1
|
Liu S, Chen L, Shang Y. CEACAM5 exacerbates asthma by inducing ferroptosis and autophagy in airway epithelial cells through the JAK/STAT6-dependent pathway. Redox Rep 2025; 30:2444755. [PMID: 39844719 PMCID: PMC11758806 DOI: 10.1080/13510002.2024.2444755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology. METHODS Bioinformatics was used to identify key asthmarelated genes. An ovalbumin-sensitized mouse model and an IL-13-stimulated Beas-2B cell model were established for further investigation. RESULTS Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a crucial gene in asthma. CEACAM5 expression was elevated in asthmatic mouse lung tissues and IL-13-stimulated Beas-2B cells, primarily in bronchial epithelial cells. CEACAM5 induced reactive oxygen species (ROS), lipid peroxidation, and ferroptosis. Interfering with CEACAM5 reduced ROS, malondialdehyde levels, and enhanced antioxidant capacity, while inhibiting iron accumulation and autophagy. Overexpression of CEACAM5 in IL-13-stimulated cells activated the JAK/STAT6 pathway, which was necessary for CEACAM5-induced autophagy, ROS accumulation, lipid peroxidation, and ferroptosis. CONCLUSION CEACAM5 promotes ferroptosis and autophagy in airway epithelial cells via the JAK/STAT6 pathway, exacerbating asthma symptoms. It represents a potential target for clinical treatment.
Collapse
Affiliation(s)
- Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Li Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 PMCID: PMC11801284 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
4
|
Peng K, Zhao G, Zhao H, Noda NN, Zhang H. The autophagy protein ATG-9 regulates lysosome function and integrity. J Cell Biol 2025; 224:e202411092. [PMID: 40202485 PMCID: PMC11980680 DOI: 10.1083/jcb.202411092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The transmembrane autophagy protein ATG9 has multiple functions essential for autophagosome formation. Here, we uncovered a novel function of ATG-9 in regulating lysosome biogenesis and integrity in Caenorhabditis elegans. Through a genetic screen, we identified that mutations attenuating the lipid scrambling activity of ATG-9 suppress the autophagy defect in epg-5 mutants, in which non-degradative autolysosomes accumulate. The scramblase-attenuated ATG-9 mutants promote lysosome biogenesis and delivery of lysosome-localized hydrolases and also facilitate the maintenance of lysosome integrity. Through manipulation of phospholipid levels, we found that a reduction in phosphatidylethanolamine (PE) also suppresses the autophagy defects and lysosome damage associated with impaired lysosomal degradation. Our results reveal that modulation of phospholipid composition and distribution, e.g., by attenuating the scramblase activity of ATG-9 or reducing the PE level, regulates lysosome function and integrity.
Collapse
Affiliation(s)
- Kangfu Peng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guoxiu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
5
|
Cheung YWS, Nam SE, Fairlie GMJ, Scheu K, Bui JM, Shariati HR, Gsponer J, Yip CK. Structure of the human autophagy factor EPG5 and the molecular basis of its conserved mode of interaction with Atg8-family proteins. Autophagy 2025; 21:1173-1191. [PMID: 39809444 DOI: 10.1080/15548627.2024.2447213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood. Here, we report the first structure of human EPG5 (HsEPG5) determined by cryo-EM and AlphaFold2 modeling. Our structure revealed that HsEPG5 is constructed from helical bundles analogous to tethering factors in membrane trafficking pathways but contains a unique protruding thumb domain positioned adjacent to the atypical tandem LIR motifs involved in interaction with the GABARAP subfamily of Atg8-family proteins. Our NMR spectroscopic, molecular dynamics simulations and AlphaFold modeling studies showed that the HsEPG5 tandem LIR motifs only bind the canonical LIR docking site (LDS) on GABARAP without engaging in multivalent interaction. Our co-immunoprecipitation analysis further indicated that full-length HsEPG5-GABARAP interaction is mediated primarily by LIR1. Finally, our biochemical affinity isolation, X-ray crystallographic analysis, affinity measurement, and AlphaFold modeling demonstrated that this mode of binding is observed between Caenorhabditis elegans EPG-5 and its Atg8-family proteins LGG-1 and LGG-2. Collectively our work generated novel insights into the structural properties of EPG5 and how it potentially engages with the autophagosome to confer fusion specificity.ABBREVIATIONS: ATG: autophagy related; CSP: chemical shift perturbation; eGFP: enhanced green fluoresent protein; EM: electron microscopy; EPG5: ectopic P-granules 5 autophagy tethering factor; GST: glutathione S-transferase; HP: hydrophobic pocket; HSQC: heteronuclear single-quantum correlation; ITC: isothermal titration calorimetry; LDS: LC3 docking site; LIR: LC3-interacting region; MD: molecular dynamics; NMR: nuclear magnetic resonance; TEV: tobacco etch virus.
Collapse
Affiliation(s)
- Yiu Wing Sunny Cheung
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Sung-Eun Nam
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Gage M J Fairlie
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Karlton Scheu
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jennifer M Bui
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Hannah R Shariati
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Ma Y, Wang Y, Wang S, Wang H, Zhao Y, Peng C, Liu X, Yang J. Regulatory roles of non-coding RNAs in programmed cell death pathways and drug resistance in gastrointestinal stromal tumors. Clin Exp Med 2025; 25:150. [PMID: 40347390 PMCID: PMC12065685 DOI: 10.1007/s10238-025-01667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/02/2025] [Indexed: 05/12/2025]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by KIT or PDGFRA mutations. Programmed cell death (PCD), including apoptosis, autophagy, and ferroptosis, plays a crucial role in GIST pathogenesis, progression, and treatment response. Non-coding RNAs (ncRNAs) have emerged as key regulators of PCD pathways, influencing GIST proliferation, metastasis, and drug resistance, particularly in response to tyrosine kinase inhibitors (TKIs) such as imatinib. Apoptosis suppression is strongly associated with poor prognosis, while autophagy contributes to tumor dormancy and TKI resistance. Ferroptosis, a novel iron-dependent cell death pathway, represents a promising therapeutic target. Recent evidence suggests that ncRNAs modulate these PCD pathways through interactions with key molecular regulators such as miR-494, miR-30a, and lncRNAs, which affect signaling networks including PI3K/AKT, MAPK, and mTOR. Furthermore, ncRNAs have mediated secondary resistance to imatinib by promoting autophagic flux and altering ferroptosis sensitivity. Understanding the molecular interplay between ncRNAs and PCD in GIST provides novel insights into disease mechanisms and offers potential therapeutic strategies to overcome drug resistance. Targeting ncRNA-mediated regulation of apoptosis, autophagy, and ferroptosis may enhance treatment efficacy and improve patient outcomes. Future research should focus on elucidating the mechanistic roles of ncRNAs in PCD pathways to develop innovative diagnostic and therapeutic approaches for GIST.
Collapse
Affiliation(s)
- Yuxuan Ma
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuhao Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Shu Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
| | - Haoyuan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chaosheng Peng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Liu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianjun Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
7
|
Yang N, Lai Y, Yu G, Zhang X, Shi J, Xiang L, Zhang J, Wu Y, Jiang X, Zhang X, Yang L, Gao W, Ding J, Wang X, Xiao J, Zhou K. METTL3-dependent m 6A modification of SNAP29 induces "autophagy-mitochondrial crisis" in the ischemic microenvironment after soft tissue transplantation. Autophagy 2025:1-24. [PMID: 40340690 DOI: 10.1080/15548627.2025.2493455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Necrosis at the ischemic distal end of flap transplants increases patients' pain and economic burden. Reactive oxygen species (ROS) and mitochondrial damage are crucial in regulating parthanatos, but the mechanisms linking disrupted macroautophagic/autophagic flux to parthanatos in ischemic flaps remain unclear. The results of western blotting, immunofluorescence staining, and a proteomic analysis revealed that the autophagic protein SNAP29 was deficient in ischemic flaps, resulting in disrupted autophagic flux, increased ROS-induced parthanatos, and aggravated ischemic flap necrosis. The use of AAV vector to restore SNAP29 in vivo mitigated the disruption of autophagic flux and parthanatos. Additionally, quantification of the total m6A level and RIP-qPCR, MeRIP-qPCR, and RNA stability assessments were performed to determine differential Snap29 mRNA m6A methylation levels and mRNA stability in ischemic flaps. Various in vitro and in vivo tests were conducted to verify the ability of METTL3-mediated m6A methylation to promote SNAP29 depletion and disrupt autophagic flux. Finally, we concluded that restoring SNAP29 by inhibiting METTL3 and YTHDF2 reversed the "autophagy-mitochondrial crisis", defined for the first time as disrupted autophagic flux, mitochondrial damage, mitochondrial protein leakage, and the occurrence of parthanatos. The reversal of this crisis ultimately promoted the survival of ischemic flaps.Abbreviations: AAV = adeno-associated virus; ACTA2/α-SMA = actin alpha 2, smooth muscle, aorta; AIFM/AIF = apoptosis-inducing factor, mitochondrion-associated; ALKBH5 = alkB homolog, RNA demythelase; Baf A1 = bafilomycin A1; CQ = chloroquine; DHE = dihydroethidium; ECs = endothelial cells; F-CHP = 5-FAM-conjugated collagen-hybridizing peptide; GO = gene ontology; HUVECs = human umbilical vein endothelial cells; KEGG = Kyoto Encyclopedia of Genes and Genomes; LC-MS/MS = liquid chromatography-tandem mass spectrometry; LDBF = laser doppler blood flow; m6A = N6-methyladenosine; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MeRIP = methylated RNA immunoprecipitation; METTL3 = methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit; NAC = N-acetylcysteine; OGD = oxygen glucose deprivation; PAR = poly (ADP-ribose); PARP1 = poly (ADP-ribose) polymerase family, member 1; PECAM1/CD31 = platelet/endothelial cell adhesion molecule 1; ROS = reactive oxygen species; RT-qPCR = reverse transcription quantitative polymerase chain reaction; RIP = RNA immunoprecipitation; SNAP29 = synaptosomal-associated protein 29; SNARE = soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1 = sequestosome 1; SRAMP = sequence-based RNA adenosine methylation site predicting; STX17 = syntaxin 17; TMT = tandem mass tag; TUNEL = terminal deoxynucleotidyl transferase dUTP nick end labeling; VAMP8 = vesicle-associated membrane protein 8; WTAP = WT1 associating protein; YTHDF2 = YTH N6-methyladenosine RNA binding protein 2; 3' UTR = 3'-untranslated region.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xuzi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jingwei Shi
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqiong Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanlong Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangliang Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| |
Collapse
|
8
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Wang Y, Wang Y, Li B, Shao Y, Chen H, Gong M, Zhang R, Liu Y, Chen W, Li N, Zou G. Multilayered regulation of autophagy-related protein kinase in Cordyceps militaris. Int J Biol Macromol 2025; 311:143523. [PMID: 40324504 DOI: 10.1016/j.ijbiomac.2025.143523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Autophagy is a general eukaryotic mechanism for the degradation and recycling of macromolecules and organelles, whereby the ATG1-kinase complex plays a crucial initiator role. To understand the role of autophagy-related genes in the growth and development of the entomopathogenic parasitoid fungus Cordyceps militaris, we constructed ΔCmATG1 and ΔCmATG13 knockout strains. Compared with the wild type, both knockout strains exhibited severe defects in terms of hyphal morphology, fruiting body formation, conidial production and germination rates, pathogenicity, as well as growth rates under nutritional stress. Moreover, the content of cordycepin, ergosterol, and the levels of phospholipids all exhibited significant decreases, indicating that both ΔCmATG1 and ΔCmATG13 impaired autophagy in the respective knockout strains. Comparative transcriptomic analysis of the wild type and ΔCmATG1 revealed that differentially expressed genes were mainly enriched in phosphoglyceride metabolism, the MAPK signaling pathway, and autophagy-related processes. Taken together, these results demonstrate that the ATG1-kinase complex plays a crucial role in the development of fruiting bodies in C. militaris. This study lays a foundation for further analysis of the molecular mechanisms underlying the role of autophagy in the formation of macrofungal fruiting bodies.
