1
|
Wang Y, Yu Y, Yu J, Wang C, Wang Y, Fu R, Zhang C. The intersections between neuroscience and medulloblastoma. Cancer Lett 2025; 620:217660. [PMID: 40154912 DOI: 10.1016/j.canlet.2025.217660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Medulloblastoma (MB) represents the most common malignant central nervous system tumor in childhood. The nervous system plays a critical role in the progression of MB, with interactions between the nervous system and cancer significantly influencing oncogenesis, tumor growth, invasion, stemness, and metabolism. These interactions also regulate angiogenesis, metastatic dissemination, the tumor immune microenvironment, and drug resistance. Investigating the nervous system-MB axis holds promise for identifying diagnostic markers, prognostic biomarkers, and therapeutic targets. It also provides insights into the molecular mechanisms underlying MB and informs the development of novel therapeutic strategies. This review summarizes the latest advancements in understanding the interplay between the nervous system and MB, including the role of glial cells in MB and the potential of drug repurposing targeting nervous system components for MB treatment. These findings underscore promising diagnostic and therapeutic opportunities for MB management. Additionally, we outline future research directions in neurosciences that may pave the way for innovative therapeutic approaches and deepen our understanding of this complex disease.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiahua Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Cheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Shanghai Institute for Pediatric Research, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Beck A, Gabler-Pamer L, Alencastro Veiga Cruzeiro G, Lambo S, Englinger B, Shaw ML, Hack OA, Liu I, Haase RD, de Biagi CAO, Baumgartner A, Nascimento Silva AD, Klenner M, Freidel PS, Herms J, von Baumgarten L, Tonn JC, Thon N, Bruckner K, Madlener S, Mayr L, Senfter D, Peyrl A, Slavc I, Lötsch D, Dorfer C, Geyregger R, Amberg N, Haberler C, Mack N, Schwalm B, Pfister SM, Korshunov A, Baird LC, Yang E, Chi SN, Alexandrescu S, Gojo J, Kool M, Hovestadt V, Filbin MG. Cellular hierarchies of embryonal tumors with multilayered rosettes are shaped by oncogenic microRNAs and receptor-ligand interactions. NATURE CANCER 2025:10.1038/s43018-025-00964-9. [PMID: 40419763 DOI: 10.1038/s43018-025-00964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 04/01/2025] [Indexed: 05/28/2025]
Abstract
Embryonal tumor with multilayered rosettes (ETMR) is a pediatric brain tumor with dismal prognosis. Characteristic alterations of the chromosome 19 microRNA cluster (C19MC) are observed in most ETMR; however, the ramifications of C19MC activation and the complex cellular architecture of ETMR remain understudied. Here we analyze 11 ETMR samples from patients using single-cell transcriptomics and multiplexed spatial imaging. We reveal a spatially distinct cellular hierarchy that spans highly proliferative neural stem-like cells and more differentiated neuron-like cells. C19MC is predominantly expressed in stem-like cells and controls a transcriptional network governing stemness and lineage commitment, as resolved by genome-wide analysis of microRNA-mRNA binding. Systematic analysis of receptor-ligand interactions between malignant cell types reveals fibroblast growth factor receptor and Notch signaling as oncogenic pathways that can be successfully targeted in preclinical models and in one patient with ETMR. Our study provides fundamental insights into ETMR pathobiology and a powerful rationale for more effective targeted therapies.
Collapse
Affiliation(s)
- Alexander Beck
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Gabler-Pamer
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurosurgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sander Lambo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca D Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos A O de Biagi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alicia Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrezza Do Nascimento Silva
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marbod Klenner
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pia S Freidel
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Katharina Bruckner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Daniela Lötsch
- Department of Neurosurgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rene Geyregger
- Clinical Cell Biology and FACS Core Unit, St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Nicole Amberg
- Department of Neurology, Division of Neuropathology and Neurochemistry and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Department of Neurology, Division of Neuropathology and Neurochemistry and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Norman Mack
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Benjamin Schwalm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lissa C Baird
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Cancer Center and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht (UMCU), Utrecht, the Netherlands
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Ahmad ST, Li Y, Garcia-Lopez J, Gudenas BL, Hadley J, Paul L, Wu SC, Refaat A, Kojic M, Batts M, Soliman T, Pitre A, Arnskötter F, Zindy F, Jones A, Twarog NR, Mayasundari A, Bianski B, Tinkle C, Shirinifard A, Janke L, Lu M, Lewis SA, Onar-Thomas A, Pfister SM, Gajjar A, Baker SJ, Roussel MF, Rankovic Z, Robinson GW, Orr BA, Wainwright B, Shelat AA, Waszak SM, Kutscher LM, Lin H, Northcott PA. Genetic modeling of ELP1-associated Sonic hedgehog medulloblastoma identifies MDM2 as a selective therapeutic target. Cancer Cell 2025:S1535-6108(25)00173-4. [PMID: 40378836 DOI: 10.1016/j.ccell.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
Germline loss-of-function (LOF) variants in Elongator acetyltransferase complex subunit 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB), accounting for ∼30% of the Sonic hedgehog (SHH) 3 subtype. The mechanism(s) by which germline ELP1 deficiency provokes SHH-MB pathogenesis remain unknown. Genetically engineered mice mimicking heterozygous Elp1 LOF (Elp1HET) seen in affected germline carriers exhibit hallmark features of premalignancy in cerebellar granule neuron progenitors (GNPs), including increased DNA replication stress, genomic instability, accelerated cell cycle, and stalled differentiation. Orthotopic transplantation of Elp1HET GNPs harboring somatic Ptch1 inactivation yields SHH-MB-like tumors with compromised p53 signaling, providing a plausible explanation for the exclusivity of ELP1-associated MBs in the SHH-3 subtype. Preclinical treatment of ELP1-mutant patient-derived xenografts with an FDA-approved MDM2 inhibitor reactivates p53-dependent apoptosis and extends survival. Our findings functionally substantiate the role of ELP1 deficiency in SHH-MB predisposition and nominate therapeutics targeting MDM2 as a rational treatment option.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiran Li
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jesus Garcia-Lopez
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian L Gudenas
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alaa Refaat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marija Kojic
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taha Soliman
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Frederik Arnskötter
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Nathaniel R Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sara A Lewis
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Department of Pediatric Hematology and Oncology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne J Baker
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brandon Wainwright
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian M Waszak
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Lena M Kutscher
- Hopp Children's Cancer Center Heidelberg (KiTZ), JRG Developmental Origins of Pediatric Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hong Lin
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Dang D, Deogharkar A, McKolay J, Smith KS, Panwalkar P, Hoffman S, Tian W, Ji S, Azambuja AP, Natarajan SK, Lum J, Bayliss J, Manzeck K, Sweha SR, Hamanishi E, Pun M, Patel D, Rau S, Animasahun O, Achreja A, Ogrodzinski MP, Diessl J, Cotter J, Hawes D, Yang F, Doherty R, Franson AT, Hanaford AR, Eberhart CG, Raabe EH, Orr BA, Wechsler-Reya RJ, Chen B, Lyssiotis CA, Shah YM, Lunt SY, Banerjee R, Judkins AR, Prensner JR, Koschmann C, Waszak SM, Nagrath D, Simoes-Costa M, Northcott PA, Venneti S. Isocitrate dehydrogenase 1 primes group-3 medulloblastomas for cuproptosis. Cancer Cell 2025:S1535-6108(25)00172-2. [PMID: 40378837 DOI: 10.1016/j.ccell.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/30/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
MYC-driven group-3 medulloblastomas (MBs) are malignant pediatric brain cancers without cures. To define actionable metabolic dependencies, we identify upregulation of dihydrolipoyl transacetylase (DLAT), the E2-subunit of pyruvate dehydrogenase complex (PDC) in a subset of group-3 MB with poor prognosis. DLAT is induced by c-MYC and targeting DLAT lowers TCA cycle metabolism and glutathione synthesis. We also note upregulation of isocitrate dehydrogenase 1 (IDH1) gene expression in group-3 MB patient tumors and suppression of IDH1 epigenetically reduces c-MYC and downstream DLAT levels in multiple c-MYC amplified cancers. DLAT is a central regulator of cuproptosis (copper-dependent cell death) induced by the copper ionophore elesclomol. DLAT expression in group-3 MB cells correlates with increased sensitivity to cuproptosis. Elesclomol is brain-penetrant and suppresses tumor growth in vivo in multiple group-3 MB animal models. Our data uncover an IDH1/c-MYC dependent vulnerability that regulates DLAT levels and can be targeted to kill group-3 MB by cuproptosis.
Collapse
Affiliation(s)
- Derek Dang
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Akash Deogharkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - John McKolay
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pooja Panwalkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Simon Hoffman
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Wentao Tian
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sunjong Ji
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ana P Azambuja
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Joanna Lum
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jill Bayliss
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katie Manzeck
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stefan R Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Hamanishi
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Diya Patel
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sagar Rau
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jutta Diessl
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Doherty
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Allison R Hanaford
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Eric H Raabe
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brent A Orr
- Division of Neuropathology, Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John R Prensner
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian M Waszak
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcos Simoes-Costa
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Okonechnikov K, Joshi P, Körber V, Rademacher A, Bortolomeazzi M, Mallm JP, Vaillant J, da Silva PBG, Statz B, Sepp M, Sarropoulos I, Yamada T, Wittmann A, Schramm K, Blattner-Johnson M, Fiesel P, Jones B, Jäger N, Milde T, Pajtler KW, van Tilburg CM, Witt O, Bochennek K, Weber KJ, Nonnenmacher L, Reimann C, Ghasemi DR, Schüller U, Mynarek M, Rutkowski S, Jones DTW, Korshunov A, Rippe K, Westermann F, Thongjuea S, Höfer T, Kaessmann H, Kutscher LM, Pfister SM. Oncogene aberrations drive medulloblastoma progression, not initiation. Nature 2025:10.1038/s41586-025-08973-5. [PMID: 40335697 DOI: 10.1038/s41586-025-08973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
Despite recent advances in understanding disease biology, treatment of group 3/4 medulloblastoma remains a therapeutic challenge in paediatric neuro-oncology1. Bulk-omics approaches have identified considerable intertumoural heterogeneity in group 3/4 medulloblastoma, including the presence of clear single-gene oncogenic drivers in only a subset of cases, whereas in most cases, large-scale copy number aberrations prevail2,3. However, intratumoural heterogeneity, the role of oncogene aberrations, and broad copy number variation in tumour evolution and treatment resistance remain poorly understood. To dissect this interplay, we used single-cell technologies (single-nucleus RNA sequencing (snRNA-seq), single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) and spatial transcriptomics) on a cohort of group 3/4 medulloblastoma with known alterations in the oncogenes MYC, MYCN and PRDM6. We show that large-scale chromosomal aberrations are early tumour-initiating events, whereas the single-gene oncogenic events arise late and are typically subclonal, but MYC can become clonal upon disease progression to drive further tumour development and therapy resistance. Spatial transcriptomics shows that the subclones are mostly interspersed across tumour tissue, but clear segregation is also present. Using a population genetics model, we estimate medulloblastoma initiation in the cerebellar unipolar brush cell lineage starting from the first gestational trimester. Our findings demonstrate how single-cell technologies can be applied for early detection and diagnosis of this fatal disease.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Vaillant
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Statz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tetsuya Yamada
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andrea Wittmann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Schramm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Fiesel
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- CCU Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Barbara Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany
- CCU Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konrad Bochennek
- Frankfurt University Hospital, Goethe University, Frankfurt, Germany
| | - Katharina Johanna Weber
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | | | | | - David R Ghasemi
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- CCU Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Supat Thongjuea
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henrik Kaessmann
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Xu X, Saxon J, Soon MSF, Lee CYC, Tuong ZK. Data standards for single-cell RNA-sequencing of paediatric cancer. Clin Transl Immunology 2025; 14:e70033. [PMID: 40416408 PMCID: PMC12101384 DOI: 10.1002/cti2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 05/27/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful tool for investigating paediatric cancers, but individual studies often profile a small number of individuals. It is now the standard practice to upload the scRNA-seq data to data repositories to support scientific reproducibility. Public data deposition is a cost-effective and sustainability-conscious solution that allows any researcher to download and analyse existing scRNA-seq data to develop new ideas. This is incredibly valuable, especially in the context of paediatric cancer research, where access to funding and to patient cohorts may be prohibitive. However, standards for data deposition are absent, leading to significant issues that may slow progress. As a consequence, it is difficult, even impossible, for other researchers to validate findings or utilise these data for tailored analyses. Here, we systematically accessed and reviewed publicly available scRNA-seq data sets from various paediatric cancer studies, covering over 1.3 million cells across 488 clinical samples. We highlight striking inconsistencies with study design and data availability across several levels, which hinder downstream analyses and data reproducibility. To address these challenges, we propose a recommendations framework to improve data deposition practices that promote more effective use of scRNA-seq data sets deposited on public repositories and accelerate discoveries in paediatric cancer research and beyond. We urge data standards institutes and repositories, such as NCBI Gene Expression Omnibus (GEO) and European Genome-Phenome Archive (EGA), to strictly enforce these standardised data practices.
