1
|
Yao YX, Tang C, Si FL, Lv JC, Shi SF, Zhou XJ, Liu LJ, Zhang H. Glucagon-like peptide-1 receptor agonists, inflammation, and kidney diseases: evidence from Mendelian randomization. Ren Fail 2025; 47:2478488. [PMID: 40230199 PMCID: PMC12001840 DOI: 10.1080/0886022x.2025.2478488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE It has been proved that glucagon-like peptide-1 receptor (GLP1R) agonists have positive effects on renal outcomes in diabetic patients. However, it remains unknown whether GLP1R agonists could provide similar protection against other kidney diseases. METHODS We performed two-sample Mendelian randomization (MR) analyses to determine the causal effects of GLP1R agonists on multiple kidney diseases. Exposure to GLP1R agonist was proxied by the available cis-eQTLs for GLP1R. Primary outcomes included the risk assessment for diabetic nephropathy, IgA nephropathy, membranous nephropathy, nephrotic syndrome, chronic kidney disease, acute glomerulonephritis, chronic glomerulonephritis and calculus of kidney/ureter. Type 2 diabetes and body mass index were used as positive control. Two-stage network MR analyses were conducted to assess the mediation effect of inflammatory proteins on the relationships between GLP1R agonists and kidney diseases. RESULTS After meta-analyses of both discovery and validation cohorts, genetically proxied GLP1R agonist was found to significantly associated with a decreased risk of diabetic nephropathy (OR = 0.72, 95%CI = 0.54-0.97, p = 0.031) and IgA nephropathy (OR = 0.58, 95%CI = 0.36-0.94, p = 0.027). Two-stage network MR revealed that there was an indirect effect of GLP1R agonist on IgA nephropathy through signaling lymphocytic activation molecule family member 1 (SLAMF1), with a mediated proportion of 34.27% (95% CI, 1.47-67.03%, p = 0.041) of the total effect. CONCLUSIONS The findings of current study presented genetic proof for the potential protective effects of GLP1R agonists in the development of diabetic nephropathy and IgA nephropathy, offering a novel sight for future mechanistic and clinical applications.
Collapse
Affiliation(s)
- Yu-Xuan Yao
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Tang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng-Lei Si
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Su-Fang Shi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Jun Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Ministry of Education, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kim TH, Lee K, Park S, Oh J, Park J, Jo H, Lee H, Cho J, Wen X, Cho H, Kim S, Yon DK. Adverse drug reaction patterns of GLP-1 receptor agonists approved for obesity treatment: Disproportionality analysis from global pharmacovigilance database. Diabetes Obes Metab 2025; 27:3490-3502. [PMID: 40176478 DOI: 10.1111/dom.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
AIMS This study aims to compare adverse drug reaction patterns of liraglutide, semaglutide and tirzepatide-glucagon-like peptide-1 receptor agonists (GLP-1 RAs) approved for anti-obesity medications-to evaluate their real-world safety. MATERIALS AND METHODS This disproportionality analysis utilized a case-control design with VigiBase. The study focused on reports of adverse events associated with liraglutide, semaglutide and tirzepatide, selected based on warnings in the US Food and Drug Administration approval labels for each drug. Data were restructured using unique identifiers to differentiate individuals affected by adverse drug reactions. Multivariable logistic regression models estimated adjusted reporting odds ratios (aRORs) with 95% confidence intervals (CIs) to assess the association between various adverse events and GLP-1 RAs, adjusting for age, sex, region, reporter qualification, reporting year and concomitant medication. The information component (IC) was analysed, and signals of adverse drug reactions were considered significant only when both aROR and IC were statistically significant. RESULTS Our analysis of targeted adverse drug reactions included 24 725 individuals using liraglutide, 21 454 using semaglutide and 11 538 using tirzepatide. Tirzepatide had fewer reports of adverse drug reactions compared with the other two drugs, and its pharmacovigilance association strength was the lowest. Semaglutide, however, was significantly associated with several unusual adverse events, including suicidal ideation and behaviour (IC, 1.53 [IC025, 1.28]; aROR, 2.52 [95% CI, 2.18-2.93]), hair loss (IC, 0.78 [IC025, 0.63]; aROR, 1.42 [95% CI, 1.30-1.55]) and vision loss (IC, 1.27 [IC025, 1.13]; aROR, 1.80 [95% CI, 1.66-1.97]). CONCLUSIONS Our findings emphasize the need for cautious prescribing and further research to ensure the safe use of these medications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyeongmin Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seoyoung Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jiyeon Oh
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hyesu Jo
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hayeon Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, South Korea
| | - Jaehyeong Cho
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Medicine, CHA University School of Medicine, Seongnam, South Korea
| | - Xuerong Wen
- Department of Pharmacy Practice and Clinical Research, College of Pharmacy, University of Rhode Island, South Kingstown, Rhode Island, USA
| | - Hanseul Cho
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sunyoung Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Ye X, Chen W, Yan F, Zheng X, Tu P. Cyanidin-3-O-glucoside enhances GLP-1 secretion via PPARβ/δ-β-catenin-TCF-4 pathway in type 2 diabetes mellitus. NPJ Sci Food 2025; 9:81. [PMID: 40393996 DOI: 10.1038/s41538-025-00445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
In late-stage type 2 diabetes mellitus (T2DM), impaired islet β cell function leads to absolute insulin deficiency, thereby disrupting blood glucose homeostasis. GLP-1, an incretin hormone, stimulates insulin secretion from islet β cells post-meals. This study investigated the effects of anthocyanin cyanidin-3-O-glucoside (C3G) on GLP-1 secretion using STC-1 (intestinal endocrine L cells) and NIT-1 (islet β cells). In a co-culture system, C3G treatment increased GLP-1 secretion in STC-1 cells, promoting insulin release in NIT-1 cells under high glucose. Mechanistically, C3G activated the PPARβ/δ-β-catenin-TCF-4 pathway in STC-1 cells, enhancing PG precursor transcription and GLP-1 synthesis.Inhibiting PPARβ/δ with GSK0660 blocked this C3G-induced upregulation. Overall, C3G stimulates GLP-1 secretion from intestinal L cells via this pathway, indirectly boosting insulin release from β cells. These findings enhance T2DM mechanism understanding and suggest the potential of C3G in GLP-1-based T2DM therapy.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Innovation Center for Information, Binjiang Institute of Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wen Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
4
|
Dupont S. Mechano-metabolism on the rise. Curr Opin Cell Biol 2025; 95:102529. [PMID: 40381432 DOI: 10.1016/j.ceb.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Cells respond to the physical and geometrical tissue properties by multiple mechanotransduction mechanisms that can profoundly influence cells' decision-making, extending to cell metabolism. This review incorporates the most recent findings on this topic, organized along the idea that the mechano-metabolic connection serves three main functions, namely to inform systemic metabolism on the general functioning of a tissue/organ, to tune cells' energy production with the mechanical requirements imposed by their surroundings, and to coordinate cell metabolism with cell fate choices induced in response to mechanical cues. This connection highlights the pervasive influence of mechanical cues on cell activity, opens interesting questions on its physiological and pathological roles, and lays the foundations for exploiting the mechano-metabolism axis to design new therapeutic approaches.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padova, via Bassi 58/B, 35131, Padova, IT, Italy.
| |
Collapse
|
5
|
Zhang L, Chen X, Xu Y, Liu J, Liu Z. Exploring glucagon-like peptide-1 receptor agonists as potential disease-modifying agent in psychiatric and neurodevelopmental conditions: evidence from a drug target Mendelian randomization. BMC Psychiatry 2025; 25:484. [PMID: 40369498 PMCID: PMC12079933 DOI: 10.1186/s12888-025-06914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have recently received Food and Drug Administration (FDA) approval for obesity management. However, the causal relationship between GLP-1RAs and psychiatric and neurodevelopmental conditions remains unclear. METHODS We used Mendelian randomization (MR) to investigate the association between genetically proxied GLP-1RA exposure and 12 psychiatric and neurodevelopmental conditions. Genetic instruments were derived from cis-eQTLs for GLP-1R, and analyses were conducted using large-scale GWAS datasets. Type 2 diabetes was included as a positive control (107,133 cases, 656,672 controls). Findings were assessed across multiple independent datasets, including FinnGen, Psychiatric Genomics Consortium (PGC), and UK Biobank, and were synthesized through meta-analysis. RESULT Genetically proxied GLP-1RA exposure was associated with a lower risk of schizophrenia (OR = 0.72, 95% CI [0.61-0.86]), bipolar disorder (OR = 0.91, 95% CI [0.88-0.94]), bulimia nervosa (OR = 0.34, 95% CI [0.23-0.52]), post-traumatic stress disorder (PTSD) (OR = 0.45, 95% CI [0.31-0.67]), and autism (OR = 0.55, 95% CI [0.32-0.93]), all P < 0.001. Conversely, higher GLP-1R expression was associated with an increased risk of obsessive-compulsive disorder (OCD) (OR = 2.30, 95% CI [1.26-4.22], P < 0.001). No significant associations were observed for anorexia nervosa, broad depression, major depressive disorder (MDD), or suicide and intentional self-harm. Sensitivity analyses and heterogeneity assessments supported the robustness of these findings across multiple cohorts. LIMITATIONS GLP-1RAs reduced some psychiatric and neurodevelopmental conditions but lacked extensive evidence. Bulimia nervosa and PTSD evidence was limited to one database. Bipolar disorder and OCD results varied, with significant OCD findings in one database. The study's European ancestry focus limits generalizability. Rare disorders and disease progression were not examined. Future research needs diverse populations, long-term follow-ups, and treatment exploration. CONCLUSIONS Our study suggests that GLP-1RAs may decrease the risk of schizophrenia, anxiety disorders, bipolar disorder, bulimia nervosa, PTSD, and autism, but may increase the risk of OCD. Larger randomized controlled trials with long-term follow-up are necessary to confirm these associations and evaluate the risk-benefit ratios. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Lingfeng Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Wuhan University, Wuhan, Hubei, PR China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Central South University, Changsha, Hunan, China
| | - Yantao Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Central South University, Changsha, Hunan, China.
| | - Jiachen Liu
- Department of Orthopedics, Xiangya Hospital, Changsha, Hunan, PR China.
- Washington University School of Medicine, St Louis, Missouri, USA.
