risk subgroups. TMB and drug sensitivity analyses were carried out via Maftools and oncoPredict R packages. CIBERSORT and ssGSEA were harnessed to delve into the immune landscape disparities. Single-cell transcriptomics, qPCR, and Immunohistochemistry were performed to corroborate the expression levels and prognostic significance of this signature. RESULTS A four gene based amino acid metabolic signature with superior prognostic capabilities was identified by the combination of 10 machine learning methods. It showed that the novel prognostic model could effectively distinguish patients into high- and low-risk groups in both internal and external cohorts. Notably, the risk score from this novel signature showed significant correlations with TMB, drug resistance, as well as a heightened likelihood of immune evasion and suboptimal responses to immunotherapeutic interventions. CONCLUSION Our findings suggested that amino acid metabolism-related signature was closely related to the development, prognosis and immune microenvironment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Jialu Bai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, People's Republic of China.
- National Science and Technology Key Infrastructure On Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
21
|
Hong XL, Huang CK, Qian H, Ding CH, Liu F, Hong HY, Liu SQ, Wu SH, Zhang X, Xie WF. Positive feedback between arginine methylation of YAP and methionine transporter SLC43A2 drives anticancer drug resistance. Nat Commun 2025; 16:87. [PMID: 39747898 PMCID: PMC11697449 DOI: 10.1038/s41467-024-55769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Yes-associated protein (YAP) activation confers resistance to chemotherapy and targeted therapy. Methionine participates in cellular processes by converting to methyl donor for the methylation of DNA, RNA and protein. However, it remains unclear whether methionine affects drug resistance by influencing YAP activity. In this study, we report that methionine deprivation remarkably suppresses the transcriptional activity of YAP-TEAD in cancer cells. Methionine promotes PRMT1-catalyzed asymmetric dimethylation at R124 of YAP (YAP R124me2a). Mimicking of YAP methylation abolishes the reduction effect of methionine-restricted diet on YAP-induced drug resistance. YAP activates the transcription of SLC43A2, the methionine transporter, to increase methionine uptake in cancer cells. Knockdown of SLC43A2 decreases the level of YAP R124me2a. BCH, the inhibitor of SLC43A2, sensitizes tumors to anticancer drugs. Thus, our results unravel the positive feedback between YAP R124 methylation and SLC43A2 that contributes to anticancer drug resistance. Disrupting this positive feedback could be a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Xia-Lu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Kai Huang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan-Yu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
22
|
Jin J, Meng T, Yu Y, Wu S, Jiao CC, Song S, Li YX, Zhang Y, Zhao YY, Li X, Wang Z, Liu YF, Huang R, Qin J, Chen Y, Cao H, Tan X, Ge X, Jiang C, Xue J, Yuan J, Wu D, Wu W, Jiang CZ, Wang P. Human HDAC6 senses valine abundancy to regulate DNA damage. Nature 2025; 637:215-223. [PMID: 39567688 DOI: 10.1038/s41586-024-08248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
As an essential branched amino acid, valine is pivotal for protein synthesis, neurological behaviour, haematopoiesis and leukaemia progression1-3. However, the mechanism by which cellular valine abundancy is sensed for subsequent cellular functions remains undefined. Here we identify that human histone deacetylase 6 (HDAC6) serves as a valine sensor by directly binding valine through a primate-specific SE14 repeat domain. The nucleus and cytoplasm shuttling of human, but not mouse, HDAC6 is tightly controlled by the intracellular levels of valine. Valine deprivation leads to HDAC6 retention in the nucleus and induces DNA damage. Mechanistically, nuclear-localized HDAC6 binds and deacetylates ten-eleven translocation 2 (TET2) to initiate active DNA demethylation, which promotes DNA damage through thymine DNA glycosylase-driven excision. Dietary valine restriction inhibits tumour growth in xenograft and patient-derived xenograft models, and enhances the therapeutic efficacy of PARP inhibitors. Collectively, our study identifies human HDAC6 as a valine sensor that mediates active DNA demethylation and DNA damage in response to valine deprivation, and highlights the potential of dietary valine restriction for cancer treatment.
Collapse
Affiliation(s)
- Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuanyuan Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuheng Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen-Chen Jiao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sihui Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ya-Xu Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-Yuan Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinran Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zixin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu-Fan Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Hao Cao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhuang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ci-Zhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
23
|
Morinaga S, Han Q, Mizuta K, Kang BM, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Higuchi T, Tsuchiya H, Demura S, Hoffman RM. Prostate Cancer Patient With Lymph-node Metastasis Treated Only With Methionine Restriction Has Stable Disease for Two Years Demonstrated With PET/CT and PSMA-PET Scanning and PSA Testing. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:27-31. [PMID: 39758238 PMCID: PMC11696347 DOI: 10.21873/cdp.10408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Background/Aim Metastatic prostate cancer is a recalcitrant disease. Our laboratory has previously treated prostate-cancer patients with methionine restriction effected by a low methionine diet and oral recombinant methioninase (o-rMETase), both alone and in combination with other agents. The present case is a 66-year-old patient who had a radical prostatectomy in 2019 with a Gleason score 3+3 and 3+4. The patient subsequently was treated with immunotherapy in 2021 and salvage proton-beam therapy in 2022, and subsequently treated only with o-rMETase and a low-methionine diet. The aim of the present study was to determine the long-term efficacy of methionine restriction on the patient's prostate cancer. Case Report Starting in September 2022, the patient started methionine restriction with a low methionine-diet and o-rMETase, twice a day, after meals, at 250 units/dose. Since the start of methionine restriction, the patients' prostate-specific antigen (PSA) has remained stable, under 2 ng/ml. Positron emission tomography/computed tomography (PET/CT) and prostate specific membrane antigen (PSMA)-PET imaging indicated in September 2023 a right pelvic-side-wall metastatic lymph node that was stable when the PSMA-PET scan was repeated in March 2024, with the standardized uptake value (SUV) decreasing from 19.39 to 14.98. A very small possible metastatic external-iliac lymph node was detected in March 2024. Thus, the lymph-node metastases were stable and did not increase. Conclusion During the time the patient was on methionine restriction alone, effected by a low-methionine diet and o-rMETase, the metastatic prostate cancer did not progress. Further clinical studies of methionine restriction and metastatic prostate cancer are needed, including randomized clinical trials.