Collapse
Affiliation(s)
- Xiaohan Xu
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Health, Medicine and Behavioural SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - John Saxon
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Health, Medicine and Behavioural SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Megan Sioe Fei Soon
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Health, Medicine and Behavioural SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Colin YC Lee
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Zewen Kelvin Tuong
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Health, Medicine and Behavioural SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
7
|
Abeysundara N, Rasnitsyn A, Fong V, Bahcheli A, Van Ommeren R, Juraschka K, Vladoiu M, Ong W, Livingston B, de Antonellis P, Ly M, Holgado BL, Sirbu O, Bahrampour S, Min HK, Fan J, Nor C, Visvanathan A, Zhang J, Wang H, Qin L, Huang N, Pallotta J, Douglas T, Mak E, Su H, Ng K, Zhang KY, Daniels C, Lucas CHG, Eberhart CG, Liu H, Jiang T, Notta F, Ramaswamy V, Reimand J, Gallo M, Rich JN, Wu X, Huang X, Taylor MD. Metastatic medulloblastoma remodels the local leptomeningeal microenvironment to promote further metastatic colonization and growth. Nat Cell Biol 2025; 27:863-874. [PMID: 40263572 PMCID: PMC12081294 DOI: 10.1038/s41556-025-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Leptomeningeal metastases are the major source of morbidity and mortality for patients with medulloblastoma. The biology of the leptomeningeal metastases and the local tumour microenvironment are poorly characterized. Here we show that metastasis-associated meningeal fibroblasts (MB-MAFs) are transcriptionally distinct and signal extensively to tumour cells and the tumour microenvironment. Metastatic cells secrete platelet-derived growth factor (PDGF) ligands into the local microenvironment to chemotactically recruit meningeal fibroblasts. Meningeal fibroblasts are reprogrammed to become MB-MAFs, expressing distinct transcriptomes and secretomes, including bone morphogenetic proteins. Active bone morphogenetic protein signalling and co-implantation of tumour cells with MB-MAFs enhances the colonization of the leptomeninges by medulloblastoma cells and promotes the growth of established metastases. Furthermore, treatment of patient-derived xenograft mice with a PDGF-receptor-α neutralizing antibody enhances overall survival in vivo. Collectively, our results define a targetable intercellular communication cascade in the metastatic niche to treat leptomeningeal disease.
Collapse
Affiliation(s)
- Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Rasnitsyn
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vernon Fong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Randy Van Ommeren
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kyle Juraschka
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Vladoiu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Ong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Bryn Livingston
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pasqualino de Antonellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ly
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Borja López Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olga Sirbu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Kee Min
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Nor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abhirami Visvanathan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiao Zhang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lei Qin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ning Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonelle Pallotta
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tajana Douglas
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Esta Mak
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Haipeng Su
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karen Ng
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kevin Yang Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | | | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hailong Liu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marco Gallo
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy N Rich
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Stockwell CA, Thang M, Kram DE, Satterlee AB, Hingtgen S. Therapeutic approaches for targeting the pediatric brain tumor microenvironment. Drug Deliv Transl Res 2025:10.1007/s13346-025-01839-3. [PMID: 40257744 DOI: 10.1007/s13346-025-01839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
Central nervous system (CNS) tumors are the most frequent solid malignant tumors in pediatric patients and are the leading cause of tumor-related death in children. Treatment for this heterogeneous group of tumors consists of various combinations of safe maximal surgical resection, chemotherapy, and radiation therapy which offer a cure for some children but often cause debilitating adverse late effects in others. While therapies targeting the tumor microenvironment (TME) like immune checkpoint inhibition (ICI) have been successful in treating some cancers, these therapies failed to exhibit treatment efficacy in the majority of pediatric brain tumors in the clinic. Importantly, the pediatric TME is unique and distinct from adult brain tumors and designing therapies to effectively target these tumors requires understanding the unique biology of pediatric brain tumors and the use of translational models that recapitulate the TME. Here we describe the TME of medulloblastoma (MB) and diffuse midline glioma (DMG), specifically diffuse intrinsic pontine glioma (DIPG), and further present the current drug delivery approaches and clinical administration routes targeting the TME in these tumors, including preclinical and clinical studies.
Collapse
Affiliation(s)
- Caroline A Stockwell
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Morrent Thang
- Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Ernst KJ, Okonechnikov K, Bageritz J, Perera AA, Mallm JP, Wittmann A, Maaß KK, Leible S, Boutros M, Pfister SM, Zuckermann M, Jones DTW. A simplified preparation method for single-nucleus RNA-sequencing using long-term frozen brain tumor tissues. Sci Rep 2025; 15:12849. [PMID: 40229354 PMCID: PMC11997191 DOI: 10.1038/s41598-025-97053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Single-cell RNA-sequencing has provided intriguing new insights into research areas such as developmental processes and tumor heterogeneity. Most approaches, however, rely on the availability of fresh surgical specimens, thereby dramatically reducing the ability to profile particularly rare tissue types. Here, we optimized a method to isolate intact nuclei from long-term frozen pediatric glioma tissues. We performed a technical comparison between different single-nucleus RNA-sequencing (snRNA-seq) systems and applied the established nucleus isolation method to analyze frozen primary glioma tissues. The results show that our fast, simple and low-cost nuclear isolation protocol provides intact nuclei, which can be used in both droplet- and plate-based single-cell sequencing platforms - allowing the identification of distinct tumor cell populations and infiltrating microglia. Additional optimization to include shorter RNA fragments in the 3' sequencing library improved gene detection and cell type annotation. Taken together, the method dramatically increases the potential of studying rare tumor entities and is specifically tailored for using frozen brain tumor tissue.
Collapse
Affiliation(s)
- Kati J Ernst
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Josephine Bageritz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashwyn A Perera
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Wittmann
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maaß
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Svenja Leible
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Zuckermann
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
10
|
Parikh K, Sait SF. Pediatric CNS tumors: Overview and treatment paradigms. Semin Pediatr Neurol 2025; 53:101186. [PMID: 40216490 DOI: 10.1016/j.spen.2025.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
Central nervous system (CNS) tumors represent the most common solid tumors occurring in children, with gliomas, medulloblastomas and ependymomas being the most frequently diagnosed. The most recent 2021 World Health Organization (WHO) Classification of Tumors of the CNS (CNS5) has integrated molecular genetics with traditional histopathology leading to more accurate diagnosis and risk stratification/prognostication with subsequent development of personalized treatment paradigms. Pediatric gliomas are traditionally subdivided into low-grade (pLGG) or high-grade gliomas (pHGG). pLGG tend to have excellent overall survival, however, the disease course maybe characterized by multiple recurrences resulting in significant morbidity. Surgical resection is standard with medical therapy (chemotherapy or oral molecular targeted therapy) reserved in the event of radiographic/symptomatic progression. pHGG have poor overall survival despite intensive multimodality therapy. Ependymomas occur in the infratentorial and supratentorial brain as well as in the spine, with the standard treatment including maximal safe resection with involved field radiation therapy that is curative in two-thirds of patients overall. Medulloblastomas are the most common malignant embryonal CNS tumor arising in the cerebellum and are biologically heterogeneous. Given the risk of CSF dissemination, medulloblastomas require surgery, craniospinal radiation as well as multi agent chemotherapy, an approach that is curative in the majority of patients with non-metastatic disease. The field of pediatric neuro-oncology has made robust strides in the past few decades and the role of molecular diagnostics has continued to improve our understanding of pediatric tumor biology and offer more personalized treatment paradigms.
Collapse
Affiliation(s)
- Karishma Parikh
- Division of Child Neurology & Neurodevelopmental Disabilities, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical Center, New Jersey, USA
| | - Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
11
|
Han D, Chen X, Jin X, Li J, Wang D, Wang Z. Multi-omics approach reveals the impact of prognosis model-related genes on the tumor microenvironment in medulloblastoma. Front Oncol 2025; 15:1477617. [PMID: 40104502 PMCID: PMC11913712 DOI: 10.3389/fonc.2025.1477617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Background The tumor microenvironment (TME) significantly impacts the progression and prognosis of medulloblastoma (MB). This study aimed to develop a TME-associated risk score(TMErisk) model using RNA sequencing data to predict patient outcomes and elucidate biological mechanisms. Methods RNA sequencing data from 322 Tiantan and 763 GSE85217 MB samples were analyzed. Key gene modules related to immune and stromal components were identified using Weighted Gene Co-expression Network Analysis (WGCNA). Significant genes were screened using LASSO-COX and COX regression models. Single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and spatial RNA analyses validated the findings. Results Differential expression analysis identified 731 upregulated and 15 downregulated genes in high vs. low immune score MB patients, and 686 upregulated and 43 downregulated genes in high vs. low stromal score patients. Eight key genes (CEBPB, OLFML2B, GGTA1, GZMA, TCIM, OLFML3, NAT1, and CD1C) were included in the TMErisk model, which demonstrated strong prognostic power. High TMErisk scores correlated with poorer survival, distinct immune cell infiltration patterns, and lower tumor cell stemness. Single-cell analyses revealed the expression dynamics of TMErisk genes across cell types, including macrophages, T cells, and NK cells, and identified key regulatory transcription factors. Spatial transcriptomics showed significant clustering of TMErisk genes in tumor regions, highlighting spatial heterogeneity and the formation of immune hubs. Conclusions The TMErisk model enhances our understanding of the MB tumor microenvironment, serving as a robust prognostic tool and suggesting new avenues for targeted therapy.