- Central South University, Changsha, Hunan, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
- Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Zhou ZD, Yi L, Popławska-Domaszewicz K, Chaudhuri KR, Jankovic J, Tan EK. Glucagon-like peptide-1 receptor agonists in neurodegenerative diseases: Promises and challenges. Pharmacol Res 2025; 216:107770. [PMID: 40344943 DOI: 10.1016/j.phrs.2025.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (GRA) belong to a class of compounds that reduce blood glucose and energy intake by simulating actions of endogenous incretin hormone GLP-1 after it is released by the gut following food consumption. They are used to treat type 2 diabetes mellitus (T2DM) and obesity and have systemic effects on various organs, including the brain, liver, pancreas, heart, and the gut. Patients with T2DM have a higher risk of developing neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), accompanied by more severe motor deficits and faster disease progression, suggesting dysregulation of insulin signaling in these diseases. Experimental studies have shown that GRA have protective effects to modulate neuroinflammation, oxidative stress, mitochondrial and autophagic functions, and protein misfolding. Hence the compounds have generated enormous interest as novel therapeutic agents against NDs. To date, clinical trials have shown that three GRA, exenatide, liraglutide and lixisenatide can improve motor deficits as an add-on therapy in PD patients and liraglutide can improve cognitive function in AD patients. The neuroprotective effects of these and other GRA, such as PT320 (a sustained-released exenatide) and semaglutide, are still under investigation. The dual GLP-1/gastric inhibitory polypeptide (GIP) receptor agonists have been demonstrated to have beneficial effects in AD and PD mice models. Overall, GRA are highly promising novel drugs, but future clinical studies should identify which subsets of patients should be targeted as potential candidates for their symptomatic and/or neuroprotective benefits, investigate whether combinations with other classes of drugs can further augment their efficacy, and evaluate their long-term disease-modifying and adverse effects.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Lingxiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore.
| | - Karolina Popławska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, Poznan 60-355, Poland; Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | - Kallol Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, Cutcombe Road, London SE5 9RT, UK.
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
7
|
Drewa J, Lazar-Juszczak K, Adamowicz J, Juszczak K. May Patients Receiving GLP-1 Agonists Be at Lower Risk of Prostate Cancer Aggressiveness and Progression? Cancers (Basel) 2025; 17:1576. [PMID: 40361502 PMCID: PMC12071316 DOI: 10.3390/cancers17091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION GLP-1 receptor agonists are valuable therapeutic agents for managing obesity and type 2 diabetes. The link between prostate cancer and obesity was described. The modulation of incretin hormone-dependent pathways may decrease the prostate cancer aggressiveness and progression. OBJECTIVES The purpose of this study was to review and summarize the literature on the role of GLP-1 agonists in prostate cancer. MATERIAL & METHODS We performed a scoping literature review of PubMed from January 2002 to February 2025. Search terms included "glucagon-peptide like 1", "incretin hormone", "GLP-1 receptor agonist", and "prostate cancer". Secondary search involved reference lists of eligible articles. The key criterion was to identify studies that included GLP-1 receptor, incretin hormones, GLP-1 receptor agonists, and their role in prostate cancer development. RESULTS 77 publications were selected for inclusion in this review. The studies contained in publications allowed us to summarize the data on the role of GLP-1 receptor and it's agonists in prostate cancer biology and development. The following review aims to discuss and provide information about the role of incretin hormones in prostate cancer pathogenesis and its clinical implication in patients with prostate cancer. CONCLUSION Incretin hormone-dependent pathways play an important role in prostate cancer pathogenesis. Moreover, GLP-1 receptor agonists seems to be a promising therapeutical agents when it comes to finding new therapies in patients with more aggressive and/or advanced stages of prostate cancer.
Collapse
Affiliation(s)
- Julia Drewa
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Katarzyna Lazar-Juszczak
- Primary Health Care Clinic of the Ujastek Medical Center, Krakow University of Health Promotion, 31-158 Cracow, Poland
| | - Jan Adamowicz
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Kajetan Juszczak
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| |
Collapse
|
8
|
Mahdy RNE, Nader MA, Helal MG, Abu-Risha SE, Abdelmageed ME. Protective effect of Dulaglutide, a GLP1 agonist, on acetic acid-induced ulcerative colitis in rats: involvement of GLP-1, TFF-3, and TGF-β/PI3K/NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5611-5628. [PMID: 39579211 PMCID: PMC11985593 DOI: 10.1007/s00210-024-03631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
A chronic inflammatory condition of the colon called ulcerative colitis (UC) is characterized by mucosal surface irritation that extends from the rectum to the near proximal colon portions. The rationale of this work was to conclude if dulaglutide (Dula) could protect rats from developing colitis caused by exposure to acetic acid (AA). Rats were randomly divided into seven groups (each with eight rats): Normal control, Dula control, AA (received 2 milliliters of 3% v/v AA through the rectum), Sulfasalazine (SLZ); given SLZ (100 mg/kg) orally from day 11 to day 21 then AA intrarectally on day 22 and Dula groups ( pretreated with 50, 100 or 150 μg/kg subcutaneous injection of Dula - once weekly for three weeks and AA on day 22 to induce ulcerative colitis, colon tissues and blood samples were taken on day 23. By generating colonic histological deviations such as inflammatory processes, goblet cell death, glandular hyperplasia, and mucosa ulcers, Dula dropped AA-induced colitis. Additionally, these modifications diminished blood lactate dehydrogenase (LDH), C-reactive protein (CRP), colon weight, and the weight/length ratio of the colon. In addition, Dula decreased the oxidative stress biomarker malondialdehyde (MDA) and increased the antioxidant enzymes (total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) concentrations). Dula also significantly reduced the expression of transforming growth factor-1 (TGF-β1), phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) signaling pathway, and the inflammatory cytokines: nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and interferon-γ (IFN-γ) in colonic cellular structures. In addition, Dula enforced the levels of glucagon-like peptide-1 (GLP-1) and trefoil factor-3 (TFF-3) that were crucial to intestinal mucosa regeneration and healing of wounds. By modulating TGF-β1 in conjunction with other inflammatory pathways like PI3K/AKT and NF-κB, regulating the oxidant/antioxidant balance, and improving the integrity of the intestinal barrier, Dula prevented AA-induced colitis in rats.
Collapse
Affiliation(s)
- Raghda N El Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Sinai University- Kantra Branch, Ismailia, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
9
|
De Luca L, Bilato C, Navazio A, Corda M, Milli M, Scicchitano P, Di Marco M, Riccio C, Geraci G, Iacovoni A, Pascale V, Tizzani E, Gabrielli D, Grimaldi M, Colivicchi F, Oliva F. ANMCO statement: semaglutide in the cardio-nephro-metabolic continuum. Eur Heart J Suppl 2025; 27:v247-v255. [PMID: 40385470 PMCID: PMC12078771 DOI: 10.1093/eurheartjsupp/suaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Semaglutide, a glucagon-like peptide-1 receptor agonist, has emerged as a pivotal therapeutic agent in the management of the cardio-renal-metabolic continuum. Initially developed for glycaemic control in Type 2 diabetes mellitus, its benefits extend far beyond glucose regulation. Clinical trials have demonstrated semaglutide's potential to reduce major adverse cardiovascular events, particularly in overweight/obese patients with high cardiovascular risk, as well as improving functional capacity in patients suffering from heart failure with preserved left ventricular function. Additionally, it has shown promise in improving renal outcomes, such as slowing the progression of albuminuria and reducing the risk of chronic kidney disease in diabetic populations. These effects are likely due to its multifaceted mechanisms, including anti-inflammatory properties, weight reduction, blood pressure lowering, and direct renal protection. This review synthesizes current evidence on semaglutide's role in the interrelated domains of cardiovascular, renal, and metabolic health.
Collapse
Affiliation(s)
- Leonardo De Luca
- S.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudio Bilato
- U.O.C. Cardiologia, Ospedali dell’Ovest Vicentino, Azienda ULSS 8 Berica, Vicenza, Italy
| | - Alessandro Navazio
- S.O.C. Cardiologia Ospedaliera, Presidio Ospedaliero Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia—IRCCS, Reggio Emilia, Italy
| | - Marco Corda
- S.C. Cardiologia, Azienda Ospedaliera ‘G. Brotzu’, Cagliari, Italy
| | - Massimo Milli
- Cardiologia Firenze 1, Ospedali S. Maria Nuova e Nuovo San Giovanni di Dio, Azienda USL Toscana Centro, Firenze, Italy
| | | | | | - Carmine Riccio
- U.O.S.D. Follow-up del Paziente Post-Acuto, Dipartimento Cardio-Vascolare, AORN Sant’Anna e San Sebastiano, Caserta, Italy
| | - Giovanna Geraci
- U.O.C. Cardiologia, Ospedale Sant’Antonio Abate, Trapani, Italy
| | - Attilio Iacovoni
- SSD Chirurgia dei Trapianti e del Trattamento Chirurgico dello Scompenso, Dipartimento Cardiovascolare, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Vittorio Pascale
- UTIC-Emodinamica e Cardiologia Interventistica, Ospedale Civile Pugliese, Catanzaro, Italy
| | - Emanuele Tizzani
- Dipartimento di Cardiologia, Ospedale degli Infermi, Rivoli, TO, Italy
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento di Scienza Cardio-Toraco-Vascolari, Azienda Ospedaliera San Camillo Forlanini, Roma, Italy
| | - Massimo Grimaldi
- U.O.C. Cardiologia-UTIC, Ospedale Miulli, Acquaviva delle Fonti, BA, Italy
| | - Furio Colivicchi
- U.O.C. Cardiologia Clinica e Riabilitativa, Presidio Ospedaliero San Filippo Neri—ASL Roma 1, Roma, Italy
| | - Fabrizio Oliva
- Cardiologia 1-Emodinamica, Dipartimento Cardio-Toraco-Vascolare ‘A. De Gasperis’, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
10
|
Stolwyk K, Lee I. Rapid progression of amyotrophic lateral sclerosis after initiation of GLP-1 agonist: a case report. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:382-384. [PMID: 39772789 PMCID: PMC12005962 DOI: 10.1080/21678421.2024.2446847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Affiliation(s)
| | - Ikjae Lee
- New York Presbyterian Hospital, New York, NY
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
11
|
Chen M, Zhao N, Shi W, Xing Y, Liu S, Meng X, Li L, Zhang H, Meng Y, Xie S, Deng W. Glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor agonist tirzepatide promotes branched chain amino acid catabolism to prevent myocardial infarction in non-diabetic mice. Cardiovasc Res 2025; 121:454-467. [PMID: 39928435 DOI: 10.1093/cvr/cvaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/18/2024] [Accepted: 11/03/2024] [Indexed: 02/12/2025] Open
Abstract
AIMS A novel dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 receptor agonist, tirzepatide (LY3298176, TZP), has been developed to treat Type 2 diabetes mellitus (T2DM). In ischaemic heart diseases, TZP is involved in cardiac metabolic processes. However, its efficacy and safety in treating heart failure (HF) following myocardial infarction (MI) remain uncertain. METHODS AND RESULTS Herein, 12 week C57BL/6J mice were subjected to MI surgery, followed by administration of TZP. The effects of TZP on cardiac function and metabolism were thoroughly assessed by physiological, histological, and cellular analyses. Downstream effectors of TZP were screened through untargeted metabolomics analysis and molecular docking. Construct a lower branched chain amino acid (BCAA) diet model to determine whether TZP's cardioprotective effect is associated with reducing BCAA levels. Our results demonstrated that TZP reduced mortality following MI, decreased the infarct area, and attenuated cardiomyocyte necrosis. Pathological evaluation of cardiac tissues demonstrated increased fibrosis repair and decreased inflammatory infiltration. Mechanistically, untargeted metabolomics analysis uncovered a positive correlation between TZP and the BCAA catabolism pathway. The molecular docking verified that TZP could bind with branched-chain keto acid dehydrogenase E1 subunit α (BCKDHA). TZP reduced BCKDHA phosphorylation at S293, enhanced BCAA catabolism, and inhibited the activation of metabolism by activating rapamycin (mTOR) signalling pathway. Furthermore, mice fed a low-BCAA diet post-MI demonstrated reduced cardiomyocyte necrosis, increased fibrosis repair, and decreased inflammatory infiltration. These cardioprotective effects were further enhanced when used synergistically with TZP. CONCLUSION Taken together, our findings provide new perspectives on the unrecognized role of TZP in cardiac protection. TZP enhanced BCAA catabolism and attenuated BCAA/mTOR signalling pathway in MI mice. Consequently, this study may present novel therapeutic options for patients with HF.