Collapse
Affiliation(s)
- Yating Wang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Wang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bing Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Youran Shao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ruijing Zhang
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yu Liu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wenjing Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Nanyi Li
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China.
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
10
|
Lipovšek S, Vajs T, Dariš B, Novak T, Kozel P. Autophagic activity in the midgut cells of three arachnids responds selectively to different modes of overwintering in caves. PROTOPLASMA 2025; 262:531-544. [PMID: 39630263 DOI: 10.1007/s00709-024-02009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 11/14/2024] [Indexed: 04/24/2025]
Abstract
Autophagy is a highly conserved metabolic process that regulates cellular homeostasis and energy supply by degrading dysfunctional and excess cell constituents and reserve materials into products that are reused in metabolic and biosynthetic pathways. Macroautophagy is the best studied form of autophagy in invertebrates. Starvation is a common stress factor triggering autophagy in overwintering animals. In arachnids, the midgut diverticula cells perform many vital metabolic functions and are therefore critically involved in the response to starvation. Here we studied macroautophagy in three species which apply different modes for overwintering in caves: the harvestmen Gyas annulatus in diapause, Amilenus aurantiacus with ongoing ontogenesis under fasting conditions, and the spider Meta menardi, which feeds opportunistically even in winter. The main goal was to find eventual qualitative and quantitative differences in autophagic processes by inspecting TEM micrographs. In all three species, the rates of midgut epithelial cells with autophagic structures gradually increased during overwintering, but were significantly lower in G. annulatus in the middle and at the end of overwintering than in the other two species, owing to metabolic activity having been more suppressed. Decomposition of mitochondria and glycogen took place in autophagic structures in all three species. Moreover, spherite disintegration in A. aurantiacus and a special form of lipid disintegration through "lipid bubbly structures" in M. menardi indicate the crucial involvment of selective autophagy, while no specific autophagy was observed in G. annulatus. We conclude that autophagic activities support overwintering in different ways in the species studied.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Division of Cell Biology, Gottfried Schatz Research Center, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Tanja Vajs
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
- Research Centre of the Slovenian Academy of Science and Arts, Karst Research Institute, Titov trg 2, 6230, Postojna, Slovenia.
| |
Collapse
|
11
|
Zhao G, Qi J, Li F, Ma H, Wang R, Yu X, Wang Y, Qin S, Wu J, Huang C, Ren H, Zhang B. TRAF3IP3 Induces ER Stress-Mediated Apoptosis with Protective Autophagy to Inhibit Lung Adenocarcinoma Proliferation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411020. [PMID: 40068093 PMCID: PMC12061266 DOI: 10.1002/advs.202411020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/17/2025] [Indexed: 05/10/2025]
Abstract
TNF receptor-associated factor 3 interacting protein 3 (TRAF3IP3/T3JAM) exhibits dual roles in cancer progression. While upregulated in most malignancies and critical for immune regulation. However, the specific effects and molecular mechanisms of TRAF3IP3 on the progression of lung adenocarcinoma (LUAD) remains poorly understood. This study reveals TRAF3IP3 is upregulated in several tumor tissues but exclusively decreased in LUAD and Lung squamous cell carcinoma (LUSC) tissues, consequential in a favorable overall survival (OS) in LUAD rather than LUSC. Herein, it is reported that TRAF3IP3 can suppress cell proliferation and promote the apoptosis rate of LUAD cells by inducing excessive ER stress-related apoptosis. Importantly, TRAF3IP3 triggers ER stress via the PERK/ATF4/CHOP pathway, accompanied by stimulated ER stress-induced cytoprotective autophagy in LUAD cells. Through IP-MS analysis, STRN3 is identified as a direct downstream interactor with TRAF3IP3 and corroborated to regulate ER stress positively. Mechanistically, TRAF3IP3 facilitates the recruitment of STRN3 to the ER lumen through its transmembrane domain and fulfills its functional role in ER stress in an STRN3-dependent manner in LUAD cells. Given its dual role in orchestrating ER stress-associated apoptosis and autophagy in LUAD cell fate determination, the importance of TRAF3IP3 is highlighted as novel therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Guang Zhao
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
- Department of Thoracic SurgerySichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's HospitalChengduSichuan610072China
| | - Jun Qi
- Department of DermatologyGansu Provincial Maternity and Child‐care Hospital (Gansu Provincial Central Hospital)Lan ZhouGansu730079China
| | - Fang Li
- Institute of Basic Medical SciencesXi'an Medical UniversityNo.1 XinWang Road, Weiyang DistrictXi'anShaanxi710021China
| | - Haotian Ma
- Health Science CenterXi'an Jiaotong UniversityXi'an710061China
| | - Rui Wang
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| | - Xiuyi Yu
- Department of Thoracic Surgerythe First Affiliated Hospital of Xiamen UniversityXiamen361003China
| | - Yufei Wang
- Health Science CenterXi'an Jiaotong UniversityXi'an710061China
| | - Sida Qin
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| | - Jie Wu
- Department of Radiation OncologyShaanxi Provincial People's HospitalXi'anShaanxi710061China
| | - Chen Huang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anShaanxi710061China
| | - Hong Ren
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| | - Boxiang Zhang
- Department of Thoracic Surgerythe First Affiliated Hospital of Xi'an Jiaotong University277 West Yanta Road, Xi'anXi'anShaanxi710061China
| |
Collapse
|
12
|
Huang Y, Yu S, Liu S, Zhao X, Chen X, Wei X. Autophagy Activated by Atg1 Interacts With Atg9 Promotes Biofilm Formation and Resistance of Candida albicans. J Basic Microbiol 2025; 65:e2400603. [PMID: 39722442 DOI: 10.1002/jobm.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Autophagy regulates the development of Candida albicans (C. albicans) biofilms and their sensitivity to antifungals. Atg1, a serine/threonine protein kinase, recruits autophagy-related proteins for autophagosome formation. Atg9, the only transmembrane protein, is phosphorylated by Atg1 during autophagy. The specific roles of Atg1 and Atg9 in biofilm formation and resistance of C. albicans remain unclear. The study used RT-qPCR and Western blotting to assess the correlation between Atg1, Atg9 and biofilm formation, XTT reduction assays to evaluate biofilm formation and antifungal resistance, commercial kits to detect reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and autophagy activity, transmission electron microscopy (TEM) to study the morphological changes, protein-protein interaction (PPI) analysis to analyze the interaction between Atg1 and Atg9. Results demonstrated that Atg1 and Atg9 were highly expressed in biofilms than planktonic cells. Biofilm formation, antifungal resistance, MMP and autophagy activity decreased and ROS increased in atg1Δ/Δ and atg9Δ/Δ. TORC1 inhibition with rapamycin rescued the reduced biofilm formation of atg1Δ/Δ and increased antifungal resistance of atg1Δ/Δ and atg9Δ/Δ. PPI analysis and TEM observation indicated that Atg1 interacted with Atg9, which was certified by RT-qPCR and Western blotting. This study suggested that Atg1 interacts with Atg9, activates the autophagy regulating the formation and sensitivity of C. albicans biofilms.
