1
|
Chen J, Chen C, Lv C, Feng R, Zhong W, Liu Y, Zhou S, Zhao M. Vitexin enhances mitophagy and improves renal ischemia-reperfusion injury by regulating the p38/MAPK pathway. Ren Fail 2025; 47:2463572. [PMID: 39961687 PMCID: PMC11834780 DOI: 10.1080/0886022x.2025.2463572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Vitexin (VI) is a naturally occurring flavonoid derived from the leaves and seeds of Vitex, recognized for its strong antioxidant properties. This study aims to explore its effects on renal ischemia-reperfusion injury (IRI) and investigate the underlying mechanisms. We utilized hypoxia-reoxygenation (H/R) models with HK-2 cell lines and renal ischemia-reperfusion (I/R) models in mice, applying vitexin preconditioning to assess its influence on renal IRI. Our findings reveal that vitexin mitigated oxidative stress, decreased cell apoptosis, and reduced the expression of renal damage indicators such as kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), along with an overall improvement in renal function. To further investigate the mechanism, we used network pharmacology and molecular docking techniques to predict potential vitexin targets in renal IRI. Results from Western blotting and immunofluorescence assays indicate that vitexin may promote mitophagy by suppressing the phosphorylation of the pivotal p38 protein in the p38/MAPK signaling pathway, offering protection against renal IRI. The findings indicate that vitexin could potentially be used as a therapeutic agent to alleviate renal IRI.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chaowei Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Lv
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Runtao Feng
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Zhong
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Zhou
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liu Y, Wu R, Zhou Z, Zhou J, Zhang J, Wang X. Combining mitochondrial proteomes and Mendelian randomization to identify novel therapeutic targets for diabetic nephropathy. Ren Fail 2025; 47:2473669. [PMID: 40125968 PMCID: PMC11934170 DOI: 10.1080/0886022x.2025.2473669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetes. Mitochondrial dysfunction in the kidney caused by diabetes has previously been linked to the pathogenesis of DN. By mass spectrometry, we identified characteristic proteins of DN from the renal mitochondria in mouse model. To identify the core proteins among them, Mendelian randomization (MR) analysis, microarray data validation, and drug-target interaction analysis were employed. MR analysis found that 189 candidate targets had a causal link with DN risk factors (estimated glomerular filtration rate (eGFR), urinary albumin excretion, and serum creatinine). After systematic analysis, we validated that SLC25A16, CTNND1, C2CD2L, ALDH3A2, NEU1, APEH, CORO1A, NUDT19, and NDUFA4L2 are the core proteins with promising druggability in DN. This study suggests the feasibility of using MR analysis for DN drug target screening, and provides potential insights into mitochondrial dysfunction research, which may contribute to further DN pathogenesis exploration.
Collapse
Affiliation(s)
- Yang Liu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Huzhou Key Laboratory of Chronic Kidney Disease, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Rong Wu
- Huzhou Key Laboratory of Chronic Kidney Disease, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Zhelun Zhou
- Huzhou Key Laboratory of Chronic Kidney Disease, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Junan Zhou
- Huzhou Key Laboratory of Chronic Kidney Disease, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jiaai Zhang
- Huzhou Key Laboratory of Chronic Kidney Disease, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Xiaoyi Wang
- Huzhou Key Laboratory of Chronic Kidney Disease, First Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
3
|
Xu Z, Zhang M, Zhang X, Han H, Ye W, Chen Z, Lv Z, Liu Y, Liu Z, Gong J, Zhu B, Zhou S, Zhu R, Tao C, Zhang G, Yan X. Dihydromyricetin protects against cisplatin-induced renal injury and mitochondria-mediated apoptosis via the EGFR/HSP27/STAT3 signaling pathway. Ren Fail 2025; 47:2490202. [PMID: 40230054 PMCID: PMC12001862 DOI: 10.1080/0886022x.2025.2490202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Cisplatin (CP) has been used as an effective chemotherapy drug for different types of cancers. Despite its therapeutic benefits, the clinical utility of CP is often hindered by adverse effects, notably acute kidney injury (AKI), which restricts its widespread application. Dihydromyricetin (DHM) is a flavonoid acquired from Ampelopsis grossedentata, exhibiting a range of pharmacological activities. The major objective of this research was to examine the possible molecular mechanism involved in CP-induced AKI and the protective function of DHM. METHODS In this study, the protective function of DHM against CP-induced AKI was assessed in both mice and HK-2 cells. Kidney dysfunction parameters and renal morphology were evaluated to ascertain the extent of protection. Additionally, proteomics techniques were employed to investigate the protective effect of DHM and elucidate the underlying molecular mechanisms involved in mitigating CP-induced AKI. In addition, protein levels of epidermal growth factor receptor (EGFR), p-EGFR, heat shock protein 27 (HSP27), p-HSP27, STAT3, and p-STAT3 in renal tissues were investigated. Furthermore, an EGFR-blocking agent (gefitinib) or si-RNA of HSP27 was used to study the effects of inhibiting EGFR or HSP27 on CP-induced renal injury. RESULTS DHM decreased blood urea nitrogen (BUN) and creatinine in serum, alleviated renal morphological injury and downregulated the expression of CP-induced kidney injury molecule-1 and neutrophil gelatinase-related lipocalin. Proteomic data revealed HSP27 as a potential therapeutic target for AKI. DHM treatment resulted in the downregulation of EGFR, HSP27, and STAT3 phosphorylation, ultimately mitigating CP-induced AKI. In addition, the inhibition of EGFR or HSP27 reduced mitochondria-mediated apoptosis and CP-induced cell damage in HK-2 cells. CONCLUSIONS DHM effectively inhibited CP-induced oxidative stress, inflammation, and mitochondria-mediated apoptosis through the EGFR/HSP27/STAT3 pathway.
Collapse
Affiliation(s)
- Zheming Xu
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Minjing Zhang
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xue Zhang
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Huirong Han
- School of Anesthesiology, Shandong Second Medical University, Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, Weifang, China
| | - Weifeng Ye
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhenjie Chen
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhisu Lv
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Yang Liu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Zhengye Liu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianguang Gong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runzhi Zhu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chang Tao
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gensheng Zhang
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiang Yan
- Department of Urology, Pediatric Urolith Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
4
|
Hong P, Yang DX, Xu YH, He MJ, Chen X, Li F, Xu SY, Zhang HF. Lipocalin 2 mediates kidney function abnormalities induced by ischemic stroke in mice: Involvement of neural pathways. Exp Neurol 2025; 389:115267. [PMID: 40250700 DOI: 10.1016/j.expneurol.2025.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Kidney function abnormalities is a common complication following ischemic stroke. Lipocalin 2 (LCN2) is currently a well-recognized specific biomarker of tubular injury. However, the role of LCN2 in kidney function abnormalities following stroke remains elusive. The sympathetic nervous system plays a crucial role in linking the brain and kidney. However, whether the kidney sympathetic nervous system regulates the expression of LCN2 following ischemic stroke has not been identified. METHODS In this study, we established a middle cerebral artery occlusion (MCAO) model to induce ischemic stroke in mice. Renal function was assessed 24 h after cerebral ischemia-reperfusion injury. Transcriptomic sequencing of kidney tissue was performed to identify potential pathological mechanisms. The role of LCN2 in post-stroke renal injury was investigated using renal tubule-specific LCN2 knockout mice and a combination of qPCR, western blotting, immunofluorescence, and transmission electron microscopy. In addition, renal denervation (RDN) was used to explore the relationship between sympathetic nerves and the expression of renal LCN2. RESULTS Ischemic stroke significantly exhibits renal functional impairment 24 h after reperfusion. Notably, RNA sequencing and Western blotting revealed a markedly increased expression of renal LCN2 following ischemic stroke. Renal tubular Lcn2-specific knockout significantly ameliorated the occurrence of kidney function abnormalities after stroke. Subsequently, we observed that the activation of renal sympathetic nerves upregulates LCN2 and induces kidney function abnormalities after stroke. CONCLUSIONS These findings reveal a neural pathway in which the sympathetic nervous system upregulates LCN2, providing potential therapeutic strategies for renal protection following ischemic stroke.
Collapse
Affiliation(s)
- Pu Hong
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dong-Xiao Yang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ye-Hao Xu
- The Department of Cardiology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng-Jiao He
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Yuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Bai L, Jia Y, Ma S, Cai Q, Zhang Y, Zhu S. Albumin-seeking NIR dyes for high-sensitive imaging of glomerular filtration barrier breakdown. Biomaterials 2025; 317:123093. [PMID: 39799697 DOI: 10.1016/j.biomaterials.2025.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
The kidney, vital for metabolic balance, faces risks of severe diseases if dysfunctional. The glomerular filtration barrier (GFB), crucial for blood filtration, disrupts in conditions like diabetic nephropathy or nephritides, resulting in proteinuria or even renal failure. Monitoring GFB integrity is essential for early diagnosis or prognostic monitoring. However, current methods lack effective contrast agents for precise, non-invasive GFB imaging. As near-infrared-II (NIR-II) imaging offers promising imaging quality due to its deep tissue penetration and high resolution/contrast while albumin servers as an efficient biomarker for GFB disruption, developing NIR-II dyes with inherent albumin-targeting moiety, will provide real-time imaging of GFB disruption. Here, we adopt albumin-seeking cyanine dye to high-resolution image endogenous albumin in mouse models, facilitating detecting even mild disruptions with trace proteinuria. Notably, our strategy can determine albuminuria by real time imaging without the need to collect urine. Albumin-seeking dyes also enable fast and accurate quantitative measurement of microalbuminuria from patients. These dyes could revolutionize diagnostics, offering rapid, sensitive in vivo imaging of microalbuminuria and diverse clinical applications.
Collapse
Affiliation(s)
- Lang Bai
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China; State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yunlong Jia
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Shengjie Ma
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, PR China.
| | - Qing Cai
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China.