Collapse
Affiliation(s)
- Dongming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Xuan Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | | | - Dongyang Wang
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
12
|
Gao J, Zhao Y, Wang Z, Liu F, Chen X, Mo J, Jiang Y, Liu Y, Tian P, Li Y, Deng K, Qi X, Han D, Liu Z, Yang Z, Chen Y, Tang Y, Li C, Liu H, Li J, Jiang T. Single-cell transcriptomic sequencing identifies subcutaneous patient-derived xenograft recapitulated medulloblastoma. Animal Model Exp Med 2025; 8:458-472. [PMID: 38477441 PMCID: PMC11904117 DOI: 10.1002/ame2.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant brain tumors that mainly affect children. Various approaches have been used to model MB to facilitate investigating tumorigenesis. This study aims to compare the recapitulation of MB between subcutaneous patient-derived xenograft (sPDX), intracranial patient-derived xenograft (iPDX), and genetically engineered mouse models (GEMM) at the single-cell level. METHODS We obtained primary human sonic hedgehog (SHH) and group 3 (G3) MB samples from six patients. For each patient specimen, we developed two sPDX and iPDX models, respectively. Three Patch+/- GEMM models were also included for sequencing. Single-cell RNA sequencing was performed to compare gene expression profiles, cellular composition, and functional pathway enrichment. Bulk RNA-seq deconvolution was performed to compare cellular composition across models and human samples. RESULTS Our results showed that the sPDX tumor model demonstrated the highest correlation to the overall transcriptomic profiles of primary human tumors at the single-cell level within the SHH and G3 subgroups, followed by the GEMM model and iPDX. The GEMM tumor model was able to recapitulate all subpopulations of tumor microenvironment (TME) cells that can be clustered in human SHH tumors, including a higher proportion of tumor-associated astrocytes and immune cells, and an additional cluster of vascular endothelia when compared to human SHH tumors. CONCLUSIONS This study was the first to compare experimental models for MB at the single-cell level, providing value insights into model selection for different research purposes. sPDX and iPDX are suitable for drug testing and personalized therapy screenings, whereas GEMM models are valuable for investigating the interaction between tumor and TME cells.
Collapse
Affiliation(s)
- Jiayu Gao
- BGI‐ShenzhenShenzhenChina
- Yidu Central Hospital of WeifangWeifangChina
| | - Yahui Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziwei Wang
- BGI‐ShenzhenShenzhenChina
- BGI‐WuhanWuhanChina
| | - Fei Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Radiotherapy, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xuan Chen
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jialin Mo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yifei Jiang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
- University of Michigan‐Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Yongqiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Peiyi Tian
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanong Li
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Radiotherapy, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kaiwen Deng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Radiotherapy, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xueling Qi
- Department of NeuroPathology, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Dongming Han
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zijia Liu
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhengtao Yang
- BGI‐ShenzhenShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yixi Chen
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yujie Tang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunde Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hailong Liu
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Radiotherapy, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Chinese Institute for Medical ResearchBeijingChina
| | | | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Teng F, Wei H, Che D, Miao K, Dong X. Identifying macrophage-associated subtypes in patients with serous ovarian cancer and exploring potential personalized therapeutic drugs using combined single-cell and bulk RNA sequencing omics. Heliyon 2025; 11:e42429. [PMID: 40028569 PMCID: PMC11870195 DOI: 10.1016/j.heliyon.2025.e42429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose We aimed to analyze the sensitivity of patients to chemotherapy drugs and actively explore potential new intervention targets, providing an essential reference for personalized treatment. Methods Candidate markers with significant differential expression in macrophages were identified by analyzing gene expression at the single-cell level. A weighted gene co-expression network (WGCN) was constructed on the GSE26712 dataset to explore the modules most relevant to macrophages. Differentially expressed genes for specific markers were identified. A multi-factor regulatory network was constructed based on single-cell dataset markers screening, differentially expressed genes, and genes commonly present in WGCNA modules. Different macrophage subtypes were identified using this network. Machine learning was used to filter and predict the markers' drug sensitivity, and the potential therapeutic compounds for specific markers were screened. Results We identified 14 and 17 of M1 and M2 macrophage candidate markers, respectively. In the multi-factor regulatory network of M1 macrophages, 6 out of 14 markers recognized 159 transcription factors (TFs) and 48 micro RNAs (miRNAs), whereas 13 of 17 markers recognized 191 TFs and 182 miRNAs in the multi-factor regulatory network of M2 macrophages. Filtering of the identified differentially expressed genes using random forests yielded 15 M1 and M2 macrophage-specific markers. Drug sensitivity prediction analysis and in vitro experiments revealed the close association of these markers with common chemotherapy drug sensitivity. Conclusion We identified specific M1 and M2 macrophage markers and found potential therapeutic compounds (dasatinib and afatinib) in these specific markers. These potential therapeutic compounds provide insight into the underlying mechanisms of serous ovarian cancer (OC) and inspire more effective treatment methods.
Collapse
Affiliation(s)
- Fei Teng
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dehong Che
- Ultrasound Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuo Miao
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Sesen J, Martinez T, Busatto S, Poluben L, Nassour H, Stone C, Ashok K, Moses MA, Smith ER, Ghalali A. AZIN1 level is increased in medulloblastoma and correlates with c-Myc activity and tumor phenotype. J Exp Clin Cancer Res 2025; 44:56. [PMID: 39962590 PMCID: PMC11831846 DOI: 10.1186/s13046-025-03274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AZIN1 is a cell cycle regulator that is upregulated in a variety of cancers. AZIN1 overexpression can induce a more aggressive tumor phenotype via increased binding and resultant inhibition of antizyme. Antizyme is a protein that normally functions as an anti-tumor regulator that facilitates the deactivation of several growth-promoting proteins including c-Myc. MYC plays a critical role in medulloblastoma pathogenesis. Its amplification serves as a defining characteristic of group 3 medulloblastomas, associated with the most aggressive clinical course, greater frequency of metastases, and shorter survival times. METHODS Medulloblastoma tissues (68 TMA, and 45 fresh tissues, and 31 controls) were stained (fluorescence and immunohistochemical) for AZIN1. Western blotting and ELISA were used to detect the AZIN1 level. Phenotypically aggressive cellular features were measured by increased invasion, colony formation and proliferation. CRISPR-Cas9-mediated AZIN1 knocked-out cells were orthotopically implanted in the cerebellum of nude mice (n = 8/group) with a stereotactic frame. Tumor growth was monitored using the In Vivo Imaging System (IVIS). RESULTS Here, we investigated the role of AZIN1 expression in medulloblastoma. We found that overexpression of AZIN1 in medulloblastoma cells induces phenotypically aggressive features. Conducting in vivo studies we found that knocking-out AZIN1 in tumors corresponds with reduced tumor progression and prolonged survival. Clinical specimens are revealing that AZIN1 is highly expressed and directly correlates with MYC amplification status in patients. CONCLUSION These data implicate AZIN1 as a putative regulator of medulloblastoma pathogenesis and suggest that it may have clinical application as both a biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Busatto
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hassan Nassour
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karthik Ashok
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
de Santis JO, de Sousa GR, Queiroz RGDP, Cândido MF, Almeida F, de Rezende CP, de Ruy PC, Arini GS, Coyle B, Wade P, Brassesco MS, Scrideli CA, Tone LG, Valera ET. Immunomodulatory role of exosome-derived content in pediatric medulloblastoma: a molecular subgroup perspective. Hum Cell 2025; 38:55. [PMID: 39960575 DOI: 10.1007/s13577-025-01181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, comprising four distinct subgroups: wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. MYC amplification and metastatic dissemination are challenges in clinical management, and tumor-associated macrophages (TAMs) play an essential role in these intricate molecular processes. However, the influence of immune cells in MB metastasis and MYC-amp is unclear. Secretion of extracellular vesicles (EVs) has emerged as a pivotal mediator facilitating communication within the tumor microenvironment, orchestrating coordinated responses among immune cells during tumor initiation, progression, and tumor dissemination. Here, we sought to elucidate the role of exosome-derived MBs in promoting specific patterns of TAM polarization across different molecular subgroups of MB cell lines. CIBERSORTx analysis using a single-cell RNA dataset revealed an increase in M0 macrophages and a decreased proportion of M2 macrophages in MB patients with tumor dissemination in the central nervous system (CNS). Cell-derived exosomes were found to secrete high levels of IL-4, IL-10, and TGF-β, indicative of a protumor M2-profile pattern. Moreover, EVs from SHH TP53-mutated, Group 3/4, and MYC-amplified MBs induced dissimilar patterns of TNF-α and/or IL-1β overexpression. This study demonstrates that exosomes from pediatric MBs promote a predominant M2-macrophage phenotype and Group 3, Group 4, SHH TP53-mutated, and MYC-amplified MBs induced a mixed M1/M2 response pattern. These findings shed light on the pivotal role of exosomes in modulating the immune response, potentially contributing to immune escape in this malignant neoplasm.
Collapse
Affiliation(s)
- Jessica Oliveira de Santis
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Graziella Ribeiro de Sousa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marina Ferreira Cândido
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline Patini de Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patricia Cassia de Ruy
- Center for Genomic Medicine, Clinical Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Santos Arini
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Philippa Wade
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - María Sol Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Desai K, Wanggou S, Luis E, Whetstone H, Yu C, Vanner RJ, Selvadurai HJ, Lee L, Vijay J, Jaramillo JE, Fan J, Guilhamon P, Kushida M, Li X, Stein G, Kesari S, Simons BD, Huang X, Dirks PB. OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma. Nat Commun 2025; 16:1092. [PMID: 39904987 PMCID: PMC11794873 DOI: 10.1038/s41467-024-54858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Functional cellular heterogeneity in tumours often underlies incomplete response to therapy and relapse. Previously, we demonstrated that the growth of the paediatric brain malignancy, sonic hedgehog subgroup medulloblastoma, is rooted in a dysregulated developmental hierarchy, the apex of which is defined by characteristically quiescent SOX2+ stem-like cells. Integrating gene expression and chromatin accessibility patterns in distinct cellular compartments, we identify the transcription factor Olig2 as regulating the stem cell fate transition from quiescence to activation, driving the generation of downstream neoplastic progenitors. Inactivation of Olig2 blocks stem cell activation and tumour output. Targeting this rare OLIG2-driven proliferative programme with a small molecule inhibitor, CT-179, dramatically attenuates early tumour formation and tumour regrowth post-therapy, and significantly increases median survival in vivo. We demonstrate that targeting transition from quiescence to proliferation at the level of the tumorigenic cell could be a pivotal medulloblastoma treatment strategy.