Collapse
Affiliation(s)
- Yun Huang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shenjun Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Siqi Liu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Zhao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xueyi Chen
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wei
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Liang JL, Cao Y, Lv K, Xiao B, Sun J. Amplifying Ca 2+ overload by engineered biomaterials for synergistic cancer therapy. Biomaterials 2025; 316:123027. [PMID: 39700532 DOI: 10.1016/j.biomaterials.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ overload is one of the most widely causes of inducing apoptosis, pyroptosis, immunogenic cell death, autophagy, paraptosis, necroptosis, and calcification of tumor cells, and has become the most valuable therapeutic strategy in the field of cancer treatment. Nevertheless, several challenges remain in translating Ca2+ overload-mediated therapeutic strategies into clinical applications, such as the precise control of Ca2+ dynamics, specificity of Ca2+ homeostasis dysregulation, as well as comprehensive mechanisms of Ca2+ regulation. Given this, we comprehensively reviewed the Ca2+-driven intracellular signaling pathways and the application of Ca2+-based biomaterials (such as CaCO3-, CaP-, CaO2-, CaSi-, CaF2-, and CaH2-) in mediating cancer diagnosis, treatment, and immunotherapy. Meanwhile, the latest researches on Ca2+ overload-mediated therapeutic strategies, as well as those combined with multiple-model therapies in mediating cancer immunotherapy are further highlighted. More importantly, the critical challenges and the future prospects of the Ca2+ overload-mediated therapeutic strategies are also discussed. By consolidating recent findings and identifying future research directions, this review aimed to advance the field of oncology therapy and contribute to the development of more effective and targeted treatment modalities.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yangyang Cao
- Hangzhou Ultra-theranostics Biopharmaceuticals Technology Co., Ltd., Hangzhou, 311231, China
| | - Kaiwei Lv
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Xiao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
14
|
Bui V, Liang X, Ye Y, Giang W, Tian F, Takahashi Y, Wang HG. Blocking autophagosome closure manifests the roles of mammalian Atg8-family proteins in phagophore formation and expansion during nutrient starvation. Autophagy 2025; 21:1059-1074. [PMID: 39694607 PMCID: PMC12013414 DOI: 10.1080/15548627.2024.2443300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved cellular degradation pathway, involves phagophores that sequester cytoplasmic constituents and mature into autophagosomes for subsequent lysosomal delivery. The ATG8 gene family, comprising the MAP1LC3/LC3 and GABARAP/GBR subfamilies in mammals, encodes ubiquitin-like proteins that are conjugated to phagophore membranes during autophagosome biogenesis. A central question in the field is how Atg8-family proteins are precisely involved in autophagosome formation, which remains controversial and challenging, at least in part due to the short lifespan of phagophores. In this study, we depleted the autophagosome closure regulator VPS37A to arrest autophagy at the vesicle completion step and determined the roles of mammalian Atg8-family proteins (mATG8s) in nutrient starvation-induced autophagosome biogenesis. Our investigation revealed that LC3 loss hinders phagophore formation, while GBR loss impedes both phagophore formation and expansion. The defect in membrane expansion by GBR loss appears to be attributed to compromised recruitment of ATG proteins containing an LC3-interacting region (LIR), including ULK1 and ATG3. Moreover, a combined deficiency of both LC3 and GBR subfamilies nearly completely inhibits phagophore formation, highlighting their redundant regulation of this process. Consequently, cells lacking all mATG8 members exhibit defects in downstream events such as ESCRT recruitment and autophagic flux. Collectively, these findings underscore the critical roles of mammalian Atg8-family proteins in phagophore formation and expansion during autophagy.Abbreviation: AIM: Atg8-family interacting motif; ADS: Atg8-interacting motif docking site; ATG: autophagy related; BafA1: bafilomycin A1; CL: control; ESCRT: endosomal sorting complex required for transport; FACS: fluorescence activated cell sorting; GBR: GABARAP; GBRL1: GABARAPL1; GBRL2: GABARAPL2; GBRL3: GABARAPL3; HKO: hexa-knockout; IP: immunoprecipitation; KO: knockout; LDS: LC3-interacting-region docking site; LIR: LC3-interacting region; mATG8: mammalian Atg8-family protein; MIL: membrane-impermeable ligands; MPL: membrane-permeable ligands; RT: room temperature; Stv: starved; TKO: triple-knockout; TMR: tetramethylrhodamine; UEVL: ubiquitin E2 variant-like; WCLs: whole cell lysates; WT: wild-type.
Collapse
Affiliation(s)
- Van Bui
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xinwen Liang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yansheng Ye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - William Giang
- Advanced Light Microscopy Core Facility, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yoshinori Takahashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
15
|
Zheng X, Fang D, Shan H, Xiao B, Wei D, Ouyang Y, Huo L, Zhang Z, Wu Y, Zhang R, Kang T, Gao Y. The assembly of RAB22A/TMEM33/RTN4 initiates a secretory ER-phagy pathway. Cell Discov 2025; 11:41. [PMID: 40301304 PMCID: PMC12041605 DOI: 10.1038/s41421-025-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Rafeesome, a newly identified multivesicular body (MVB)-like organelle, forms through the fusion of RAB22A-mediated ER-derived noncanonical autophagosomes with RAB22A-positive early endosomes. However, the mechanism underlying the formation of RAB22A-mediated noncanonical autophagosomes remains unclear. Herein, we report a secretory ER-phagy pathway in which the assembly of RAB22A/TMEM33/RTN4 induces the clustering of high-molecular-weight RTN4 oligomers, leading to ER membrane remodeling. This remodeling drives the biogenesis of ER-derived RTN4-positive noncanonical autophagosomes, which are ultimately secreted as TMEM33-marked RAB22A-induced extracellular vesicles (R-EVs) via Rafeesome. Specifically, RAB22A interacts with the tubular ER membrane protein TMEM33, which binds to the TM2 domain of the ER-shaping protein RTN4, promoting RTN4 homo-oligomerization and thereby generating RTN4-enriched microdomains. Consequently, the RTN4 microdomains may induce high curvature of the ER, facilitating the bud scission of RTN4-positive vesicles. These vesicles are transported by ATG9A and develop into isolation membranes (IMs), which are then anchored by LC3-II, a process catalyzed by the ATG12-ATG5-ATG16L1 complex, allowing them to grow into sealed RTN4 noncanonical autophagosome. While being packaged into these ER-derived intermediate compartments, ER cargoes bypass lysosomal degradation and are directed to secretory autophagy via the Rafeesome-R-EV route. Our findings reveal a secretory ER-phagy pathway initiated by the assembly of RAB22A/TMEM33/RTN4, providing new insights into the connection between ER-phagy and extracellular vesicles.
Collapse
Affiliation(s)
- Xueping Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Dongmei Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Hao Shan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Beibei Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Denghui Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yingyi Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Lanqing Huo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Zhonghan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China.
| | - Ying Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Liu H, Wang X, Li B, Xiang Z, Zhao Y, Lu M, Lin Q, Zheng S, Guan T, Zhang Y, Hu Y. LncRNA HITT inhibits autophagy by attenuating ATG12-ATG5-ATG16L1 complex formation. Cancer Lett 2025; 616:217532. [PMID: 40021040 DOI: 10.1016/j.canlet.2025.217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Dysregulated autophagy has been implicated in the pathogenesis of numerous diseases, including cancer. Despite extensive research on the underlying mechanisms of autophagy, the involvement of long non-coding RNAs (lncRNAs) remains poorly understood. Here, we demonstrate that a previously identified lncRNA, HITT (HIF-1α inhibitor at the translation level), is closely associated with biological processes such as autophagy through unbiased bioinformatic analysis. Subsequent studies demonstrate that HITT is increased by several autophagic stimuli, including PI-103, a potent inhibitor of PI3K and mTOR. This is caused by a reduction in the binding between HITT and AGO2, resulting in a reduction in the activity of miR-205 towards HITT degradation. Increased HITT then binds to a key autophagy protein, Autophagy-related 5 (ATG5), and inhibits autophagosome formation by preventing the formation of the ATG12-ATG5-ATG16L1 complex. This results in HITT sensitizing PI-103-mediated cell death both in vitro and in vivo in nude mice by attenuating protective autophagy. The data presented herein demonstrate that HITT is a newly identified RNA regulator of autophagy and that it can be used to sensitize the colon cancer response to cell death by blocking the protective autophagy.
Collapse
Affiliation(s)
- Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Bolun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Qingyu Lin
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yihong Zhang
- Department of Endocrinology, Heilongjiang Province Hospital, Harbin, Heilongjiang Province, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China.
| |
Collapse
|
17
|
Song JZ, Li H, Yang H, Liu R, Zhang W, He T, Xie MX, Chen C, Cui L, Wu S, Rong Y, Pan LF, Zhu J, Gong Q, Wang J, Qin Z, Xie Z. Recruitment of Atg1 to the phagophore by Atg8 orchestrates autophagy machineries. Nat Struct Mol Biol 2025:10.1038/s41594-025-01546-0. [PMID: 40295771 DOI: 10.1038/s41594-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Autophagy-related (Atg) proteins catalyze autophagosome formation at the phagophore assembly site (PAS). The assembly of Atg proteins at the PAS follows a semihierarchical order, in which Atg8 is thought to be quite downstream but still able to control the size of autophagosomes. Yet, how Atg8 coordinates multiple branches of autophagy machinery to regulate autophagosomal size is not clear. Here, we show that, in yeast, Atg8 positively regulates the autophagy-specific phosphatidylinositol 3-OH kinase complex and the retrograde trafficking of Atg9 vesicles through interaction with Atg1. Mechanistically, Atg8 does not enhance the kinase activity of Atg1; instead, it recruits Atg1 to the surface of the phagophore likely to orient Atg1's activity toward select substrates, leading to efficient phagophore expansion. Artificial tethering of Atg1 kinase domains to Atg8s enhanced autophagy in yeast, human and plant cells and improved muscle performance in worms. We propose that Atg8-mediated relocation of Atg1 from the PAS scaffold to the phagophore is a critical step in positive autophagy regulation.