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China; State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
6
|
Pan J, Wang J, Wang W, Liu Z, Huo S, Yan L, Jiang W, Shao F, Gu Y. Renal-clearable and mitochondria-targeted metal-engineered carbon dot nanozymes for regulating mitochondrial oxidative stress in acute kidney injury. Mater Today Bio 2025; 32:101717. [PMID: 40242480 PMCID: PMC12002839 DOI: 10.1016/j.mtbio.2025.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondrial dysfunction-induced oxidative stress is a key pathogenic factor in acute kidney injury (AKI). Despite this, current mitochondrial-targeted antioxidant therapies have shown limited efficacy in clinical settings. In this study, we introduce a novel renal-clearable and mitochondria-targeted antioxidant nanozyme (TPP@RuCDzyme) designed to precisely modulate mitochondrial oxidative stress and mitigate AKI progression. TPP@RuCDzyme was synthesized by integrating ruthenium-doped carbon dots (CDs) with triphenylphosphine (TPP), a mitochondria-targeting moiety. This nanozyme system exhibits cascade enzyme-like activities, mimicking superoxide dismutase (SOD) and catalase (CAT), to efficiently convert cytotoxic superoxide (O2•-) and hydrogen peroxide (H2O2) into non-toxic water (H2O) and oxygen (O2). This dual-enzyme mimicry effectively alleviates mitochondrial oxidative damage, restores mitochondrial function, and inhibits apoptosis. Compared to RuCDzyme alone, TPP@RuCDzyme demonstrated significantly enhanced efficacy in alleviating glycerol-induced AKI by inhibiting oxidative stress. By leveraging the catalytic activity derived from the integration of CDs and a metallic element, this study presents a promising therapeutic strategy for AKI and other renal diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiangpeng Pan
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Juntao Wang
- Department of Nephrology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Wei Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Ziyang Liu
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Shuai Huo
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
| | - Lei Yan
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Wei Jiang
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
| | - Fengmin Shao
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| | - Yue Gu
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 450003, China
- Department of Nephrology, Henan Clinical Medical Research Center for Nephropathy, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital; Zhengzhou University People’s Hospital; Henan University People’s Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
7
|
Shu L, Zhang Z, Wang N, Yin Q, Chao Y, Ge X. Glabridin ameliorates hemorrhagic shock induced acute kidney injury by activating Nrf2/HO-1 pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167810. [PMID: 40127786 DOI: 10.1016/j.bbadis.2025.167810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Glabridin, a bioactive compound extracted from licorice, exhibits anti-inflammatory and antioxidative stress effects. It has rarely been reported in hemorrhagic shock (HS)-induced acute kidney injury (AKI). Here, the effects and potential mechanisms of Glabridin on HS-induced kidney injury was investigated. The active ingredient target network of licorice for HS-induced acute kidney injury was analyzed using network pharmacology. The study also examined the target gene-related biological processes and signaling pathways. To explore the impact of Glabridin on the kidney, a HS-induced rat model was established by femoral artery bleeding following tail vein injection of Glabridin. Glabridin improved kidney function evidenced by reduced levels of creatinine, urea nitrogen, neutrophil gelatinase-associated lipocalin in the serum, and the urinary protein/creatinine ratio in HS rats. This was inseparable from the inhibitory effect on apoptosis and kidney tubule injury. In addition, the protection of Glabridin on mitochondrial function was evident in the improvement of mitochondrial morphology, reduction of reactive oxygen species, increase in adenosine triphosphate, and upregulation of peroxisome proliferator-activated receptor γ coactivator 1-alph. These effects help reduce inflammation in kidney tissue. Hypoxia/reoxygenation-induced HK-2 cells were studied in vitro, and the same results were obtained in the cell model. Mechanically, Glabridin activated the Nrf2/HO-1 signaling pathway in vivo and in vitro, which may be a potential mechanism through which Glabridin protects kidney tissue. This study revealed the preventive effect of Glabridin on the kidney of HS rats, and provided insights for the development of Glabridin as a small molecule drug.
Collapse
Affiliation(s)
- Lianghui Shu
- Department of Nephrology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Zhe Zhang
- School of Medical Humanities, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Nan Wang
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Qudong Yin
- Department of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Ya Chao
- Department of Nephrology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| | - Xin Ge
- Department of Critical Care Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Department of Emergency, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China; Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
8
|
Xu C, Wang H, Wang H, Man J, Deng Y, Li Y, Cheng K, Niu J, Gui H, Fu S, Yang L. Schisandrin B regulates mitochondrial dynamics via AKT1 activation and mitochondrial targeting to ameliorate renal ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156672. [PMID: 40220406 DOI: 10.1016/j.phymed.2025.156672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a significant cause of acute kidney injury(AKI) and delayed graft function(DGF), impacting post-transplant outcomes. Mitochondrial dynamics, in particular fission and fusion, play a pivotal role in the cellular response to RIRI. The modulation of these dynamics represents a potential therapeutic target. Schisandrin B (Sch B), a component derived from traditional Chinese medicine, has shown protective roles in various organ injuries, but its effect on RIRI through mitochondrial dynamics remains unexplored. OBJECTIVE This study explores the previously uninvestigated role of Sch B in modulating mitochondrial dynamics as a potential means of alleviating RIRI. By focusing on mitochondrial fission and fusion, this research provides novel insights into the therapeutic potential of Sch B, distinguishing it from existing approaches. METHODS HK-2 cells were treated with hypoxia/reoxygenation (HR) in order to simulate renal ischemia-reperfusion injury (RIRI) in vitro. In vivo, mice underwent renal ischemia followed by reperfusion, which allowed for the simulation of the injury. Sch B's impact on mitochondrial dynamics, apoptosis, and oxidative stress was assessed through mitochondrial morphology assays, Western blotting for mitochondrial and apoptotic markers, TUNEL staining, and measurement of reactive oxygen species. Key molecular interactions were explored via Western blotting, molecular docking, SPR, and cellular thermal shift assays. In vivo, renal pathological damage was evaluated using HE, PAS, and TUNEL staining, while immunohistochemistry and immunofluorescence were employed to detect the expression levels of mitochondrial dynamics proteins and p-AKT1. RESULTS First, we unveiled that Schisandrin B (Sch B) significantly mitigated oxidative stress and apoptosis in HK-2 cells subjected to hypoxia-reoxygenation conditions. Sch B pretreatment notably enhanced cell viability and mitochondrial function, demonstrating its superior antioxidant capabilities compared to NAC. Second, we discovered that Sch B's protective effects involve regulating mitochondrial dynamics by decreasing fission markers, such as DRP1, while increasing fusion proteins, including OPA1 and MFN2. Furthermore, our studies revealed that Sch B directly binds to AKT1, promoting its phosphorylation and localization to mitochondria, thereby enhancing mitochondrial resilience. Finally, we demonstrated that in vivo administration of Sch B reduced renal damage and apoptosis in mouse models of renal ischemia-reperfusion injury (RIRI), while immunohistochemical analyses unveiled its role in promoting mitochondrial fusion and reducing fission, marking a significant advancement in understanding Sch B's therapeutic potential in RIRI. CONCLUSION Our findings demonstrate for the first time that Sch B directly interacts with AKT1 protein, enhancing its phosphorylation and promoting mitochondrial localization. This innovative mechanism reduces oxidative stress, apoptosis, and mitochondrial fission, highlighting Sch B's unique capability to modulate mitochondrial dynamics in RIRI. These results establish Sch B as a promising therapeutic agent, offering a new dimension in the management of RIRI by targeting mitochondrial health.
Collapse
Affiliation(s)
- Changhong Xu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - HuaBin Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hailong Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiangwei Man
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yun Deng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Kun Cheng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiping Niu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Huiming Gui
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shengjun Fu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
9
|
He J, Wu X, Qiao J, Xie X, Wang Y, Zhang H, Zhang W. Tubular specific glutathione peroxidase 3 deletion exacerbates kidney damage in IRI-AKI mice. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167895. [PMID: 40345457 DOI: 10.1016/j.bbadis.2025.167895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Ischemia-reperfusion injury stands as a primary instigator of acute kidney injury (AKI), prominently driven by oxidative stress. Among the critical antioxidant defenses is glutathione peroxidase 3 (GPX3), an enzyme generated by renal tubular epithelial cells. Our prior investigations have unveiled a substantial downregulation of GPX3 in renal tissues gleaned from AKI patients and murine models. This study aims to investigate the role of tubular cell-specific Gpx3 deletion on ischemia-reperfusion injury-induced AKI (IRI-AKI) in a murine model and delineate the potential underlying mechanisms. By generating renal tubular epithelial cell-specific Gpx3 knockout mice and inducing IRI-AKI, we assessed a spectrum of kidney injury indices including renal function, oxidative stress, apoptosis and mitochondrial dynamics. Additionally, we conducted transcriptome sequencing and bioinformatics analyses. The outcomes underscore that the deficiency of GPX3 in tubular cells exacerbates tubular injury, renal dysfunction, oxidative stress, apoptosis, and mitochondrial dynamic disturbances in the context of IRI-AKI. Sequencing and bioinformatics analysis suggest that the Gpx3 deletion predominantly impacts pathways associated with metabolism and inflammation. In conclusion, the tubular cell-specific deficiency of GPX3 exacerbates renal injury by intensifying oxidative stress, fostering mitochondrial impairment, perturbing metabolic processes and fueling inflammation. The targeted restoration of GPX3 in the renal tubular emerges as a potential therapeutic avenue for mitigating IRI-AKI.
Collapse
Affiliation(s)
- Jinrong He
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Xueqin Wu
- Department of Nephrology, The Central Hospital of Shaoyang, Hunan Province 422000, China
| | - Jie Qiao
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Yu Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China.
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China.
| |
Collapse
|
10
|
Zhou X, Wang N, Zhao B, Liu Z, Yu P. Precision medicine for acute kidney injury: Baicalein-nanodrug delivery system combat oxidative stress and repair mitochondrial dysfunction. Int J Pharm 2025; 678:125694. [PMID: 40339628 DOI: 10.1016/j.ijpharm.2025.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/12/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Acute kidney injury (AKI) is characterized by high morbidity and mortality globally and serves as an independent risk factor for chronic kidney disease. Oxidative stress is the main pathogenic mechanism leading to acute kidney injury (AKI) and subsequent renal failure, which is characterized by excessive reactive oxygen species (ROS) and mitochondrial dysfunction. Treatment options for AKI remain supportive care, it is urgent to develop more viable therapeutic strategies. In this study, we engineered a nanodrug delivery system aiming to achieve precise treatment of AKI. The nanocarriers (Apt-NS) exhibited excellent serum stability and biocompatibility and were capable of specifically recognizing AKI renal tubular cells. Apt-NS were loaded with baicalein (BAI) to form a nanodrug delivery system (Apt-NS-BAI). In comparison to the BAI, Apt-NS-BAI demonstrated more pronounced effects in improving cell viability, scavenging ROS and anti-apoptosis. Simultaneously, in vivo animal experiments also confirmed that Apt-NS-BAI could recognize the injury site and exert biological functions of anti-apoptosis and alleviating renal damage. Overall, this study successfully constructed a nanodrug delivery system with the ability to target AKI renal tubular cells, enabling accurate and efficient delivery of baicalein to injury site and exerting protective functions against oxidative stress. This research offers novel insights into the precision treatment of AKI and contributes to the acceleration of the application of nanotechnology in kidney diseases.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Haihe Hospital, Tianjin University, Tianjin 300350, China; Department of Nephrology, Tianjin Haihe Hospital, Tianjin 300350, China; Haihe Clinical School, Tianjin Medical University, Tianjin 300350, China.
| | - Ning Wang
- Department of Gastroenterology and Hepatology, Central Hospital, Tianjin University, Tianjin 300170, China; Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Bin Zhao
- Department of Nephrology, Beijing Haidian Hospital (Haidian Section of Pecking University Third Hospital), Beijing 100080, China
| | - Ziquan Liu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China.
| | - Pei Yu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China; Department of Nephrology & Blood Purification Center, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
11
|
Wu Q, Lin D, Ouyang J, Wu S, Lin J, Zhang E, Li D, Quan H, Fu X, Wang X, Li C, Mao W. Clerodendranthus spicatus-Cordyceps cicadae regulates mitophagy and protects renal tubular epithelial cells from hyperuricemic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119926. [PMID: 40334761 DOI: 10.1016/j.jep.2025.119926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendranthus spicatus (CS) and Cordyceps cicadae (CC) are both medicine and food. They have long been used to treat kidney disease, but their mechanisms for treating hyperuricemic nephropathy (HN) are not yet clear. AIM We investigated the effect and mechanism of Clerodendranthus spicatus-Cordyceps cicadae (CS-CC) in HN treatment. METHODS We detected the chemical profiling of CS-CC freeze-dried powder, drug-containing serum and drug-containing intracellular fluid by UHPLC-Q Exactive Orbitrap-HRMS. We explored the effective components as well as underlying mechanisms of CS-CC in HN treatment via network pharmacological analysis. We constructed HN rat models induced by gavaging potassium oxonate and uric acid (UA) for three weeks, and performed biochemical and pathological tests as well as histological observation. The expressions of fibrosis-associated proteins were quantitatively analyzed using immunohistochemistry staining and western blot analysis. For in vitro studies, we measured the metabolic fluxes in UA-treated HK-2 cells using Seahorse XFe24 analyzer and flow cytometric analysis. Mitophagy-associated proteins were evaluated using immunofluorescence co-localization analysis and western blot analysis. RESULTS A total of 14 simultaneous constituents of CS-CC in vivo and in vitro were identified. Network pharmacological analysis highlighted CS-CC regulated mitophagy in HN. CS-CC treatment effectively enhanced renal function and ameliorate renal fibrosis in HN rats. We found PINK1-mediated mitophagy was suppressed in HN, while CS-CC treatment could restore cellular metabolism, activate mitophagy and protect tubular epithelial cells in HN. CONCLUSIONS PINK1-mediated mitophagy was significantly inhibited in HN, whereas CS-CC treatment demonstrated remarkable efficacy in attenuating renal fibrosis and promoting mitophagy to protect tubular epithelial cells in HN.