Collapse
Affiliation(s)
- Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Byung Mo Kang
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
24
|
Morinaga S, Han Q, Mizuta K, Kang BM, Bouvet M, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Higuchi T, Tsuchiya H, Demura S, Hoffman RM. Elevated-c-MYC-expressing Fibrosarcoma Cells With Acquired Gemcitabine Resistance Remain Sensitive to Recombinant Methioninase: A Potential Clinical Strategy for a Recalcitrant Disease. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:8-14. [PMID: 39758233 PMCID: PMC11696348 DOI: 10.21873/cdp.10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/07/2025]
Abstract
Background/Aim For second-line chemotherapy of soft-tissue sarcoma, gemcitabine is administered in combination with docetaxel. However, more effective treatments are required for advanced soft-tissue sarcoma, where the efficacy is limited. The purpose of the present study was to compare the efficacy of rMETase and gemcitabine against HT1080 human fibrosarcoma cells and Hs27 normal fibroblasts, as well as to identify and effectively treat HT1080 cells that are resistant to gemcitabine associated with elevated c-MYC. Patients and Methods Cell viability was measured with the WST-8 reagent. Four groups of in vitro tests were conducted involving HT1080 and Hs27 cells: gemcitabine alone, rMETase alone, and a combination of gemcitabine plus rMETase. Gemcitabine resistant cells (GR-HT1080) were established by culturing HT-1080 cells in increasing concentrations of gemcitabine, ranging from 0.016 nM to 16 nM over five months. Western immunoblotting was performed to measure c-MYC levels in HT1080 and GR-HT1080 cells. Results Gemcitabine had an IC50 of 12.8 nM against HT1080 cells, 30.8 nM against GR-HT1080 cells, and 4.48 nM against Hs27 cells. The rMETase IC50 value for HT1080 was 0.75 U/ml. The IC50 value of rMETase for GR-HT1080 cells was 0.85 U/ml. The IC50 value for rMETase on Hs27 cells was 0.93 U/ml. Gemcitabine and rMETase demonstrated synergy in killing fibrosarcoma cells, but no synergy was observed on normal fibroblasts. The c-MYC level that was more than 5.1 times higher in GR-HT1080 cells compared to HT-1080 cells. Both the parental HT1080 cells and the GR-HT1080 cells had a similar high sensitivity to rMETase alone. Conclusion rMETase may be used as a future clinical strategy to overcome gemcitabine resistance in sarcoma.
Collapse
Affiliation(s)
- Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Byung Mo Kang
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
25
|
Morinaga S, Han Q, Mizuta K, Kang BM, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Higuchi T, Tsuchiya H, Demura S, Hoffman RM. Complete Response (CR) in a Previously-progressing Chronic Lymphocytic Leukemia (CLL) Patient Treated With Methionine Restriction in Combination With First-line Chemotherapy. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:21-26. [PMID: 39758229 PMCID: PMC11696344 DOI: 10.21873/cdp.10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 01/07/2025]
Abstract
Background/Aim Chronic lymphocytic leukemia (CLL) is currently incurable. CLL is characterized by disordered DNA methylation. The aim of the present study was to target methylation with methionine restriction in a patient with progressive CLL. Case Report Methionine restriction for the patient was achieved with a low-methionine vegan diet and oral recombinant methioninase (o-rMETase). The patient also received rituximab, once per week for four weeks, and acalabrutinib 100 mg, twice daily (bid) continuously. The patient's white blood cell count decreased by 95% from peak levels and extensive lymphadenopathy disappeared during combination treatment with o-rMETase, rituximab, and acalabrutinib. Conclusion The combination of methionine restriction and first-line chemotherapy resulted in an apparent complete response (CR) in a CLL patient, a rare event. The duration of the CR will be monitored, and additional CLL patients will be treated similarly in the future.
Collapse
Affiliation(s)
- Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Byung Mo Kang
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
26
|
Morinaga S, Han Q, Mizuta K, Kang BM, Bouvet M, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Higuchi T, Tsuchiya H, Demura S, Hoffman RM. Synergistic Eradication of Fibrosarcoma With Acquired Ifosfamide Resistance Using Methionine Restriction Combined With Ifosfamide in Nude-mouse Models. In Vivo 2025; 39:120-126. [PMID: 39740911 PMCID: PMC11705138 DOI: 10.21873/invivo.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Ifosfamide is used clinically with doxorubicin as first-line chemotherapy for soft-tissue sarcoma. However, ifosfamide efficacy for soft-tissue sarcoma is limited due to frequent occurence of ifosfamide resistance and thus more effective therapy is needed. The present study aimed to determine the synergy of recombinant methioninase (rMETase) plus ifosfamide against HT1080 human fibrosarcoma cells in vitro. Additionally, the present study also investigated the efficacy of a methionine-restricted diet combined with ifosfamide in nude-mouse models of ifosfamide-resistant HT1080 (IR-HT1080). MATERIALS AND METHODS Cell viability for HT1080 human fibrosarcoma cells was determined in four groups in vitro: No treatment control; ifosfamide alone; rMETase alone; and a combination of ifosfamide plus rMETase. HT1080 tumors were established in nude mice subcutaneously. The HT1080 tumor models were treated by administering ifosfamide by intraperitoneal injection twice a week, for a total of 11 doses. Surviving tumors were considered ifosfamide resistant (IR-HT1080). Four groups of IR-HT1080 nude-mouse models were subsequently established: Group 1 was a no-treatment control, Group 2 received ifosfamide, Group 3 was given a methionine-restricted diet (MR), and Group 4 received ifosfamide plus MR. Additionally, two groups of nude mice with parental HT1080 subcutaneous tumors were included: Group 5 was a no-treatment control, and Group 6 received ifosfamide for comparison. RESULTS The 50% inhibitory concentration (IC50) for ifosfamide against HT1080 cells was 0.38 mM. The IC50 for rMETase was 0.75 U/ml for HT1080 cells (data from [4]). The combination of rMETase (0.75 U/ml) plus ifosfamide (0.38 mM) was synergistic against HT1080 fibrosarcoma cells in vitro. The combination of ifosfamide plus MR eradicated the IR-HT1080 tumors in nude-mouse models, while each treatment alone achieved limited tumor inhibition. CONCLUSION The present results suggest the combination of MR and ifosfamide has promising potential for overcoming ifosfamide resistance in future clinical applications.