Collapse
Affiliation(s)
- Jing-Zhen Song
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Meng-Xi Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shian Wu
- School of Life Sciences, Nankai University, Tianjin, China
| | - Yueguang Rong
- School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Feng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| | - Zhao Qin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
19
|
Liu Q, Hao T, Yang B, Zhang J, Pan S, Wu C, Tang Y, Zhou Y, Zhao Z, Du J, Li Y, Mai K, Ai Q. Autophagy dysfunction links palmitic acid with macrophage inflammatory responses in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2025; 163:110319. [PMID: 40209962 DOI: 10.1016/j.fsi.2025.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Autophagy is a cellular degradation process reliant on lysosome, crucial for preserving intracellular homeostasis. The key saturated fatty acid palmitic acid (PA) has been demonstrated to exert regulatory effects on autophagic activity in mammals. However, the precise impact of PA on autophagy and its role in fish remains incompletely understood. Thus, this study aimed to investigate the regulation of PA on autophagy and explore the role of autophagy in inflammatory responses triggered by PA in the head kidney macrophages of large yellow croaker. This study indicates that PA exposure can inhibit macrophage autophagy by reducing the expression of genes related to autophagy (e.g., beclin1, ulk1, and lc3), activating the negative regulator mTORC1 signaling pathway (p70S6K and S6), and hindering autophagic flux. This effect was observed to be amplified with increasing exposure time and concentration of PA. Similarly to the in vitro results, the palm oil (PO) diet significantly reduced autophagic activity in the head kidney of the croaker in vivo. Subsequent studies demonstrated that restoring autophagy led to a notable reduction in the expression of PA and PO-induced pro-inflammatory genes (il-1β, il-6, tnf-α, and cox-2), the activation of the MAPK signaling pathway (p38 and JNK), and the NLRP3 inflammasome levels, both in vitro and in vivo. In contrast, further inhibition of autophagy produced the opposite effect in vitro. In conclusion, this study demonstrates that PA exerts a dynamic inhibitory effect on autophagy in the head kidney macrophage, which in turn promotes PA-induced inflammatory responses. These findings provide valuable insights into how PA influences autophagy and inflammatory responses in fish immune cells, contributing to the theoretical framework for improving the use of vegetable oils in aquaculture.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Bingyuan Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Jinze Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Shijie Pan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Caixia Wu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yan Zhou
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China.
| |
Collapse
|
20
|
Arakawa M, Uriu K, Saito K, Hirose M, Katoh K, Asano K, Nakane A, Saitoh T, Yoshimori T, Morita E. HEATR3 recognizes membrane rupture and facilitates xenophagy in response to Salmonella invasion. Proc Natl Acad Sci U S A 2025; 122:e2420544122. [PMID: 40178893 PMCID: PMC12002282 DOI: 10.1073/pnas.2420544122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial invasion into the cytoplasm of epithelial cells triggers the activation of the cellular autophagic machinery as a defense mechanism, a process known as xenophagy. In this study, we identified HEATR3, an LC3-interacting region (LIR)-containing protein, as a factor involved in this defense mechanism using quantitative mass spectrometry analysis. HEATR3 localizes intracellularly invading Salmonella, and HEATR3 deficiency promotes Salmonella proliferation in the cytoplasm. HEATR3 also localizes to lysosomes damaged by chemical treatment, suggesting that Salmonella recognition is facilitated by damage to the host cell membrane. HEATR3 deficiency impairs LC3 recruitment to damaged membranes and blocks the delivery of the target to the lysosome. These phenotypes were rescued by exogenous expression of wild-type HEATR3 but not by the LIR mutant, indicating the crucial role of the HEATR3-LC3 interaction in the receptor for selective autophagy. HEATR3 is delivered to lysosomes in an autophagy-dependent manner. Although HEATR3 recruitment to the damaged membrane was unaffected by ATG5 or FIP200 deficiency, it was markedly impaired by treatment with a calcium chelator, suggesting involvement upstream of the autophagic pathway. These findings suggest that HEATR3 serves as a receptor for selective autophagy and is able to identify damaged membranes, facilitate the removal of damaged lysosomes, and target invading bacteria within cells.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Keiya Uriu
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Koki Saito
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Mai Hirose
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Diseases for Education and Research, Suita, Osaka565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita565-0871, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| |
Collapse
|
21
|
Liu B, Yin X, Wei H, Zhang X, Peng Y, Bi H, Guo D. MiR-30b-5p ameliorates experimental autoimmune uveitis by inhibiting the Atg5/Atg12/Becn1 Axis. Int Immunopharmacol 2025; 151:114370. [PMID: 40020463 DOI: 10.1016/j.intimp.2025.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
CONTEXT Uveitis is a severe autoimmune eye disease that poses a significant threat to visual health. Autophagy is essential for maintaining cellular homeostasis and becomes dysregulated in autoimmune conditions like uveitis. MicroRNAs (miRNAs) can influence autophagy and apoptosis by targeting autophagy-related genes (Atg). OBJECTIVE This study aimed to investigate the role of miR-30b-5p in regulating autophagy-related genes and to explore its therapeutic potential in experimental autoimmune uveitis (EAU). MATERIALS AND METHODS EAU was induced and RT(Vega-Tapia et al., 2021 [2]) Profiler PCR Arrays were used to identify significant interactions among Atg genes and their role in uveitic pathogenesis. Both in vitro and in vivo experiments were used to assess the expression of Atg-related genes. Additionally, miR-30b-5p-carrying lentivirus injections were administered, and the levels of Atg5, Atg12, and Becn1 were measured, along with autophagosome formation through electron microscopy. Meanwhile, we also assessed inflammatory markers (i.e., IL-10, IL-17), the Th17/Treg ratio, and apoptosis. RESULTS In vitro experiments demonstrated that miR-30b-5p led to decreased expression of Atg5, Atg12, and Becn1, which resulted in a lower number of autophagosomes. In vivo validation confirmed these outcomes, showing reduced mRNA and protein levels of Atg-related molecules and diminished autophagosome formation after the injection of miR-30b-5p. Furthermore, miR-30b-5p exhibited anti-inflammatory effects by increasing IL-10 levels and decreasing IL-17, thereby improving the balance of the Th17/Treg ratio. CONCLUSION This study highlights the importance of autophagy in the pathogenesis of uveitis and identifies miR-30b-5p as a regulator of autophagy and inflammation. Targeting miR-30b-5p presents a promising therapeutic approach for treating uveitis.
Collapse
Affiliation(s)
- Bin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Huixia Wei
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#, Yingxiongshan Road, Jinan 250002, China.
| |
Collapse
|
22
|
Ungermann C, Moeller A. Structuring of the endolysosomal system by HOPS and CORVET tethering complexes. Curr Opin Cell Biol 2025; 94:102504. [PMID: 40187049 DOI: 10.1016/j.ceb.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Eukaryotic cells depend on their endolysosomal system for membrane protein and organelle turnover, plasma membrane quality control, or regulation of their nutrient uptake. All material eventually ends up in the lytic environment of the lysosome for cellular recycling. At endosomes and lysosomes, the multisubunit complexes CORVET and HOPS tether membranes by binding both their cognate Rab GTPase and specific membrane lipids. Additionally, they carry one Sec1/Munc18-like subunit at their center and thus promote SNARE assembly and, subsequently, bilayer mixing. Recent structural and functional analysis provided insights into their organization and suggested how these complexes combine tethering with fusion catalysis. This review discusses the function and structural organization of HOPS and CORVET in the context of recent studies in yeast and metazoan cells.
Collapse
Affiliation(s)
- Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Barbarastrasse 11, 49076, Osnabrück, Germany; Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Barbarastrasse 13, 49076, Osnabrück, Germany.