Collapse
Affiliation(s)
- Qiaoru Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Danyao Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jianting Ouyang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shouhai Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Junjie Lin
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - En Zhang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Delun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Haohao Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xinwen Fu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaowan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| | - Wei Mao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Chinese Medicine Guangdong Laboratory, Hengqin, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| |
Collapse
|
12
|
Wang Y, Ding Y, Dong H, Wuren T, Luo P. MSCs in Acute Kidney Injury Treatment: Modulating Mitochondrial Function and Inhibiting Pyroptosis via PGC-1α. Exp Cell Res 2025:114583. [PMID: 40324626 DOI: 10.1016/j.yexcr.2025.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE This study aims to investigate the mechanisms of MSC therapy for acute kidney injury, focusing on the regulation of mitochondrial function and pyroptosis in renal tubular epithelial cells (RTECs). METHODS An in vivo ischemia/reperfusion (I/R) model was used to assess the effects of MSC treatment on mitochondrial membrane potential, mitochondrial function, cell pyroptosis, and PGC-1α expression in RTECs. RESULTS MSCs significantly improved mitochondrial function in RTECs by upregulating PGC-1α expression, regulating mitochondrial fusion and fission proteins, reducing mitochondrial ROS production, and suppressing NLRP3 inflammasome activation. Furthermore, MSC treatment reduced the levels of pyroptotic markers, such as IL-18, and exhibited a marked anti-fibrotic effect in the long-term. These findings suggest that MSCs not only repair acute kidney injury but also offer long-term protection against fibrosis. CONCLUSION MSCs improve the repair of acute kidney injury by modulating mitochondrial function and inhibiting pyroptosis, providing new theoretical support for MSC-based therapies in AKI treatment.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China; Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810016,China; High-Altitude Medicine Key Laboratory of the Ministry of Educationy, Xining, Qinghai 810001,China; Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining, Qinghai 810001,China
| | - Yanlin Ding
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China
| | - Haiyun Dong
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810016,China; High-Altitude Medicine Key Laboratory of the Ministry of Educationy, Xining, Qinghai 810001,China; Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining, Qinghai 810001,China
| | - Pengli Luo
- Department of Nephrology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001,China.
| |
Collapse
|
13
|
Li XQ, Xiao ZZ, Ma K, Liu XY, Liu HH, Hu B, Zhao Q, Li HY, Chen RC, Meng Y, Yin LH. Angiotensin-Converting Enzyme-Dependent Intrarenal Angiotensin II Contributes to CTP: Phosphoethanolamine Cytidylyltransferase Downregulation, Mitochondrial Membranous Disruption, and Reactive Oxygen Species Overgeneration in Diabetic Tubulopathy. Antioxid Redox Signal 2025; 42:767-786. [PMID: 39495586 DOI: 10.1089/ars.2024.0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Aims: The limited therapeutic options for diabetic tubulopathy (DT) in early diabetic kidney disease (DKD) reflect the difficulty of targeting renal tubular compartment. While renin-angiotensin-aldosterone system (RAS) inhibitors are commonly utilized in the management of DKD, how intrarenal RAS contributes to diabetic tubular injury is not fully understood. Mitochondrial disruption and reactive oxygen species (ROS) overgeneration have been involved in diabetic tubular injury. Herein, we aim to test the hypothesis that angiotensin-converting enzyme (ACE)-dependent intrarenal angiotensin II (AngII) disrupts tubular mitochondrial membranous homeostasis and causes excessive ROS generation in DT. Results: Mice suffered from renal tubular mitochondrial disruption and ROS overgeneration following high-fat diet/streptozocin-type 2 diabetic induction. Intrarenal AngII generation is ACE-dependent in DT. Local AngII accumulation in renal tissues was achieved by intrarenal artery injection. ACE-dependent intrarenal AngII-treated mice exhibit markedly elevated levels of makers of tubular injury. CTP: Phosphoethanolamine cytidylyltransferase (PCYT2), the primary regulatory enzyme for the biosynthesis of phosphatidylethanolamine, was enriched in renal tubules according to single-cell RNA sequencing. ACE-dependent intrarenal AngII-induced tubular membranous disruption, ROS overgeneration, and PCYT2 downregulation. The diabetic ambiance deteriorated the detrimental effect of ACE-dependent intrarenal AngII on renal tubules. Captopril, the ACE inhibitor (ACEI), showed efficiency in partially ameliorating ACE-dependent intrarenal AngII-induced tubular deterioration pre- and post-diabetic induction. Innovation and Conclusion: This study uncovers a critical role of ACE-dependent intrarenal AngII in mitochondrial membranous disruption, ROS overgeneration, and PCYT2 deficiency in diabetic renal tubules, providing novel insight into DT pathogenesis and ACEI-combined therapeutic targets. Antioxid. Redox Signal. 42, 767-786.
Collapse
Affiliation(s)
- Xia-Qing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Zhang-Zhang Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, Houjie Hospital of Dongguan, Dongguan, China
| | - Ke Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Xia-Yun Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Huan-Huan Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qian Zhao
- Department of Infectious Diseases and Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Yue Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Rui-Chang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Nephrology Department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, China
| | - Liang-Hong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Huangpu Institute of Materials, Guangzhou, China
| |
Collapse
|
14
|
Pang X, Dan W, Lin L, Li H, Rao X, Li S. Association of normal range of urinary albumin-to-creatinine ratio with all-cause mortality among diabetic adults with preserved kidney function: National Health and Nutrition Examination Survey (NHANES) 2003-2018. Diabetes Obes Metab 2025; 27:2670-2678. [PMID: 40000417 PMCID: PMC11965009 DOI: 10.1111/dom.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
AIM To ascertain the connection between normal-range urinary albumin-to-creatinine ratio (UACR) and all-cause mortality (ACM) among diabetic adults with preserved eGFR. METHODS We used data from the 2003-2018 National Health and Nutrition Examination Survey. Nationally representative cross-sectional survey data linked with mortality outcomes from the National Death Index. Restricted cubic spline curves (RCS) and multivariable Cox regression models alongside subgroup analyses were utilised for estimating hazard ratios (HRs) and 95% confidence intervals (Cls) for UACR-ACM interplay, adjusting for demographic, socioeconomic, biochemical, medication and medical history factors. The UACR's predictive accuracy for survival outcomes was determined through receiver operating characteristic analysis. RESULTS The RCS regression analysis showcased that there was no significant evidence to support a nonlinear relationship between normal-range UACR and ACM (p = 0.080 for nonlinearity) in participants with diabetes mellitus (DM). In the model 2 adjusted for multiple confounding variables, the HR for ACM was 1.22 (95% CI, 1.06-1.40) per 10 mg/g raise in continuous UACR and 1.50 (95%CI, 1.18-1.91) for the high UACR tertile compared to the low. Kaplan-Meier analysis showed significantly lower survival rates in the medium and high UACR groups (p < 0.001). Subgroup analysis manifested a significant UACR-body mass index (BMI) interaction (p = 0.033 for interaction). CONCLUSIONS In DM adults without overt kidney dysfunction, elevated normal-range UACR was independently related to escalated ACM, particularly in those with normal BMI. To conclude, we underscore the significance of early risk assessment in DM patients with normal-range albuminuria, even without overt kidney dysfunction.
Collapse
Affiliation(s)
- Xiaoxia Pang
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Wenchao Dan
- Department of Dermatology, Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Lan Lin
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Huimei Li
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangrong Rao
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| | - Shen Li
- Department of NephrologyGuang'anmen Hospital China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
15
|
Guo C, Zhang T, Du L, Yu K, Zeng S, Li M, Chi Y, Li Y. Empagliflozin attenuates renal damage in diabetic nephropathy by modulating mitochondrial quality control via Prdx3-PINK1 pathway. Biochem Pharmacol 2025; 235:116821. [PMID: 39983849 DOI: 10.1016/j.bcp.2025.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
In clinical practice, sodium-glucose transporter 2 inhibitor (SGLT2i) reduces the composite renal outcomes in patients with diabetic kidney disease (DKD). However, its effect on regulating renal mitochondria remains unclear. Mitochondrial quality control (MQC) has been identified as a key factor in DKD. Peroxiredoxin3 (Prdx3) serves as a primary antioxidant protein in mitochondria. In this study, we investigated the expression of Prdx3 in patients with DKD, diabetic mice and HK-2 cells exposed to high glucose and explored SGLT2i potential mechanism of action. The results also showed that empagliflozin (Empa) treatment improved proteinuria and ameliorated renal pathological damage. We observed that Empa has an impact on the expression of Prdx3 in diabetic mice and HK-2 cells exposed to high glucose, so does the mitochondrial dynamic proteins and mitophagy-related proteins Mfn2, Drp1, PINK1, Parkin, LC3II, and P62. In vitro experiments after transfected with pcDNA3.1(+)-Prdx3 and siPrdx3 the expression of Mfn2, Drp1, PINK1, Parkin, LC3II, and P62 changed. The expression of PINK1 decreased after the knockdown of Prdx3. Furthermore, the knockdown of PINK1 accelerated the MQC damage and weakened the protective effect of Empa. Because Empa has impacts on Prdx3, which plays a protective role by influencing MQC, we investigated the latent impact of Prdx3 deficiency on renal injury and its molecular mechanism in vivo and in vitro in DKD. Herein, we demonstrate that Empa treatment modulates MQC potentially via Prdx3 through interacting with PINK1.