Collapse
Affiliation(s)
- Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Byung Mo Kang
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A.;
- Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
27
|
Tong H, Jiang Z, Song L, Tan K, Yin X, He C, Huang J, Li X, Jing X, Yun H, Li G, Zhao Y, Kang Q, Wei Y, Li R, Long Z, Yin J, Luo Q, Liang X, Wan Y, Zheng A, Lin N, Zhang T, Xu J, Yang X, Jiang Y, Li Y, Xiang Y, Zhang Y, Feng L, Lei Z, Shi H, Ma X. Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab 2024; 36:2493-2510.e9. [PMID: 39577415 DOI: 10.1016/j.cmet.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The effect of the serine/glycine-free diet (-SG diet) on colorectal cancer (CRC) remains unclear; meanwhile, programmed death-1 (PD-1) inhibitors are less effective for most CRC patients. Here, we demonstrate that the -SG diet inhibits CRC growth and promotes the accumulation of cytotoxic T cells to enhance antitumor immunity. Additionally, we also identified the lactylation of programmed death-ligand 1 (PD-L1) in tumor cells as a mechanism of immune evasion during cytotoxic T cell-mediated antitumor responses, and blocking the PD-1/PD-L1 signaling pathway is able to rejuvenate the function of CD8+ T cells recruited by the -SG diet, indicating the potential of combining the -SG diet with immunotherapy. We conducted a single-arm, phase I study (ChiCTR2300067929). The primary outcome suggests that the -SG diet is feasible and safe for regulating systemic immunity. Secondary outcomes include patient tolerability and potential antitumor effects. Collectively, our findings highlight the promising therapeutic potential of the -SG diet for treating solid tumors.
Collapse
Affiliation(s)
- Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqin Tan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoyue Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Wupai Technology Limited Liability Company, Chengdu, Sichuan, China
| | - Xiaofan Jing
- Department of Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangqi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianlong Kang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renwei Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwen Long
- Recovery Plus Clinic, New York, NY 10019, USA
| | - Jun Yin
- Recovery Plus Clinic, New York, NY 10019, USA
| | - Qiang Luo
- Department of Oncology, Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhi Wan
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Aiping Zheng
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinggang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yueyi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lusi Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Lei
- Recovery Plus Clinic, New York, NY 10019, USA.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Li X, Liu Y, Ke J, Wang Z, Han M, Wang N, Miao Q, Shao B, Zhou D, Yan F, Ji B. Enhancing Radiofrequency Ablation for Hepatocellular Carcinoma: Nano-Epidrug Effects on Immune Modulation and Antigenicity Restoration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414365. [PMID: 39548919 DOI: 10.1002/adma.202414365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Indexed: 11/18/2024]
Abstract
Radiofrequency ablation (RFA), a critical therapy for hepatocellular carcinoma (HCC), carries a significant risk of recurrence and metastasis, particularly owing to mechanisms involving immune evasion and antigen downregulation via epigenetic modifications. This study introduces a "nano-epidrug" named MFMP. MFMP, which is composed of hollow mesoporous manganese dioxide (MnO2) nanoparticles, FIDAS-5 as an MAT2A inhibitor, macrophage membrane, and anti-PD-L1 (aPD-L1), targets HCC cells. By selectively binding to these cells, MFMP initially reverses immune suppression via PD-L1 inhibition. After endocytosis, MFMP disassembles in the tumor microenvironment, releasing FIDAS-5 and Mn2+. FIDAS-5 prevents cGAS methylation, whereas Mn2+ aids STING pathway restoration. In addition, FIDAS-5 reduces m6A RNA modification, suppressing EGFR expression. These changes enhance HCC antigenicity to promote cytotoxic T cell recognition and cytotoxic killing. Furthermore, MFMP mediates immunogenic cell death in HCC by synergizing with RFA through cGAS DNA demethylation, EGFR mRNA demethylation, and TBK1 protein phosphorylation, thereby inhibiting recurrence and metastasis and enhancing immune memory. Thus, MFMP is a potential adjunctive therapy requiring clinical validation.
Collapse
Affiliation(s)
- Xiaocheng Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jianji Ke
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Qiannan Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Bingru Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Dan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| |
Collapse
|
29
|
Lakshmanan M, Chia S, Pang KT, Sim LC, Teo G, Mak SY, Chen S, Lim HL, Lee AP, Bin Mahfut F, Ng SK, Yang Y, Soh A, Tan AHM, Choo A, Ho YS, Nguyen-Khuong T, Walsh I. Antibody glycan quality predicted from CHO cell culture media markers and machine learning. Comput Struct Biotechnol J 2024; 23:2497-2506. [PMID: 38966680 PMCID: PMC11222931 DOI: 10.1016/j.csbj.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Abstract
N-glycosylation can have a profound effect on the quality of mAb therapeutics. In biomanufacturing, one of the ways to influence N-glycosylation patterns is by altering the media used to grow mAb cell expression systems. Here, we explore the potential of machine learning (ML) to forecast the abundances of N-glycan types based on variables related to the growth media. The ML models exploit a dataset consisting of detailed glycomic characterisation of Anti-HER fed-batch bioreactor cell cultures measured daily under 12 different culture conditions, such as changes in levels of dissolved oxygen, pH, temperature, and the use of two different commercially available media. By performing spent media quantitation and subsequent calculation of pseudo cell consumption rates (termed media markers) as inputs to the ML model, we were able to demonstrate a small subset of media markers (18 selected out of 167 mass spectrometry peaks) in a Chinese Hamster Ovary (CHO) cell cultures are important to model N-glycan relative abundances (Regression - correlations between 0.80-0.92; Classification - AUC between 75.0-97.2). The performances suggest the ML models can infer N-glycan critical quality attributes from extracellular media as a proxy. Given its accuracy, we envisage its potential applications in biomaufactucuring, especially in areas of process development, downstream and upstream bioprocessing.