| |
Collapse
|
23
|
Ma X, Gou X, Zhang H. T16G12.6/IMPORTIN 13-mediated cytoplasm-to-nucleus transport of the THAP transcription factor LIN-15B controls autophagy and lysosome function in C. elegans. Autophagy 2025:1-12. [PMID: 40128109 DOI: 10.1080/15548627.2025.2482724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
Transcriptional regulation of genes involved in the macroautophagy/autophagy-lysosome pathway acts as an important mechanism for controlling autophagy activity. The factors that globally regulate autophagy activity at the transcriptional level during C. elegans development remain unknown. Here we showed that the THAP domain-containing transcription factor LIN-15B modulates autophagy activity during C. elegans development. Loss of function of lin-15B suppresses the autophagy defect caused by impaired autophagosome maturation and promotes lysosome biogenesis and function. LIN-15B maintains the repressed state of genes involved in the autophagy pathway. Accordingly, loss of function of lin-15B upregulates a plethora of genes involved in autophagosome formation and maturation as well as lysosome biogenesis and function. The cytoplasm-to-nucleus translocation of LIN-15B is mediated by the T16G12.6/IMPORTIN 13/IPO-13 receptor and modulated by nutrient status. Our study uncovers that LIN-15B integrates environmental cues into transcriptional control of a network of genes involved in autophagy in C. elegans.Abbreviations: ATG: autophagy related; DIC: differential interference contrast; EPG: ectopic PGL granules; ER: endoplasmic reticulum; FOXO: forkhead box O; GFP: green fluorescent protein; SQST-1: SeQueSTosome related 1; SynMuv: synthetic multivulva; IPO-13: importin 13; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Xiaoli Ma
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomeng Gou
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
24
|
Aoki K, Ohkuma M, Sugita T, Kobayashi Y, Tanaka N, Takashima M. Analyses of hyphal diversity in Trichosporonales yeasts based on fluorescent microscopic observations. Microbiol Spectr 2025; 13:e0321024. [PMID: 39998240 PMCID: PMC11960055 DOI: 10.1128/spectrum.03210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
In dimorphic yeasts, hyphal growth is primarily associated with infection and mycosis progression, with Trichosporon asahii causing deep-seated mycosis and summer-type hypersensitivity pneumonitis. Magnesium accelerates hyphal growth in T. asahii, leading to multi-septation, vacuolar expansion, and decreased lipid droplet size. However, the commonality of these phenotypes has not been studied in Trichosporonales yeasts. Therefore, to explore whether similar magnesium-induced phenotypes occur across Trichosporonales yeasts, we examined hyphal growth, multi-septation, vacuolar extension, and lipid droplet size and number in 30 species. Cell length increased with magnesium treatment in 13 yeasts: 5 Trichosporon (T. asahii, Trichosporon aquatile, Trichosporon asteroides, Trichosporon coremiiforme, and Trichosporon ovoides), three Apiotrichum (Apiotrichum brassicae, Apiotrichum montevideense, and Apiotrichum veenhuisii), three Cutaneotrichosporon (Cutaneotrichosporon cavernicola, Cutaneotrichosporon cutaneum, and Cutaneotrichosporon dermatis), Pascua guehoae, and Takashimella koratensis. C. dermatis also underwent pseudo-hyphal growth. Multi-septation increased in seven dimorphic yeasts, including five Trichosporon spp., Trichosporon faecale, and C. dermatis. The vacuolar area was significantly extended in T. asahii, T. aquatile, T. ovoides, and C. dermatis. Lipid droplet size increased only in Trichosporon inkin; however, it decreased in T. asahii, T. coremiiforme, and T. faecale. Additionally, lipid droplet number was preferentially altered in Apiotrichum and Cutaneotrichosporon. These results suggested that magnesium-induced multi-septation and vacuolar area expansion phenotypically distinguish Trichosporon hyphae from Apiotrichum and Cutaneotrichosporon hyphae and distinguish C. dermatis pseudo-hyphae from Cutaneotrichosporon spp. Moreover, differences in lipid droplet size can discriminate species within Trichosporon. Our results suggest that phenotypic alteration via magnesium treatment can contribute to the characterization of Trichosporonales yeasts. These findings provide insights into fungal pathogenesis and may support new treatment strategies.IMPORTANCEMagnesium sulfate considerably affects hyphal growth and cellular organization in Trichosporon asahii. To examine the commonality of this phenotype in Trichosporonales, we treated 30 Trichosporonales yeasts with magnesium sulfate and observed genus-level phenotypic alterations. Using cell length measurement, lipid droplet staining, septum staining, and vacuole staining, considerable hyphal diversity was observed among Trichosporonales. Notably, differences in the multi-septation phenotype and vacuolar size distinguished Trichosporon hyphae from Apiotrichum and Cutaneotrichosporon hyphae and distinguished Cutaneotrichosporon dermatis from other Cutaneotrichosporon spp. Moreover, differences in lipid droplet phenotype divided Trichosporon hyphae into two groups. Our study revealed the relationship between hyphal morphology and phylogenetic systematics in Trichosporonales.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yuuki Kobayashi
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| |
Collapse
|
25
|
Wang J, Guo Y, Hu J, Peng J. STING Activation in Various Cell Types in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int 2025; 45:e70063. [PMID: 40116753 DOI: 10.1111/liv.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND During the hepatic histological progression in metabolic dysfunction-associated steatotic liver disease (MASLD), the immunological mechanisms play a the pivotal role, especially when progressing to metabolic dysfunction-associated steatohepatitis (MASH). The discovery of the stimulator of interferon genes (STING) marked a significant advancement in understanding the immune system. METHODS We searched literature on STING involved in MASLD in PubMed to summarise the role of intrahepatic or extrahepatic STING signal pathways and the potential agonists or inhibitors of STING in MASLD. RESULTS Besides inflammation and type I interferon response induced by STING activation in the intrahepatic or extrahepatic immune cells, STING activation in hepatocytes leads to protein aggregates and lipid deposition. STING activation in hepatic macrophages inhibits autophagy in hepatocytes and promotes hepatic stellate cells (HSCs) activation. STING activation in HSCs promotes HSC activation and exacerbates liver sinusoidal endothelial cells (LSECs) impairment. However, it was also reported that STING activation in hepatic macrophages promotes lipophagy in hepatocytes and STING activation in HSCs leads to HSC senescence. STING activation in LSEC, inhibits angiogenesis. For extrahepatic tissue, STING signalling participates in the regulation of the intestinal permeability, intestinal microecology and insulin action in adipocytes, which were all involved in the pathogenesis of MASLD. CONCLUSION There're plenty of STING ligands in MASLD. How STING activation affects the intercellular conversation in MASLD deserves thorough investigation.
Collapse
Affiliation(s)
- JingJing Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Guo
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
26
|
Wang G, Dai S, Chen J, Zhang K, Huang C, Zhang J, Xie K, Lin F, Wang H, Gao Y, Yin L, Jiang K, Miao Y, Lu Z. USP19 potentiates autophagic cell death via inhibiting mTOR pathway through deubiquitinating NEK9 in pancreatic cancer. Cell Death Differ 2025; 32:702-713. [PMID: 39627360 PMCID: PMC11982380 DOI: 10.1038/s41418-024-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 04/11/2025] Open
Abstract
The ubiquitin-specific protease (USP) family is the largest and most diverse deubiquitinase (DUBs) family and plays a significant role in maintaining cell homeostasis. Dysregulation of USPs has been associated with carcinogenesis of various tumors. We identified that USP19 was downregulated in pancreatic tumor tissues and forced expression of USP19 diminished tumorigenicity of pancreatic cancer. Mechanistically, USP19 directly interacts with and stabilized NEK9 via inhibiting K48-specific polyubiquitination process on NEK9 protein at K525 site through its USP domain. Moreover, NEK9 phosphorylates the regulatory associated protein of mTOR (Raptor) at Ser792 and links USP19 to the inhibition of mTORC1 signaling pathway, which further leads to autophagic cell death of pancreatic cancer cells. Inhibition of autophagy by Atg5 knockdown or lysosome inhibitor bafilomycin A1 abolished the decreased malignant phenotype of USP19- and NEK9-overexpressing cancer cells. Importantly, USP19 expression exhibits a positive correlation with NEK9 expression in clinical samples, and low USP19 or NEK9 expression is associated with a worse prognosis. This study revealed that USP19-mediated NEK9 deubiquitylation is a regulatory mechanism for mTORC1 inhibition and provides a therapeutic target for diseases involving mTORC1 dysregulation.
Collapse
Affiliation(s)
- Guangfu Wang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Shangnan Dai
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jin Chen
- Department of Gynecological Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Kai Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chenyu Huang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Jinfan Zhang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Kunxin Xie
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Fuye Lin
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Huijuan Wang
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Gao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Lingdi Yin
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yi Miao
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| | - Zipeng Lu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
27
|
Guan M, Han X, Liao B, Han W, Chen L, Zhang B, Peng X, Tian Y, Xiao G, Li X, Kuang L, Zhu Y, Bai D. LIPUS Promotes Calcium Oscillation and Enhances Calcium Dependent Autophagy of Chondrocytes to Alleviate Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413930. [PMID: 40013941 PMCID: PMC12021083 DOI: 10.1002/advs.202413930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Osteoarthritis (OA) is a degenerative disease which places an enormous burden on society, effective treatments are still limited. As a non-invasive and safe physical therapy, low-intensity pulsed ultrasound (LIPUS) can alleviate OA progression, but the underlying mechanism is not fully understood, especially the mechanical transduction between LIPUS and the organism. In this pioneering study, the biomechanical effects of LIPUS on living mice chondrocytes and living body zebrafish are investigate by using fluorescence imaging technology, to dynamically "visualize" its invisible mechanical stimuli in the form of calcium oscillations. It is also confirmed that LIPUS maintains cartilage homeostasis by promoting chondrocyte autophagy in a calcium-dependent manner. In addition, chondrocyte ion channels are screened by scRNA-seq and confirm that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) mediated the biological effects of LIPUS on chondrocytes. Finally, it is found that a combination of pharmacologically induced and LIPUS-induced Ca2+ influx in chondrocytes enhances the cartilage-protective effect of LIPUS, which may provide new insights for optimizing LIPUS in the treatment of OA.
Collapse
Affiliation(s)
- Mengtong Guan
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaoyu Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Bo Liao
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Wang Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Lin Chen
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Bin Zhang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Xiuqin Peng
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Yu Tian
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Gongyi Xiao
- Department of OrthopedicsChonggang General HospitalChongqing400000China
| | - Xinhe Li
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Liang Kuang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Ying Zhu
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Dingqun Bai
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| |
Collapse
|
28
|
Gambarotto L, Wosnitzka E, Nikoletopoulou V. The Life and Times of Brain Autophagic Vesicles. J Mol Biol 2025:169105. [PMID: 40154918 DOI: 10.1016/j.jmb.2025.169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Most of the knowledge on the mechanisms and functions of autophagy originates from studies in yeast and other cellular models. How this valuable information is translated to the brain, one of the most complex and evolving organs, has been intensely investigated. Fueled by the tight dependence of the mammalian brain on autophagy, and the strong links of human brain diseases with autophagy impairment, the field has revealed adaptations of the autophagic machinery to the physiology of neurons and glia, the highly specialized cell types of the brain. Here, we first provide a detailed account of the tools available for studying brain autophagy; we then focus on the recent advancements in understanding how autophagy is regulated in brain cells, and how it contributes to their homeostasis and integrated functions. Finally, we discuss novel insights and open questions that the new knowledge has raised in the field.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
29
|
Thaprawat P, Wang F, Chalasani S, Schultz TL, Di Cristina M, Carruthers VB. Toxoplasma gondii PROP1 is critical for autophagy and parasite viability during chronic infection. mSphere 2025; 10:e0082924. [PMID: 39982060 PMCID: PMC11934330 DOI: 10.1128/msphere.00829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Macroautophagy is an important cellular process involving lysosomal degradation of cytoplasmic components, facilitated by autophagy-related proteins. In the protozoan parasite Toxoplasma gondii, autophagy has been demonstrated to play a key role in adapting to stress and the persistence of chronic infection. Despite limited knowledge about the core autophagy machinery in T. gondii, two PROPPIN family proteins (TgPROP1 and TgPROP2) have been identified with homology to Atg18/WIPI. Prior research in acute-stage tachyzoites suggests that TgPROP2 is predominantly involved in a non-autophagic function, specifically apicoplast biogenesis, while TgPROP1 may be involved in canonical autophagy. Here, we investigated the distinct roles of TgPROP1 and TgPROP2 in chronic stage T. gondii bradyzoites, revealing a critical role for TgPROP1, but not TgPROP2, in bradyzoite autophagy. Conditional knockdown of TgPROP2 did not impair bradyzoite autophagy. In contrast, TgPROP1 KO parasites had impaired autolysosome formation, reduced cyst burdens in chronically infected mice, and decreased viability. Together, our findings clarify the indispensable role of TgPROP1 to T. gondii autophagy and chronic infection. IMPORTANCE It is estimated that up to a third of the human population is chronically infected with Toxoplasma gondii; however, little is known about how this parasite persists long term within its hosts. Autophagy is a self-eating pathway that has recently been shown to play a key role in parasite persistence, yet few proteins that carry out this process during T. gondii chronic infection are known. Here, we provide evidence for a non-redundant role of TgPROP1, a protein important in the early steps of the autophagy pathway. Genetic disruption of TgPROP1 resulted in impaired autophagy and chronic infection of mice. Our results reveal a critical role for TgPROP1 in autophagy and underscore the importance of this pathway in parasite persistence.