Collapse
Affiliation(s)
- Canghui Guo
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Diabetic Kidney Disease, Shijiazhuang 050051, PR China
| | - Tao Zhang
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Diabetic Kidney Disease, Shijiazhuang 050051, PR China
| | - Lingyu Du
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China
| | - Ke Yu
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Diabetic Kidney Disease, Shijiazhuang 050051, PR China
| | - Shengnan Zeng
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China
| | - Min Li
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Diabetic Kidney Disease, Shijiazhuang 050051, PR China
| | - Yanqing Chi
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Diabetic Kidney Disease, Shijiazhuang 050051, PR China.
| | - Ying Li
- Department of Nephrology, Hebei Medical University Third Hospital, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Diabetic Kidney Disease, Shijiazhuang 050051, PR China.
| |
Collapse
|
16
|
Skandalou E, Rivedal M, Marti HP, Halden TAS, Jenssen T, Vikse BE, Åsberg A, Furriol J. Proteome of Renal Tubuli and Serum Differentiate Pre-Existing Type 2 Diabetes and Post-Transplant Diabetes in Kidney Transplant Recipients. Proteomics Clin Appl 2025; 19:e70000. [PMID: 39989279 DOI: 10.1002/prca.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
PURPOSE Diabetes mellitus (DM) is a major cause of end-stage kidney disease (ESKD), with kidney transplantation being the preferred treatment. However, post-transplant diabetes mellitus (PTDM) increases mortality and graft loss. While PTDM and Type 2 diabetes mellitus (T2DM) share risk factors, their mechanisms differ, particularly in diabetic nephropathy (DN). This study aimed to investigate the molecular differences in PTDM by mapping the proteomes of proximal tubuli and serum in normoglycemic (NG), pre-transplant T2DM, and PTDM patients one year post-transplantation. Experimental Design Proteomic analysis was performed on microdissected proximal tubular cells and serum samples from kidney transplant recipients categorized as NG, pre-transplant T2DM, or PTDM at one year post-transplantation. Mass spectrometry was used to identify differentially expressed proteins. Data analyses were performed using gene ontology databases and pathway analysis. RESULTS Proteomic analysis revealed key differences, including significant dysregulation of mitochondrial proteins and lipid metabolism pathways in PTDM patients compared to T2DM and NG groups. Additionally, we observed distinct serum patterns of cholesterol metabolism dysregulation in PTDM, highlighting a complex interplay between fatty acid metabolism, mitochondrial dysfunction and systemic lipid dysregulation that may drive renal injury in PTDM-related DN. CONCLUSIONS AND CLINICAL RELEVANCE This pilot study is the first to perform proteomic analysis on both microdissected tubular cells and serum from post-transplant PTDM, pre-transplant T2DM and NG transplant recipients. The proteomic differences between PTDM and T2DM could help to develop targeted therapies and early diagnostic markers, ultimately improving transplant outcomes and patient management. Further research is needed to validate these findings and explore their therapeutic potential.
Collapse
Affiliation(s)
- Eleni Skandalou
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea A S Halden
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
- Metabolic and Renal Research Group, Faculty of Health Sciences UiT, The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | - Anders Åsberg
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
17
|
Wang Y, Zeng Y, Fu Y, Liu Z, Hu X, Tang C, Cai J, Dong Z. Repression of peroxisome proliferation-activated receptor γ coactivator-1α by p53 after kidney injury promotes mitochondrial damage and maladaptive kidney repair. Kidney Int 2025; 107:869-887. [PMID: 40010492 DOI: 10.1016/j.kint.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Maladaptive kidney repair after injury is associated with a loss of mitochondrial homeostasis, but the underlying mechanism is largely unknown. Moreover, it remains unclear whether this mitochondrial change contributes to maladaptive kidney repair or the development of chronic kidney problems after injury. Here, we report that the transcriptional coactivator peroxisome proliferation-activated receptor γ coactivator-1α (PGC1a), a master regulator of mitochondrial biogenesis, was persistently downregulated during maladaptive kidney repair after repeated low-dose cisplatin nephrotoxicity or unilateral ischemia/reperfusion injury. Administration of the PGC1α activator ZLN005 after either kidney injury not only preserved mitochondria but also attenuated kidney dysfunction, tubular damage, interstitial fibrosis, and inflammation. PGC1α downregulation in these models was associated with p53 activation. Notably, knockout of p53 from proximal tubules prevented PGC1α downregulation, attenuated chronic kidney pathologies and minimized functional decline. Inhibition of p53 with pifithrin-α, a cell permeable p53 inhibitor, had similar effects. Mechanistically, p53 bound to the PGC1α gene promoter during maladaptive kidney repair, and this binding was suppressed by pifithrin-α. Together, our results indicate that p53 is induced during maladaptive kidney repair to repress PGC1α transcriptionally, resulting in mitochondrial dysfunction for the development of chronic kidney problems. Activation of PGC1α and inhibition of p53 may improve kidney repair after injury and prevent the development of chronic kidney problems.
Collapse
MESH Headings
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Animals
- Mitochondria/pathology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Reperfusion Injury/pathology
- Reperfusion Injury/metabolism
- Reperfusion Injury/genetics
- Male
- Mice, Knockout
- Cisplatin/toxicity
- Mice, Inbred C57BL
- Disease Models, Animal
- Kidney/pathology
- Kidney/drug effects
- Kidney/metabolism
- Down-Regulation
- Mice
- Promoter Regions, Genetic
- Acute Kidney Injury/pathology
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/chemically induced
- Acute Kidney Injury/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Benzothiazoles/pharmacology
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Kidney Tubules, Proximal/drug effects
- Toluene/analogs & derivatives
- Toluene/pharmacology
- Organelle Biogenesis
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Nephrology, The Third Xiangya Hospital at Central South University, Changsha, Hunan, China; Postdoctoral Station of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Augusta VA Medical Center, Augusta, Georgia, USA
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Augusta VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
18
|
Song WS, Shen X, Du K, Ramirez CB, Park SH, Cao Y, Le J, Bae H, Kim J, Chun Y, Khong NJ, Kim M, Jung S, Choi W, Lopez ML, Said Z, Song Z, Lee SG, Nicholas D, Sasaki Y, Milbrandt J, Imagawa DK, Skowronska-Krawczyk D, Chen D, Lee G, Jang C, Yang Q. Nicotinic acid riboside maintains NAD + homeostasis and ameliorates aging-associated NAD + decline. Cell Metab 2025:S1550-4131(25)00217-7. [PMID: 40315855 DOI: 10.1016/j.cmet.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 02/05/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
Liver-derived circulating nicotinamide from nicotinamide adenine dinucleotide (NAD+) catabolism primarily feeds systemic organs for NAD+ synthesis. We surprisingly found that, despite blunted hepatic NAD+ and nicotinamide production in liver-specific nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) deletion mice (liver-specific knockout [LKO]), circulating nicotinamide and extra-hepatic organs' NAD+ are unaffected. Metabolomics reveals a massive accumulation of a novel molecule in the LKO liver, which we identify as nicotinic acid riboside (NaR). We further demonstrate cytosolic 5'-nucleotidase II (NT5C2) as the NaR-producing enzyme. The liver releases NaR to the bloodstream, and kidneys take up NaR to synthesize NAD+ through nicotinamide riboside kinase 1 (NRK1) and replenish circulating nicotinamide. Serum NaR levels decline with aging, whereas oral NaR supplementation in aged mice boosts serum nicotinamide and multi-organ NAD+, including kidneys, and reduces kidney inflammation and albuminuria. Thus, the liver-kidney axis maintains systemic NAD+ homeostasis via circulating NaR, and NaR supplement ameliorates aging-associated NAD+ decline and kidney dysfunction.
Collapse
Affiliation(s)
- Won-Suk Song
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Xiyu Shen
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Kang Du
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Cuauhtemoc B Ramirez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Sang Hee Park
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Yang Cao
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Johnny Le
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Hosung Bae
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Nikki Joyce Khong
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Marie Kim
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Wonsuk Choi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Miranda L Lopez
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Zaid Said
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sang-Guk Lee
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA; Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Dequina Nicholas
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Biological Sciences, Irvine, CA 92697, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David K Imagawa
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California, Irvine, Orange, CA 92868, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| |
Collapse
|
19
|
Guo J, Hu JP, Liu M, Chen Y, Zhang S, Guan S. Apigenin-Mediated ESCRT-III Activation and Mitophagy Alleviate LPS-Induced Necroptosis in Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9906-9919. [PMID: 40211127 DOI: 10.1021/acs.jafc.5c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Apigenin (API) is a flavonoid widely distributed in vegetables and fruits that exhibits numerous biological functions. Lipopolysaccharide (LPS), a key component of the outer membrane of Gram-negative bacteria, can cause kidney injury when released into the bloodstream. Necroptosis is a form of programmed cell death characterized by the rupture of cell membranes. Excessive occurrence of necroptosis can lead to substantial damage to cells and tissues. In the study, we discovered that API could mitigate LPS-induced kidney injury in mice and alleviate LPS-induced necroptosis in Normal Rat Kidney-52E (NRK-52E) cells by targeting the mitochondrial reactive oxygen species (mtROS)-RIPK3-MLKL pathway. Further mechanistic studies revealed that API could potentially activate the endosomal sorting complexes required for transport-III (ESCRT-III), and activated ESCRT-III could repair cell membrane rupture caused by LPS-induced necroptosis. Simultaneously, we discovered that activated ESCRT-III could promote mitophagy, which facilitates the timely removal of damaged mitochondria and reduces intracellular mtROS levels. In conclusion, our results suggested that API alleviates LPS-induced renal cell necroptosis by activating ESCRT-III-dependent membrane repair and mitophagy. Our study provides new insights into the daily dietary intake of API to alleviate kidney injury caused by LPS.
Collapse
Affiliation(s)
- Jiakang Guo
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jin-Ping Hu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shengzhuo Zhang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
Oh SH, Kim YJ, Bae S, Jung HY, Park SY, Lim JH, Cho JH, Kim CD, Park SH, Kwon TH, Kim YJ, Liu KH, Kim YL. High-fat diet promotes lipotoxicity in the podocytes of uninephrectomized mice: a targeted lipidomics and kidney podocyte-specific analysis. Cell Death Discov 2025; 11:193. [PMID: 40268915 PMCID: PMC12019177 DOI: 10.1038/s41420-025-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Abnormal lipid metabolism is an independent risk factor for kidney injury, significantly altering the associated gene expression, particularly in single kidney models. This study investigates the impact of high-fat diet-induced lipid metabolism on podocyte injury in uninephrectomized mice. Using targeted lipidomics analysis and podocyte-specific assays, the modification of lipid profiles attributed to a high-fat diet and the development of podocyte injury caused by lipid metabolism in mice that underwent unilateral nephrectomy were examined. Mice that underwent unilateral nephrectomy and were fed with a high-fat diet for 13 weeks exhibited progressive renal dysfunction, including the accumulation of lipid droplets in podocytes, vacuolization of tubular cells, and glomerular hypertrophy. Liquid chromatography-triple quadrupole mass spectrometry confirmed a significant increase in cholesteryl ester 20:4 levels in the podocytes of these mice. In vitro, cholesteryl ester 20:4 treatment reduced mitochondrial respiration capacity and mitochondrial glycolysis in podocytes. Furthermore, the treatment led to alterations in the protein expression levels associated with lipid metabolism and transport, mitochondrial activity, and autophagy, including ATP binding cassette subfamily A member 1 (ABCA1), carnitine palmitoyltransferase 1 A (CPT1A), acyl-CoA cholesterol acyltransferase (ACAT), nuclear respiratory factor ½ (NRF½), dynamin-1-like protein (DRP1), and p62. Transcriptome sequencing analysis revealed impaired gene expression, which was associated with the progression of renal fibrosis in unilateral nephrectomy mice with a high-fat diet. Specifically, the expression of matrix metalloproteinases and collagen genes, including fibronectin and collagen IV, was upregulated, indicating fibrosis progression. In conclusion, lipidomics analysis identifies cholesteryl ester 20:4 as a key lipid metabolite accumulating in podocytes, which is associated with mitochondrial dysfunction and abnormal autophagy. This accumulation potentially contributes to structural and functional deterioration in the kidney and highlights its role in kidney damage and its potential as a therapeutic target in metabolic kidney diseases.