Collapse
Affiliation(s)
- Kinjal Desai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Erika Luis
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Chunying Yu
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jinchu Vijay
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julia E Jaramillo
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gregory Stein
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
| | - Santosh Kesari
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, and the Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xi Huang
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
17
|
Liu H, Zhang J, Wang Z, Wang W, Han D, Chen X, Su Y, Zhang J, Daniels C, Saulnier O, Wang ZJ, Gu C, Liu F, Deng K, Wang D, Feng Z, Zhao Y, Jiang Y, Gao Y, Liu Z, Ma M, Li Y, Zhao Z, Yuan H, Sun Y, Shi Y, Yang T, Li W, Qi X, Duan Z, Zhang J, Zhang M, Yu C, Jin W, Yu X, Tian Y, Li S, Li C, Taylor MD, Li J, Liu YQ, Qiu X, Jiang T. High cellular plasticity state of medulloblastoma local recurrence and distant dissemination. Cell Rep Med 2025; 6:101914. [PMID: 39809264 PMCID: PMC11866544 DOI: 10.1016/j.xcrm.2024.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets. Chromosomal alteration evaluation revealed distinct genetic subclones during MB progression, such as chr7q gain and chr11 loss in Group_3 disseminations. A subpopulation termed "high cellular plasticity (HCP)" emerged during MB progression and was associated with increased dividing potential and chromatin accessibility, contributing to recurrence. Inhibiting HCP-associated markers, like protein tyrosine phosphatase receptor type Z1 (PTPRZ1), efficiently suppressed MB progression in preclinical models. These findings address critical gaps in understanding the cellular diversity, chromosomal alterations, and biological dynamics of recurrent MB, offering potential therapeutic insights.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Beijing Neurosurgical Institute, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Chinese Institute for Medical Research, Beijing 100069, China
| | - Jing Zhang
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ziwei Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Dongming Han
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Chen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Su
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiao Zhang
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77002, USA; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77002, USA; The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1, Canada; The Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1, Canada
| | - Craig Daniels
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77002, USA; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77002, USA; The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1, Canada; The Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1, Canada
| | - Olivier Saulnier
- Genomics and Development of Childhood Cancers Lab, Institute Curie, PSL University, 75005 Paris, France; Cancer Heterogeneity Instability and Plasticity, Institute Curie, PSL University, 75005 Paris, France
| | - Zeyuan John Wang
- Departments of Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc., West Point, PA 19486, USA
| | - Chunyu Gu
- Sanbo Brain Hospital Capital Medical University, Beijing 100093, China
| | - Fei Liu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Kaiwen Deng
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dongyang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhaoyang Feng
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yahui Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yifei Jiang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Gao
- Prosper High School, Public School in Prosper, Prosper, TX 75078, USA
| | - Zijia Liu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxu Ma
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yanong Li
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Youliang Sun
- Institute of Basic Medicine, School of Medicine, Tsinghua University Beijing 100084, China
| | - Yanfeng Shi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Yang
- China National GeneBank, BGI-Research, Shenzhen, Guangdong 518083, China
| | | | - Xueling Qi
- Sanbo Brain Hospital Capital Medical University, Beijing 100093, China
| | - Zejun Duan
- Sanbo Brain Hospital Capital Medical University, Beijing 100093, China
| | - Junping Zhang
- Sanbo Brain Hospital Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Sanbo Brain Hospital Capital Medical University, Beijing 100093, China
| | - Chunjiang Yu
- Sanbo Brain Hospital Capital Medical University, Beijing 100093, China
| | - Wei Jin
- The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Xinguang Yu
- The First Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Yu Tian
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shuaicheng Li
- Computer Science Department, City University of Hong Kong, Kowloon, Hong Kong
| | - Chunde Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Michael D Taylor
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77002, USA; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77002, USA; The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G 1, Canada; The Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1, Canada
| | - Jiankang Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China.
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resource Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Xiaoguang Qiu
- Department of Radiotherapy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Beijing Neurosurgical Institute, Beijing 100070, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
18
|
Fan JJ, Erickson AW, Carrillo-Garcia J, Wang X, Skowron P, Wang X, Chen X, Shan G, Dou W, Bahrampour S, Xiong Y, Dong W, Abeysundara N, Francisco MA, Pusong RJ, Wang W, Li M, Ying E, Suárez RA, Farooq H, Holgado BL, Wu X, Daniels C, Dupuy AJ, Cadiñanos J, Bradley A, Bagchi A, Moriarity BS, Largaespada DA, Morrissy AS, Ramaswamy V, Mack SC, Garzia L, Dirks PB, Li X, Wanggou S, Egan S, Sun Y, Taylor MD, Huang X. A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance. Dev Cell 2025:S1534-5807(25)00001-2. [PMID: 39862856 DOI: 10.1016/j.devcel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.
Collapse
Affiliation(s)
- Jerry J Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anders W Erickson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julia Carrillo-Garcia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xian Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle A Francisco
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronwell J Pusong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miranda Li
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot Ying
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Raúl A Suárez
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo 33193, Spain
| | - Allan Bradley
- T-Therapeutics Ltd. One Riverside, Granta Park, Cambridge CB21 6AD, UK
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, Center of Excellence in Neuro-Oncology Sciences, St Jude Children's Hospital, Memphis, TN 38105, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, QC H4A 3J1, Canada; Cancer Research Program, RI-MUHC, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sean Egan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Chen T, Chen H, Xia M, Liao Y, Li H, Dong X, Lin Y, Zhou W. In-depth inference of transcriptional regulatory networks reveals NPM1 as a therapeutic ribosomal regulator in MYC-amplified medulloblastoma. NPJ Precis Oncol 2025; 9:10. [PMID: 39794402 PMCID: PMC11723958 DOI: 10.1038/s41698-024-00792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Medulloblastoma (MB) is an aggressive pediatric brain tumor with distinct molecular heterogeneity. Identifying subtype-specific signatures within Group 3 and Group 4 remains challenging due to shared cytogenetic alterations and limitations of conventional differential gene expression analysis. To uncover the underlying molecular signatures and hidden regulators, we used the Cavalli transcriptomic profile of 470 Group 3 and Group 4 MB patients to reconstruct subtype-specific regulatory networks. A strong upregulation of the ribosomal pathway was linked to MYC amplification in Group 3, with Nucleophosmin 1 (NPM1) emerging as a key regulator. NPM1 upregulation defined a subset of Group3 and Group4 patients with poor prognosis. Inhibition of NPM1 led to apoptosis, reduced c-Myc stability, and impaired translation in MYC-amplified Group 3 MB cells. Together, our findings highlight NPM1 as a promising therapeutic target and provide new insights into the regulatory mechanisms in MB.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Neonatal Disease, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yunfei Liao
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.
| | - Yifeng Lin
- Key Laboratory of Neonatal Disease, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China.
| | - Wenhao Zhou
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Liu X, Chapple RH, Bennett D, Wright WC, Sanjali A, Culp E, Zhang Y, Pan M, Geeleher P. CSI-GEP: A GPU-based unsupervised machine learning approach for recovering gene expression programs in atlas-scale single-cell RNA-seq data. CELL GENOMICS 2025; 5:100739. [PMID: 39788105 PMCID: PMC11770216 DOI: 10.1016/j.xgen.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Exploratory analysis of single-cell RNA sequencing (scRNA-seq) typically relies on hard clustering over two-dimensional projections like uniform manifold approximation and projection (UMAP). However, such methods can severely distort the data and have many arbitrary parameter choices. Methods that can model scRNA-seq data as non-discrete "gene expression programs" (GEPs) can better preserve the data's structure, but currently, they are often not scalable, not consistent across repeated runs, and lack an established method for choosing key parameters. Here, we developed a GPU-based unsupervised learning approach, "consensus and scalable inference of gene expression programs" (CSI-GEP). We show that CSI-GEP can recover ground truth GEPs in real and simulated atlas-scale scRNA-seq datasets, significantly outperforming cutting-edge methods, including GPT-based neural networks. We applied CSI-GEP to a whole mouse brain atlas of 2.2 million cells, disentangling endothelial cell types missed by other methods, and to an integrated scRNA-seq atlas of human tumors and cell lines, discovering mesenchymal-like GEPs unique to cancer cells growing in culture.
Collapse
Affiliation(s)
- Xueying Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Declan Bennett
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William C Wright
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ankita Sanjali
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erielle Culp
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yinwen Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
21
|
Tao R, Han K, Wu SC, Friske JD, Roussel MF, Northcott PA. Arrested development: the dysfunctional life history of medulloblastoma. Genes Dev 2025; 39:4-17. [PMID: 39231614 PMCID: PMC11789489 DOI: 10.1101/gad.351936.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.
Collapse
Affiliation(s)
- Ran Tao
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Katie Han
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jake D Friske
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
22
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
23
|
Sönmez E, Yan S, Lin MS, Baumgartner M. MAP4 kinase-regulated reduced CLSTN1 expression in medulloblastoma is associated with increased invasiveness. Sci Rep 2025; 15:946. [PMID: 39762313 PMCID: PMC11704044 DOI: 10.1038/s41598-024-84753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling. We previously identified CLSTN1 as a putative target of the pro-invasive kinase MAP4K4, which we found to reduce CLSTN1 surface expression. Herein, we explored the expression and functional significance of CLSTN1 in MB. We found that CLSTN1 expression is decreased in primary MB tumors compared to tumor-free cerebellum or brain tissues. CLSTN1 is expressed in laboratory-established MB cell lines, where it localized to the plasma membrane, intracellular vesicular structures, and regions of cell-cell contact. The reduction of CLSTN1 expression significantly increased growth factor-driven invasiveness. Pharmacological inhibition of pro-migratory MAP4 kinases caused increased CLSTN1 expression and CLSTN1 accumulation in cell-cell contacts. Co-culture of tumor cells with astrocytes increased CLSTN1 localization in cell-cell contacts, which was further enhanced by MAP4K inhibition. Our study revealed a repressive function of CLSTN1 in growth-factor-driven invasiveness in MB, identified MAP4 kinases as repressors of CLSTN1 recruitment to cell-cell contacts, and points towards CLSTN1 implication in the kinase-controlled regulation of tumor-microenvironment interaction.
Collapse
Affiliation(s)
- Ece Sönmez
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Shen Yan
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Meng-Syuan Lin
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Children's Research Center, Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
24
|
Lee JJY, Tao R, You Z, Haldipur P, Erickson AW, Farooq H, Hendriske LD, Abeysundara N, Richman CM, Wang EY, Das Gupta N, Hadley J, Batts M, Mount CW, Wu X, Rasnitsyn A, Bailey S, Cavalli FMG, Morrissy S, Garzia L, Michealraj KA, Visvanathan A, Fong V, Palotta J, Suarez R, Livingston BG, Liu M, Luu B, Daniels C, Loukides J, Bendel A, French PJ, Kros JM, Korshunov A, Kool M, Chico Ponce de León F, Perezpeña-Diazconti M, Lach B, Singh SK, Leary SES, Cho BK, Kim SK, Wang KC, Lee JY, Tominaga T, Weiss WA, Phillips JJ, Dai S, Zadeh G, Saad AG, Bognár L, Klekner A, Pollack IF, Hamilton RL, Ra YS, Grajkowska WA, Perek-Polnik M, Thompson RC, Kenney AM, Cooper MK, Mack SC, Jabado N, Lupien M, Gallo M, Ramaswamy V, Suva ML, Suzuki H, Millen KJ, Huang LF, Northcott PA, Taylor MD. ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip. Nat Genet 2025; 57:88-102. [PMID: 39753768 PMCID: PMC11735403 DOI: 10.1038/s41588-024-02014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/23/2024] [Indexed: 01/30/2025]
Abstract
Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma). Overexpression of ZIC1 suppresses the growth of group 3 medulloblastoma models, whereas it promotes the proliferation of SHH medulloblastoma precursor cells. SHH medulloblastoma ZIC1 mutants show increased activity versus wild-type ZIC1, whereas G4 medulloblastoma ZIC1 mutants exhibit LOF phenotypes. Distinct ZIC1 mutations affect cells of the rhombic lip in diametrically opposed ways, suggesting that ZIC1 is a critical developmental transcriptional regulator in both the normal and transformed rhombic lip and identifying ZIC1 as an exquisitely context-dependent driver gene in medulloblastoma.