Collapse
Affiliation(s)
- Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Fengrong Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shreya Chalasani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Umbria, Italy
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Iwama R. Phospholipid dynamics in Aspergillus species: relations between biological membrane composition and cellular morphology. Biosci Biotechnol Biochem 2025; 89:515-522. [PMID: 39533818 DOI: 10.1093/bbb/zbae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Biological membranes, primarily composed of phospholipid bilayers, are essential structures that compartmentalize the cell from the extracellular environment. The biosynthesis and regulation of membrane lipids have been extensively studied in model organisms such as Saccharomyces cerevisiae and mammalian cells. However, our understanding of biological membrane regulation in filamentous fungi, some of which are significant in medicine, pharmacy, and agriculture, remains limited. This minireview provides a comprehensive overview of the latest knowledge, focusing on filamentous fungi of Aspergillus species. Recent progress in understanding dynamic changes in membrane lipid profiles, driven by improvements in analytical techniques for lipidomics, is also presented. Furthermore, known that the cell morphology of filamentous fungi is closely linked to its harmful and beneficial characteristics, the influence of membrane composition on cell morphology is discussed. The integration of these findings will further enhance our understanding of the biological functions of membranes in filamentous fungi.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Tan X, Zhao R, Chen J, Yan Z, Sui X, Li H, Li Q, Du X, Liu Y, Yao S, Yang Y, Irwin DM, Li B, Zhang S. Integrative transcriptomic, proteomic and metabolomic analyses yields insights into muscle fiber type in cattle. Food Chem 2025; 468:142479. [PMID: 39706111 DOI: 10.1016/j.foodchem.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Muscle fiber is an important factor in beef quality. Here, we compared fast-type longissimus dorsi muscle and slow-type psoas major muscle from cattle using transcriptomic, proteomic and metabolomic analyses. A total of 1717 differentially expressed genes (DEGs), 297 differentially abundant proteins (DAPs) and 193 differentially abundant metabolites (DAMs) were identified between LD and PM tissue, respectively. For verification, we selected 10 DEGs for qRT-PCR and 6 DAPs for western blotting, and showed they were consistent between the two approaches. GO and KEGG enrichment analyses revealed that some DEGs, DAPs and DAMs were enriched in muscle fiber type-associated GO terms and pathways. Many of them are involved in glycolysis, TCA and fatty acid metabolism. Integrated multi-omics analysis showed a correlation coefficient of 0.6244 between the transcriptome and proteome. This study provides a new understanding of molecular mechanisms involved in the determination of bovine muscle fiber type and meat quality.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Heling Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuehai Du
- Liaoning Agricultural Development Service Center, Shenyang 110032, China
| | - Yangzhi Liu
- Wellhope Foods Company Limited, Shenyang 110164, China
| | - Siming Yao
- Liaoning Agricultural Development Service Center, Shenyang 110032, China
| | - Ying Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
32
|
Abdel Menaem HN, Hanafy MA, Abou El Dahab M, Mohamed KELSK. Evaluation of metformin's effect on the adult and juvenile stages of Schistosoma mansoni: an in-vitro study. J Parasit Dis 2025; 49:69-83. [PMID: 39975621 PMCID: PMC11832992 DOI: 10.1007/s12639-024-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/25/2024] [Indexed: 02/21/2025] Open
Abstract
Metformin (Met), a well-known anti-diabetic drug with a potent autophagy induction property, has been proven to be effective against several parasitic diseases. In the present in vitro study, the effect of Met on the viability and ultrastructure of Schistosoma mansoni adults and juveniles in comparison with the standard anti-schistosomal drug, praziquantel (PZQ), was investigated. Adults and juveniles were treated in vitro with 5 µM PZQ and/or 10 mM Met. The viability of the treated worms was screened over a three-day period by light microscopy and recorded as mortality rates (MR). The alterations in the ultrastructure were verified using scanning and transmission electron microscopy. Met showed significant anti-schistosomal activity against both adults and juveniles and resulted in severe tegumental damage in the form of loss of integrity and architecture, with evident vacuolation suggestive of increased autophagy. Met might be a potential drug either alone or as an adjuvant to PZQ for the treatment of schistosomiasis mansoni and warrant its further assessment in animal models of disease.
Collapse
Affiliation(s)
| | - Marmar Ahmed Hanafy
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Abou El Dahab
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khalifa EL Sayed Khalifa Mohamed
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Parasitology, Faculty of Medicine, Galala University, Galala, Egypt
| |
Collapse
|
33
|
Liu M, Yao Y, Tan F, Wang J, Hu R, Du J, Jiang Y, Yuan X. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors ameliorate renal ischemia-reperfusion injury (IRI) by modulating autophagic processes. Transl Res 2025; 277:27-38. [PMID: 39761911 DOI: 10.1016/j.trsl.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated. In our research, we developed a model of IRI using male C57BL/6 mice by clamping the unilateral renal artery and administering empagliflozin Transcriptomic alterations were analyzed using RNA sequencing (RNA-Seq), complemented by proteomic analysis to investigate the effects of empagliflozin. Histological assessments revealed increased renal inflammatory cell infiltration, widespread renal tubular injury, and elevated autophagosomes formation in the IRI group compared to controls. These pathological changes were significantly attenuated following empagliflozin treatment. Besides, renal function impairment can be alleviated in empagliflozin-treated group. RNA-Seq analysis identified lysosomal autophagy as a key biological process in IRI mice. Empagliflozin exerted a renoprotective effect by downregulating lysosome-associated membrane proteins, primarily LAMP1, LAMP2, and LAMP4 (CD68), through the PI3K-Akt, MAPK, and mTOR signaling pathways, thereby inhibiting autophagic processes. In conclusion, this study highlights enhanced inflammation and disrupted metabolism as hallmark transcriptomic signatures of renal. Furthermore, it demonstrates the renoprotective effects of empagliflozin in alleviating renal IRI by modulating autophagic processes.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yuanqing Yao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Rong Hu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
34
|
Chen H, Yang G, Xu DE, Du YT, Zhu C, Hu H, Luo L, Feng L, Huang W, Sun YY, Ma QH. Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner. Neurosci Bull 2025; 41:374-390. [PMID: 39283565 PMCID: PMC11876512 DOI: 10.1007/s12264-024-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/10/2024] [Indexed: 12/08/2024] Open
Abstract
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, China
| | - Yu-Tong Du
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
35
|
Ma L, Li K, Guo Y, Liu J, Dong J, Li J, Ren Y, Shi L. Selenium triggers AMPK-mTOR pathway to modulate autophagy related to oxidative stress of sheep Leydig cells. Reprod Biol 2025; 25:100973. [PMID: 39580868 DOI: 10.1016/j.repbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
The objective of this study was to investigate the effect of oxidative stress induced by excessive Se on autophagy of sheep Leydig cells and its underlying mechanism. Leydig cells isolated from the testis of 8-month-old sheep were purified using a discontinuous Percoll density gradient. Cells were divided into four treatment groups (0, 2.0, 4.0 and 8.0 μmol/L of Se). After treatment with Se for 48 h, cell proliferation was detected by CCK-8 assay kit. The biochemical methods were used to evaluate the antioxidant status of Leydig cells. The mRNA transcript and protein abundance related to the AMPK-mTOR pathway and autophagy were detected by real-time PCR and western blot analysis. The results showed that the Leydig cells treated with 8.0 μmol/L Se have the lowest cell viability. The greater ROS content and lower GSH-Px activity were also observed in the Se8.0 group. The inclusion of 2.0 μmol/L Se in the medium did not affect the autophagy of Leydig cells. However, the relative abundance of ATG5 protein and LC3II/I ratio were elevated in the Se8.0 group. Oxidative stress induced by excessive Se (8.0 μmol/L) dramatically improved the abundance of key proteins related to AMPK-mTOR pathway and led to an increase of phosphorylated AMPK, mTOR and ULK1. Compared with the Se8.0 group, compound C could significantly inhibit the key molecules of AMPK-mTOR signaling pathway and mitigate the autophagy of Leydig cells induced by excessive Se. These results indicate that appropriate Se (2.0 μmol/L) can enhance the viability of sheep Leydig cells. Oxidative stress caused by Se excess can induce cell autophagy via activating AMPK-mTOR signaling pathway. The existed crosstalk between autophagy and apoptosis could decide the fate of Leydig cells. This process could play a decisive role in the maintenance of normal male fertility and spermatogenesis by affecting the number of Leydig cells in testis.