Collapse
Affiliation(s)
- Se-Hyun Oh
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - You-Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Subin Bae
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit and College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - So-Young Park
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit and College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Jin Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit and College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea.
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
21
|
Amador-Martínez I, Aranda-Rivera AK, Martínez-Castañeda MR, Pedraza-Chaverri J. Mitochondrial quality control and stress signaling pathways in the pathophysiology of cardio-renal diseases. Mitochondrion 2025; 84:102040. [PMID: 40252890 DOI: 10.1016/j.mito.2025.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Mitochondria are essential organelles for cellular function and have become a broad field of study. In cardio-renal diseases, it has been established that mitochondrial dysfunction is a primary mechanism leading to these pathologies. Under stress, mitochondria can develop stress response mechanisms to maintain mitochondrial quality control (MQC) and functions. In contrast, the perturbation of these mechanisms has been associated with the pathogenesis of several diseases. Thus, targeting specific pathways within MQC could offer a therapeutic avenue for protecting mitochondrial integrity. However, the mechanisms related to MQC and mitochondrial stress signaling in the cardio-renal axis have been poorly explored. The primary limitations include the lack of reproducibility in the experimental models of cardio-renal disease, the incomplete knowledge of molecules that generate bidirectional damage, and the temporality of the study models. Therefore, we believe that integration of all of those limitations, along with recent advances in MQC mechanisms (i.e., mitophagy), stress signaling pathways (e.g., integrated stress response, mitochondrial unfolded protein response, and mitochondrial protein import), associated pharmacology, and targeted therapeutic approaches could reveal what the deregulation of these mechanisms is like and provide ideas for generating strategies that seek to avoid the progression of cardio-renal diseases.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ana Karina Aranda-Rivera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mauricio Raziel Martínez-Castañeda
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Edificio B - 101, 1° Piso, Circuito de Posgrado, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
22
|
Ye D, Zhu J, Su S, Yu Y, Zhang J, Yin Y, Lin C, Xie X, Xiang Q, Yu R. Natural small molecules regulating the mitophagy pathway counteract the pathogenesis of diabetes and chronic complications. Front Pharmacol 2025; 16:1571767. [PMID: 40308774 PMCID: PMC12040946 DOI: 10.3389/fphar.2025.1571767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder marked by sustained hyperglycemia. These disturbances contribute to extensive damage across various tissues and organs, giving rise to severe complications such as vision loss, kidney failure, amputations, and higher morbidity and mortality rates. Furthermore, DM imposes a substantial economic and emotional burden on patients, families, and healthcare systems. Mitophagy, a selective process that targets the clearance of damaged or dysfunctional mitochondria, is pivotal for sustaining cellular homeostasis through mitochondrial turnover and recycling. Emerging evidence indicates that dysfunctional mitophagy acts as a key pathogenic driver in the pathogenesis of DM and its associated complications. Natural small molecules are particularly attractive in this regard, offering advantages such as low toxicity, favorable pharmacokinetic profiles, excellent biocompatibility, and a broad range of biochemical activities. This review systematically evaluates the mechanistic roles of natural small molecules-including ginsenosides, resveratrol, and berberine-in enhancing mitophagy and restoring mitochondrial homeostasis via activation of core signaling pathways (e.g., PINK1/Parkin, BNIP3/NIX, and FUNDC1). These pathways collectively ameliorate pathological hallmarks of DM, such as oxidative stress, chronic inflammation, and insulin resistance. Furthermore, the integration of nanotechnology with these compounds optimizes their bioavailability and tissue-specific targeting, thereby establishing a transformative therapeutic platform for DM management. Current evidence demonstrates that mitophagy modulation by natural small molecules not only offers novel therapeutic strategies for DM and its chronic complications but also advances the mechanistic foundation for future drug development targeting metabolic disorders.
Collapse
Affiliation(s)
- Du Ye
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junping Zhu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siya Su
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Zhang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chuanquan Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Xiang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Yang Y, Gong S, Zhou C, Xin W, Qin S, Yao M, Lan Q, Liao W, Zhao J, Huang Y. REST contributes to renal fibrosis through inducing mitochondrial energy metabolism imbalance in tubular epithelial cells. Cell Commun Signal 2025; 23:176. [PMID: 40200371 PMCID: PMC11980176 DOI: 10.1186/s12964-025-02166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Renal fibrosis represents the final common pathological manifestation of chronic kidney disease (CKD), yet the underlying mechanism remains elusive, and there is still a lack of effective targeted therapeutic strategy. Although previous research indicated that repressor element 1-silencing transcription factor (REST) contributed to acute kidney injury (AKI) in renal tubular epithelial cells (RTECs), its specific contribution to renal fibrosis and associated mechanisms remains largely unexplored. METHODS Renal biopsies from CKD patients were collected to evaluate the expression of REST. Kidney-specific Rest conditional knockout (Cdh16-Cre/Restflox/flox) mice were generated and employed unilateral ureter obstruction (UUO) models to investigate the role of REST in renal fibrosis. RNA sequencing was performed to elucidate the mechanism. Mitochondrial function was evaluated by transmission electron microscopy (TEM), reactive oxygen species (ROS), oxygen consumption rates (OCR), extracellular acidifcation rate (ECAR) and adenosine triphosphate (ATP). The severity of renal fibrosis was assessed through Western blot, immunofluorescent staining and immumohistochemical staining. Bioinformatic prediction, dual luciferase reporter gene assay, point mutation and chromatin immunoprecipitation (ChIP) assay were utilized to clarify the molecular mechanism. RESULTS REST was significantly up-regulated in the kidney tissues from CKD patients, UUO-induced fibrotic mouse models and TGF-β1-incubated RTECs. Notably, kidney-specific knockout of Rest prominently alleviated renal fibrosis by improving mitochondrial energy metabolism and restoring fatty acid oxidation. Mechanically, REST disturbed mitochondrial energy metabolism through repressing the transcription of oxoglutarate dehydrogenase-like (OGDHL) via directly binding to its promotor region. Further, pharmacological inhibition of REST using the specific REST inhibitor, X5050, significantly ameliorated the progression of renal fibrosis both in vitro and in vivo. CONCLUSIONS Our explorations revealed the upregulation of REST in renal fibrosis disrupts mitochondrial energy metabolism through transcriptionally suppressing OGDHL, which may act as a promising therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Yingxian Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shuiqin Gong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Chun Zhou
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wang Xin
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shaozong Qin
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Mengying Yao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Qigang Lan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wenhao Liao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
24
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
25
|
Pérez-Flores I, López-Pastor AR, Gómez-Pinedo U, Gómez-Infantes A, Espino-Paisán L, Calvo Romero N, Moreno de la Higuera MA, Rodríguez-Cubillo B, Gómez-Delgado I, Sánchez-Fructuoso AI, Urcelay E. Mitochondrial Changes Induced by SGLT2i in Lymphocytes from Diabetic Kidney Transplant Recipients: A Pilot Study. Int J Mol Sci 2025; 26:3351. [PMID: 40244220 PMCID: PMC11989945 DOI: 10.3390/ijms26073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) preserve cardiac and renal function by mechanisms that are not completely elucidated. Among other things, SGLT2i promote nutrient-deprivation signalling, which might affect the immune function. As the fate of immune cells is controlled by their metabolism, we aimed to study the mitochondrial integrity of lymphocytes isolated from renal transplant recipients with type 2 diabetes (T2D) upon SGLT2i therapy instauration and six-month follow up. In this real-world pilot study, the mitochondrial respiration of isolated peripheral blood mononuclear cells was monitored in a Seahorse XFp extracellular-flux analyzer and cells were photographed with a confocal microscope. Mitochondrial mass, membrane potential, and superoxide content of lymphocyte subpopulations were measured by flow cytometry (MitoTrackerTM Green, TMRM, and MitoSOXTM Red probes). Leveraging in vivo conditions of immune cells, we evaluated their metabolic profiles associated with immune activation. Herein, we identified changes in redox homeostasis with sustained membrane polarization, and an increased mitochondrial biogenesis upon PHA stimulation that significantly correlated with changes in body weight and LDL-cholesterol levels, and a resultant compensatory mitochondrial function of lymphocytes. Our data suggest novel mechanisms induced by SGLT2i to modulate immune cells, which probably underlie the observed beneficial effects in kidney transplant recipients. Nonetheless, further mechanistic studies are required to extend these exploratory findings and encourage the use of this therapeutic strategy.
Collapse
Affiliation(s)
- Isabel Pérez-Flores
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology and Advanced Therapy, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Andrea Gómez-Infantes
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
| | - Laura Espino-Paisán
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
| | - Natividad Calvo Romero
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - M. Angeles Moreno de la Higuera
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Beatriz Rodríguez-Cubillo
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Ana I. Sánchez-Fructuoso
- Nephrology Department, Health Research Institute of Hospital Clínico San Carlos (IdISSC), Universidad Complutense de Madrid, 28040 Madrid, Spain; (I.P.-F.); (N.C.R.); (M.A.M.d.l.H.); (B.R.-C.); (A.I.S.-F.)
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (L.E.-P.); (E.U.)