Collapse
Affiliation(s)
- Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xianxian Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yanyan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
12
|
Delgado JAC, Amaral J, Penteado PS, Ferreira AG, da Silva MFF, König B, Paixão MW. Selective Native N (in)-H Bond Activation in Peptides with Metallaphotocatalysis. JACS AU 2025; 5:2040-2046. [PMID: 40313804 PMCID: PMC12042047 DOI: 10.1021/jacsau.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 05/03/2025]
Abstract
The development of chemical methods enabling site-selective incorporation of noncanonical amino acids into peptide backbones with precise functional tailoring remains a critical challenge. Particularly compelling is the use of underexplored endogenous amino acid hotspots, such as the N (in) of tryptophan, as versatile anchors for diversification. Herein, we report a chemoselective N(sp2)-H bond activation strategy targeting native tryptophan residues within peptide frameworks, exemplified by GLP-1 (7-37), using nickel metallaphotocatalysis under postsynthetic solid-phase conditions. This selective N (in)-arylation reaction proceeds efficiently within 3 h of light irradiation in highly functionalized heterogeneous environments, employing minimal excesses of electrophile and base, alongside catalytic quantities of nickel, ligand, and photocatalyst. The method affords homogeneous peptide products with high chemoselectivity and operational simplicity. We envision that this strategy could contribute to advancing the design of the next-generation long-acting class II G protein-coupled receptor agonist therapeutics.
Collapse
Affiliation(s)
- José A. C. Delgado
- Laboratory
for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos − UFSCar, Rodovia Washington Luís,
km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Jéssica
C. Amaral
- Department
of Plant Pathology and Nematology, University
of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Av. Pádua Dias, 11, Piracicaba, São Paulo 13418-900, Brazil
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Paula S. Penteado
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Antonio G. Ferreira
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Maria Fátima
G. F. da Silva
- Department
of Chemistry, Federal University of São
Carlos − UFSCar, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Burkhard König
- Institute
of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W. Paixão
- Laboratory
for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos − UFSCar, Rodovia Washington Luís,
km 235 - SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
13
|
Draghmeh K, Fuehrlein B. Emerging Therapeutics in the Treatment of Substance Use Disorders: A Focus on GLP-1 Receptor Agonists, D3R Antagonists, and CRF Antagonists. J Integr Neurosci 2025; 24:26361. [PMID: 40302255 DOI: 10.31083/jin26361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 05/02/2025] Open
Abstract
The prevalence and rising use of alcohol, opioids, and stimulants have led to substance use disorders (SUDs) that are a significant public health challenge. Traditional treatments offer some benefit; however, they often limited by efficacy, side effects, and accessibility, highlighting the urgent need for novel therapeutics. This review explores the current literature surrounding three different classes of novel treatments: glucagon-like peptide-1 (GLP-1) receptor agonists, dopamine D3 receptor (D3R) antagonists, and corticotropin-releasing factor (CRF) antagonists. These therapeutics collectively target different aspects of the addiction process, such as stress and relapse prevention, reward modulation, and the reduction of drug-seeking behavior, leading to a combined multifaceted approach to treating SUDs. This review includes preclinical and clinical evidence supporting the use of these therapies, highlighting their potential to reduce substance use and prevent relapse to alcohol, opioid, and stimulant use. Despite the potentially promising findings of these treatments, further research is necessary to fully understand their mechanisms, optimize their application, and confirm their efficacy in clinical settings.
Collapse
Affiliation(s)
- Khaled Draghmeh
- Department of Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Brian Fuehrlein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
- Mental Health Service Line, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
14
|
Frei MS, Sanchez SA, He X, Liu L, Schneider F, Wang Z, Hakozaki H, Li Y, Lyons AC, Rohm TV, Olefsky JM, Shi L, Schöneberg J, Fraser SE, Mehta S, Wang Y, Zhang J. Far-red chemigenetic kinase biosensors enable multiplexed and super-resolved imaging of signaling networks. Nat Biotechnol 2025:10.1038/s41587-025-02642-8. [PMID: 40258957 DOI: 10.1038/s41587-025-02642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Fluorescent biosensors have advanced biomedical research by enabling direct live-cell measurements of signaling activities. However, current technology offers limited resolution and dimensionality, impeding our ability to resolve and interrogate spatiotemporally regulated networks of signaling activities. Here we introduce highly sensitive chemigenetic kinase activity biosensors that combine the genetically encodable self-labeling tag, HaloTag7, with far-red-emitting synthetic fluorophores. This technology enables both four-dimensional activity imaging and functional super-resolution imaging using stimulated emission depletion and other high-resolution microscopy techniques, permitting signaling activity to be detected across scales with the necessary resolution. Stimulated emission depletion imaging enabled the investigation of protein kinase A activity at individual clathrin-coated pits. We further demonstrate imaging of up to five analytes in single living cells, an increase in the dimensionality of biosensor multiplexing. Multiplexed imaging of cellular responses to the activation of different G-protein-coupled receptors (GPCRs) allowed quantitative measurements of spatiotemporal network states downstream of individual GPCR-ligand pairs.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Samantha A Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xinchang He
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zichen Wang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Anne C Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Johannes Schöneberg
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Scott E Fraser
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Liu T, Shi F, Guo Z, Li H, Qin D. Therapeutic Potential of the Novel GLP-1 Receptor Agonist Semaglutide in Alcohol Use Disorder. PHARMACOPSYCHIATRY 2025. [PMID: 40228539 DOI: 10.1055/a-2550-6470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Alcohol use disorder (AUD) is a prevalent neuropsychiatric disorder with serious health and social consequences. However, few licensed and successful pharmacotherapies exist for heterogeneous and complex disorders such as AUD, and these are poorly utilized. Preclinical and clinical findings suggest that the glucagon-like peptide-1 (GLP-1) system, a gut-brain peptide, is involved in the neurobiology of addictive behaviors. Additionally, the GLP-1 receptor (GLP-1R) has become a promising target for the treatment of AUD. Semaglutide, a novel GLP-1R agonist, has received clinical approval to treat type 2 diabetes in both subcutaneous and oral dosage forms. Studies have shown that it significantly reduces alcohol consumption and relapse of alcohol addiction in rats, suggesting its potential effectiveness for treating alcohol abuse in humans, particularly in overweight patients with AUDs. However, the use of semaglutide is associated with potential risks, such as gallbladder disease and clinical complications associated with delayed gastric emptying. This review evaluates the safety of semaglutide to inform its wider clinical application. Further extensive and in-depth studies on semaglutide are needed to reveal additional valuable clinical benefits.
Collapse
Affiliation(s)
- Tingting Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Zhihua Guo
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun, China
| | - Di Qin
- The Third Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025; 24:251-275. [PMID: 39747671 PMCID: PMC11968245 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
17
|
Sun Y, Zhang Y, Shi F, Li Y, Wang C, Yu F, Chen T, Dong X, Xu Y, Zhao Y, Wan P. Characterization and Role of Glucagon-Like Peptide 1 Receptor in the Lacrimal Gland: Novel Insights into Diabetic Dry Eye Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:797-810. [PMID: 39725294 DOI: 10.1016/j.ajpath.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
This study aimed to investigate the expression of glucagon-like peptide 1 receptor (GLP-1R) in the lacrimal gland and explore the effects of topical application of GLP-1R agonist on lacrimal gland function in a murine model of type 1 diabetes. Tear secretion was evaluated using phenol red threads, RNA sequencing was used to explore gene expression profiles associated with hyperglycemia-induced lacrimal gland injuries, and histologic analysis was conducted to evaluate the degree of damage. The expression of GLP-1R in the lacrimal gland was first identified, and a down-regulation trend associated with diabetes was observed. RNA-sequencing data from lacrimal gland tissues revealed that differentially expressed genes were enriched in inflammatory response pathways. Histologic analysis demonstrated persistent hyperglycemia-induced infiltration of inflammatory cells and progressive fibrosis in the lacrimal gland, resulting in atrophy and diminished tear secretion. Topical application of liraglutide effectively attenuated inflammation and alleviated fibrosis, thus promoting tear production in diabetic mice. Additionally, local intervention with liraglutide promoted autophagy degradation function in the lacrimal gland. This study represents the first validation of GLP-1R expression in the lacrimal gland and its down-regulation induced by diabetes. Additionally, these findings demonstrate that topical administration of liraglutide eye drops, a GLP-1R agonist, can effectively mitigate hyperglycemia-induced damage in the lacrimal gland while enhancing tear secretion.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Shi
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Li
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Congyao Wang
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenfen Yu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqi Xu
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhao
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Yan R, Liu L, Tzoulaki I, Fan J, Targher G, Yuan Z, Zhao J. Genetic Evidence for GLP-1 and GIP Receptors as Targets for Treatment and Prevention of MASLD/MASH. Liver Int 2025; 45:e16150. [PMID: 39487684 DOI: 10.1111/liv.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide-1 receptor (GLP1R) agonists and glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists may help treat metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). However, their definitive effects are still unclear. Our study aims to clarify this uncertainty. METHODS We utilised conventional Mendelian randomisation (MR) analysis to explore potential causal links between plasma GLP-1/GIP concentrations and MASLD and its related traits. Next, we conducted drug-target MR analysis using highly expressed tissue data to assess the effects of corresponding drug perturbation on these traits. Finally, mediation analysis was performed to ascertain whether the potential causal effect is direct or mediated by other MASLD-related traits. RESULTS Circulating 2-h GLP-1 and GIP concentrations measured during an oral glucose tolerance test showed hepatoprotective effects on MASLD risk (ORGLP-1 = 0.168 [95% CI 0.033-0.839], p = 0.030; ORGIP = 0.331 [95% CI 0.222-0.494], p = 6.31 × 10-8). GLP1R expression in the blood had a minimal causal effect on MASLD risk, whereas GIPR expression significantly affected MASLD risk (OR = 0.671 [95% CI 0.531-0.849], p = 9.07 × 10-4). Expression levels of GLP1R or GIPR in the blood significantly influenced MASLD-related clinical traits. Mediation analysis revealed that GIPR expression protected against MASLD, even after adjusting for type 2 diabetes or body mass index. CONCLUSIONS GLP-1/GIP receptor agonists offer promise in lowering MASLD/MASH risk. GIP receptor agonists can exert direct and indirect effects on MASLD mediated by weight reduction or glycemic control improvement.