Collapse
Affiliation(s)
- Meiyappan Lakshmanan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology Madras, India
- Robert Bosch Centre for Data Science and AI (RBCDSAI), Indian Institute of Technology Madras, India
| | - Sean Chia
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Kuin Tian Pang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Lyn Chiin Sim
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Gavin Teo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Hsueh Lee Lim
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Alison P. Lee
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Farouq Bin Mahfut
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Annie Soh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Andre Choo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06–01 Centros, Singapore 138668, Republic of Singapore
| |
Collapse
|
30
|
Korimerla N, Meghdadi B, Haq I, Wilder-Romans K, Xu J, Becker N, Zhu Z, Kalev P, Qi N, Evans C, Kachman M, Zhao Z, Lin A, Scott AJ, O'Brien A, Kothari A, Sajjakulnukit P, Zhang L, Palavalasa S, Peterson ER, Hyer ML, Marjon K, Sleger T, Morgan MA, Lyssiotis CA, Stone EM, Ferris SP, Lawrence TS, Nagrath D, Zhou W, Wahl DR. Reciprocal links between methionine metabolism, DNA repair and therapy resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624542. [PMID: 39651281 PMCID: PMC11623687 DOI: 10.1101/2024.11.20.624542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Glioblastoma (GBM) is uniformly lethal due to profound treatment resistance. Altered cellular metabolism is a key mediator of GBM treatment resistance. Uptake of the essential sulfur-containing amino acid methionine is drastically elevated in GBMs compared to normal cells, however, it is not known how this methionine is utilized or whether it relates to GBM treatment resistance. Here, we find that radiation acutely increases the levels of methionine-related metabolites in a variety of treatment-resistant GBM models. Stable isotope tracing studies further revealed that radiation acutely activates methionine to S-adenosyl methionine (SAM) conversion through an active signaling event mediated by the kinases of the DNA damage response. In vivo tumor SAM synthesis increases after radiation, while normal brain SAM production remains unchanged, indicating a tumor- specific metabolic alteration to radiation. Pharmacological and dietary strategies to block methionine to SAM conversion slowed DNA damage response and increased cell death following radiation in vitro. Mechanistically, these effects are due to depletion of DNA repair proteins and are reversed by SAM supplementation. These effects are selective to GBMs lacking the methionine salvage enzyme methylthioadenosine phosphorylase. Pharmacological inhibition of SAM synthesis hindered tumor growth in flank and orthotopic in vivo GBM models when combined with radiation. By contrast, methionine depletion does not reduce tumor SAM levels and fails to radiosensitize intracranial models, indicating depleting SAM, as opposed to simply lowering methionine, is critical for hindering tumor growth in intracranial models of GBM. These results highlight a new signaling link between DNA damage and SAM synthesis and define the metabolic fates of methionine in GBM in vivo . Inhibiting radiation-induced SAM synthesis slows DNA repair and augments radiation efficacy in GBM. Using MAT2A inhibitors to deplete SAM may selectively overcome treatment resistance in GBMs with defective methionine salvage while sparing normal brain.
Collapse
|
31
|
Pulous FE, Steurer B, Pun FW, Zhang M, Ren F, Zhavoronkov A. MAT2A inhibition combats metabolic and transcriptional reprogramming in cancer. Drug Discov Today 2024; 29:104189. [PMID: 39306235 DOI: 10.1016/j.drudis.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Metabolic and transcriptional reprogramming are crucial hallmarks of carcinogenesis that present exploitable vulnerabilities for the development of targeted anticancer therapies. Through controlling the balance of the cellular methionine (MET) metabolite pool, MET adenosyl transferase 2 alpha (MAT2A) regulates crucial steps during metabolism and the epigenetic control of transcription. The aberrant function of MAT2A has been shown to drive malignant transformation through metabolic addiction, transcriptional rewiring, and immune modulation of the tumor microenvironment (TME). Moreover, MAT2A sustains the survival of 5'-methylthioadenosine phosphorylase (MTAP)-deficient tumors, conferring synthetic lethality to cancers with MTAP loss, a genetic alteration that occurs in ∼15% of all cancers. Thus, the pharmacological inhibition of MAT2A is emerging as a desirable therapeutic strategy to combat tumor growth. Here, we review the latest insights into MAT2A biology, focusing on its roles in both metabolic addiction and gene expression modulation in the TME, outline the current landscape of MAT2A inhibitors, and highlight the most recent clinical developments and opportunities for MAT2A inhibition as a novel anti-tumor therapy.
Collapse
Affiliation(s)
- Fadi E Pulous
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA
| | - Barbara Steurer
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, 9F, Chamtime Plaza Block C, Lane 2889, Jinke Road, Pudong New Area, China
| | - Alex Zhavoronkov
- Insilico Medicine US Inc, 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, USA; Insilico Medicine Hong Kong Ltd, Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR, China; Insilico Medicine AI Ltd, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE.