- Cooperative Research Networks Oriented to Health Results (RICORS, REI), 28089 Madrid, Spain
| |
Collapse
|
26
|
Shih-Wei C, Chen B, Mao Y, Xu Q, Chen Y. Polygala fallax Hemsl. ameliorated high glucose-induced podocyte injury by modulating mitochondrial mPTP opening through the SIRT1/PGC-1α pathway. Arch Physiol Biochem 2025; 131:135-146. [PMID: 39221837 DOI: 10.1080/13813455.2024.2392298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the effects and molecular mechanism of PF on high glucose (HG)-induced podocyte injury. Results found that PF increased proliferation activity, decreased apoptosis, LDH, and caspase-3 levels, and increased nephrin and podocin expression in HG-induced cells. Similarly, PF improved HG-induced mitochondrial damage, decreased Ca2+ and ROS content, alleviated oxidative stress, inhibited mPTP opening, increased mitochondrial membrane potential, and decreased the expressions of Drp1, Bak, Bax, and Cytc in cytoplasm, increased the expressions of SIRT1, PGC-1α, HSP70, HK2, and Cytc in mitochondria of podocytes. The use of mPTP agonist/blocker and SIRT1 inhibitor confirmed that PF alleviates HG-induced podocyte injury by regulating mitochondrial mPTP opening through SIRT1/PGC-1α. In addition, PF affected HK2-VDAC1 protein binding to regulate mPTP opening via the SIRT1/PGC-1α pathway. In conclusion, PF-regulated HK2-VDAC1 protein binding affected mitochondrial mPTP opening and improved HG-induced podocyte injury through the SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Chao Shih-Wei
- Department of Traditional Chinese Medicine, Guilin Hospital of the Second Xiangya Hospital Central South University, Guilin, China
| | - Bo Chen
- Guangxi Key Laboratory of Basic Research in Sphingolipid Metabolism Related Disease, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yanqing Mao
- Outpatient Department, Guilin Hospital of the Second Xiangya Hospital Central South University, Guilin, China
| | - Qin Xu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yige Chen
- Ministry of Science and Education, Guilin Hospital of the Second Xiangya Hospital Central, Guilin, China
| |
Collapse
|
27
|
Suzuki Y, Kaseda R, Nakagawa Y, Watanabe H, Otsuka T, Yamamoto S, Kaneko Y, Goto S, Matsusaka T, Narita I. Nephrotic syndrome induces the upregulation of cell proliferation-related genes in tubular cells in mice. Clin Exp Nephrol 2025; 29:393-404. [PMID: 39666151 PMCID: PMC11937209 DOI: 10.1007/s10157-024-02608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Massive proteinuria, dyslipidemia, and hypoalbuminemia induced by nephrotic syndrome (NS) secondarily affect tubular cells. We conducted an RNA sequencing (RNA-seq) analysis using a mouse model of focal segmental glomerulosclerosis to clarify the impact of NS on tubular cells. METHODS We used transgenic mice expressing hCD25 in podocytes (Nep25) to induce NS by injecting human CD25-specific immunotoxin (LMB2) at a dose of 0.625 ng/g body weight. Seven days after LMB2 injection, we extracted RNA from the whole kidney and conducted an RNA-seq analysis. Subsequently, we conducted multiple immunostaining and in situ hybridization (ISH) of differentially expressed genes (DEGs) to identify their locations and associated cell types. We also investigated the expression levels of DEGs in an additional mouse model of NS induced by adriamycin. RESULTS After NS induction, 562 upregulated and 430 downregulated DEGs were identified using RNA-seq. An enrichment analysis revealed the upregulation of cell proliferation-related genes. We observed significant upregulation of Foxm1, a transcription factor linked to cell proliferation. Immunostaining and ISH showed that various tubular cells expressed Mki67 and Foxm1 during NS development. The adriamycin-induced NS model also demonstrated the upregulation of Mki67 and Foxm1 in tubular cells. CONCLUSIONS NS induced the upregulation of cell proliferation-related genes in tubular cells without detectable renal dysfunction. Our findings may contribute to understanding the pathological effects of nephrotic syndrome on tubular cells.
Collapse
Affiliation(s)
- Yuya Suzuki
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yusuke Nakagawa
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Hirofumi Watanabe
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Molecular Life Sciences, Tokai University School of Medicine, Kanagawa, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
28
|
Li Q, Shang J, Inagi R. Control of Mitochondrial Quality: A Promising Target for Diabetic Kidney Disease Treatment. Kidney Int Rep 2025; 10:994-1010. [PMID: 40303215 PMCID: PMC12034889 DOI: 10.1016/j.ekir.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 05/02/2025] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), affecting over 40% of patients with diabetes. DKD progression involves fibrosis and damage to glomerular and tubulointerstitial regions, with mitochondrial dysfunction playing a critical role. Impaired mitochondria lead to reduced adenosine triphosphate (ATP) production, damaged mitochondria accumulation, and increased reactive oxygen species (ROS), contributing to renal deterioration. Maintaining mitochondrial quality control (MQC) is essential for preventing cell death, tissue injury, and kidney failure. Recent clinical trials show that enhancing MQC can alleviate DKD. However, current treatments cannot halt kidney function decline, underscoring the need for new therapeutic strategies. Mitochondrial-targeted drugs show potential; however, challenges remain because of adverse effects and unclear mechanisms. Future research should aim to comprehensively explore therapeutic potential of MQC in DKD. This review highlights the significance of MQC in DKD treatment, emphasizing the need to maintain mitochondrial quality for developing new therapies.
Collapse
Affiliation(s)
- Qi Li
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Thompson AD, McAlister KW, Scholpa NE, Janda J, Hortareas J, Schnellmann RG. Lasmiditan induces mitochondrial biogenesis in primary mouse renal peritubular endothelial cells and augments wound healing and tubular network formation. Am J Physiol Cell Physiol 2025; 328:C1318-C1332. [PMID: 40080391 DOI: 10.1152/ajpcell.00116.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Kidney disease (KD) is a progressive and life-threatening illness that has manifested into a global health crisis, impacting >10% of the general population. Hallmarks of KD include tubular interstitial fibrosis, renal tubular cell atrophy/necrosis, glomerulosclerosis, persistent inflammation, microvascular endothelial cell (MV-EC) dysfunction/rarefaction, and mitochondrial dysfunction. Following acute kidney injury (AKI), and/or during KD onset/progression, MV-ECs of the renal peritubular endothelial capillaries (RPECs) are highly susceptible to injury, dysfunction, and rarefaction. Pharmacological induction of mitochondrial biogenesis (MB) via 5-hydroxytryptamine receptor 1F (HTR1F) agonism has been shown to enhance mitochondrial function and renal vascular recovery post-AKI in mice; however, little is known about MB in relation to renal MV-ECs and RPEC repair mechanisms. To address this gap in knowledge, the in vitro effects of the potent and selective FDA-approved HTR1F agonist lasmiditan were tested on primary mouse renal peritubular endothelial cells (MRPECs). Lasmiditan increased mitochondrial maximal respiration rates, mRNA and protein expression of MB-related genes, and mitochondrial number in MRPECs. MRPECs were then exposed to pro-inflammatory agents associated with renal MV-EC dysfunction, AKI, and KD (i.e., lipopolysaccharides, transforming growth factor-β1, and tumor necrosis factor-α), in the presence/absence of lasmiditan. Lasmiditan treatment augmented MRPEC wound healing, endothelial tubular network formation (ETNF), enhanced barrier integrity, and blunted inflammatory-induced MV-EC dysfunctions. Together, these data suggest that lasmiditan induces MB and improves wound healing and ETNF of primary MRPECs in the presence/absence of pro-inflammatory agents, highlighting a potential therapeutic role for lasmiditan treatment in renal MV-EC dysfunction, AKI, and/or KD.NEW & NOTEWORTHY Lasmiditan, an FDA-approved HTR1F agonist, induces mitochondrial biogenesis (MB) and enhances recovery following acute kidney injury in mice. Renal microvascular endothelial cells (MV-ECs) are highly susceptible to dysfunction/rarefaction postinjury. The effect of MB on MV-EC repair/recovery is unknown. We show that lasmiditan induces MB in primary mouse renal peritubular endothelial cells and improves wound healing, endothelial tubular network formation, and barrier integrity after inflammatory-induced dysfunction, indicative of its potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
- Southern Arizona VA Health Care System, Tucson, Arizona, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States
| | - Kai W McAlister
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
- Southern Arizona VA Health Care System, Tucson, Arizona, United States
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
| | - John Hortareas
- College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States
- Southern Arizona VA Health Care System, Tucson, Arizona, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
30
|
Pierre L, Juszczak F, Delmotte V, Decarnoncle M, Ledoux B, Bultot L, Bertrand L, Boonen M, Renard P, Arnould T, Declèves AE. AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity. Autophagy 2025; 21:860-880. [PMID: 39675352 PMCID: PMC11925112 DOI: 10.1080/15548627.2024.2435238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease. Because PTECs display high macroautophagic/autophagic activity and rely heavily on their endo-lysosomal system, we investigated the effect of lipid stress on autophagic flux and lysosomes in these cells. Using a model of highly differentiated primary PTECs challenged with palmitate, our data placed lysosomes at the cornerstone of the lipotoxic phenotype. As soon as 6 h after palmitate exposure, cells displayed impaired lysosomal acidification subsequently leading to autophagosome accumulation and activation of lysosomal biogenesis. We also showed the inability of lysosomal quality control to restore acidic pH which finally drove PTECs dedifferentiation. When palmitate-induced AMPK activity decline was prevented by AMPK activators, lysosomal acidification and the differentiation profile of PTECs were preserved. Our work provided key insights on the importance of lysosomes in PTECs homeostasis and lipotoxicity and demonstrated the potential of AMPK in protecting the organelle from lipid stress.Abbreviation: ACAC: acetyl-CoA carboxylase; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; AMPK: AMP-activated protein kinase; APQ1: aquaporin 1 (Colton blood group); BSA: bovine serum albumin; CDH16: cadherin 16; CKD: chronic kidney disease; CTSB: cathepsin B; CTSD: cathepsin D; EPB41L5: erythrocyte membrane protein band 4.1 like 5; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EMT: epithelial-to-mesenchymal transition; FA: fatty acid; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; GUSB: glucuronidase beta; HEXB: hexosaminidase subunit beta; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; LMP: lysosomal membrane permeabilization; LRP2: LDL receptor related protein 2; LSD: lysosomal storage disorder; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1: mucolipin TRP cation channel 1; MG132: N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal; MmPTECs: Mus musculus (mouse) proximal tubular epithelial cells; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleate; PA: palmitate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PTs: proximal tubules; PTECs: proximal tubular epithelial cells; PRKAA: protein kinase AMP-activated catalytic subunit alpha; RFP: red fluorescent protein; RPS6KB: ribosomal protein S6 kinase B; SLC5A2: solute carrier family 5 member 2; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.
Collapse
Affiliation(s)
- Louise Pierre
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Florian Juszczak
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Valentine Delmotte
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Morgane Decarnoncle
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Benjamin Ledoux
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laurent Bultot
- Pole of Cardiovascular Research, Experimental and Clinical Research Institute (CARD), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Experimental and Clinical Research Institute (CARD), UCLouvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Marielle Boonen
- URPhyM, Intracellular Trafficking Biology, NARILIS, University of Namur, Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| |
Collapse
|
31
|
Fan G, Tian M, Pan H, Sun C, Gong H, Luo Q, Yuan J. Label-free whole-kidney metabolic optical imaging using in vivo insulated cryofixation and cryo-micro-optical sectioning tomography. BIOMEDICAL OPTICS EXPRESS 2025; 16:1513-1527. [PMID: 40322009 PMCID: PMC12047708 DOI: 10.1364/boe.554000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025]
Abstract
Cryo-imaging has the potential to obtain and visualize the metabolic state of the whole kidney without labeling. However, uneven fixation of metabolic information and incomplete organ morphology in three dimensions limit cryo-imaging application. Here, a pipeline of in vivo insulated cryofixation combined with cryo-micro optical sectioning tomography (cryo-MOST) was established to achieve uniform and complete cryofixation and three-dimensional visualization of renal metabolic mapping at a micron-scale resolution. By this pipeline, we discovered an increased renal redox ratio of db/db mice with type 2 diabetes, indicating the presence of metabolic disorders. The results demonstrate that our convenient optical imaging tool provides a micro-resolution, quantitative assessment of the metabolic state of the whole kidney and potentially extends to other organs.