Collapse
Affiliation(s)
- Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Lu Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria, Negrar di Valpolicella, Verona, Italy
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Jian Zhao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Alluri AA, Guntupalli Y, Suvarna SS, Prystupa Y, Khetan SP, Vejandla B, Babu Swathi NL. Incretin-based therapies: advancements, challenges, and future directions in type 2 diabetes management. J Basic Clin Physiol Pharmacol 2025:jbcpp-2025-0031. [PMID: 40150960 DOI: 10.1515/jbcpp-2025-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Incretin-based medicines have considerably impacted the treatment of type 2 diabetes mellitus (T2DM), providing considerable advantages in glycemic regulation, weight control, and cardiovascular results. This narrative review examines progress in incretin medicines, encompassing glucagon-like peptide-1 (GLP-1) receptor agonists, dual-receptor, and triple-receptor agonists, while emphasizing their therapeutic advantages, obstacles, and prospective developments. The examined articles were sourced from databases including PubMed and Google Scholar, concentrating on publications predominantly from 2010 to 2024. Selective foundational papers released before this timeline were incorporated to furnish critical historical context about incretin processes and their discovery. Incretin-based medicines, despite their therapeutic efficacy, encounter hurdles including elevated treatment costs, patient compliance difficulties, and variability in response attributable to genetic and physiological variables. Moreover, there are still deficiencies in comprehending the long-term cardiovascular safety and cancer risks linked to these medicines. Emerging dual- and triple-receptor agonists demonstrate potential in overcoming the shortcomings of conventional GLP-1 receptor agonists, providing enhanced metabolic results and broader uses in intricate disease profiles. Future research must concentrate on economic obstacles, streamlined regimens, customized medicine, the integration of artificial intelligence, patient stratification, as well as the safety and efficacy of incretin-based medicines for holistic management of T2DM.
Collapse
Affiliation(s)
- Amruth A Alluri
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, Netherlands
| | - Yashaswi Guntupalli
- Internal Medicine, 28660 Sri Venkateswara Institute of Medical Sciences , Tirupati, Andhra Pradesh, India
| | | | | | | | - Bharath Vejandla
- Internal Medicine, All American Institute of Medical Science, Black River, Jamaica
| | | |
Collapse
|
20
|
Wong MT, Lin PH, Lin WC, Peng CJ, Wright JD, Lee HJ, Chu HM, Lim C, Chang TW. 2FA-Platform Generates Dual Fatty Acid-Conjugated GLP-1 Receptor Agonist TE-8105 with Enhanced Diabetes, Obesity, and NASH Efficacy Compared to Semaglutide. J Med Chem 2025; 68:6178-6192. [PMID: 40044142 PMCID: PMC11956005 DOI: 10.1021/acs.jmedchem.4c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Conjugating two fatty acids (2FAs) to peptide drugs can improve pharmacokinetics and therapeutic effects. However, optimizing FA spacing, chain combination, and attachment site to simultaneously enhance albumin binding and drug efficacy remains challenging. We introduce a multiarm linker technology enabling precise control of 2FA spacing, composition, and attachment. By applying this technology to a modified glucagon-like peptide-1 (GLP-1) and screening various 2FA-GLP-1 conjugates differing in linkage, linker, and FA properties for improved albumin affinity, pharmacokinetics, and pharmacodynamics, TE-8105 emerged as a promising candidate. TE-8105 outperformed semaglutide, showing improved long-term glycemic control, weight loss, and liver health in diabetic mice, and dose-dependent weight loss and favorable body composition changes in obese mice. A distinct advantage of TE-8105 over semaglutide is its low-dose reduction of liver steatosis and improvement of liver health in nonalcoholic steatohepatitis mice. The multiarm linker technology provides a versatile platform for developing improved 2FA-peptide therapeutics.
Collapse
Affiliation(s)
- Mun-Teng Wong
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Pei-Hsuan Lin
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Wei-Chen Lin
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Chi-Jiun Peng
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Jon D. Wright
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Hui-Ju Lee
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Hsing-Mao Chu
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Carmay Lim
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| | - Tse Wen Chang
- Immunwork,
Inc., C520, No. 99, Lane
130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
- T-E
Meds, Inc., C423, No.
99, Lane 130, Academia Road, Section 1, Nangang, Taipei 115021, Taiwan
| |
Collapse
|
21
|
Xiang L, Peng Y. Impact of Glucagon-like Peptide-1 Receptor Agonists on Mental Illness: Evidence from a Mendelian Randomization Study. Int J Mol Sci 2025; 26:2741. [PMID: 40141382 PMCID: PMC11942543 DOI: 10.3390/ijms26062741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Emerging evidence suggests that glucagon-like peptide-1 receptor (GLP1R) agonists may have potential benefits for mental illnesses. However, their exact effects remain unclear. This study investigated the causal relationship between glucagon-like peptide-1 receptor agonist (GLP1RA) and the risk of 10 common mental illnesses, including attention deficit and hyperactivity disorder, anorexia nervosa, anxiety disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, post-traumatic stress disorder, schizophrenia, cannabis use disorder, and alcohol use disorder. We selected GLP1RA as the exposure and conducted a Mendelian randomization (MR) analysis. The cis-eQTLs of the drug target gene GLP1R, provided by eQTLGen, were used to simulate the pharmacological effects of GLP1RA. Type 2 diabetes and BMI were included as positive controls. Using data from both the Psychiatric Genomic Consortium and FinnGen, we conducted separate MR analyses for the same disease across these two independent databases. Meta-analysis was used to pool the results. We found genetic evidence suggesting a causal relationship between GLP1RA and a reduced risk of schizophrenia [OR (95% CI) = 0.84 (0.71-0.98), I2 = 0.0%, common effects model]. Further mediation analysis indicated that this effect might be unrelated to improvements in glycemic control but rather mediated by BMI. However, the findings of this study provide insufficient evidence to support a causal relationship between GLP1RA and other mental illnesses. Sensitivity analyses did not reveal any potential bias due to horizontal pleiotropy or heterogeneity in the above results (p > 0.05). This study suggests that genetically proxied activation of glucagon-like peptide-1 receptor is associated with a lower risk of schizophrenia. GLP1R is implicated in schizophrenia pathogenesis, and its agonists may exert potential benefits through weight management. Our study provides useful information for understanding the neuropsychiatric effects of GLP1RA, which may contribute to refining future research designs and guiding clinical management. Moreover, our findings could have significant implications for overweight individuals at high risk of schizophrenia when selecting weight-loss medications. Future research should further investigate the potential mechanisms underlying the relationship between GLP1RA and schizophrenia.
Collapse
Affiliation(s)
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
22
|
Du J, Liu J, Wang X, Wang X, Ma Y, Zhang S, Li Z, Ma J, Liu J. The role of estrogen in the sex difference for the risk factors of heart failure with preserved ejection fraction. Biol Direct 2025; 20:28. [PMID: 40065410 PMCID: PMC11895175 DOI: 10.1186/s13062-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major subtype of heart failure, primarily characterized by a normal or mildly reduced left ventricular ejection fraction along with left ventricular diastolic dysfunction. Recent studies have shown that the prevalence of HFpEF is higher in women than that in men, particularly in postmenopausal women. Concurrently, it has been observed that the incidence of risk factors contributing to HFpEF (such as obesity, hypertension, diabetes, and atrial fibrillation) also notably increases post-menopause, affecting the incidence of HFpEF. This review aimed to examine the relationship between estrogen and risk factors associated with HFpEF, clarifying the underlying mechanisms through which estrogen affects these risk factors from epidemiological and pathophysiological perspectives. This review also provides a comprehensive understanding of the association between estrogen and the risk factors for HFpEF, thus helping explore potential targets for HFpEF treatment.
Collapse
Affiliation(s)
- Jun Du
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiaqi Liu
- Xi'an Medical University, Xi'an, People's Republic of China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Sipan Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
23
|
Shilyansky JS, Chan CJ, Xiao S, Gribovskaja-Rupp I, Quelle DE, Howe JR, Dillon JS, Ear PH. GLP-1R agonist promotes proliferation of neuroendocrine neoplasm cells expressing GLP-1 receptors. Surgery 2025; 179:108943. [PMID: 39665969 DOI: 10.1016/j.surg.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Semaglutide is a glucagon-like peptide 1 (GLP-1) analog that binds to GLP-1 receptors (GLP-1R) on beta-cells and neuronal cells and is used for treating type 2 diabetes and obesity. Insulin-secreting pancreatic neuroendocrine neoplasms have been reported to express high levels of GLP-1R protein, raising the possibility that GLP-1 receptor agonists could promote tumor growth. Our goal was to quantify GLP-1R expression levels in 6 neuroendocrine neoplasm cellular models and determine their proliferative response to semaglutide treatment. METHODS Gene expression of GLP-1R in neuroendocrine neoplasm cells (BON, GOT1, NT-3, NEC913, NEC1452, and NEC1583) was measured by quantitative polymerase chain reaction. Protein expression was determined by immunofluorescent staining and Western blotting. Neuroendocrine neoplasm cells were incubated with semaglutide, and cell growth was measured using a cell viability assay. Mice harboring GOT1 xenografts were treated with semaglutide, and tumor volumes were measured. RESULTS BON, NEC1452, and NEC1583 cells expressed significantly lower levels of GLP-1R transcript and protein than GOT1, NT-3, and NEC913 cells. GOT1 and NT-3 showed the highest response to semaglutide treatment, with a 19% and 22% increase in growth. Semaglutide promotes tumor growth in mice with GOT1 xenografts by 72%. CONCLUSION The impact of the GLP-1 receptor agonist semaglutide on neuroendocrine cancer growth is understudied. Our data revealed that 50% of neuroendocrine neoplasm cell lines tested expressed GLP-1R, and semaglutide treatment promoted their growth. These results indicate a potential risk in the use of semaglutide in patients with neuroendocrine neoplasms expressing GLP-1R. Investigations into a larger set of neuroendocrine neoplasms would be important because they are highly heterogeneous.
Collapse
Affiliation(s)
| | - Casandro J Chan
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sophia Xiao
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | | | - Dawn E Quelle
- Department of Pharmacology and Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph S Dillon
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Po Hien Ear
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA.
| |
Collapse
|
24
|
Ellegaard AM, Kårhus ML, Winther-Jensen M, Lund AB, Knop FK. Treatment of Bile Acid Diarrhea With Glucagon-Like Peptide 1 Receptor Agonists: A Promising Yet Understudied Approach. Clin Transl Gastroenterol 2025; 16:e00815. [PMID: 39807780 PMCID: PMC11932613 DOI: 10.14309/ctg.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Bile acid diarrhea (BAD) is a chronic and socially debilitating disease characterized by abdominal pain, diarrhea, urgency, and fecal incontinence. Recently, in a 6-week randomized controlled trial, we showed that the glucagon-like peptide 1 receptor agonist (GLP-1RA) liraglutide is superior to bile acid sequestration (considered standard-of-care) using colesevelam in reducing BAD symptoms. The emergence of new, more potent, and longer-acting GLP-1RAs has spurred an interest in these treatments in BAD management. Here, we review the literature on different GLP-1RAs in BAD treatment and outline their potential mode of actions, highlight knowledge gaps, and outline the need for further clinical evidence generation.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
| | - Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
| | - Matilde Winther-Jensen
- Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | - Asger B. Lund
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital – Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Silva B, Bragança J. Induced pluripotent stem cell-derived mesenchymal stem cells for modeling and treating metabolic associated fatty liver disease and metabolic associated steatohepatitis: Challenges and opportunities. World J Stem Cells 2025; 17:99331. [DOI: 10.4252/wjsc.v17.i2.99331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
The potential of induced pluripotent stem cells (iPSCs) for modeling and treating metabolic associated fatty liver disease (MAFLD) and metabolic associated steatohepatitis (MASH) is emerging. MAFLD is a growing global health concern, currently with limited treatment options. While primary mesenchymal stem cells hold promise, iPSCs offer a versatile alternative due to their ability to differentiate into various cell types, including iPSC-derived mesenchymal stem cells. However, challenges remain, including optimizing differentiation protocols, ensuring cell safety, and addressing potential tumorigenicity risks. In addition, iPSCs offer the possibility to generate complex cellular models, including three-dimensional organoid models, which are closer representations of the human disease than animal models. Those models would also be valuable for drug discovery and personalized medicine approaches. Overall, iPSCs and their derivatives offer new perspectives for advancing MAFLD/MASH research and developing novel therapeutic strategies. Further research is needed to overcome current limitations and translate this potential into effective clinical applications.