Collapse
Affiliation(s)
- John J Y Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ran Tao
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen You
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Parthiv Haldipur
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Anders W Erickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hamza Farooq
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liam D Hendriske
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Namal Abeysundara
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cory M Richman
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Evan Y Wang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Neha Das Gupta
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Hadley
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Batts
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher W Mount
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Xiaochong Wu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Alex Rasnitsyn
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Swneke Bailey
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Florence M G Cavalli
- Inserm, Paris, France
- Institut Curie, PSL Research University, Paris, France
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France
| | - Sorana Morrissy
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Livia Garzia
- Department of Surgery, McGill University and RI-MUHC Cancer Research Program, Montreal, Quebec, Canada
| | - Kulandaimanuvel Antony Michealraj
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abhi Visvanathan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vernon Fong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonelle Palotta
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Raul Suarez
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bryn G Livingston
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miao Liu
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Betty Luu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Texas Children's Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - James Loukides
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne Bendel
- Department of Pediatric Hematology-Oncology, Children's Hospital of Minnesota, Minneapolis, MN, USA
| | - Pim J French
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Utrecht University Medical Center (UMCU), Utrecht, the Netherlands
| | | | | | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sheila K Singh
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sarah E S Leary
- Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Byung-Kyu Cho
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Kyu-Chang Wang
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - William A Weiss
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Shizhong Dai
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ali G Saad
- Department of Pediatric Pathology and Neuropathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Young-Shin Ra
- Department of Neurosurgery, University of Ulsan Asan Medical Center, Ulsan, Republic of Korea
| | | | - Marta Perek-Polnik
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, USA
| | - Anna M Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Michael K Cooper
- Department of Neurology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Stephen C Mack
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marco Gallo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kathleen J Millen
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - L Frank Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Michael D Taylor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Texas Children's Cancer and Hematology Center, Houston, TX, USA.
- Department of Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
25
|
van Essen MJ, Nicheperovich A, Schuster-Böckler B, Becker EBE, Jacob J. Sonic hedgehog medulloblastoma cells in co-culture with cerebellar organoids converge towards in vivo malignant cell states. Neurooncol Adv 2025; 7:vdae218. [PMID: 39896075 PMCID: PMC11783571 DOI: 10.1093/noajnl/vdae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background In the malignant brain tumor sonic hedgehog medulloblastoma (SHH-MB) the properties of cancer cells are influenced by their microenvironment, but the nature of those effects and the phenotypic consequences for the tumor are poorly understood. The aim of this study was to identify the phenotypic properties of SHH-MB cells that were driven by the nonmalignant tumor microenvironment. Methods Human induced pluripotent cells (iPSC) were differentiated to cerebellar organoids to simulate the nonmaliganant tumor microenvironment. Tumor spheroids were generated from 2 distinct, long-established SHH-MB cell lines which were co-cultured with cerebellar organoids. We profiled the cellular transcriptomes of malignant and nonmalignant cells by performing droplet-based single-cell RNA sequencing (scRNA-seq). The transcriptional profiles of tumor cells in co-culture were compared with those of malignant cell monocultures and with public SHH-MB datasets of patient tumors and patient-derived orthotopic xenograft (PDX) mouse models. Results SHH-MB cell lines in organoid co-culture adopted patient tumor-associated phenotypes and showed increased heterogeneity compared to monocultures. Subpopulations of co-cultured SHH-MB cells activated a key marker of differentiating granule cells, NEUROD1 that was not observed in tumor monocultures. Other subpopulations expressed transcriptional determinants consistent with a cancer stem cell-like state that resembled cell states identified in vivo. Conclusions For SHH-MB cell lines in co-culture, there was a convergence of malignant cell states towards patterns of heterogeneity in patient tumors and PDX models implying these states were non-cell autonomously induced by the microenvironment. Therefore, we have generated an advanced, novel in vitro model of SHH-MB with potential translational applications.
Collapse
Affiliation(s)
- Max J van Essen
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alina Nicheperovich
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Schuster-Böckler
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Esther B E Becker
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Chen X, Wang K, Liao X, Zheng X, Yang S, Han C, Lu C, Wang X, Jin L, Kang H, Han Y, Wei J, Fan L, Zhang Z, Kong W. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Small-Cell Neuroendocrine Carcinoma of the Cervix. J Med Virol 2025; 97:e70183. [PMID: 39831355 DOI: 10.1002/jmv.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Small-cell neuroendocrine cancer (SCNEC) of the uterine cervix is an exceedingly rare, highly aggressive tumor with an extremely poor prognosis. The cellular heterogeneity, origin, and tumorigenesis trajectories of SCNEC of the cervix remain largely unclear. We performed single-cell RNA sequencing and whole-exome sequencing on tumor tissues and adjacent normal cervical tissues from two patients diagnosed with SCNEC of the cervix. Here, we provide the first comprehensive insights into the cellular composition, HPV infection-related features, and gene expression profiles of SCNEC of the cervix at single-cell resolution. Correlation analyses suggested that SCNEC of the cervix may originate from squamous epithelial cells, and this observation was validated with bulk RNA-seq data from external cervical neuroendocrine cancer. Furthermore, sex-determining region Y-box 2 (SOX2), a key transcription factor that functions in direct neural differentiation, was located in the copy number gain region and highly expressed in neuroendocrine tumor cells from both patients. Notable, the distributions of the HPV-infected epithelium and SOX2 highly expressed epithelium were consistent with each other. Therefore, we supposed that high-risk HPV infection and amplification of SOX2 in the squamous epithelium may contribute to the progression of small-cell neuroendocrine tumorigenesis in the cervix.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Kunyu Wang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xingyu Liao
- Familial & Hereditary Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xingzheng Zheng
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Shuli Yang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chao Han
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Xiaodan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Lingge Jin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Haili Kang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yiding Han
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jiacong Wei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Weimin Kong
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| |
Collapse
|
27
|
Hains AE, Chetal K, Nakatani T, Marques JG, Ettinger A, Junior CAOB, Gonzalez-Sandoval A, Pillai R, Filbin MG, Torres-Padilla ME, Sadreyev RI, Van Rechem C. Multi-omics approaches reveal that diffuse midline gliomas present altered DNA replication and are susceptible to replication stress therapy. Genome Biol 2024; 25:319. [PMID: 39707510 DOI: 10.1186/s13059-024-03460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The fatal diffuse midline gliomas (DMG) are characterized by an undruggable H3K27M mutation in H3.1 or H3.3. K27M impairs normal development by stalling differentiation. The identification of targetable pathways remains very poorly explored. Toward this goal, we undertake a multi-omics approach to evaluate replication timing profiles, transcriptomics, and cell cycle features in DMG cells from both H3.1K27M and H3.3K27M subgroups and perform a comparative, integrative data analysis with healthy brain tissue. RESULTS DMG cells present differential replication timing in each subgroup, which, in turn, correlates with significant differential gene expression. Differentially expressed genes in S phase are involved in various pathways related to DNA replication. We detect increased expression of DNA replication genes earlier in the cell cycle in DMG cell lines compared to normal brain cells. Furthermore, the distance between origins of replication in DMG cells is smaller than in normal brain cells and their fork speed is slower, a read-out of replication stress. Consistent with these findings, DMG tumors present high replication stress signatures in comparison to normal brain cells. Finally, DMG cells are specifically sensitive to replication stress therapy. CONCLUSIONS This whole genome multi-omics approach provides insights into the cell cycle regulation of DMG via the H3K27M mutations and establishes a pharmacologic vulnerability in DNA replication, which resolves a potentially novel therapeutic strategy for this non-curable disease.
Collapse
Affiliation(s)
- Anastasia E Hains
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospitaland, Harvard Medical School , Boston, MA, 02114, USA
| | | | - Joana G Marques
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Munich, Germany
| | - Carlos A O Biagi Junior
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Renjitha Pillai
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospitaland, Harvard Medical School , Boston, MA, 02114, USA
| | | |
Collapse
|
28
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
29
|
Yang J, Song X, Zhang H, Liu Q, Wei R, Guo L, Yuan C, Chen F, Xue K, Lai Y, Wang L, Shi J, Zhou C, Wang J, Yu Y, Mei Q, Hu L, Wang H, Zhang C, Zhang Q, Li H, Gu Y, Zhao W, Yu H, Wang J, Liu Z, Li H, Zheng S, Liu J, Yang L, Li W, Xu R, Chen J, Zhou Y, Cheng X, Yu Y, Wang D, Sun X, Yu H. Single-cell transcriptomic landscape deciphers olfactory neuroblastoma subtypes and intra-tumoral heterogeneity. NATURE CANCER 2024; 5:1919-1939. [PMID: 39543363 DOI: 10.1038/s43018-024-00855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Olfactory neuroblastoma (ONB) is a rare malignancy known to originate from the olfactory epithelium. The complex tumor ecosystem of this pathology remains unclear. Here, we explored the cellular components within ten ONB tumors and one olfactory mucosa sample based on single-cell RNA profiles. We showed the intra-tumoral heterogeneity by identifying five unique expression programs among malignant epithelial cells. A distinct three-classification system (neural, basal, mesenchymal) for ONB was established according to the distinguished gene expression patterns. Biomarkers for categorizing bulk tumors into uncharacterized subtypes were elucidated. Different responses towards certain chemotherapy regimens could be cautiously inferred according to the molecular features representing the three tumor types, thus helping with precision chemotherapy. We also analyzed subclusters of the tumor microenvironment (TME) and the interactions among different cell types within the TME. The relative abundance of immunosuppressive tumor-associated macrophages suggests potential benefits of immunotherapies targeting macrophages.
Collapse
Affiliation(s)
- Jingyi Yang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Olfactory Neuroblastoma Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Xiaole Song
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Mucosal Melanoma Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Huankang Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Quan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Ruoyan Wei
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Luo Guo
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China
| | - Cuncun Yuan
- Department of Pathology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Fu Chen
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Kai Xue
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Yuting Lai
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Junfeng Shi
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chengle Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Juan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Pharmaceutical Industry Research Institute, Shanghai, PR China
| | - Yingxuan Yu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Pharmaceutical Industry Research Institute, Shanghai, PR China
| | - Qibing Mei
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Pharmaceutical Industry Research Institute, Shanghai, PR China
| | - Li Hu
- Department of Experimental Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Huan Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Chen Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Qianqian Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Houyong Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Ye Gu
- Department of Neurosurgery and Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Weidong Zhao
- Department of Neurosurgery and Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Huapeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Jingjing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Zhuofu Liu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Han Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Shixing Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Juan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Lu Yang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Wanpeng Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Rui Xu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Jiani Chen
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Yumin Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Olfactory Disorder Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China
- Olfactory Neuroblastoma Diagnosis and Treatment Center, Eye and ENT Hospital, Fudan University, Shanghai, PR China
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, PR China.