Collapse
Affiliation(s)
- Guoqing Fan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MOE Key Laboratory for Biomedical Photonics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingyu Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MOE Key Laboratory for Biomedical Photonics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huijuan Pan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MOE Key Laboratory for Biomedical Photonics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuancao Sun
- Institute of Future Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haoyu Gong
- MOE Key Laboratory for Biomedical Photonics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MOE Key Laboratory for Biomedical Photonics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou 215123, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MOE Key Laboratory for Biomedical Photonics, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou 215123, China
| |
Collapse
|
32
|
Thompson AD, Victor Santiago Raj P, Scholpa NE, Schnellmann RG. Repurposing mitochondria-targeted therapeutics for kidney diseases. Kidney Int 2025; 107:617-627. [PMID: 39855593 PMCID: PMC12013279 DOI: 10.1016/j.kint.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
The kidney is one of the most metabolically demanding organs in the human body and requires a large amount of energy, in the form of adenosine triphosphate (ATP), to perform and maintain normal kidney functions. To meet this energy demand, proximal tubule cells within the nephron segments of the renal cortex are mitochondrially dense with high oxygen consumption rates. Mitochondria are complex organelles involved in diverse cellular and molecular functions, including the production of ATP, calcium homeostasis, and phospholipid regulation. Mitochondrial dysfunction is critical in the onset and progression of kidney disease. Dysfunctional renal mitochondria have been linked with alterations in redox homeostasis, impaired bioenergetics, oxidative stress, and inflammation, all of which result in renal cell injury and death, as well as fibrotic accumulation in kidney injury and disease. As such, interest in the development and/or repurposing of mitochondria-targeted therapeutics for the potential treatment of kidney diseases has recently surged. Although novel therapeutics and promising new drug targets have been identified, drug repurposing for kidney diseases offers numerous advantages over traditional drug discovery initiatives, including reduced cost, time of therapeutic development, and preclinical testing, in addition to known pharmacokinetics/pharmacodynamics and safety profiles. Here, we provide an overview of mitochondrial dysfunction in the context of kidney injury and disease and shed light on promising mitochondria-targeted therapeutic agents that display repurposing potential for the restoration of kidney function and/or acceleration of renal recovery.
Collapse
Affiliation(s)
- Austin D Thompson
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA
| | - Paul Victor Santiago Raj
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Natalie E Scholpa
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA
| | - Rick G Schnellmann
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
33
|
Huang H, Wen Z, Li H, Wang C, Chen C, Liu Y, Qin J, Cao S, Yang X. Effect of the plasma metabolites, biomarkers, and inflammatory proteins on urolithiasis: insights from Mendelian randomization and mediation analysis. Urolithiasis 2025; 53:65. [PMID: 40167789 DOI: 10.1007/s00240-025-01738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Urolithiasis represents a systemic disorder characterized by metabolic circulation issues and ongoing inflammation. The purpose of this research is to explore the relationships of causation among plasma metabolites, biomarkers, inflammatory proteins, and stones within the urinary system. We initially carried out a two-sample Mendelian randomization (MR) analysis to evaluate possible causal connections between 233 plasma metabolites and 35 biomarkers related to urolithiasis. The genetic association study (GWAS) data concerning plasma metabolites were derived from a 2024 publication in Nature, while data for biomarkers were collected from the UK Biobank. To determine causal relationships, we utilized several analytical techniques, including inverse variance weighting (IVW), MR-Egger, weighted median, and weighted mode. Furthermore, we conducted analyses for pleiotropy and heterogeneity to ensure the findings' robustness. A Steiger analysis was used to explore the presence of any reverse causal relationships. Lastly, we conducted mediation analysis to elucidate how inflammatory proteins mediate the associations between plasma metabolites, biomarkers, and stones in the urinary system. Our research demonstrates causal connections between six plasma metabolites and six biomarkers related to upper urinary tract stones. Furthermore, we identified causal associations between ten plasma metabolites and four biomarkers linked to lower urinary tract stones. Most of these metabolites belong to lipid and lipoprotein classes, indicating that changes in blood lipid levels may influence stone formation. Finally, mediation analysis revealed 13 mediating relationships, including the mediating effects of six inflammatory proteins. Our results provide evidence for the causal links among plasma metabolites, biomarkers, and inflammatory proteins associated with urolithiasis. This provides new insights into the potential mechanisms underlying urinary system stone formation, contributing to their prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Langzhong People 's Hospital, Langzhong, Sichuan Province, China
| | - Hongyuan Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chongjian Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Qin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Song Cao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Health Management Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- Department of Urology, Afliated Hospital of North Sichuan Medical College, No.1, Maoyuan South Road, Zhongcheng Street, Shunqing District, Nanchong City, 637000, Sichuan Province, China.
| |
Collapse
|
34
|
Liu J, Zeng D, Wang Y, Deng F, Wu S, Deng Z. Identification of druggable targets in acute kidney injury by proteome- and transcriptome-wide Mendelian randomization and bioinformatics analysis. Biol Direct 2025; 20:38. [PMID: 40148878 PMCID: PMC11951703 DOI: 10.1186/s13062-025-00631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) remains a critical condition with limited therapeutic options, predominantly managed by renal replacement therapy. The challenge of developing targeted treatments persists. METHODS We integrated genetic data related to druggable proteins and gene expression with AKI genome-wide association study (GWAS) findings. Based on multi-omics Mendelian randomization (MR), we identified the potential causal influence of 5,883 unique proteins and genes on AKI. We also performed using reverse MR and external cohort-based analysis to verify the robustness of this causal relationship. Expression patterns of these targets were examined using bulk transcriptome and single-cell transcriptome data. In addition, drug repurposing analyses were conducted to explore the potential of existing medications. We also constructed a molecular interaction network to explore the interplay between identified targets and known drugs. RESULTS Genetically predicted levels of seven proteins and twelve genes were associated with an increased risk of AKI. Of these, six targets (NCF1, TNFRSF1B, APEH, ACADSB, ADD1, and FAM3B) were prioritized based on robust evidence and validated in independent cohorts. Reverse MR showed a one-way causal relationship of targets. These targets are predominantly expressed in proximal tubular cells, endothelial cells, collecting duct-principal cells, and immune cells within both AKI-affected and normal tissues. Several promising drug repurposing opportunities were identified, such as telmisartan-NCF1, calcitriol-ACADSB, and ethinyl estradiol-ACADSB. The molecular interaction mapping and pathway integration analysis provided further insights, suggesting potential strategies for combinatorial therapies. CONCLUSIONS This extensive investigation identified several promising therapeutic targets for AKI and highlighted opportunities for drug repurposing. These findings offer valuable insights that could shape future research and the development of targeted treatments.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dianjie Zeng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China.
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Mboni-Johnston IM, Hartmann S, Kroll C, Berndt C, Adjaye J, Schupp N. Impact of nephrotoxins and oxidants on survival and transport function of hiPSC-derived renal proximal tubular cells. Arch Toxicol 2025:10.1007/s00204-025-04015-1. [PMID: 40119912 DOI: 10.1007/s00204-025-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Due to their role in excretion, renal proximal tubular cells are susceptible to damage by toxic metabolites and xenobiotics. The regenerative capacity of the kidney allows for the replacement of damaged cells, a process involving differentiation programs. However, kidney function tends to decline, suggesting that the replacement cells may not achieve full functionality. To understand possible causes of this decline, we investigated effects of nephrotoxins and oxidants on the differentiation of induced pluripotent stem cells (iPSC) into proximal tubular epithelial-like cells (PTELC). Proliferation, apoptosis, senescence, and expression of oxidative defense genes were analyzed in iPSC, differentiating and differentiated cells treated with cisplatin (CisPt, up to 45 µM), cyclosporin A (CycA, up to 12 µM), and the oxidants menadione (Mena, up to 50 µM) and tert-butylhydroquinone (tBHQ, up to 50 µM). We found that differentiating cells were most sensitive to oxidants and showed increased sensitivity to CisPt, whereas all differentiation stages showed similar sensitivity to CycA. Both oxidative stress and CisPt triggered apoptosis in all differentiation stages, whereas CycA mainly induced senescence. Treatment during differentiation resulted in long-term effects on gene expression in differentiated cells. While oxidants had no effect on transport function of differentiated cells, CisPt and CycA impaired albumin uptake. Our data suggest a substantial sensitivity of differentiating cells to nephrotoxins and oxidants, an aspect that could potentially interfere with regenerative processes.
Collapse
Affiliation(s)
- Isaac Musong Mboni-Johnston
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sören Hartmann
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christian Kroll
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, University Hospital Düsseldorf, University of Düsseldorf, 40225, Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women'S Health, University College London (UCL), 20 Guilford Street, London, WC1N 1DZ, UK
| | - Nicole Schupp
- Institute of Toxicology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
36
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
37
|
Han F, Dong Y, Liu Q, Song L, Guo H, Zhu L, Sun B, Zhao W, Chen L. S-nitrosylation of peroxiredoxin 2 exacerbates hyperuricemia-induced renal injury through regulation of mitochondrial homeostasis. Free Radic Biol Med 2025; 230:66-78. [PMID: 39921115 DOI: 10.1016/j.freeradbiomed.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Protein S-nitrosylation (SNO), a redox-based posttranslational modification of cysteine thiols, plays a crucial role in various signaling pathways. Peroxiredoxin 2 (PRDX2) is one of the most potent ROS scavenging proteins, providing protection against oxidative stress damage, with its function regulated by SNO. However, the precise role of SNO-PRDX2 in hyperuricemic nephropathy remains poorly understood. In this study, we identified PRDX2 as a highly S-nitrosylated target in hyperuricemic nephropathy using a biotin switch assay. The elevation of SNO-PRDX2 was observed in kidneys of hyperuricemic mice as well as in uric acid (UA)-treated human renal tubular epithelial (HK-2) cells. S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, induced SNO modification of PRDX2, promoting mitochondrial dysfunction, oxidative stress, and cell apoptosis in HK-2 cells. Transfection with a plasmid containing a mutated cysteine 172 (Cys172) of PRDX2 yielded a decrease in SNO-PRDX2 levels in both hyperuricemic mice and UA-cultured HK-2 cells. Furthermore, administration of adeno-associated viruses carrying the Cys172-mutated PRDX2 significantly ameliorated renal interstitial fibrosis and reduced mitochondrial dysfunction, oxidative stress, and cell apoptosis in HUA-treated mice. In conclusion, our findings indicate that SNO modification of PRDX2 at Cys172 mediates HUA-induced kidney interstitial fibrosis, suggesting that SNO-PRDX2 may serve as a potential therapeutic target for HUA-induced renal injury.