| |
Collapse
|
32
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024; 209:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
33
|
Daniel N, Farinella R, Chatziioannou AC, Jenab M, Mayén AL, Rizzato C, Belluomini F, Canzian F, Tavanti A, Keski-Rahkonen P, Hughes DJ, Campa D. Genetically predicted gut bacteria, circulating bacteria-associated metabolites and pancreatic ductal adenocarcinoma: a Mendelian randomisation study. Sci Rep 2024; 14:25144. [PMID: 39448785 PMCID: PMC11502931 DOI: 10.1038/s41598-024-77431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has high mortality and rising incidence rates. Recent data indicate that the gut microbiome and associated metabolites may play a role in the development of PDAC. To complement and inform observational studies, we investigated associations of genetically predicted abundances of individual gut bacteria and genetically predicted circulating concentrations of microbiome-associated metabolites with PDAC using Mendelian randomisation (MR). Gut microbiome-associated metabolites were identified through a comprehensive search of Pubmed, Exposome Explorer and Human Metabolome Database. Single Nucleotide Polymorphisms (SNPs) associated by Genome-Wide Association Studies (GWAS) with circulating levels of 109 of these metabolites were collated from Pubmed and the GWAS catalogue. SNPs for 119 taxonomically defined gut genera were selected from a meta-analysis performed by the MiBioGen consortium. Two-sample MR was conducted using GWAS summary statistics from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4), including a total of 8,769 cases and 7,055 controls. Inverse variance-weighted MR analyses were performed along with sensitivity analyses to assess potential violations of MR assumptions. Nominally significant associations were noted for genetically predicted circulating concentrations of mannitol (odds ratio per standard deviation [ORSD] = 0.97; 95% confidence interval [CI]: 0.95-0.99, p = 0.006), methionine (ORSD= 0.97; 95%CI: 0.94-1.00, p = 0.031), stearic acid (ORSD= 0.93; 95%CI: 0.87-0.99, p = 0.027), carnitine = (ORSD=1.01; 95% CI: 1.00-1.03, p = 0.027), hippuric acid (ORSD= 1.02; 95%CI: 1.00-1.04, p = 0.038) and 3-methylhistidine (ORSD= 1.05; 95%CI: 1.01-1.10, p = 0.02). Two gut microbiome genera were associated with reduced PDAC risk; Clostridium sensu stricto 1 (OR: 0.88; 95%CI: 0.78-0.99, p = 0.027) and Romboutsia (OR: 0.87; 95%CI: 0.80-0.96, p = 0.004). These results, though based only on genetically predicted gut microbiome characteristics and circulating bacteria-related metabolite concentrations, provide evidence for causal associations with pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Budnik N, Leroux AE, Cooke M, Kazanietz MG, Vigliano C, Kobayashi K, Perez-Castro C. The role of S-adenosylhomocysteine hydrolase-like 1 in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119819. [PMID: 39154900 DOI: 10.1016/j.bbamcr.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
This integrative review aims to highlight the importance of investigating the functional role of AHCYL1, also known as IRBIT, in cancer cells. It has recently been suggested that AHCYL1 regulates cell survival/death, stemness capacity, and the host adaptive response to the tumor microenvironment. Despite this knowledge, the role of AHCYL1 in cancer is still controversial, probably due to its ability to interact with multiple factors in a tissue-specific manner. Understanding the mechanisms regulating the functional interplay between the tumor and the tumor microenvironment that controls the expression of AHCYL1 could provide a deeper comprehension of the regulation of tumor development. Addressing how AHCYL1 modulates cellular plasticity processes in a tumoral context is potentially relevant to developing translational approaches in cancer biology.
Collapse
Affiliation(s)
- Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marcelo G Kazanietz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina; Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS Buenos Aires, Argentina
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Yu Z, Kuang Y, Xue L, Ma X, Li T, Yuan L, Li M, Xue G, Li Z, Tang F, Tang J, Shan J, Wang W, Tang R, Zhou F. SCR-7952, a highly selective MAT2A inhibitor, demonstrates synergistic antitumor activities in combination with the S-adenosylmethionine-competitive or the methylthioadenosine-cooperative protein arginine methyltransferase 5 inhibitors in methylthioadenosine phosphorylase-deleted tumors. MedComm (Beijing) 2024; 5:e705. [PMID: 39309689 PMCID: PMC11413503 DOI: 10.1002/mco2.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024] Open
Abstract
The metabolic enzyme methionine adenosyltransferase 2A (MAT2A) was found to elicit synthetic lethality in methylthioadenosine phosphorylase (MTAP)-deleted cancers, which occur in about 15% of all cancers. Here, we described a novel MAT2A inhibitor, SCR-7952 with potent and selective antitumor effects on MTAP-deleted cancers in both in vitro and in vivo. The cryo-EM data indicated the high binding affinity and the allosteric binding site of SCR-7952 on MAT2A. Different from AG-270, SCR-7952 exhibited little influence on metabolic enzymes and did not increase the plasma levels of bilirubin. A systematic evaluation of combination between SCR-7952 and different types of protein arginine methyltransferase 5 (PRMT5) inhibitors indicated remarkable synergistic interactions between SCR-7952 and the S-adenosylmethionine-competitive or the methylthioadenosine-cooperative PRMT5 inhibitors, but not substrate-competitive ones. The mechanism was via the aggravated inhibition of PRMT5 and FANCA splicing perturbations. These results indicated that SCR-7952 could be a potential therapeutic candidate for the treatment of MTAP-deleted cancers, both monotherapy and in combination with PRMT5 inhibitors.