- Research Unit of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Shanghai, PR China.
| |
Collapse
|
30
|
Smirnov P, Przybilla MJ, Simovic-Lorenz M, Parra RG, Susak H, Ratnaparkhe M, Wong JK, Körber V, Mallm JP, Philippos G, Sill M, Kolb T, Kumar R, Casiraghi N, Okonechnikov K, Ghasemi DR, Maaß KK, Pajtler KW, Jauch A, Korshunov A, Höfer T, Zapatka M, Pfister SM, Huber W, Stegle O, Ernst A. Multi-omic and single-cell profiling of chromothriptic medulloblastoma reveals genomic and transcriptomic consequences of genome instability. Nat Commun 2024; 15:10183. [PMID: 39580568 PMCID: PMC11585558 DOI: 10.1038/s41467-024-54547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Chromothripsis is a frequent form of genome instability, whereby a presumably single catastrophic event generates extensive genomic rearrangements of one or multiple chromosome(s). However, little is known about the heterogeneity of chromothripsis across different clones from the same tumour, as well as changes in response to treatment. Here we analyse single-cell genomic and transcriptomic alterations linked with chromothripsis in human p53-deficient medulloblastoma and neural stem cells (n = 9). We reconstruct the order of somatic events, identify early alterations likely linked to chromothripsis and depict the contribution of chromothripsis to malignancy. We characterise subclonal variation of chromothripsis and its effects on extrachromosomal circular DNA, cancer drivers and putatively druggable targets. Furthermore, we highlight the causative role and the fitness consequences of specific rearrangements in neural progenitors.
Collapse
Affiliation(s)
- Petr Smirnov
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Moritz J Przybilla
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - R Gonzalo Parra
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Hana Susak
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manasi Ratnaparkhe
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Kl Wong
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - George Philippos
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Kolb
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rithu Kumar
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nicola Casiraghi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kendra Korinna Maaß
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
31
|
Larsson I, Held F, Popova G, Koc A, Kundu S, Jörnsten R, Nelander S. Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers. Nat Commun 2024; 15:9699. [PMID: 39516198 PMCID: PMC11549355 DOI: 10.1038/s41467-024-53954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Nervous system cancers exhibit diverse transcriptional cell states influenced by normal development, injury response, and growth. However, the understanding of these states' regulation and pharmacological relevance remains limited. Here we present "single-cell regulatory-driven clustering" (scregclust), a method that reconstructs cellular regulatory programs from extensive collections of single-cell RNA sequencing (scRNA-seq) data from both tumors and developing tissues. The algorithm efficiently divides target genes into modules, predicting key transcription factors and kinases with minimal computational time. Applying this method to adult and childhood brain cancers, we identify critical regulators and suggest interventions that could improve temozolomide treatment in glioblastoma. Additionally, our integrative analysis reveals a meta-module regulated by SPI1 and IRF8 linked to an immune-mediated mesenchymal-like state. Finally, scregclust's flexibility is demonstrated across 15 tumor types, uncovering both pan-cancer and specific regulators. The algorithm is provided as an easy-to-use R package that facilitates the exploration of regulatory programs underlying cell plasticity.
Collapse
Affiliation(s)
- Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix Held
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Gergana Popova
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Alper Koc
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
32
|
Motahari Z, Lepe JJ, Bautista MR, Hoerig C, Plant-Fox AS, Das B, Fowler CD, Magge SN, Bota DA. Preclinical assessment of MAGMAS inhibitor as a potential therapy for pediatric medulloblastoma. PLoS One 2024; 19:e0300411. [PMID: 39436961 PMCID: PMC11495579 DOI: 10.1371/journal.pone.0300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/01/2024] [Indexed: 10/25/2024] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. It has WNT-driven, SHH-driven/TP53 mutant, SHH-driven/TP53 wildtype, and non-WNT/non-SHH subgroups. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encodes a mitochondrial import inner membrane translocase subunit and is responsible for the translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. METHODS DAOY (SHH driven/tp53 mutant) and D425 (non-SHH group 3) were treated with BT9. For in vitro analysis, cell proliferation, death, migration, invasion, and metabolic activity were assessed using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. A D425 orthotopic xenograft mouse model was used to evaluate BT9 efficacy in vivo. RESULTS BT9 treatment resulted in a significant decrease in cell proliferation (DAOY, 24 hours IC50: 3.6 μM, 48 hours IC50: 2.3 μM, 72 hours IC50: 2.1 μM; D425 24 hours IC50: 3.4 μM, 48 hours IC50: 2.2 μM, 72 hours IC50: 2.1 μM) and a significant increase in cell death (DAOY, 24 hours p = 0.0004, 48 hours p<0.0001; D425, 24 hours p = 0.0001, 48 hours p = 0.02). In DAOY cells, 3 μM BT9 delayed migration and significantly reduced DAOY and D425 cell invasion (p < 0.0001). It also modified mitochondrial respiratory function in both medulloblastoma cell lines. Compared to control, however, BT9 administration did not improve survival in a D425 orthotopic xenograft mouse model. CONCLUSIONS Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines, suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.
Collapse
Affiliation(s)
- Zahra Motahari
- CHOC Neuroscience Institute, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Pediatrics, University of Irvine, Irvine, CA, United States of America
| | - Javier J. Lepe
- Department of Neurology, School of Medicine, University of Irvine, Irvine, CA, United States of America
| | - Malia R. Bautista
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, United States of America
| | - Clay Hoerig
- Department of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Ashley S. Plant-Fox
- Department of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Pediatric Oncology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States of America
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States of America
- Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, United States of America
| | - Suresh N. Magge
- CHOC Neuroscience Institute, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Neurosurgery, Children’s Hospital of Orange County, Orange, CA, United States of America
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Daniela A. Bota
- Department of Neurology, School of Medicine, University of Irvine, Irvine, CA, United States of America
| |
Collapse
|
33
|
Du JH, Chen T, Gao M, Wang J. Joint trajectory inference for single-cell genomics using deep learning with a mixture prior. Proc Natl Acad Sci U S A 2024; 121:e2316256121. [PMID: 39226366 PMCID: PMC11406253 DOI: 10.1073/pnas.2316256121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Trajectory inference methods are essential for analyzing the developmental paths of cells in single-cell sequencing datasets. It provides insights into cellular differentiation, transitions, and lineage hierarchies, helping unravel the dynamic processes underlying development and disease progression. However, many existing tools lack a coherent statistical model and reliable uncertainty quantification, limiting their utility and robustness. In this paper, we introduce VITAE (Variational Inference for Trajectory by AutoEncoder), a statistical approach that integrates a latent hierarchical mixture model with variational autoencoders to infer trajectories. The statistical hierarchical model enhances the interpretability of our framework, while the posterior approximations generated by our variational autoencoder ensure computational efficiency and provide uncertainty quantification of cell projections along trajectories. Specifically, VITAE enables simultaneous trajectory inference and data integration, improving the accuracy of learning a joint trajectory structure in the presence of biological and technical heterogeneity across datasets. We show that VITAE outperforms other state-of-the-art trajectory inference methods on both real and synthetic data under various trajectory topologies. Furthermore, we apply VITAE to jointly analyze three distinct single-cell RNA sequencing datasets of the mouse neocortex, unveiling comprehensive developmental lineages of projection neurons. VITAE effectively reduces batch effects within and across datasets and uncovers finer structures that might be overlooked in individual datasets. Additionally, we showcase VITAE's efficacy in integrative analyses of multiomic datasets with continuous cell population structures.
Collapse
Affiliation(s)
- Jin-Hong Du
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA15213
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA15213
| | - Tianyu Chen
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, TX78712
| | - Ming Gao
- Booth School of Business, University of Chicago, Chicago, IL60637
| | - Jingshu Wang
- Department of Statistics, University of Chicago, Chicago, IL60637
| |
Collapse
|
34
|
Joshi K, Yuan M, Katsushima K, Saulnier O, Ray A, Amankwah E, Stapleton S, Jallo G, Taylor MD, Eberhart CG, Perera RJ. Systematic transcriptomic analysis of childhood medulloblastoma identifies N6- methyladenosine-dependent lncRNA signatures associated with molecular subtype, immune cell in filtration, and prognosis. RESEARCH SQUARE 2024:rs.3.rs-4810070. [PMID: 39281885 PMCID: PMC11398580 DOI: 10.21203/rs.3.rs-4810070/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, is classified into four main molecular subgroups, but group 3 and group 4 tumors are difficult to subclassify and have a poor prognosis. Rapid point-of-care diagnostic and prognostic assays are needed to improve medulloblastoma risk stratification and management. N6-methyladenosine (m6A) is a common RNA modification and long non-coding RNAs (lncRNAs) play a central role in tumor progression, but their impact on gene expression and associated clinical outcomes in medulloblastoma are unknown. Here we analyzed 469 medulloblastoma tumor transcriptomes to identify lncRNAs co-expressed with m6A regulators. Using LASSO-Cox analysis, we identified a five-gene m6A-associated lncRNA signature (M6LSig) significantly associated with overall survival, which was combined in a prognostic clinical nomogram. Using expression of the 67 m6A-associated lncRNAs, a subgroup classification model was generated using the XGBoost machine learning algorithm, which had a classification accuracy > 90%, including for group 3 and 4 samples. All M6LSig genes were significantly correlated with at least one immune cell type abundance in the tumor microenvironment, and the risk score was positively correlated with CD4+ naïve T cell abundance and negatively correlated with follicular helper T cells and eosinophils. Knockdown of key m6A writer genes METTL3 and METTL14 in a group 3 medulloblastoma cell line (D425-Med) decreased cell proliferation and upregulated many M6LSig genes identified in our in silico analysis, suggesting that the signature genes are functional in medulloblastoma. This study highlights a crucial role for m6A-dependent lncRNAs in medulloblastoma prognosis and immune responses and provides the foundation for practical clinical tools that can be rapidly deployed in clinical settings.