Collapse
Affiliation(s)
- Bárbara Silva
- Algarve Biomedical Center-Research Institute, University of Algarve, Faro 8005-139, Portugal
- Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro 8005-139, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro 8005-139, Portugal
| | - José Bragança
- Algarve Biomedical Center, University of Algarve, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Center-Research Institute, University of Algarve, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon 1000-001, Portugal
| |
Collapse
|
26
|
Gare CL, White AM, Malins LR. From lead to market: chemical approaches to transform peptides into therapeutics. Trends Biochem Sci 2025:S0968-0004(25)00024-6. [PMID: 40011178 DOI: 10.1016/j.tibs.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Peptides are a powerful drug modality with potential to access difficult targets. This recognition underlies their growth in the global pharmaceutical market, with peptides representing ~8% of drugs approved by the FDA over the past decade. Currently, the peptide therapeutic landscape is evolving, with high-throughput display technologies driving the identification of peptide leads with enhanced diversity. Yet, chemical modifications remain essential for improving the 'drug-like' properties of peptides and ultimately translating leads to market. In this review, we explore two recent therapeutic candidates (semaglutide, a peptide hormone analogue, and MK-0616, an mRNA display-derived candidate) as case studies that highlight general approaches to improving pharmacokinetics (PK) and potency. We also emphasize the critical link between advances in medicinal chemistry and the optimisation of highly efficacious peptide therapeutics.
Collapse
Affiliation(s)
- Caitlin L Gare
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Andrew M White
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra 2601, Australian Capital Territory, Australia.
| |
Collapse
|
27
|
Katzman JL, Haider MA, Cardillo C, Rozell JC, Schwarzkopf R, Lajam CM. Trends, Demographics, and Outcomes for Glucagon-Like Peptide-1 Receptor Agonist Use in Total Knee Arthroplasty: An 11-Year Perspective. J Arthroplasty 2025:S0883-5403(25)00170-6. [PMID: 40087066 DOI: 10.1016/j.arth.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Obesity and diabetes mellitus (DM) pose challenges for patients undergoing total knee arthroplasty (TKA). Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as agents for weight and DM management, but they affect multiple organ systems. Outcomes, trends, and demographics for perioperative GLP-1RA use in patients with TKA are not well understood. METHODS A retrospective review of 13,751 primary, elective TKAs with at least 90 days of follow-up at an urban academic health system between 2012 and 2023 identified 865 patients who had perioperative GLP-1RA use. A 10:1 propensity score match based on sex, age, smoking status, American Society of Anesthesiologists classification, and body mass index created a control cohort of 8,650 TKAs with no GLP-1RA use. RESULTS The use of GLP-1RAs varied significantly by race, Medicaid insurance, Charlson Comorbidity Index, and presence of DM. Black and Latino patients and those covered by Medicaid were significantly less likely to receive GLP-1RAs. The GLP-1RA group had significantly shorter length of stay (2.1 versus 2.5 days, P < 0.001) and a higher rate of home discharge (91.7 versus 84.2%, P < 0.001). The GLP-1RA users had significantly higher rates of 90-day emergency department visits (5.9 versus 4.0%, P = 0.008), but no differences in 90-day readmissions (4.3 versus 3.6%, P = 0.168) or 2-year revision (2.3 versus 2.6%, P = 0.362) compared to matched controls. The GLP-1RA patients had significantly lower all-cause revision rates at the last follow-up (2.7 versus 3.9%, P = 0.034), but there was no significant difference in Kaplan-Meier implant survival (P = 0.311). Before TKA, GLP-1RA patients had an average decrease in body mass index of 0.4, compared to an average increase of 1.2 for matched controls. CONCLUSIONS Our results demonstrate that the use of GLP-1RAs is significantly lower for minority patients and those covered by Medicaid. Patients using GLP-1RAs have noninferior clinical outcomes with the potential for weight loss leading up to TKA. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Jonathan L Katzman
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Muhammad A Haider
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Casey Cardillo
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Joshua C Rozell
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Ran Schwarzkopf
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| | - Claudette M Lajam
- Department of Orthopedic Surgery, NYU Langone Health, New York, New York
| |
Collapse
|
28
|
Kondo N, Yonezawa M, Hirano F, Temma T. Comparison of Exendin-4 and Its Single Amino Acid Substitutions as Parent Peptides for GLP-1 Receptor Imaging Probes. Molecules 2025; 30:1011. [PMID: 40076236 PMCID: PMC11901735 DOI: 10.3390/molecules30051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is an emerging critical target for the diagnosis and treatment of various diseases. Radiolabeled exendin-4 (Ex-4), a GLP-1R agonist, has been widely used as an imaging probe. However, its potential to induce hypoglycemia, especially in patients with insulinoma, limits its applicability. This study evaluated whether Ex-D3, a Glu3Asp substitution of Ex-4 with a higher internalization rate, could enhance the imaging efficacy of Ex-4 while reducing its hypoglycemic effects. We synthesized derivatives with an additional C-terminal Cys (Ex-D3-C40) for site-specific 125I labeling. Surface plasmon resonance analysis revealed that C-terminus modification did not significantly alter the binding affinity of Ex-D3-C40 to GLP-1R. In vivo studies in mice demonstrated that Ex-D3-C40 induced weaker hypoglycemic effects than Ex-4-C40. Biodistribution studies showed that 125I-labeled Ex-D3 ([125I]I-Ex-D3) achieved significantly higher pancreatic accumulation and higher pancreas-to-blood and pancreas-to-muscle ratios than [125I]I-Ex-4. Ex vivo autoradiography confirmed the binding specificity of [125I]I-Ex-D3 to GLP-1R-expressing pancreatic β-cells. These findings indicate that Ex-D3 is a promising parent peptide for the development of superior GLP-1R imaging probes with reduced hypoglycemic risk, highlighting the importance of considering pharmacological effects in designing molecular imaging probes.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Institute, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Osaka, Japan
| | - Maiko Yonezawa
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
| | - Fuko Hirano
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan; (N.K.); (F.H.)
| |
Collapse
|
29
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Mahameed M, Xue S, Danuser B, Hamri GCE, Xie M, Fussenegger M. Nitroglycerin-responsive gene switch for the on-demand production of therapeutic proteins. Nat Biomed Eng 2025:10.1038/s41551-025-01350-7. [PMID: 39953326 DOI: 10.1038/s41551-025-01350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/14/2025] [Indexed: 02/17/2025]
Abstract
Gene therapies and cell therapies require precise, reversible and patient-friendly control over the production of therapeutic proteins. Here we present a fully human nitric-oxide-responsive gene-regulation system for the on-demand and localized release of therapeutic proteins through clinically licensed nitroglycerin patches. Designed for simplicity and robust human compatibility, the system incorporates human mitochondrial aldehyde dehydrogenase for converting nitroglycerin into nitric oxide, which then activates soluble guanylate cyclase to produce cyclic guanosine monophosphate, followed by protein kinase G to amplify the signal and to trigger target gene expression. In a proof-of-concept study, human cells expressing the nitroglycerin-responsive system were encapsulated and implanted subcutaneously in obese mice with type 2 diabetes. Transdermal nitroglycerin patches applied over the implant enabled the controlled and reversible production of glucagon-like peptide-1 throughout the 35-day experimental period, effectively restoring blood glucose levels in these mice without affecting heart rate or blood pressure. The approach may facilitate the development of safe, convenient and responsive implantable devices for the sustained delivery of biopharmaceuticals for the management of chronic diseases.
Collapse
Affiliation(s)
- Mohamed Mahameed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Benjamin Danuser
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard Lyon 1, Villeurbanne Cedex, France
| | - Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Alogaiel DM, Alsuwaylihi A, Alotaibi MS, Macdonald IA, Lobo DN. Effects of Ramadan intermittent fasting on hormones regulating appetite in healthy individuals: A systematic review and meta-analysis. Clin Nutr 2025; 45:250-261. [PMID: 39842253 DOI: 10.1016/j.clnu.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS This systematic review and meta-analysis aimed to examine the effect of Ramadan intermittent fasting on appetite-regulating hormones including leptin, ghrelin, insulin, gastrin, glucagon-like peptide-1, peptide YY, and cholecystokinin. METHODS We searched the MEDLINE, Embase, Cochrane Library, CINAHL, Google Scholar, and Web of Science databases to identify relevant research on appetite-regulating hormones during Ramadan intermittent fasting, published until the end of March 2024. RESULTS Data from 16 eligible studies comprising 664 participants (341, 51.4 % male) with a mean ± standard deviation age of 33.9 ± 10.8 years were included. The meta-analysis included 12 studies with complete leptin data, showing no significant effect of Ramadan intermittent fasting on leptin concentrations (standardised mean difference - SMD = -0.11 μg/mL, 95 % CI: -0.36 to 0.14). Analysis of three studies with complete ghrelin data demonstrated a significant increase in ghrelin concentrations following Ramadan intermittent fasting (SMD = 0.31 pg/mL, 95 % CI: 0.03 to 0.60). Six studies examining insulin concentrations pre- and post-fasting revealed no significant effect on insulin concentrations (SMD = -0.24 μU/mL, 95 % CI: -0.54 to 0.02). Similarly, analysis of three studies with complete gastrin data showed no significant effect of intermittent fasting on gastrin concentrations (SMD = 0.23 pg/mL, 95 % CI: -0.71 to 0.99). CONCLUSION Ramadan intermittent fasting significantly increases ghrelin concentrations while showing no significant effects on leptin, insulin, and gastrin. While ghrelin findings were consistent across studies, the high heterogeneity in leptin studies suggests further research to better understand the effects of Ramadan intermittent fasting on appetite-regulating hormones.
Collapse
Affiliation(s)
- Deema M Alogaiel
- Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Health Sciences Department, College of Health and Rehabilitation, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsuwaylihi
- Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Clinical Nutrition, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
| | - May S Alotaibi
- Health Sciences Department, College of Health and Rehabilitation, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Ian A Macdonald
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Division of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Dang T, Yu J, Cao Z, Zhang B, Li S, Xin Y, Yang L, Lou R, Zhuang M, Shui W. Endogenous cell membrane interactome mapping for the GLP-1 receptor in different cell types. Nat Chem Biol 2025; 21:256-267. [PMID: 39227725 DOI: 10.1038/s41589-024-01714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
The GLP-1 receptor, one of the most successful drug targets for the treatment of type 2 diabetes and obesity, is known to engage multiple intracellular signaling proteins. However, it remains less explored how the receptor interacts with proteins on the cell membrane. Here, we present a ligand-based proximity labeling approach to interrogate the native cell membrane interactome for the GLP-1 receptor after agonist simulation. Our study identified several unreported putative cell membrane interactors for the endogenous receptor in either a pancreatic β cell line or a neuronal cell line. We further uncovered new regulators of GLP-1 receptor-mediated signaling and insulinotropic responses in β cells. Additionally, we obtained a time-resolved cell membrane interactome map for the receptor in β cells. Therefore, our study provides a new approach that is generalizable to map endogenous cell membrane interactomes for G-protein-coupled receptors to decipher the molecular basis of their cell-type-specific functional regulation.