Collapse
Affiliation(s)
- Zhiyong Yu
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Yi Kuang
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Liting Xue
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Xuan Ma
- Department of Thoracic SurgeryThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Tingting Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Linlin Yuan
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
| | - Mengying Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Grace Xue
- Weston High SchoolWestonMassachusettsUSA
| | - Zhen Li
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
| | - Jianxing Tang
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Jinwen Shan
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Weijie Wang
- Department of Thoracic SurgeryThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| | - Feng Zhou
- State Key Laboratory of Neurology and Oncology Drug DevelopmentNanjingChina
- Department of Preclinical ResearchSimcere Zaiming Pharmaceutical Co., Ltd.ShanghaiChina
| |
Collapse
|
36
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
37
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
38
|
Wusiman M, Huang SY, Liu ZY, He TT, Fang AP, Li MC, Yang MT, Wang C, Zhang YJ, Zhu HL. Serum S-adenosylhomocysteine, rather than homocysteine, is associated with hepatocellular carcinoma survival: a prospective cohort study. Am J Clin Nutr 2024; 120:481-490. [PMID: 39025328 DOI: 10.1016/j.ajcnut.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Emerging evidence suggested that S-adenosylhomocysteine (SAH) may be a better serum biomarker for cardiovascular disease than homocysteine (Hcy). However, the role of SAH in hepatocellular carcinoma (HCC) prognosis remains unclear. OBJECTIVES We aimed to prospectively explore the relationships between serum SAH and related metabolites [Hcy, S-adenosylmethionine (SAM)] with HCC survival, and to evaluate the effect modifications by gene polymorphisms in one-carbon metabolism key enzymes. METHODS We included 1080 newly diagnosed patients with HCC from the Guangdong Liver Cancer Cohort. Serum SAH, Hcy, and SAM were measured utilizing high-performance liquid chromatography-tandem mass spectrometry. Gene polymorphisms in one-carbon metabolism key enzymes were identified using kompetitive allele-specific polymerase chain reaction. Primary outcomes were liver cancer-specific survival (LCSS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariate Cox proportional hazards models. RESULTS After a median follow-up of 3.6 y, 601 deaths occurred, with 552 (92%) attributed to HCC. Multivariable analysis revealed that patients in the highest quartile of serum SAH concentrations were significantly associated with worse survival compared with those in the lowest quartile, with HRs of 1.58 (95% CI: 1.19, 2.10; P-trend = 0.002) for LCSS and 1.54 (95% CI: 1.18, 2.02; P-trend = 0.001) for OS. There were no significant interactions between serum SAH concentrations and genetic variants of one-carbon metabolism key enzymes. No significant associations were found between serum Hcy, SAM concentrations, and SAM/SAH ratio with LCSS or OS. CONCLUSIONS Higher serum SAH concentrations, rather than Hcy, were independently associated with worse survival in patients with HCC, regardless of the genetic variants of one-carbon metabolism key enzymes. These findings suggest that SAH may be a novel metabolism-related prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Maierhaba Wusiman
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Si-Yu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tong-Tong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Chu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Tao Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangzhou, China.
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
40
|
Cacciatore A, Shinde D, Musumeci C, Sandrini G, Guarrera L, Albino D, Civenni G, Storelli E, Mosole S, Federici E, Fusina A, Iozzo M, Rinaldi A, Pecoraro M, Geiger R, Bolis M, Catapano CV, Carbone GM. Epigenome-wide impact of MAT2A sustains the androgen-indifferent state and confers synthetic vulnerability in ERG fusion-positive prostate cancer. Nat Commun 2024; 15:6672. [PMID: 39107274 PMCID: PMC11303763 DOI: 10.1038/s41467-024-50908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a frequently occurring disease with adverse clinical outcomes and limited therapeutic options. Here, we identify methionine adenosyltransferase 2a (MAT2A) as a critical driver of the androgen-indifferent state in ERG fusion-positive CRPC. MAT2A is upregulated in CRPC and cooperates with ERG in promoting cell plasticity, stemness and tumorigenesis. RNA, ATAC and ChIP-sequencing coupled with histone post-translational modification analysis by mass spectrometry show that MAT2A broadly impacts the transcriptional and epigenetic landscape. MAT2A enhances H3K4me2 at multiple genomic sites, promoting the expression of pro-tumorigenic non-canonical AR target genes. Genetic and pharmacological inhibition of MAT2A reverses the transcriptional and epigenetic remodeling in CRPC models and improves the response to AR and EZH2 inhibitors. These data reveal a role of MAT2A in epigenetic reprogramming and provide a proof of concept for testing MAT2A inhibitors in CRPC patients to improve clinical responses and prevent treatment resistance.
Collapse
MESH Headings
- Male
- Humans
- Transcriptional Regulator ERG/genetics
- Transcriptional Regulator ERG/metabolism
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Epigenesis, Genetic/drug effects
- Animals
- Androgens/metabolism
- Epigenome
- Mice
- Histones/metabolism
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
Collapse
Affiliation(s)
- Alessia Cacciatore
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Carola Musumeci
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giada Sandrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, 6500, Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Storelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Federici
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Alessio Fusina
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marta Iozzo
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
41
|
Bernasocchi T, Mostoslavsky R. Subcellular one carbon metabolism in cancer, aging and epigenetics. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:1451971. [PMID: 39239102 PMCID: PMC11375787 DOI: 10.3389/freae.2024.1451971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The crosstalk between metabolism and epigenetics is an emerging field that is gaining importance in different areas such as cancer and aging, where changes in metabolism significantly impacts the cellular epigenome, in turn dictating changes in chromatin as an adaptive mechanism to bring back metabolic homeostasis. A key metabolic pathway influencing an organism's epigenetic state is one-carbon metabolism (OCM), which includes the folate and methionine cycles. Together, these cycles generate S-adenosylmethionine (SAM), the universal methyl donor essential for DNA and histone methylation. SAM serves as the sole methyl group donor for DNA and histone methyltransferases, making it a crucial metabolite for chromatin modifications. In this review, we will discuss how SAM and its byproduct, S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in OCM, may function in the different cellular compartments, particularly in the nucleus, to directly regulate the epigenome in aging and cancer.
Collapse
Affiliation(s)
- Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
42
|
Gao W, Wang J, Xu Y, Yu H, Yi S, Bai C, Cong Q, Zhu Y. Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review). Mol Med Rep 2024; 30:131. [PMID: 38818815 PMCID: PMC11148525 DOI: 10.3892/mmr.2024.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and its morbidity is increasing worldwide due to increasing prevalence. Metabolic reprogramming has been recognized as a hallmark of cancer and serves a role in cancer progression. Glucose, lipids and amino acids are three major components whose altered metabolism can directly affect the energy production of cells, including liver cancer cells. Nutrients and energy are indispensable for the growth and proliferation of cancer cells, thus altering the metabolism of hepatoma cells can inhibit the progression of HCC. The present review summarizes recent studies on tumour regulatory molecules, including numerous noncoding RNAs, oncogenes and tumour suppressors, which regulate the metabolic activities of glucose, lipids and amino acids by targeting key enzymes, signalling pathways or interactions between the two. These regulatory molecules can regulate the rapid proliferation of cancer cells, tumour progression and treatment resistance. It is thought that these tumour regulatory factors may serve as therapeutic targets or valuable biomarkers for HCC, with the potential to mitigate HCC drug resistance. Furthermore, the advantages and disadvantages of metabolic inhibitors as a treatment approach for HCC, as well as possible solutions are discussed, providing insights for developing more effective treatment strategies for HCC.