Collapse
|
35
|
Joshi K, Yuan M, Katsushima K, Saulnier O, Ray A, Amankwah E, Stapleton S, Jallo G, Taylor MD, Eberhart CG, Perera RJ. Systematic transcriptomic analysis of childhood medulloblastoma identifies N6-methyladenosine-dependent lncRNA signatures associated with molecular subtype, immune cell infiltration, and prognosis. Acta Neuropathol Commun 2024; 12:138. [PMID: 39198884 PMCID: PMC11351195 DOI: 10.1186/s40478-024-01848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, is classified into four main molecular subgroups, but group 3 and group 4 tumors are difficult to subclassify and have a poor prognosis. Rapid point-of-care diagnostic and prognostic assays are needed to improve medulloblastoma risk stratification and management. N6-methyladenosine (m6A) is a common RNA modification and long non-coding RNAs (lncRNAs) play a central role in tumor progression, but their impact on gene expression and associated clinical outcomes in medulloblastoma are unknown. Here we analyzed 469 medulloblastoma tumor transcriptomes to identify lncRNAs co-expressed with m6A regulators. Using LASSO-Cox analysis, we identified a five-gene m6A-associated lncRNA signature (M6LSig) significantly associated with overall survival, which was combined in a prognostic clinical nomogram. Using expression of the 67 m6A-associated lncRNAs, a subgroup classification model was generated using the XGBoost machine learning algorithm, which had a classification accuracy > 90%, including for group 3 and 4 samples. All M6LSig genes were significantly correlated with at least one immune cell type abundance in the tumor microenvironment, and the risk score was positively correlated with CD4+ naïve T cell abundance and negatively correlated with follicular helper T cells and eosinophils. Knockdown of key m6A writer genes METTL3 and METTL14 in a group 3 medulloblastoma cell line (D425-Med) decreased cell proliferation and upregulated many M6LSig genes identified in our in silico analysis, suggesting that the signature genes are functional in medulloblastoma. This study highlights a crucial role for m6A-dependent lncRNAs in medulloblastoma prognosis and immune responses and provides the foundation for practical clinical tools that can be rapidly deployed in clinical settings.
Collapse
Affiliation(s)
- Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Olivier Saulnier
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, Paris, 75005, France
- Cancer Heterogeneity Instability and Plasticity, Inserm U830, Institut Curie, PSL University, Paris, 75005, France
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, 75005, France
| | | | - Ernest Amankwah
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Michael D Taylor
- Hematology-Oncology Section, Texas Children's Cancer Center, Houston, TX, 77004, USA
- Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, 77004, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross Bldg 558, Baltimore, MD, 21205, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St, Baltimore, MD, 21231, USA.
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
36
|
Liu I, Alencastro Veiga Cruzeiro G, Bjerke L, Rogers RF, Grabovska Y, Beck A, Mackay A, Barron T, Hack OA, Quezada MA, Molinari V, Shaw ML, Perez-Somarriba M, Temelso S, Raynaud F, Ruddle R, Panditharatna E, Englinger B, Mire HM, Jiang L, Nascimento A, LaBelle J, Haase R, Rozowsky J, Neyazi S, Baumgartner AC, Castellani S, Hoffman SE, Cameron A, Morrow M, Nguyen QD, Pericoli G, Madlener S, Mayr L, Dorfer C, Geyeregger R, Rota C, Ricken G, Ligon KL, Alexandrescu S, Cartaxo RT, Lau B, Uphadhyaya S, Koschmann C, Braun E, Danan-Gotthold M, Hu L, Siletti K, Sundström E, Hodge R, Lein E, Agnihotri S, Eisenstat DD, Stapleton S, King A, Bleil C, Mastronuzzi A, Cole KA, Waanders AJ, Montero Carcaboso A, Schüller U, Hargrave D, Vinci M, Carceller F, Haberler C, Slavc I, Linnarsson S, Gojo J, Monje M, Jones C, Filbin MG. GABAergic neuronal lineage development determines clinically actionable targets in diffuse hemispheric glioma, H3G34-mutant. Cancer Cell 2024; 42:S1535-6108(24)00305-2. [PMID: 39232581 PMCID: PMC11865364 DOI: 10.1016/j.ccell.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Diffuse hemispheric gliomas, H3G34R/V-mutant (DHG-H3G34), are lethal brain tumors lacking targeted therapies. They originate from interneuronal precursors; however, leveraging this origin for therapeutic insights remains unexplored. Here, we delineate a cellular hierarchy along the interneuron lineage development continuum, revealing that DHG-H3G34 mirror spatial patterns of progenitor streams surrounding interneuron nests, as seen during human brain development. Integrating these findings with genome-wide CRISPR-Cas9 screens identifies genes upregulated in interneuron lineage progenitors as major dependencies. Among these, CDK6 emerges as a targetable vulnerability: DHG-H3G34 tumor cells show enhanced sensitivity to CDK4/6 inhibitors and a CDK6-specific degrader, promoting a shift toward more mature interneuron-like states, reducing tumor growth, and prolonging xenograft survival. Notably, a patient with progressive DHG-H3G34 treated with a CDK4/6 inhibitor achieved 17 months of stable disease. This study underscores interneuronal progenitor-like states, organized in characteristic niches, as a distinct vulnerability in DHG-H3G34, highlighting CDK6 as a promising clinically actionable target.
Collapse
Affiliation(s)
- Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, 10117 Berlin, Germany
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lynn Bjerke
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Rebecca F Rogers
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Alan Mackay
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Molinari
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marta Perez-Somarriba
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK
| | - Sara Temelso
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Ruth Ruddle
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RK, UK
| | - Eshini Panditharatna
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Hafsa M Mire
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jenna LaBelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rebecca Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jacob Rozowsky
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alicia-Christina Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Samantha E Hoffman
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Amy Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Murry Morrow
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Giulia Pericoli
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Rene Geyeregger
- Clinical Cell Biology, Children's Cancer Research Institute (CCRI), Vienna 1090, Austria
| | - Christopher Rota
- Department of Neurobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Keith L Ligon
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rodrigo T Cartaxo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benison Lau
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Miri Danan-Gotthold
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Sameer Agnihotri
- Departments of Neurosurgery and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - David D Eisenstat
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Simon Stapleton
- Department of Neurosurgery, St George's Hospital NHS Trust, London SW17 0QT, UK
| | - Andrew King
- Department of Neuropathology, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital NHS Trust, London SE5 9RS, UK
| | - Angela Mastronuzzi
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Kristina A Cole
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J Waanders
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Darren Hargrave
- University College London Great Ormond Street Institute for Child Health, London WC1N 1EH, UK
| | - Maria Vinci
- Department of Onco-haematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Fernando Carceller
- Children & Young People's Unit, Royal Marsden Hospital NHS Trust, Sutton, Surrey SM2 5 NG, UK; Division of Clinical Studies, The Institute of Cancer Research, London SW7 3RK, UK
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey SM2 5 NG, UK.
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
37
|
Butts JC, Wu SR, Durham MA, Dhindsa RS, Revelli JP, Ljungberg MC, Saulnier O, McLaren ME, Taylor MD, Zoghbi HY. A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 2024; 59:2171-2188.e7. [PMID: 39106860 DOI: 10.1016/j.devcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Proneural transcription factors establish molecular cascades to orchestrate neuronal diversity. One such transcription factor, Atonal homolog 1 (Atoh1), gives rise to cerebellar excitatory neurons and over 30 distinct nuclei in the brainstem critical for hearing, breathing, and balance. Although Atoh1 lineage neurons have been qualitatively described, the transcriptional programs that drive their fate decisions and the full extent of their diversity remain unknown. Here, we analyzed single-cell RNA sequencing and ATOH1 DNA binding in Atoh1 lineage neurons of the developing mouse hindbrain. This high-resolution dataset identified markers for specific brainstem nuclei and demonstrated that transcriptionally heterogeneous progenitors require ATOH1 for proper migration. Moreover, we identified a sizable population of proliferating unipolar brush cell progenitors in the mouse Atoh1 lineage, previously described in humans as the origin of one medulloblastoma subtype. Collectively, our data provide insights into the developing mouse hindbrain and markers for functional assessment of understudied neuronal populations.
Collapse
Affiliation(s)
- Jessica C Butts
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Madison E McLaren
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Yang C, Trivedi V, Dyson K, Gu T, Candelario KM, Yegorov O, Mitchell DA. Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma. Genome Med 2024; 16:102. [PMID: 39160595 PMCID: PMC11331754 DOI: 10.1186/s13073-024-01363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The current standard of care treatments for medulloblastoma are insufficient as these do not take tumor heterogeneity into account. Newer, safer, patient-specific treatment approaches are required to treat high-risk medulloblastoma patients who are not cured by the standard therapies. Immunotherapy is a promising treatment modality that could be key to improving survival and avoiding morbidity. For an effective immune response, appropriate tumor antigens must be targeted. While medulloblastoma patients with subgroup-specific genetic substitutions have been previously reported, the immunogenicity of these genetic alterations remains unknown. The aim of this study is to identify potential tumor rejection antigens for the development of antigen-directed cellular therapies for medulloblastoma. METHODS We developed a cancer immunogenomics pipeline and performed a comprehensive analysis of medulloblastoma subgroup-specific transcription profiles (n = 170, 18 WNT, 46 SHH, 41 Group 3, and 65 Group 4 patient tumors) available through International Cancer Genome Consortium (ICGC) and European Genome-Phenome Archive (EGA). We performed in silico antigen prediction across a broad array of antigen classes including neoantigens, tumor-associated antigens (TAAs), and fusion proteins. Furthermore, we evaluated the antigen processing and presentation pathway in tumor cells and the immune infiltrating cell landscape using the latest computational deconvolution methods. RESULTS Medulloblastoma patients were found to express multiple private and shared immunogenic antigens. The proportion of predicted TAAs was higher than neoantigens and gene fusions for all molecular subgroups, except for sonic hedgehog (SHH), which had a higher neoantigen burden. Importantly, cancer-testis antigens, as well as previously unappreciated neurodevelopmental antigens, were found to be expressed by most patients across all medulloblastoma subgroups. Despite being immunologically cold, medulloblastoma subgroups were found to have distinct immune cell gene signatures. CONCLUSIONS Using a custom antigen prediction pipeline, we identified potential tumor rejection antigens with important implications for the development of immunotherapy for medulloblastoma.
Collapse
Affiliation(s)
- Changlin Yang
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Vrunda Trivedi
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kyle Dyson
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Tongjun Gu
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Kate M Candelario
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Oleg Yegorov
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.