Collapse
Affiliation(s)
- Liang Ma
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Kexin Li
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yaru Guo
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jinyu Liu
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jianing Dong
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Jun Li
- Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China
| | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, PR China; Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Lei Shi
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, PR China; Laboratory of Animal Reproductive biotechnology, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
36
|
Cheng S, Fan S, Yang C, Hu W, Liu F. Proteomics revealed novel functions and drought tolerance of Arabidopsis thaliana protein kinase ATG1. BMC Biol 2025; 23:48. [PMID: 39984923 PMCID: PMC11846238 DOI: 10.1186/s12915-025-02149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
ATG1 stimulates autophagy biogenesis and serves as a gatekeeper for classical autophagy. To obtain insight into the control of autophagy by ATG1 and determine whether ATG1 has broader processes, we performed a thorough proteomics analysis on the Col-0 wild-type and atg1abct mutant in Arabidopsis thaliana. Proteomic data analysis pointed out that ATG1 has an unidentified function within the inositol trisphosphate and fatty acid metabolism. We also discovered ATG1-dependent autophagy has an emerging connection with ER homeostasis and ABA biosynthesis. Moreover, Gene Ontology terms for abiotic and biotic stress were strongly enriched in differentially abundant proteins, consistent with the reported role of canonical autophagy in these processes. Additional physiological and biochemical analysis revealed that atg1abct exhibited stronger drought resistance under both PEG-simulated drought treatment and natural drought stress. Results from DAB staining also indicated that atg1abct accumulation fewer ROS than Col-0 following drought treatment. As a result, these results illuminate previously unknown functions for ATG1 and offers novel perspectives into the underlying processes of autophagy function.
Collapse
Affiliation(s)
- Shan Cheng
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Siqi Fan
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Chao Yang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
- College of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China.
| |
Collapse
|
37
|
Liu Y, Yao L, Liu Y, Yang Y, Liang A, He H, Lei Y, Cao W, Chen Z. Micheliolide Alleviates Hepatic Fibrosis by Inhibiting Autophagy in Hepatic Stellate Cells via the TrxR1/2-Mediated ROS/MEK/ERK Pathway. Pharmaceuticals (Basel) 2025; 18:287. [PMID: 40143066 PMCID: PMC11944820 DOI: 10.3390/ph18030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Hepatic fibrosis is a major global health issue without an optimal drug treatment, highlighting the urgent need to find effective therapies. This study aimed to clarify the role and mechanism of micheliolide in treating hepatic fibrosis. Methods: The efficacy of MCL was evaluated in a mouse model of CCl4-induced hepatic fibrosis. LX-2 cells were subjected to MCL treatment, and subsequent changes in fibrosis markers, autophagy, and the MEK/ERK pathway were analyzed using transcriptomics and Western blotting. The interaction between MCL and TrxR1 or TrxR2 were validated using cellular thermal shift assays (CETSA) and drug affinity responsive target stability (DARTS) assays. Results: Our findings indicated that MCL significantly alleviated CCl4-induced hepatic fibrosis, improved liver function, and downregulated the expression of fibrosis markers. Additionally, MCL significantly inhibited LX-2 cell activation by suppressing cell proliferation, extracellular matrix (ECM) production, and autophagy, while activating the MEK/ERK pathway. Moreover, MCL elevated intracellular and mitochondrial reactive oxygen species (ROS) levels, reduced mitochondrial membrane potential, and altered mitochondrial morphology. The ROS scavenger N-acetylcysteine (NAC) attenuated MCL-induced MEK/ERK pathway activation and increased collagen type I alpha 1 (COL1A1) and fibronectin (FN) expression. Further analysis confirmed that MCL directly interacts with TrxR1 and TrxR2, leading to the inhibition of their enzymatic activities and the induction of ROS generation. Ultimately, MCL attenuated the fibrotic process and autophagic flux in LX-2 cells. Conclusions: The findings of our study confirmed that MCL has the potential to alleviate hepatic fibrosis, thereby introducing a novel candidate drug and therapeutic strategy for management of this condition.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ling Yao
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yunheng Yang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Liang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Honglin He
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao Lei
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenfu Cao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhiwei Chen
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing 402760, China
| |
Collapse
|
38
|
Zhang R, Wang N, Fan B, Zhang J. Potentiation of Sorafenib's Action by Berberine via Suppression of the mTOR Signaling Pathway in Human Hepatoma Cells. Nutr Cancer 2025; 77:553-565. [PMID: 39962812 DOI: 10.1080/01635581.2025.2466233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Sorafenib (SOR) is the first-line treatment for advanced hepatocellular carcinoma (HCC), while its therapeutic efficacy is unsatisfactory. Clinical studies suggest that combination therapy holds significant therapeutic potential to enhance SOR's efficacy. Berberine (BBR), a multiple-targeted agent, shows great promise in combination therapy. This study aims to investigate whether BBR can enhance SOR's effect in vitro and in vivo, and to elucidate the underlying mechanisms. We selected BEL-7402 cells and Huh7 cells for our investigation and explored the effect of BBR on the sensitivity of SOR using the cell counting kit-8 assay, cell cycle analysis, reactive oxygen species (ROS) detection assay, Annexin V/PI staining, western blotting, and the construction of tumor xenograft models. Our findings demonstrate that BBR not only enhances the proliferation-inhibitory effects, apoptosis, and ROS generation induced by SOR, but also sensitizes tumor xenograft models to SOR. Notably, this synergistic effect is found to depend on AMPK activation and the inhibition of the mTOR signaling pathway, a mechanism coincident with that of metformin (MET). Furthermore, our results reveal that BBR exhibits a stronger synergistic effect with SOR compared to MET. These results may contribute to developing innovative combination strategies for the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rongrong Zhang
- School of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Na Wang
- School of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Bo Fan
- School of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
39
|
Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, Chen S, Zhao T, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Gan M. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Commun Signal 2025; 23:84. [PMID: 39948590 PMCID: PMC11827146 DOI: 10.1186/s12964-025-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Stress granules (SGs) are conserved messenger ribonucleoprotein (mRNP) granules that form through rapid coalescence in the cytoplasm of eukaryotic cells under stressful environments. These dynamic membrane-free organelles can respond to a variety of both intracellular and extracellular stressors. Studies have shown that stress conditions such as heat stress, arsenite exposure, and hypoxic stress can induce SGs formation. The formation of SGs helps mitigates the effects of environmental stimuli on cells, protects them from damage, and promotes cell survival. This paper focuses on the biogenesis of SGs and summarizes the role in regulating environmental stress-induced male reproductive disorders, with the aim of exploring SGs as a potential means of mitigating male reproduction disorders. Numerous studies have demonstrated that the detrimental effects of environmental stress on germ cells can be effectively suppressed by regulating the formation and timely disassembly of SGs. Therefore, regulating the phosphorylation of eIF2α and the assembly and disassembly of SGs could offer a promising therapeutic strategy to alleviate the impacts of environmental stress on male reproduction health.
Collapse
Affiliation(s)
- Jiaxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
40
|
Liu X, Zhang L, Li L, Hou J, Qian M, Zheng N, Liu Y, Song Y. Transcriptomic profiles of single-cell autophagy-related genes (ATGs) in lung diseases. Cell Biol Toxicol 2025; 41:40. [PMID: 39920481 PMCID: PMC11805875 DOI: 10.1007/s10565-025-09990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025]
Abstract
Autophagy related genes (ATGs) play essential roles in maintaining cellular functions, although biological and pathological alterations of ATG phenotypes remain poorly understood. To address this knowledge gap, we utilized the single-cell sequencing technology to elucidate the transcriptomic atlas of ATGs in lung diseases, with a focus on lung epithelium and lymphocytes. This study conducted a comprehensive investigation into RNA profiles of ATGs in the lung tissues obtained from healthy subjects and patients with different lung diseases through single-cell RNA sequencing (scRNA-seq), including COVID-19 related acute lung damage, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), systemic sclerosis (SSC), and lung adenocarcinoma (LUAD). Our findings revealed significant variations of ATGs expression across lung epithelial cell subsets, e.g., over-expression of MAPK8 in basal cells, ATG10 in club cells, and BCL2 in a goblet cell subset. The changes of autophagy-related pathways varied between lung epithelial and lymphocyte subsets. We identified the disease-associated changes in ATG expression, including significant alterations in BCL2, BCL2L1, PRKCD, and PRKCQ in inflammatory lung diseases (COPD and IPF), and MAP2K7, MAPK3, and RHEB in lung cancer (LUAD), as compared to normal lung tissues. Key ligand-receptor pairs (e.g., CD6-ALCAM, CD99-CD99) and signaling pathways (e.g., APP, CD74) might serve as biomarkers for lung diseases. To evaluate ATGs responses to external challenges, we examined ATGs expression in different epithelial cell lines exposed to cigarette smoking extract (CSE), lysophosphatidylcholine (lysoPC), lipopolysaccharide (LPS), and cholesterol at various doses and durations. Notable changes were observed in CFLAR, EIF2S1, PPP2CA, and PPP2CB in A549 and H1299 against CSE and LPS. The heterogeneity of ATGs expression was dependent on cell subsets, pathologic conditions, and challenges, as well as varied among cellular phenotypes, functions, and behaviors, and the severity of lung diseases. In conclusion, our data might provide new insights into the roles of ATGs in epithelial biology and pulmonary disease pathogenesis, with implications for disease progression and prognosis.