Collapse
Affiliation(s)
- Wenyue Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Jing Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Yuting Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Hongbo Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Sitong Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning 116000, P.R China
| | - Qingwei Cong
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R China
| |
Collapse
|
43
|
Sato H, Meng S, Sasaki K, Kobayashi S, Kido K, Tsuji Y, Arao Y, Saito Y, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Takahashi H, Motooka D, Uchida S, Ofusa K, Satoh T, Doki Y, Eguchi H, Hara T, Ishii H. Significance of signal recognition particle 9 nuclear translocation: Implications for pancreatic cancer prognosis and functionality. Int J Oncol 2024; 65:74. [PMID: 38847231 PMCID: PMC11173368 DOI: 10.3892/ijo.2024.5662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
Signal recognition particles (SRPs) are essential for regulating intracellular protein transport and secretion. Patients with tumors with high SRP9 expression tend to have a poorer overall survival. However, to the best of our knowledge, no reports have described the relationship between SRP9 localization and prognosis in pancreatic cancer. Thus, the present study aimed to investigate this relationship. Immunohistochemical staining for SRP9 using excised specimens from pancreatic cancer surgery cases without preoperative chemotherapy or radiotherapy showed that SRP9 was preferentially expressed in the nucleus of the cancerous regions in some cases, which was hardly detected in other cases, indicating that SRP9 was transported to the nucleus in the former cases. To compare the prognosis of patients with SRP9 nuclear translocation, patients were divided into two groups: Those with a nuclear translocation rate of >50% and those with a nuclear translocation rate of ≤50%. The nuclear translocation rate of >50% group had a significantly better recurrence‑free survival than the nuclear translocation rate of ≤50% group (P=0.037). Subsequent in vitro experiments were conducted; notably, the nuclear translocation rate of SRP9 was reduced under amino acid‑deficient conditions, suggesting that multiple factors are involved in this phenomenon. To further study the function of SRP9 nuclear translocation, in vitro experiments were performed by introducing SRP9 splicing variants (v1 and v2) and their deletion mutants lacking C‑terminal regions into MiaPaCa pancreatic cancer cells. The results demonstrated that both splicing variants showed nuclear translocation regardless of the C‑terminal deletions, suggesting the role of the N‑terminal regions. Given that SRP9 is an RNA‑binding protein, the study of RNA immunoprecipitation revealed that signaling pathways involved in cancer progression and protein translation were downregulated in nuclear‑translocated v1 and v2. Undoubtedly, further studies of the nuclear translocation of SRP9 will open an avenue to optimize the precise evaluation and therapeutic control of pancreatic cancer.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Kansuke Kido
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Pathology, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Prophoenix Division, Food and Life-Science Laboratory, IDEA Consultants, Inc., Osaka 559-8519, Japan
| | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Hospital, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Abo Qoura L, Balakin KV, Hoffman RM, Pokrovsky VS. The potential of methioninase for cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189122. [PMID: 38796027 DOI: 10.1016/j.bbcan.2024.189122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Cancer cells are addicted to L-methionine (L-Met) and have a much greater requirement for L-Met than normal cells due to excess transmethylation, termed the Hoffman effect. By targeting this vulnerability through dietary restriction of L-Met, researchers have been able to achieve promising results in inhibiting tumor growth and eradicating cancer cells. Methioninase (EC 4.4.1.11; METase) catalyzes the transformation of L-Met into α-ketobutyrate, ammonia, and methanethiol. The use of METase was initially limited due to its poor stability in vivo, high immunogenicity, and enzyme-induced inactivating antibodies. These issues could be partially resolved by PEGylation, encapsulation in erythrocytes, and various site-directed mutagenesis. The big breakthrough came when it was discovered that METase is effectively administered orally. The enzyme L-asparaginase is approved by the FDA for treatment of acute lymphoblastic leukemia. METase has more potential as a therapeutic since addiction to L-Met is a general and fundamental hallmark of cancer.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia
| | | | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA 92111, USA; Department of Surgery, University of California, San Diego, La Jolla, CA 92037-7400, USA
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), 117198 Moscow, Russia; N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, 115478 Moscow, Russia.
| |
Collapse
|
45
|
Nam C, Li LY, Yang Q, Ziman B, Zhao H, Hu B, Collet C, Jing P, Lei Q, Xu LY, Li EM, Koeffler HP, Sinha UK, Lin DC. A druggable cascade links methionine metabolism to epigenomic reprogramming in squamous cell carcinoma. Proc Natl Acad Sci U S A 2024; 121:e2320835121. [PMID: 38900797 PMCID: PMC11214090 DOI: 10.1073/pnas.2320835121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.