Collapse
Affiliation(s)
- Ting Dang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Lingang Laboratory, Shanghai, China
| | - Zhihe Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ye Xin
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
33
|
Sato R, da Fonseca GWP, das Neves W, von Haehling S. Mechanisms and pharmacotherapy of cancer cachexia-associated anorexia. Pharmacol Res Perspect 2025; 13:e70031. [PMID: 39776294 PMCID: PMC11707257 DOI: 10.1002/prp2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 01/30/2025] Open
Abstract
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal muscle loss caused by underlying illnesses such as cancer, heart failure, and renal failure. Inflammation, insulin resistance, increased muscle protein degradation, decreased food intake, and anorexia are the primary pathophysiological drivers of cachexia. Cachexia causes physical deterioration and functional impairment, loss of quality of life, lower response to active treatment, and ultimately morbidity and mortality, while the difficulties in tackling cachexia in its advanced phases and the heterogeneity of the syndrome among patients require an individualized and multidisciplinary approach from an early stage. Specifically, strategies combining nutritional and exercise interventions as well as pharmacotherapy that directly affect the pathogenesis of cachexia, such as anti-inflammatory, metabolism-improving, and appetite-stimulating agents, have been proposed, but none of which have demonstrated sufficient evidence to date. Nevertheless, several agents have recently emerged, including anamorelin, a ghrelin receptor agonist, growth differentiation factor 15 neutralization therapy, and melanocortin receptor antagonist, as candidates for ameliorating anorexia associated with cancer cachexia. Therefore, in this review, we outline cancer cachexia-associated anorexia and its pharmacotherapy, including corticosteroids, progesterone analogs, cannabinoids, anti-psychotics, and thalidomide which have been previously explored for their efficacy, in addition to the aforementioned novel agents, along with their mechanisms.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor)University of São Paulo Medical SchoolSão PauloSão PauloBrazil
- School of Physical Education and SportUniversity of São PauloSão PauloBrazil
| | - Willian das Neves
- Department of Anatomy, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower SaxonyGermany
| |
Collapse
|
34
|
Almeida MM, Calviño C, Reis-Gomes CF, Lombardi I, Brand ALM, Pazos-Moura CC, Garrett R, Alves MA, Trevenzoli IH. Maternal obesity changes the small intestine endocannabinoid system and fecal metabolites of weanling rats associated with reduced intestinal permeability and impaired glucose homeostasis. J Nutr Biochem 2025; 136:109802. [PMID: 39547267 DOI: 10.1016/j.jnutbio.2024.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The small intestine, including the endocannabinoid system (ECS), regulates the energy homeostasis. If maternal obesity modifies the intestinal ECS of the offspring favoring metabolic disorders throughout life is unexplored. Regardless maternal insults, overaction of the ECS has been related to obesity, mainly via type 1 cannabinoid receptor (CB1) signaling, while type 2 cannabinoid receptor (CB2) signaling and the endocannabinoid-like compounds, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), have been associated with anti-inflammatory effects. We hypothesized that maternal obesity changes the ECS in the small intestine of weanling rat offspring in a sex-specific manner associated with altered fecal metabolites. Female rats received a control diet (C; 9% fat) or an obesogenic diet (OD; 37.2% fat, 11.8% sucrose) 9 weeks before mating, gestation and lactation. Offspring were euthanized at weaning. Maternal obesity increased CB2 protein content and mRNA levels of monocyte chemoattractant protein-1 in the small intestine in male offspring, while decreased fecal content of PEA and OEA in both sexes. Maternal obesity decreased gut permeability, but impaired glycemic homeostasis. Concerning fecal levels of γ-aminobutyric acid, amino acids and hypoxanthine, maternal obesity induced a fecal signature related to inflammatory and glycemic homeostasis impairment and dysbiosis. Maternal obesity induced intestinal inflammation and the signaling of CB2, PEA, and OEA might be part of a counter-regulatory response, contributing to reduced gut permeability, but not enough to avoid overweight and glycemic impairment in the offspring at weaning. Our findings provide molecular insights into the intestinal and fecal biomarkers for metabolic disorders.
Collapse
Affiliation(s)
- Mariana M Almeida
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brasil.
| | - Camila Calviño
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Clara F Reis-Gomes
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabelle Lombardi
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Laura Macedo Brand
- Instituto de Química (IQ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rafael Garrett
- Instituto de Química (IQ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marina A Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors (IPPN), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isis H Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
35
|
Iida A, Takahashi E, Kuranuki S, Shimamoto S, Nakamura T, Kitagaki H. Water-Soluble Cellulose Acetate Changes the Intestinal Microbiota in Mice with Non-Alcoholic Steatohepatitis. Nutrients 2025; 17:500. [PMID: 39940357 PMCID: PMC11820315 DOI: 10.3390/nu17030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic disorder of the liver and affects many people worldwide. Intestinal bacteria are thought to be involved in the pathological progression of NAFLD; therefore, improving the intestinal microbiota may be important in controlling NAFLD. In this study, we assessed the effects of water-soluble cellulose acetate (WSCA) on the intestinal microbiota in a non-alcoholic steatohepatitis (NASH) mouse model. Methods: NASH model (STAM mice) was created by streptozotocin injection and feeding the mice a high-fat diet. The serum biochemical parameters were analyzed. Intestinal bacterial populations were analyzed using paired-end sequencing of 16S rRNA, 18S rRNA, and internal transcribed spacer gene. Results: Our findings indicated that WSCA administration tends to improve the serum alanine aminotransferase and glucose levels in STAM mice and decreased the alpha diversity and altered the beta diversity of their intestinal microbiota. Additionally, WSCA intake resulted in an increase in the abundance of Coriobacteriaceae_UCG-002 and a decrease in the abundance of Enterobacter. Conclusions: WSCA intake can alter specific microbial compositions to improve blood glucose levels and liver functions and may improve the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Ayaka Iida
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Ena Takahashi
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Sachi Kuranuki
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka 238-8522, Japan; (E.T.); (S.K.)
| | - Shu Shimamoto
- Daicel Corporation, Konan 2-18-1, Minatoku, Tokyo 108-8230, Japan;
| | - Tsuyoshi Nakamura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan;
| | - Hiroshi Kitagaki
- Faculty of Agriculture, Saga University, Honjo-cho, 1, Saga 840-8502, Japan;
| |
Collapse
|
36
|
Wang MW, Lu LG. Current Status of Glucagon-like Peptide-1 Receptor Agonists in Metabolic Dysfunction-associated Steatotic Liver Disease: A Clinical Perspective. J Clin Transl Hepatol 2025; 13:47-61. [PMID: 39801787 PMCID: PMC11712088 DOI: 10.14218/jcth.2024.00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently a pressing public health issue associated with adverse outcomes such as cirrhosis, malignancy, transplantation, and mortality. Lifestyle modifications constitute the most effective and fundamental management approach, but they often pose challenges in sustaining long-term clinical benefits. Hence, there is a critical need to enhance our understanding through pharmacological management, which unfortunately remains limited. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a leading treatment in the fields of diabetes and obesity, with recent preclinical and clinical studies indicating significant benefits in the management and treatment of MASLD. Our article begins by reviewing the beneficial therapeutic components of GLP-1RAs in MASLD. Subsequently, from a clinical research perspective, we concluded with the liver outcomes of current primary GLP-1RAs and co-agonists. Finally, we presented our insights on clinical concerns such as appropriate trial endpoints, management of comorbidities, and future developments. In conclusion, the benefits of GLP-1RAs in MASLD are promising, and background therapy involving metabolic modulation may represent one of the future therapeutic paradigms.
Collapse
Affiliation(s)
- Ming-Wang Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Green C, Zaman V, Blumenstock K, Banik NL, Haque A. Dysregulation of Metabolic Peptides in the Gut-Brain Axis Promotes Hyperinsulinemia, Obesity, and Neurodegeneration. Biomedicines 2025; 13:132. [PMID: 39857716 PMCID: PMC11763097 DOI: 10.3390/biomedicines13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic peptides can influence metabolic processes and contribute to both inflammatory and/or anti-inflammatory responses. Studies have shown that there are thousands of metabolic peptides, made up of short chains of amino acids, that the human body produces. These peptides are crucial for regulating many different processes like metabolism and cell signaling, as they bind to receptors on various cells. This review will cover the role of three specific metabolic peptides and their roles in hyperinsulinemia, diabetes, inflammation, and neurodegeneration, as well as their roles in type 3 diabetes and dementia. The metabolic peptides glucagon-like peptide 1 (GLP-1), gastric inhibitor polypeptide (GIP), and pancreatic peptide (PP) will be discussed, as dysregulation within their processes can lead to the development of various inflammatory and neurodegenerative diseases. Research has been able to closely investigate the connections between these metabolic peptides and their links to the gut-brain axis, highlighting changes made in the gut that can lead to dysfunction in processes in the brain, as well as changes made in the brain that can lead to dysregulation in the gut. The role of metabolic peptides in the development and potentially reversal of diseases such as obesity, hyperinsulinemia, and type 2 diabetes will also be discussed. Furthermore, we review the potential links between these conditions and neuroinflammation and the development of neurodegenerative diseases like dementia, specifically Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Camille Green
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
| | - Kayce Blumenstock
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azizul Haque
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (C.G.); (V.Z.); (N.L.B.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA;
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
38
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Hwang JJ, Fan Z, Li L. Differences in brain spindle density during sleep between patients with and without type 2 diabetes. Comput Biol Med 2025; 184:109484. [PMID: 39622099 DOI: 10.1016/j.compbiomed.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Sleep spindles may be implicated in sensing and regulation of peripheral glucose. Whether spindle density in patients with type 2 diabetes mellitus (T2DM) differs from that of healthy subjects is unknown. METHODS Our retrospective analysis of polysomnography (PSG) studies identified 952 patients with T2DM and 952 sex-, age- and BMI-matched control subjects. We extracted spindles from PSG electroencephalograms and used rank-based statistical methods to test for differences between subjects with and without diabetes. We also explored potential modifiers of spindle density differences. We replicated our analysis on independent data from the Sleep Heart Health Study. RESULTS We found that patients with T2DM exhibited about half the spindle density during sleep as matched controls (P < 0.0001). The replication dataset showed similar trends. The patient-minus-control paired difference in spindle density for pairs where the patient had major complications were larger than corresponding paired differences in pairs where the patient lacked major complications, despite both patient groups having significantly lower spindle density compared to their respective control subjects. Patients with a prescription for a glucagon-like peptide 1 receptor agonist had significantly higher spindle density than those without one (P ≤ 0.03). Spindle density in patients with T2DM monotonically decreased as their highest recorded HbA1C level increased (P ≤ 0.003). CONCLUSIONS T2DM patients had significantly lower spindle density than control subjects; the size of that difference was correlated with markers of disease severity (complications and glycemic control). These findings expand our understanding of the relationships between sleep and glucose regulation.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janice J Hwang
- Division of Endocrinology and Metabolism and Department of Internal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng Fan
- Division of Sleep Medicine and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
39
|
Park S, Jain R, Mirfakhraee S. Glucagon-like-peptide-1 agonist therapy in adults with cystic fibrosis. J Cyst Fibros 2025; 24:40-46. [PMID: 39214747 DOI: 10.1016/j.jcf.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Glucagon-like-peptide-1 (GLP-1) agonists are commonly used to improve glycemic control and promote weight loss in individuals with type 2 diabetes mellitus (T2DM) and/or obesity. However, there is a paucity of evidence regarding GLP-1 agonist use in people with cystic fibrosis (pwCF). We present 11 people with CF (males: 3, females: 7; age range 24-47; BMI range 25.7-43.7) treated with GLP-1 agonists (semaglutide: 9,tirzepatide: 2) for variable duration (1-50 months). All experienced weight loss on GLP- 1 agonist therapy (median change in weight = -7.2 kg; change in BMI [kg/m2] = -0.9 to -8.1). Eight pwCF showed improvement in percent predicted forced expiratory volume in 1 second (ppFEV1) [change = -5 to + 18] and nine pwCF showed improvement in percent predicted forced vital capacity (ppFVC) [change= +1 to + 26]. Of the 7 pwCF with CFRD, all reduced their insulin quantity (mean, 31.5 % decrease in total daily insulin dose), and glucose time in range improved for most (mean, +11 % increase from baseline). Four pwCF stopped using GLP-1 agonists: 2 due to severe nausea/vomiting, 1 due to lack of perceived benefit, and 1 due to change in insurance coverage. This report is the largest published series to date of pwCF treated with GLP-1 agonist therapy. With the addition of GLP-1 agonists, all individuals experienced weight loss and a reduction in daily insulin dose, and most had improvement in pulmonary function. Future multi-center studies are needed to corroborate the efficacy and safety of these agents in the CF population.