| |
Collapse
|
39
|
Gao X, Zhuang Q, Li Y, Li G, Huang Z, Chen S, Sun S, Yang H, Jiang L, Mao Y. Single-Cell Chromatin Accessibility Analysis Reveals Subgroup-Specific TF-NTR Regulatory Circuits in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309554. [PMID: 38884167 PMCID: PMC11321678 DOI: 10.1002/advs.202309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Indexed: 06/18/2024]
Abstract
Medulloblastoma (MB) stands as one of the prevalent malignant brain tumors among pediatric patients. Despite its prevalence, the intricate interplay between the regulatory program driving malignancy in MB cells and their interactions with the microenvironment remains insufficiently understood. Leveraging the capabilities of single-cell Assay for Transposase-Accessible Chromatin sequencing (scATAC-seq), the chromatin accessibility landscape is unveiled across 59,015 distinct MB cells. This expansive dataset encompasses cells belonging to discrete molecular subgroups, namely SHH, WNT, Group3, and Group4. Within these chromatin accessibility profiles, specific regulatory elements tied to individual subgroups are uncovered, shedding light on the distinct activities of transcription factors (TFs) that likely orchestrate the tumorigenesis process. Moreover, it is found that certain neurotransmitter receptors (NTRs) are subgroup-specific and can predict MB subgroup classification when combined with their associated transcription factors. Notably, targeting essential NTRs within tumors influences both the in vitro sphere-forming capability and the in vivo tumorigenic capacity of MB cells. These findings collectively provide fresh insights into comprehending the regulatory networks and cellular dynamics within MBs. Furthermore, the significance of the TF-NTR regulatory circuits is underscored as prospective biomarkers and viable therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyue Gao
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qiyuan Zhuang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Yun Li
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guochao Li
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zheng Huang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shenzhi Chen
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shaoxing Sun
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hui Yang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitute for Translational Brain ResearchShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lan Jiang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100049China
- College of Future Technology CollegeUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ying Mao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai Key Laboratory of Brain Function Restoration and Neural RegenerationNeurosurgical Institute of Fudan University Shanghai Clinical Medical Center of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
40
|
Keahi DL, Sanders MA, Paul MR, Webster ALH, Fang Y, Wiley TF, Shalaby S, Carroll TS, Chandrasekharappa SC, Sandoval-Garcia C, MacMillan ML, Wagner JE, Hatten ME, Smogorzewska A. G-quadruplexes are a source of vulnerability in BRCA2 deficient granule cell progenitors and medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604431. [PMID: 39091814 PMCID: PMC11291086 DOI: 10.1101/2024.07.20.604431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Biallelic pathogenic variants in the essential DNA repair gene BRCA2 causes Fanconi anemia, complementation group FA-D1. Patients in this group are highly prone to develop embryonal tumors, most commonly medulloblastoma arising from the cerebellar granule cell progenitors (GCPs). GCPs undergo high proliferation in the postnatal cerebellum under SHH activation, but the type of DNA lesions that require the function of the BRCA2 to prevent tumorigenesis remains unknown. To identify such lesions, we assessed both GCP neurodevelopment and tumor formation using a mouse model with deletion of exons three and four of Brca2 in the central nervous system, coupled with global Trp53 loss. Brca2 Δex3-4 ;Trp53 -/- animals developed SHH subgroup medulloblastomas with complete penetrance. Whole-genome sequencing of the tumors identified structural variants with breakpoints enriched in areas overlapping G-quadruplexes (G4s). Brca2-deficient GCPs exhibited decreased replication speed in the presence of the G4-stabilizer pyridostatin. Pif1 helicase, which resolves G4s during replication, was highly upregulated in tumors, and Pif1 knockout in primary MB tumor cells resulted in increased genome instability upon pyridostatin treatment. These data suggest that G4s may represent sites prone to replication stalling in highly proliferative GCPs and without BRCA2, G4s become a source of genome instability. Tumor cells upregulate G4-resolving helicases to facilitate rapid proliferation through G4s highlighting PIF1 helicase as a potential therapeutic target for treatment of BRCA2-deficient medulloblastomas.
Collapse
Affiliation(s)
- Danielle L. Keahi
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Mathijs A. Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthew R. Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | | | - Yin Fang
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Tom F. Wiley
- Comparative Bioscience Center, The Rockefeller University, New York, NY, USA
| | - Samer Shalaby
- Flow Cytometry Resource Center, The Rockefeller University, New York, NY, USA
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Settara C. Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - John E. Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| |
Collapse
|
41
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
42
|
Remke M, Ramaswamy V. Medulloblastoma subgrouping at first sight. Cancer Cell 2024; 42:1154-1157. [PMID: 38981435 DOI: 10.1016/j.ccell.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Recent incorporation of the four primary medulloblastoma subgroups into the WHO Classification of Central Nervous System Tumors necessitates globally accessible methods to discern subgroups. In this issue of Cancer Cell, Wang et al. develop a rapid and reliable machine learning workflow for pre-operative subgroup determination using routine magnetic resonance imaging.
Collapse
Affiliation(s)
- Marc Remke
- Paediatric Haematology and Oncology, University Children's Hospital, Saarland University, Homburg, Germany
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Departments of Medical Biophysics and Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Chien F, Michaud ME, Bakhtiari M, Schroff C, Snuderl M, Velazquez Vega JE, MacDonald TJ, Bhasin MK. Medulloblastoma Spatial Transcriptomics Reveals Tumor Microenvironment Heterogeneity with High-Density Progenitor Cell Regions Correlating with High-Risk Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600684. [PMID: 38979174 PMCID: PMC11230370 DOI: 10.1101/2024.06.25.600684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The tumor microenvironment (TME) of medulloblastoma (MB) influences progression and therapy response, presenting a promising target for therapeutic advances. Prior single-cell analyses have characterized the cellular components of the TME but lack spatial context. To address this, we performed spatial transcriptomic sequencing on sixteen pediatric MB samples obtained at diagnosis, including two matched diagnosis-relapse pairs. Our analyses revealed inter- and intra-tumoral heterogeneity within the TME, comprised of tumor-associated astrocytes (TAAs), macrophages (TAMs), stromal components, and distinct subpopulations of MB cells at different stages of neuronal differentiation and cell cycle progression. We identified dense regions of quiescent progenitor-like MB cells enriched in patients with high-risk (HR) features and an increase in TAAs, TAMs, and dysregulated vascular endothelium following relapse. Our study presents novel insights into the spatial architecture and cellular landscape of the medulloblastoma TME, highlighting spatial patterns linked to HR features and relapse, which may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Franklin Chien
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
| | - Marina E. Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Chanel Schroff
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY 10016, USA
| | - Jose E. Velazquez Vega
- Department of Pathology and Laboratory Medicine, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
| | - Manoj K. Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
45
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
46
|
Okonechnikov K, Schrimpf D, Koster J, Sievers P, Milde T, Sahm F, Jones DTW, von Deimling A, Pfister SM, Kool M, Korshunov A. Clinically unfavorable transcriptome subtypes of non-WNT/non-SHH medulloblastomas are associated with a predominance in proliferating and progenitor-like cell subpopulations. Acta Neuropathol 2024; 147:95. [PMID: 38847845 DOI: 10.1007/s00401-024-02746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Philipp Sievers
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
47
|
Wang C, Fu R, Wang Y, Wei J, Yu Y, Hu L, Zhang C. miR-124-3p and miR-194-5p regulation of the PI3K/AKT pathway via ROR2 in medulloblastoma progression. Cancer Gene Ther 2024; 31:941-954. [PMID: 38632356 PMCID: PMC11192632 DOI: 10.1038/s41417-024-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Medulloblastoma (MB), a prevalent pediatric central nervous system tumor, is influenced by microRNAs (miRNAs) that impact tumor initiation and progression. However, the specific involvement of miRNAs in MB tumorigenesis remains unclear. Using single-cell RNA sequencing, we identified ROR2 expression in normal human fetal cerebellum. Subsequent analyses, including immunofluorescence, quantitative real-time PCR (qRT-PCR), and Western blot, assessed ROR2 expression in MB tissues and cell lines. We investigated miR-124-3p and miR-194-5p and their regulatory role in ROR2 expression through the dual-luciferase reporter, qRT-PCR, and western blot assays. Mechanistic insights were gained through functional assays exploring the impact of miR-124-3p, miR-194-5p, and ROR2 on MB growth in vitro and in vivo. We observed significantly reduced miR-124-3p and miR-194-5p expression and elevated ROR2 expression in MB tissues and cell lines. High ROR2 expression inversely correlated with overall survival in WNT and SHH subgroups of MB patients. Functionally, overexpressing miR-124-3p and miR-194-5p and inhibiting ROR2 suppressed in vitro malignant transformation and in vivo tumorigenicity. Mechanistically, miR-124-3p and miR-194-5p synergistically regulated the ROR2/PI3K/Akt pathway, influencing MB progression. Our findings indicate that miR-124-3p and miR-194-5p function as tumor suppressors, inhibiting MB progression via the ROR2/PI3K/Akt axis, suggesting a key mechanism and therapeutic targets for MB patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Wei
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuhua Hu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 PMCID: PMC11571274 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
49
|
Pekkarinen M, Nordfors K, Uusi-Mäkelä J, Kytölä V, Hartewig A, Huhtala L, Rauhala M, Urhonen H, Häyrynen S, Afyounian E, Yli-Harja O, Zhang W, Helen P, Lohi O, Haapasalo H, Haapasalo J, Nykter M, Kesseli J, Rautajoki KJ. Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors. Life Sci Alliance 2024; 7:e202302088. [PMID: 38499326 PMCID: PMC10948937 DOI: 10.26508/lsa.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Collapse
Affiliation(s)
- Meeri Pekkarinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Unit of Pediatric Hematology and Oncology, Tampere University Hospital, Tampere, Finland
| | - Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ville Kytölä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Henna Urhonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pauli Helen
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
50
|
Collins RRJ, Gee RRF, Sanchez MCH, Tozandehjani S, Bayat T, Breznik B, Lee AK, Peters ST, Connelly JP, Pruett-Miller SM, Roussel MF, Rakheja D, Tillman HS, Potts PR, Fon Tacer K. Melanoma antigens in pediatric medulloblastoma contribute to tumor heterogeneity and species-specificity of group 3 tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594201. [PMID: 38798351 PMCID: PMC11118370 DOI: 10.1101/2024.05.14.594201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Medulloblastoma (MB) is the most malignant childhood brain cancer. Group 3 MB subtype accounts for about 25% of MB diagnoses and is associated with the most unfavorable outcomes. Herein, we report that more than half of group 3 MB tumors express melanoma antigens (MAGEs), which are potential prognostic and therapeutic markers. MAGEs are tumor antigens, expressed in several types of adult cancers and associated with poorer prognosis and therapy resistance; however, their expression in pediatric cancers is mostly unknown. The aim of this study was to determine whether MAGEs are activated in pediatric MB. Methods To determine MAGE frequency in pediatric MB, we obtained formalin-fixed paraffin-embedded tissue (FFPE) samples of 34 patients, collected between 2008 - 2015, from the Children's Medical Center Dallas pathology archives and applied our validated reverse transcription quantitative PCR (RT-qPCR) assay to measure the relative expression of 23 MAGE cancer-testis antigen genes. To validate our data, we analyzed several published datasets from pediatric MB patients and patient-derived orthotopic xenografts, totaling 860 patients. We then examined how MAGE expression affects the growth and oncogenic potential of medulloblastoma cells by CRISPR-Cas9- and siRNA-mediated gene depletion. Results Our RT-qPCR analysis suggested that MAGEs were expressed in group 3/4 medulloblastoma. Further mining of bulk and single-cell RNA-sequencing datasets confirmed that 50-75% of group 3 tumors activate a subset of MAGE genes. Depletion of MAGEAs, B2, and Cs alter MB cell survival, viability, and clonogenic growth due to decreased proliferation and increased apoptosis. Conclusions These results indicate that targeting MAGEs in medulloblastoma may be a potential therapeutic option for group 3 medulloblastomas. Key Points Several Type I MAGE CTAs are expressed in >60% of group 3 MBs. Type I MAGEs affect MB cell proliferation and apoptosis. MAGEs are potential biomarkers and therapeutic targets for group 3 MBs. Importance of the Study This study is the first comprehensive analysis of all Type I MAGE CTAs ( MAGEA , -B , and -C subfamily members) in pediatric MBs. Our results show that more than 60% of group 3 MBs express MAGE genes, which are required for the viability and growth of cells in which they are expressed. Collectively, these data provide novel insights into the antigen landscape of pediatric MBs. The activation of MAGE genes in group 3 MBs presents potential stratifying and therapeutic options. Abstract Figure
Collapse
|