Collapse
Affiliation(s)
- Chehyun Nam
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90033
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, Guangdong, China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90033
| | - Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90033
| | - Boyan Hu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90033
| | - Casey Collet
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90033
| | - Pei Jing
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, Guangdong, China
| | - Qifang Lei
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen, Guangdong518116, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, Guangdong, China
| | | | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA90033
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA90048
| |
Collapse
|
46
|
Krieg S, Fernandes SI, Kolliopoulos C, Liu M, Fendt SM. Metabolic Signaling in Cancer Metastasis. Cancer Discov 2024; 14:934-952. [PMID: 38592405 PMCID: PMC7616057 DOI: 10.1158/2159-8290.cd-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
Collapse
Affiliation(s)
- Sarah Krieg
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sara Isabel Fernandes
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Constantinos Kolliopoulos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ming Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
47
|
Xu Q, Wang J, Mao Y, Xuan Z, Yang K, Tang X, Zhu X. Combined BRAF and PIM1 inhibitory therapy for papillary thyroid carcinoma based on BRAFV600E regulation of PIM1: Synergistic effect and metabolic mechanisms. Neoplasia 2024; 52:100996. [PMID: 38593698 PMCID: PMC11007432 DOI: 10.1016/j.neo.2024.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy, and its incidence has increased rapidly in recent years. The BRAF inhibitor vemurafenib is effective against BRAFV600E-positive PTC; however, acquired resistance to single agent therapy frequently leads to tumor recurrence and metastasis, underscoring the need to develop tailored treatment strategies. We previously showed that the oncogenic kinase PIM1 was associated with the malignant phenotype and prognosis of PTC. In this study, we showed that sustained expression of the PIM1 protein in PTC was affected by the BRAFV600E mutation. Based on this regulatory mechanism, we tested the synergistic effects of inhibitors of BRAF (BRAFi) and PIM1 in BRAFV600E-positive PTC cell lines and xenograft tumors. LC-MS metabolomics analyses suggested that BRAFi/PIMi therapy acted by restricting the amounts of critical amino acids and nucleotides required by cancer cells as well as modulating DNA methylation. This study elucidates the role of BRAFV600E in the regulation of PIM1 in PTC and demonstrates the synergistic effect of a novel combination, BRAFi/PIMi, for the treatment of PTC. This discovery, along with the pathways that may be involved in the powerful efficacy of BRAFi/PIMi strategy from the perspective of cell metabolism, provides insight into the molecular basis of PTC progression and offers new perspectives for BRAF-resistant PTC treatment.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Jiaqi Wang
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Yuting Mao
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Ziyang Xuan
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Ke Yang
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xi Tang
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China.
| |
Collapse
|
48
|
Qin XL, Wang SY, Li QL, Wang JJ, Yao ZW, Zhu JH, Chen LX, Huo JG, Li SL, Zhou J, Zhu H. A robust ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous determination of 10 components in glutathione cycle. J Sep Sci 2024; 47:e2400247. [PMID: 39031562 DOI: 10.1002/jssc.202400247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
Glutathione (GSH) is an important antioxidant that is generated and degraded via the GSH cycle. Quantification of the main components in the GSH cycle is necessary to evaluate the process of GSH. In this study, a robust ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of 10 components (GSH; γ-glutamylcysteine; cysteinyl-glycine; n-acetylcysteine; homocysteine; cysteine; cystine; methionine; glutamate; pyroglutamic acid) in GSH cycle was developed. The approach was optimized in terms of derivative, chromatographic, and spectrometric conditions as well as sample preparation. The unstable thiol groups of GSH, γ-glutamylcysteine, cysteinyl-glycine, n-acetylcysteine, cysteine, and homocysteine were derivatized by n-ethylmaleimide. The derivatized and underivatized analytes were separated on an amino column with gradient elution. The method was further validated in terms of selectivity (no interference), linearity (R2 > 0.99), precision (% relative standard deviation [RSD%] range from 0.57 to 10.33), accuracy (% relative error [RE%] range from -3.42 to 10.92), stability (RSD% < 5.68, RE% range from -2.54 to 4.40), recovery (RSD% range from 1.87 to 7.87) and matrix effect (RSD% < 5.42). The validated method was applied to compare the components in the GSH cycle between normal and oxidative stress cells, which would be helpful in clarifying the effect of oxidative stress on the GSH cycle.
Collapse
Affiliation(s)
- Xiang-Ling Qin
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Long Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Jie Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhong-Wei Yao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin-Xia Chen
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie-Ge Huo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - He Zhu
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
49
|
Guo J, Buettner R, Du L, Li Z, Liu W, Su R, Chen Z, Che Y, Zhang Y, Ma R, Nguyen LXT, Moore RE, Khyatiben P, Chen MH, Patrick P, Wu X, Marcucci G, Wang L, Horne D, Chen J, Yang Y, Rosen ST. 8-Cl-Ado and 8-NH 2-Ado synergize with venetoclax to target the methionine-MAT2A-SAM axis in acute myeloid leukemia. Leukemia 2024; 38:1236-1245. [PMID: 38643304 PMCID: PMC11147765 DOI: 10.1038/s41375-024-02222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/22/2024]
Abstract
Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.
Collapse
Affiliation(s)
- Jiamin Guo
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.
| | - Ralf Buettner
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Li Du
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Wei Liu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yuan Che
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yi Zhang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science and Division of Leukemia, City of Hope, Duarte, CA, USA
| | - Roger E Moore
- Integrated Mass Spectrometry Shared Resource, City of Hope, Duarte, CA, USA
| | - Pathak Khyatiben
- Integrated Mass Spectrometry Shared Resource, City of Hope, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Min-Hsuan Chen
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Pirrotte Patrick
- Integrated Mass Spectrometry Shared Resource, City of Hope, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science and Division of Leukemia, City of Hope, Duarte, CA, USA
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - David Horne
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.
| |
Collapse
|
50
|
Zhang X, Zhao Z, Wang X, Zhang S, Zhao Z, Feng W, Xu L, Nie J, Li H, Liu J, Xiao G, Zhang Y, Li H, Lu M, Mai J, Zhou S, Zhao AZ, Li F. Deprivation of methionine inhibits osteosarcoma growth and metastasis via C1orf112-mediated regulation of mitochondrial functions. Cell Death Dis 2024; 15:349. [PMID: 38769167 PMCID: PMC11106329 DOI: 10.1038/s41419-024-06727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.
Collapse
Affiliation(s)
- Xindan Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xuepeng Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shiwei Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zilong Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Lijun Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Junhua Nie
- South China University of Technology School of Medicine, Guangzhou, China
| | - Hong Li
- Biomedical Laboratory, Guangzhou Jingke Life Science Institute, Guangzhou, China
| | - Jia Liu
- South China University of Technology School of Medicine, Guangzhou, China
| | - Gengmiao Xiao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou, China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Lu
- Department of Musculoskeletal Oncology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jialuo Mai
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|