Collapse
Affiliation(s)
- Sanghoon Park
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Dallas, TX, United States
| | - Raksha Jain
- University of Texas Southwestern Medical Center, Division of Pulmonary and Clinical Care Medicine, Dallas, TX, United States
| | - Sasan Mirfakhraee
- University of Texas Southwestern Medical Center, Division of Endocrinology and Metabolism, Dallas, TX, United States.
| |
Collapse
|
40
|
Guo Y, Sun T, Li M, Chen Z, Liu Y, Luo X, Chen Y, Li Y, Kuai L, Yu X, Zou L. Revolutionizing Heart Failure Therapy: Harnessing IVT mRNA and Fusion Protein Technology to Prolong rhBNP Half-Life. Pharm Res 2025; 42:137-149. [PMID: 39806211 PMCID: PMC11785693 DOI: 10.1007/s11095-024-03807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF. METHODS The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology. rhBNP-Fc mRNA was transfected into HEK293T cells to examine the expression in vitro. rhBNP-Fc mRNA encapsulated in LNP was injected into normal mice to detect the translation efficiency, half-life and negative effects in vivo. Finally, it was injected into doxorubicin-induced HF mice to screen the cardiac protective effect. RESULTS The rhBNP-Fc fusion mRNA extended the half-life of rhBNP, showing sustained expression in cell line for at least one day. rhBNP-Fc mRNA translation showed dose-dependent levels, and was still detectable 5 d after injection in vivo. In the HF mouse model, a single administration of rhBNP-Fc mRNA-LNP improved cardiac function, including improving heart ejection and reducing HF biomarkers expression. Additionally, rhBNP-Fc mRNA-LNP treatment mitigated myocardial damage, normalized cardiomyocyte structure, and reduced the levels of pro-inflammatory cytokines. CONCLUSION The rhBNP-Fc mRNA has the potential to serve as an alternative to traditional protein therapies, thereby reducing clinical dosages, injection frequencies, and treatment costs. Our findings offer new insights into the development and application of mRNA drugs, emphasizing their therapeutic potential in long-acting drugs.
Collapse
Affiliation(s)
- Yingyu Guo
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
| | - Tianhan Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Mengyao Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
| | - Ziwei Chen
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuanmei Luo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yayu Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Kuai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Dahua Road, Dongdan, Beijing, 100730, PR China.
| | - Lihui Zou
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China.
| |
Collapse
|
41
|
Skarmaliorakis I, Vasilopoulou A, Gutierrez de Piñeres V, Yannakoulia M, Anastasiou CA, Mantzoros CS. Regulation of proglucagon derived peptides by carbohydrate and protein ingestion in young healthy males-A randomized, double-blind, cross-over trial. Clin Nutr 2025; 44:33-40. [PMID: 39612864 DOI: 10.1016/j.clnu.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND & AIMS The ingestion of macronutrients triggers the release of several incretin peptides from the gastrointestinal system, which have both insulinotropic and satiety-inducing properties. The effect of the meal's macronutrient content on the secretion of these peptides has not been adequately studied, particularly concerning the secretion of the newly characterized proglucagon-derived peptides (PGDPs). We aimed to examine the effect of a meal's macronutrient content, specifically its protein versus carbohydrate content, on postprandial PGDPs responses in healthy men. METHODS Ten apparently healthy, normal-weight males completed a trial consisting of two interventions in a randomized, double-blind, crossover design. In one intervention, participants consumed an isocaloric high-protein breakfast (65 g of glucose, 60 g of protein), while in the other, participants consumed a carbohydrate-rich breakfast (125 g of glucose). Levels of all seven PGDPs, namely glucagon-like peptide-1 and -2 (GLP-1 and GLP-2), oxyntomodulin, glicentin, major pro-glucagon fragment (MPGF), glucagon and proglucagon, as well as glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide total and total plus (GIP total and GIP total plus) levels were measured at baseline, every 15 minutes for the first hour and every 30 minutes for the second and third hours after each meal. RESULTS The two interventions produced similar glycemic and insulinemic responses, while total amino acids increased more over time in response to protein administration. Levels of proglucagon (F(8) = 4.114, p = 0.001) and the primarily pancreas-secreted glucagon and MPGF (F(8) = 3.088, p = 0.005) rose significantly during the protein intervention. GIP total and GIP total plus increased in response to carbohydrate ingestion. No major overall differences were observed for the primarily intestinally secreted GLP-1, oxyntomodulin and glicentin between the two arms of the trial, although their levels tended to increase earlier in response to carbohydrates and later in response to protein administration, especially in the case of GLP-2 levels. CONCLUSIONS The carbohydrate vs. protein content of a meal differentially increases the levels of GIP and PGDPs during the postprandial period. Dose-response studies and comparisons with lipid intake may further advance our knowledge of the physiology of these clinically important molecules and their implications in energy homeostasis.
Collapse
Affiliation(s)
- Ioannis Skarmaliorakis
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, GR 17671 Athens, Greece
| | - Antonia Vasilopoulou
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, GR 17671 Athens, Greece
| | - Valeria Gutierrez de Piñeres
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, GR 17671 Athens, Greece
| | - Costas A Anastasiou
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, GR 17671 Athens, Greece
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Hallaj S, Halfpenny W, Chuter BG, Weinreb RN, Baxter SL, Cui QN. Association Between Glucagon-Like Peptide-1 Receptor Agonists Exposure and Intraocular Pressure Change: GLP-1 Receptor Agonists and Intraocular Pressure Change. Am J Ophthalmol 2025; 269:255-265. [PMID: 39237049 PMCID: PMC11634659 DOI: 10.1016/j.ajo.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE This study evaluates the effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on intraocular pressure (IOP). DESIGN Retrospective clinical cohort study. METHODS The University of California Health Data Warehouse was queried for patients exposed to GLP-1R agonists or other oral antidiabetics. A total of 1247 glaucoma surgery and treatment naïve eyes of 626 patientson GLP-1R agonists and 1083 glaucoma surgery and treatment naïve eyes of 547 patients on other oral antidiabetics were included. Index date was defined as the date of first exposure to the medication. Eyes with at least one pre-exposure and one post-exposure tonometry records within 365 days of the index date were included. Clinical and laboratory data were extracted. Eyes were excluded upon exposure to glaucoma hypotensive medication or glaucoma surgery. The primary outcome measure was ∆IOP after exposure, which was analyzed using a paired t test and generalized estimating equations (GEE) RESULTS: The median age was 66.2 years [IQR = 18.3]; 607 (51.7%) were female, and 667 (56.9%) were Caucasian. Median pre-exposure IOP, hemoglobin A1c, and body mass index were 15.2 mm Hg [IQR = 3.8], 7.5 [IQR = 2.4], and 29.8 [IQR = 9.4], respectively. A total of 776 individuals (66.1%) had diabetes, with the median number of active oral antidiabetics being 1.0 [IQR = 1.0], and 441 (37.5%) being insulin users. Several pre-exposure characteristics differed between the groups. The mean ∆IOP was -0.4 ± 2.8 mm Hg (paired t test P < .001) and -0.2 ± 3.3 mm Hg (paired t test P = .297) in the GLP-1R agonist and other antidiabetics groups, respectively. Pre-exposure IOP was the only independent predictor of ΔIOP in multivariable GEE. Sensitivity analyses yielded similar results. CONCLUSIONS Although GLP-1R agonists were significantly associated with a decrease in IOP in the paired analysis, they were not associated with ΔIOP in multivariable GEE. Moreover, the difference in ΔIOP between the two groups was small.
Collapse
Affiliation(s)
- Shahin Hallaj
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - William Halfpenny
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - Benton G Chuter
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA
| | - Robert N Weinreb
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA
| | - Sally L Baxter
- From the Viterbi Family Department of Ophthalmology, Division of Ophthalmology Informatics and Data Science (S.H., W.H., B.G.C., R.N.W., S.L.B.), Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, California, USA; Department of Medicine, Division of Biomedical Informatics (S.H., W.H., B.G.C., S.L.B.), University of California, San Diego, California, USA.
| | - Qi N Cui
- F.M. Kirby Center for Molecular Ophthalmology (Q.N.C.), Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
43
|
Armandi A, Rosso C, Caviglia GP, Bugianesi E. An updated overview on hepatocellular carcinoma in patients with Metabolic dysfunction-Associated Steatotic Liver Disease: Trends, pathophysiology and risk-based surveillance. Metabolism 2025; 162:156080. [PMID: 39571891 DOI: 10.1016/j.metabol.2024.156080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is a relevant complication occurring in individuals with advanced Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD). Recent epidemiological data suggest an alarming increase in the HCC burden worldwide, with a relevant proportion attributable to MASLD (up to 38 %), either in cirrhotic or non-cirrhotic livers. In view of the changing landscape of metabolic syndrome as "silent pandemic", this narrative review aims to provide an updated picture of the burden of HCC in individuals with MASLD. In the complex pathophysiological pathways linking insulin resistance to MASLD and cardiometabolic syndrome, metabolic inflammation appears a relevant driver of systemic as well as organ-specific complications. Novel insights from the field of immunology, gut-derived liver damage, and association with extra-hepatic cancers will be discussed. Finally, strategies for risk-based HCC surveillance (circulating biomarkers, prognostic models and polygenic risk scores) will be provided and the potential impact of novel drug targeting fibrosing Metabolic dysfunction-Associated Steatohepatitis (MASH) on incident HCC will be discussed.