Collapse
Affiliation(s)
- Xuanqi Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
41
|
Zheng Q, Zhang H, Zhao H, Chen Y, Yang H, Li T, Cai Q, Chen Y, Wang Y, Zhang M, Zhang H. Ca 2+/calmodulin-dependent protein kinase II β decodes ER Ca 2+ transients to trigger autophagosome formation. Mol Cell 2025; 85:620-637.e6. [PMID: 39742665 DOI: 10.1016/j.molcel.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
In multicellular organisms, very little is known about how Ca2+ transients on the ER outer surface elicited by autophagy stimuli are sustained and decoded to trigger autophagosome formation. Here, we show that Ca2+/calmodulin-dependent protein kinase II β (CaMKIIβ) integrates ER Ca2+ transients to trigger liquid-liquid phase separation (LLPS) of the autophagosome-initiating FIP200 complex. In response to ER Ca2+ transients, CaMKIIβ is recruited from actin filaments and forms condensates, which serve as sites for the emergence of or interaction with FIP200 puncta. CaMKIIβ phosphorylates FIP200 at Thr269, Thr1127, and Ser1484 to modulate LLPS and properties of the FIP200 complex, thereby controlling its function in autophagosome formation. CaMKIIβ also controls the amplitude, duration, and propagation of ER Ca2+ transients during autophagy induction. CaMKIIβ mutations identified in the neurodevelopmental disorder MRD54 affect the function of CaMKIIβ in autophagy. Our study reveals that CaMKIIβ is essential for sustaining and decoding ER Ca2+ transients to specify autophagosome formation in mammalian cells.
Collapse
Affiliation(s)
- Qiaoxia Zheng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huan Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongzhining Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Tingting Li
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qixu Cai
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Youjun Wang
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Artico LL, Arruda AP. CaMKIIβ Ca 2+ptures ER signals to initiate autophagosome biogenesis. Mol Cell 2025; 85:464-465. [PMID: 39919714 DOI: 10.1016/j.molcel.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Cytosolic Ca2+ transients are critical signals for autophagy regulation; however, how they translate into functional autophagic events remains unclear. In this issue of Molecular Cell, Zheng et al.1 identify CaMKIIβ as a key player decoding Ca2+ transients at the ER surface to initiate autophagosome formation through the FIP200 complex.
Collapse
Affiliation(s)
- Leonardo Luís Artico
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
43
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Wang X, Wang J, Wang L, Song M, Meng H, Guo E, Miao S. CTSL Promotes Autophagy in Laryngeal Cancer Through the IL6-JAK-STAT3 Signalling Pathway. J Cell Mol Med 2025; 29:e70364. [PMID: 39893643 PMCID: PMC11787816 DOI: 10.1111/jcmm.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Cathepsin L (CTSL) is an important oncogene. However, its mechanism of action in laryngeal cancer is still unclear. This study aims to explore the role of CTSL in laryngeal cancer and its clinical significance. Conducting bioinformatics analysis utilising the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Performing CCK8 analysis, Western blotting, qRT-PCR, wound healing assay and transwell invasion assay. Additionally, conducting immunoprecipitation experiments and immunohistochemical staining to investigate the impact of CTSL on cell proliferation, autophagy and related signalling pathways. We observed a significant upregulation of CTSL in laryngeal cancer tissues, and its elevated levels are indicative of poor prognosis in laryngeal cancer patients. The proliferation of laryngeal cancer cells relies on the expression of CTSL, with overexpression of this gene enhancing the proliferative capacity of these cells. Concurrently, CTSL is closely associated with the autophagic levels in laryngeal cancer cells. During the autophagic process mediated by CTSL, the IL6-JAK-STAT3 signalling pathway is activated, suggesting that CTSL promotes autophagy through the IL6-JAK-STAT3 pathway. Considering the correlation between CTSL and autophagy, we developed and validated a multi-gene signature. The risk score derived from this signature demonstrates significant potential in predicting various aspects. We found that CTSL upregulates autophagy in laryngeal cancer cells by activating the IL6-JAK-STAT3 signalling pathway. By taking into account the autophagy-regulating role of CTSL, the clinical predictive ability of CTSL in HNSC can be enhanced.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central, South UniversityChangshaHunanChina
- Otolaryngology Major Disease Research Key Laboratory of Hunan ProvinceChangshaHunanChina
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan, ProvinceChangshaHunanChina
| | - Junrong Wang
- Department of Otorhinolaryngology Head and Neck SurgeryHarbin Medical, University Cancer HospitalHarbinHeilongjiangChina
| | - Lei Wang
- Department of Otorhinolaryngology Head and Neck SurgeryHarbin Medical, University Cancer HospitalHarbinHeilongjiangChina
| | - Ming Song
- Department of Otorhinolaryngology Head and Neck SurgeryHarbin Medical, University Cancer HospitalHarbinHeilongjiangChina
| | - Hongxue Meng
- Department of PathologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Erliang Guo
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Susheng Miao
- Department of Otorhinolaryngology Head and Neck SurgeryHarbin Medical, University Cancer HospitalHarbinHeilongjiangChina
| |
Collapse
|
45
|
Singh R, Gaur SK, Nagar R, Kaul R. Insights into the different mechanisms of Autophagy and Apoptosis mediated by Morbilliviruses. Virology 2025; 603:110371. [PMID: 39742556 DOI: 10.1016/j.virol.2024.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Viruses are obligate intracellular parasites that have co-evolved with the host. During the course of evolution, viruses have acquired abilities to abrogate the host's immune responses by modulating the host proteins which play a pivotal role in various biological processes. One such process is the programmed cell death in virus-infected cells, which can occur via autophagy or apoptosis. Morbilliviruses are known to modulate both autophagy and apoptosis. Upon infecting a cell, the morbilliviruses can utilize autophagosomes as their nest and delay the host defense apoptotic response, and/or can promote apoptosis to escalate the virus dissemination. Moreover, there is an active interplay between these two pathways which eventually decides the fate of a virus-infected cell. Recent advances in our understanding of these processes provide a potential rationale to further explore morbilliviruses for therapeutic purposes.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rakhi Nagar
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
46
|
Lorentzen KC, Prescott AR, Ganley IG. Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. Autophagy 2025; 21:315-337. [PMID: 39177530 PMCID: PMC11760219 DOI: 10.1080/15548627.2024.2395149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.Abbreviation: aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
47
|
Li S, Wang Y, Liang X, Li Y. Autophagy intersection: Unraveling the role of the SNARE complex in lysosomal fusion in Alzheimer's disease. J Alzheimers Dis 2025; 103:979-993. [PMID: 39784954 DOI: 10.1177/13872877241307403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Autophagy is a fundamental cellular process critical for maintaining neuronal health, particularly in the context of neurodegenerative diseases such as Alzheimer's disease (AD). This review explores the intricate role of the SNARE complex in the fusion of autophagosomes with lysosomes, a crucial step in autophagic flux. Disruptions in this fusion process, often resulting from aberrant SNARE complex function or impaired lysosomal acidification, contribute to the pathological accumulation of autophagosomes and lysosomes observed in AD. We examine the composition, regulation, and interacting molecules of the SNARE complex, emphasizing its central role in autophagosome-lysosome fusion. Furthermore, we discuss the potential impact of specific SNARE protein mutations and the broader implications for neuronal health and disease progression. By elucidating the molecular mechanisms underlying SNARE-mediated autophagic fusion, we aim to highlight therapeutic targets that could restore autophagic function and mitigate the neurodegenerative processes characteristic of AD.
Collapse
Affiliation(s)
- Siyu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, P.R. China
| |
Collapse
|
48
|
Wang J, Tao X, Liu Z, Yan Y, Cheng P, Liu B, Du H, Niu B. Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications. Pharmacol Res 2025; 212:107596. [PMID: 39800175 DOI: 10.1016/j.phrs.2025.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction caused by a dysregulated host response to infection. Sepsis-associated acute liver injury (SA-ALI) is a frequent and serious complication of sepsis that considerably impacts both short-term and long-term survival outcomes. In intensive care units (ICUs), the mortality rate of patients with SA-ALI remains high, mostly due to the absence of effective early diagnostic markers and suitable therapeutic strategies. Recent studies have demonstrated the importance of non-coding RNAs (ncRNAs) in the development and progression of SA-ALI. This review focuses on the critical roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating "cytokine storms", oxidative stress, mitochondrial dysfunction, and programmed cell death in SA-ALI, and summarizes the current state and limitations of existing studies on lncRNAs and circRNAs in SA-ALI. By integrating advancements in high-throughput sequencing technologies, this review provides novel insights into the dual potential of ncRNAs as diagnostic biomarkers and therapeutic targets, offers new ideas for SA-ALI diagnosis and treatment research and highlights potential challenges in clinical translation.
Collapse
Affiliation(s)
- Jialian Wang
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Xingyu Tao
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Zhengyang Liu
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400016, China
| | - Yuan Yan
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Peifeng Cheng
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Bin Liu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Bailin Niu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China.
| |
Collapse
|
49
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
50
|
Della Vecchia S, Imbrici P, Liantonio A, Naef V, Damiani D, Licitra R, Bernardi S, Marchese M, Santorelli FM. Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model. Biomed Pharmacother 2025; 183:117800. [PMID: 39753095 PMCID: PMC11794196 DOI: 10.1016/j.biopha.2024.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD. With this in mind, we tested dapagliflozin (50 µM), canagliflozin (2.5 µM) and empagliflozin (200 µM) in our epm2a-/- zebrafish model, investigating their effects on pathological behaviour. In the case of dapagliflozin, we also investigated the possible mechanisms of action. Overall, the gliflozins reduced or rescued neuronal hyperexcitability and locomotor impairment. Dapagliflozin also reduced spontaneous seizure-like events in epm2a-/- larvae. At the biochemical and molecular level, dapagliflozin was found to slightly reduce glycogen content, and suppress inflammation and oxidative stress. It also ameliorates autophagic homeostasis and improves lysosomal markers. In conclusion, our preclinical study showed that dapagliflozin was able to ameliorate part of the pathological phenotype of epm2a-/- zebrafish larvae and could potentially be a suitable drug for repurposing in LD. However, since our model does not present Lafora bodies (LBs), at this early disease stage at least, it would be important to use mouse models in order to ascertain whether it is able to prevent or reduce LB formation.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, Florence 50139, Italy.
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Naef
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Devid Damiani
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Rosario Licitra
- Department of Veterinary Sciences, University of Pisa, Pisa 56124, Italy
| | - Sara Bernardi
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Maria Marchese
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | | |
Collapse
|