Collapse
Affiliation(s)
- Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| | - Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| |
Collapse
|
44
|
Shi X, Hu X, Fang X, Jia L, Wei F, Peng Y, Liu M, Gao A, Zhao K, Chen F, Hu X, Hong J, Ning G, Song Y, Wang J, Wang Y. A feeding-induced myokine modulates glucose homeostasis. Nat Metab 2025; 7:68-83. [PMID: 39747483 DOI: 10.1038/s42255-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Maintaining blood glucose homeostasis during fasting and feeding is crucial for the prevention of dysregulation that can lead to either hypo- or hyperglycaemia. Here we identified feimin, encoded by a gene with a previously unknown function (B230219D22Rik in mice, C5orf24 in humans), as a key modulator of glucose homeostasis. Feimin is secreted from skeletal muscle during feeding and binds to its receptor, receptor protein tyrosine kinase Mer (MERTK), promoting glucose uptake and inhibiting glucose production by activation of AKT. Administration of feimin and insulin synergistically improves blood glucose homeostasis in both normal and diabetic mice. Notably, a specific single nucleotide polymorphism (rs7604639, G>A) within the MERTK gene, causing an amino acid substitution (R466K) within the feimin-MERTK binding region, leads to reduced association with feimin and elevated postprandial blood glucose and insulin levels in humans. Our findings underscore a role of the feimin-MERTK signalling axis in glucose homeostasis, providing valuable insights into potential therapeutic avenues for diabetes.
Collapse
Affiliation(s)
- Xiaoliu Shi
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fangchao Wei
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Peng
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Menghao Liu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengyi Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
45
|
Gentinetta S, Sottotetti F, Manuelli M, Cena H. Dietary Recommendations for the Management of Gastrointestinal Symptoms in Patients Treated with GLP-1 Receptor Agonist. Diabetes Metab Syndr Obes 2024; 17:4817-4824. [PMID: 39722834 PMCID: PMC11668918 DOI: 10.2147/dmso.s494919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
GLP-1 receptor agonist (GLP-1RA) have been developed to address the global burden of obesity and are renowned for their safety and efficacy. These medications influence hunger and satiety, reducing energy intake and promoting weight loss. Despite their benefits, GLP-1RAmay cause a slowed gastric emptying, leading to gastrointestinal symptoms. This study examines how food properties and meal composition affect these symptoms. Dietary recommendations are provided, particularly for evening meals, focusing on how different foods and nutrients can influence the rate of gastric emptying, to improve patient compliance and prevent interruption in weight loss.
Collapse
Affiliation(s)
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Matteo Manuelli
- Clinical Nutrition Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
46
|
Xu Y, Michalowski CB, Koehler J, Darwish T, Guccio N, Alcaino C, Domingues I, Zhang W, Marotti V, Van Hul M, Paone P, Koutsoviti M, Boyd BJ, Drucker DJ, Cani PD, Reimann F, Gribble FM, Beloqui A. Smart control lipid-based nanocarriers for fine-tuning gut hormone secretion. SCIENCE ADVANCES 2024; 10:eadq9909. [PMID: 39671480 PMCID: PMC11641013 DOI: 10.1126/sciadv.adq9909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Modulating the endogenous stores of gastrointestinal hormones is considered a promising strategy to mimic gut endocrine function, improving metabolic dysfunction. Here, we exploit mouse and human knock-in and knockout intestinal organoids and show that agents used as commercial lipid excipients can activate nutrient-sensitive receptors on enteroendocrine cells (EECs) and, when formulated as lipid nanocarriers, can bestow biological effects through the release of GLP-1, GIP, and PYY from K and L cells. Studies in wild-type, dysglycemic, and gut Gcg knockout mice demonstrated that the effect exerted by lipid nanocarriers could be modulated by varying the excipients (e.g., nature and quantities), the formulation methodology, and their physiochemical properties (e.g., size and composition). This study demonstrates the therapeutic potential of using nanotechnology to modulate release of multiple endogenous hormones from the enteroendocrine system through a patient-friendly, inexpensive, and noninvasive manner.
Collapse
Affiliation(s)
- Yining Xu
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Cécilia Bohns Michalowski
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Jackie Koehler
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Tamana Darwish
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nunzio Guccio
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Constanza Alcaino
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Inês Domingues
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Wunan Zhang
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Valentina Marotti
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Paola Paone
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Melitini Koutsoviti
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
- Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Ben J. Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Patrice D. Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M. Gribble
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ana Beloqui
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
47
|
Rossetti CL, Andrade IS, Fonte Boa LF, Neves MB, Fassarella LB, Bertasso IM, Souza MDGCD, Bouskela E, Lisboa PC, Takyia CM, Trevenzoli IH, Fortunato RS, Carvalho DPD. Liraglutide prevents body and fat mass gain in ovariectomized Wistar rats. Mol Cell Endocrinol 2024; 594:112374. [PMID: 39306226 DOI: 10.1016/j.mce.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Estrogens exert beneficial metabolic effects by reducing food intake and enhancing energy expenditure through both central and peripheral mechanisms. The decrease of estrogen, as occurs in ovariectomy (OVX), leads to metabolic disturbances, such as increased body weight, adipose tissue mass, basal blood glucose, and impaired glucose tolerance. These effects can be reversed by reintroducing estrogen. GLP-1 and its receptor agonists, known for their antihyperglycemic properties, also exhibit anorexigenic effects. Besides that, research indicates that GLP-1 analogs can induce metabolic changes peripherally, such as increased fatty acid oxidation and inhibited lipogenesis. Given the shared metabolic actions of GLP-1 and estrogens, we explored whether liraglutide, a GLP-1 agonist, could mitigate the metabolic effects of estrogen deficiency. We tested this hypothesis using ovariectomized rats, a model that simulates menopausal estrogen deficiency, and treated them with either liraglutide or 17β-Estradiol benzoate for 21 days. Ovariectomy resulted in elevated DPP-IV activity in both plasma and inguinal white adipose tissue (iWAT). While estrogen replacement effectively countered the DPP-IV increase in both plasma and iWAT, liraglutide only prevented the rise in iWAT DPP-IV activity. Liraglutide prevented body weight and fat mass gain after ovariectomy to the same extent as estradiol treatment. This can be explained by the lower food intake and food efficiency caused by estradiol and liraglutide. However, liraglutide was associated with increased pro-inflammatory cytokines and inflammatory cells in white adipose tissue. Further research is crucial to fully understand the potential benefits and risks of using GLP-1 receptor agonists in the context of menopause.
Collapse
Affiliation(s)
- Camila Lüdke Rossetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, USA
| | - Iris Soares Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Fernando Fonte Boa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Barbosa Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Brito Fassarella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iala Milene Bertasso
- Laboratorio de Fisiologia Endócrina, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Coelho de Souza
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisa Clínica e Experimental em Biologia Vascular (BioVasc), Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratorio de Fisiologia Endócrina, Instituto de Biologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takyia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Cirúrgicas, Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Denise Pires de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Buddhiraju A, Kagabo W, Khanuja HS, Oni JK, Nikkel LE, Hegde V. Decreased Risk of Readmission and Complications With Preoperative GLP-1 Analog Use in Patients Undergoing Primary Total Joint Arthroplasty. J Arthroplasty 2024; 39:2911-2915.e1. [PMID: 38823516 DOI: 10.1016/j.arth.2024.05.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND There has been considerable interest in the use of GLP-1 receptor analogs (GLP-1 RAs) for weight optimization in patients undergoing elective arthroplasty. As there is limited data regarding the implications of their use, our study aimed to evaluate the association between preoperative GLP-1 RA use and postoperative outcomes in patients undergoing primary total hip arthroplasty (THA) and total knee arthroplasty (TKA). METHODS The TrinetX research network was queried to identify all patients undergoing primary THA or TKA between May 2005 and December 2023 across 84 health care organizations. Patients were stratified based on preoperative GLP-1 RA use. Propensity score matching (1:1) was performed to account for baseline differences in demographics, laboratory investigations, and comorbidities. Subsequently, risk ratios were evaluated for postoperative outcomes. RESULTS A total of 268,504 and 386,356 patients underwent THA and TKA, of which 1,044 and 2,095 used preoperative GLP-1 RAs. After matching, GLP-1 RA use was associated with a decreased 90-day risk of periprosthetic joint infection (2.1 versus 3.6%, RR = 0.58, P = .042) and readmission (1.1 versus 2.0%, RR = 0.53, P = .017) following THA and TKA, respectively. There was no difference in the risk of all other outcomes between comparison groups. CONCLUSIONS Preoperative GLP-1 RA use is associated with a 42% decreased risk of periprosthetic joint infection and 47% decreased risk of readmission in the 90-day postoperative period following THA and TKA, respectively, with no difference in other risks, including aspiration. Our findings indicate that GLP-1 RAs may be safe to use in patients undergoing elective arthroplasty; however, further studies are warranted to inform the routine use of GLP-1 RAs for weight management in THA and TKA patients.
Collapse
Affiliation(s)
- Anirudh Buddhiraju
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Whitney Kagabo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harpal S Khanuja
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julius K Oni
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucas E Nikkel
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vishal Hegde
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Gomes SF, Valois A, Estevinho MM, Santiago M, Magro F. Association of Gut Microbiome and Dipeptidyl Peptidase 4 in Immune-Mediated Inflammatory Bowel Disease: A Rapid Literature Review. Int J Mol Sci 2024; 25:12852. [PMID: 39684563 PMCID: PMC11641704 DOI: 10.3390/ijms252312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD. A search across five databases and two gray literature sources identified seven relevant studies reporting data on DPP4 and gut microbiome in patients with IBD-related IMIDs or in vitro or in vivo models: one cross-sectional, one in vitro, and five in vivo studies. The findings revealed a significant impact of DPP4 and its substrates, i.e., glucagon-like peptide-1/2 (GLP-1/2), on the composition of gut microbiome and on the development of dysbiosis. Increased DPP4 activity is associated with decreased GLP-1/2; increased pathogenic bacterial phyla such as Actinobacteria, Bacteroidetes, Deferribacteres, Firmicutes, Fusobacteriota, Proteobacteria, and Verrucomicrobia; and decreased alpha diversity of beneficial gut microbes, including Clostridiaceae, Lachnospiraceae, and Ruminococcaceae families and short-chain fatty acid-producing bacteria like Odoribacter and Butryvibrio spp., with exacerbation of intestinal inflammation. This overview revealed that understanding the DPP4-gut microbiome association is critical for the development of DPP4-targeted therapeutic strategies to guarantee gut microbiome balance and modulation of immune response in IBD.
Collapse
Affiliation(s)
- Sandra F. Gomes
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Unit of Medical Education, Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
| | - André Valois
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
| | - Maria Manuela Estevinho
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
| | - Mafalda Santiago
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| |
Collapse
|
50
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|