Collapse
Affiliation(s)
- Fei Han
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Ya Dong
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Center for Diabetes Control and Prevention, 518035, Guangdong Province, China
| | - Qiaoyan Liu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Linling Song
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Hang Guo
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Lingling Zhu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China
| | - Bei Sun
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China.
| | - Wei Zhao
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China.
| | - Liming Chen
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China.
| |
Collapse
|
38
|
Lin YH, Lin KJ, Chen JY. Exploring the bidirectional relationship between chronic kidney disease and obstructive sleep apnea. Sleep 2025; 48:zsaf002. [PMID: 39801372 PMCID: PMC11893522 DOI: 10.1093/sleep/zsaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Affiliation(s)
- Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taiwan
- School of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Kuo-Jen Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Taiwan
- School of Medicine, Chang Gung University, TaoYuan, Taiwan
| | - Jau-Yuan Chen
- School of Medicine, Chang Gung University, TaoYuan, Taiwan
- Department of Family Medicine, Chang-Gung Memorial Hospital-Linkou, Taiwan
| |
Collapse
|
39
|
Zemaitis KJ, Fulcher JM, Kumar R, Degnan DJ, Lewis LA, Liao YC, Veličković M, Williams SM, Moore RJ, Bramer LM, Veličković D, Zhu Y, Zhou M, Paša-Tolić L. Spatial top-down proteomics for the functional characterization of human kidney. Clin Proteomics 2025; 22:9. [PMID: 40045235 PMCID: PMC11881370 DOI: 10.1186/s12014-025-09531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/04/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. RESULTS Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. CONCLUSIONS We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) while discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James M Fulcher
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rashmi Kumar
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Logan A Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yen-Chen Liao
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ying Zhu
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Proteomic and Genomic Technologies, San Francisco, CA, 94080, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
40
|
Lu M, Zhan Z, Li D, Chen H, Li A, Hu J, Huang Z, Yi B. Protective role of vitamin D receptor against mitochondrial calcium overload from PM 2.5-Induced injury in renal tubular cells. Redox Biol 2025; 80:103518. [PMID: 39891958 PMCID: PMC11836507 DOI: 10.1016/j.redox.2025.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE This research explores the consequences of being exposed to PM2.5 contribute to renal injury while also evaluating the protective role of Vitamin D-VDR signaling in alleviating mitochondrial calcium imbalance and oxidative stress in renal tubular cells. METHODS Animal models of chronic PM2.5 exposure were used to simulate environmental conditions in wild type and VDR-overexpressing mice specific to renal tubules. In parallel, HK-2 cell lines were treated with PM2.5 in vitro. Mitochondrial function, calcium concentration, and oxidative stress markers were assessed. VDR activation, achieved through genetic overexpression and paricalcitol, was induced to examine its effect on mitochondrial calcium uniporter (MCU) expression and mitochondrial calcium regulation. RESULTS PM2.5 exposure caused significant mitochondrial damage in renal tubular cells, including mitochondrial calcium overload, increased oxidative stress, reduced membrane potential, and diminished ATP production. Elevated MCU expressions were a key contributor to these disruptions. VDR activation effectively reversed these effects by downregulating MCU, restoring mitochondrial calcium balance, reducing oxidative stress, and improving renal function. CONCLUSION This study shows that activating Vitamin D-VDR signaling shields the kidneys from PM2.5-induced damage by reestablishing mitochondrial calcium balance and lowering oxidative stress via inhibition of the MCU. These results unveil a new protective role of VDR in defending against environmental pollutants and suggest that targeting the MCU could offer a potential therapeutic strategy for treating chronic kidney disease linked to pollution exposure.
Collapse
Affiliation(s)
- Mengqiu Lu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Hengbing Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Jing Hu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China.
| |
Collapse
|
41
|
Yang T, Peng Y, Shao Y, Pan D, Cheng Q, Jiang Z, Qian S, Li B, Yan M, Zhu X, Liu J, Wang T, Lu Q, Yin X. Mitochondria-dependent apoptosis was involved in the alleviation of Jujuboside A on diabetic kidney disease-associated renal tubular injury via YY1/PGC-1α signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156411. [PMID: 39884075 DOI: 10.1016/j.phymed.2025.156411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Renal tubular injury was a significant pathological change of diabetic kidney disease (DKD), and the amelioration of renal tubular injury through mitochondrial function was an important treatment strategy of DKD. Our previous study had revealed that Jujuboside A (Ju A), the main active substance isolated from Semen Ziziphi Spinosae (SZS), could restore renal function of diabetic mice. However, its protective mechanism against DKD remains unclear. PURPOSE To investigate the effects and the mechanism of Ju A against DKD-associated renal tubular injury. STUDY DESIGN AND METHODS The anti-apoptotic effect of Ju A and its protection effect on mitochondria dysfunction of renal tubular epithelial cells (RTECs) were examined in high glucose (HG)-cultured HK-2 cells, and in db/db mice. Subsequently, Network Pharmacology analysis, molecular docking, luciferase assay, chromatin immunoprecipitation (ChIP), Yin Yang 1 (YY1) overexpression lentiviral vector and peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α) specific agonist ZLN005 were all used to identify the protective mechanism of Ju A towards DKD-associated mitochondrial dysfunction of RTECs. RESULTS Ju A inhibited RTECs apoptosis and ameliorated mitochondria dysfunction of RTECs of diabetic mice, and HG-cultured HK-2 cells. YY1 was the potential target of Ju A against DKD-related mitochondrial dysfunction, and the down-regulation of YY1 induced by Ju A increased PGC-1α promoter activity, leading to the restored mitochondrial function of HG-treated HK-2 cells. Renal tubule specific overexpression of YY1 intercepted the renal protective effect of Ju A on diabetic mice via blocking PGC-1α-mediated restoration of mitochondrial function of RTECs. The in-depth mechanism research revealed that the protective effect of Ju A towards DKD-associated renal tubular injury was linked to the restored mitochondrial function through YY1/PGC-1α signaling, resulting in the inhibited apoptosis of RTECs in diabetic condition via inactivating CytC-mediated Caspase9/Caspase3 signaling. CONCLUSION Ju A through the inhibition of mitochondria-dependent apoptosis alleviated DKD-associated renal tubular injury via YY1/PGC-1α signaling.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yuting Peng
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yuting Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Dandan Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Baojing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Junjie Liu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Urology, The affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, PR China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China; Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, PR China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
42
|
Ye Z, Sun Y, Yang S, Li L, Li B, Xia Y, Yuan T, Yu W, Chen L, Zhou X, Cheng F. Lgals3 Promotes Calcium Oxalate Crystal Formation and Kidney Injury Through Histone Lactylation-Mediated FGFR4 Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413937. [PMID: 39903812 PMCID: PMC11947994 DOI: 10.1002/advs.202413937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The incidence of kidney stones is increasing worldwide. However, the underlying mechanism of the process of kidney stone formation and the kidney damage caused are not well understood. Here, it is observed that Lgals3, a β-galactoside-binding protein, is significantly increased in tissues with calcium oxalate (CaOx) stones, and in both in vivo and in vitro models. Lgals3 expression is positively correlated with the deposition of CaOx crystals. Knockout of Lgals3 markedly reduces the deposition of CaOx crystal and renal fibrosis in vivo. Furthermore, Lgals3 deficiency decrease the glycolytic rate and lactate production during the process of CaOx deposition and inhibited histone lactylation of H3K18la. Mechanistic studies shows that Lgals3 directly interacted with the key glycolysis protein pyruvate kinase M2 (PKM2) and promoted its expression by modulating E3 ligase Trim21, preventing the ubiquitination of PKM2. Furthermore, H3K18 lactylation promoted CaOx crystal deposition and kidney injury in vivo and in vitro. Lgals3 deficiency inhibites the transcription, activation, and expression of FGFR4 through inhibition of H3K18la. These findings suggest that Lgals3 may play a key role in CaOx stone formation and kidney injury by interacting with PKM2 and promoting both H3K18la-mediated gene transcription and activation.
Collapse
Affiliation(s)
- Zehua Ye
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Yushi Sun
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Songyuan Yang
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Lei Li
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Bojun Li
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Yuqi Xia
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Tianhui Yuan
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Weimin Yu
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Lijia Chen
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Xiangjun Zhou
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| | - Fan Cheng
- Department of UrologyRenmin hospital of Wuhan universityWuhan430060China
| |
Collapse
|
43
|
Martinez SA, Karel IZ, Silvaroli JA, Ahmed E, Kim JY, Stayton A, Patel PS, Afjal MA, Horton T, Bohmer M, Vanichapol T, Sander V, Andrade GM, Allison CV, Mondal M, Thorson VC, Partey A, Nimkar K, Williams V, Quimby J, Ganesan L, Madhavan SM, Davidson AJ, Peterson BR, Adebiyi A, Rao R, Sweet DH, Singh P, Bennett KM, Zepeda-Orozco D, Mallipattu SK, Eisenmann ED, Sparreboom A, Rovin BH, Bajwa A, Pabla NS. Resazurin dye is an in vivo sensor of kidney tubular function. Kidney Int 2025; 107:508-520. [PMID: 39733791 PMCID: PMC11845305 DOI: 10.1016/j.kint.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Glomerular filtration rate (GFR) is the main functional index of kidney health and disease. Currently, no methods are available to directly measure tubular mass and function. Here, we report a serendipitous finding that the in vitro cell viability dye resazurin can be used in mice as an exogenous sensor of tubular function. Intravenously injected resazurin exhibited significant plasma protein binding and was found to mainly undergo tubular secretion. Mechanistic studies showed that the blue-colored, weakly fluorescent resazurin is taken up by tubular cells through organic anion transporters, followed by conversion to a highly fluorescent, pink-colored resorufin by mitochondrial and cytosolic reductases, converted to an orange-colored β-d-glucuronide with subsequent efflux into the urine. Here we report a simple method in which the intravenous injection of resazurin is followed by the measurement of fluorescent metabolites in the urine, providing a sensitive readout of tubular function. Three mouse models of acute kidney injury (rhabdomyolysis, bilateral ischemia-reperfusion injury, and cisplatin nephrotoxicity) were tested and the resazurin-based method was able to sensitively detect the loss of tubular function much earlier than the increase in serum creatinine levels. Strikingly, in mice with unilateral ischemia-reperfusion injury and genetic mutation-linked kidney hypoplasia (oligosyndactylism, a genetic model for congenital kidney hypoplasia), the resazurin-based method was able to detect loss of tubular mass and function despite normal GFR levels. Collectively, our findings establish the preclinical utility of resazurin as a sensitive exogenous marker of tubular function and support future examination in larger animals for potential clinical translation.
Collapse
Affiliation(s)
- Shirely Acosta Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Isaac Z Karel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Eman Ahmed
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Stayton
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Prisha S Patel
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mohammad Amir Afjal
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Thomas Horton
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Margaret Bohmer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Gabriel Mayoral Andrade
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Corynne Vermillion Allison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Milon Mondal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Victoria C Thorson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alexandra Partey
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kartik Nimkar
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Victoria Williams
- Division of Clinical Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, Columbus, Ohio, USA
| | - Latha Ganesan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sethu M Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Blake R Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Adebowale Adebiyi
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Douglas H Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| | - Kevin M Bennett
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, USA
| | - Diana Zepeda-Orozco
- Division of Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Section, Northport VA Medical Center, Northport, New York, USA
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Brad H Rovin
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amandeep Bajwa
- Transplant Research Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
44
|
Chatterjee T, Zarjou A. Navigating the Complex Pathogenesis of Acute Kidney Injury: Exploring Macrophage Dynamics, Mitochondrial Dysfunction, and Ferroptosis Pathways. ADVANCES IN KIDNEY DISEASE AND HEALTH 2025; 32:122-132. [PMID: 40222799 PMCID: PMC11999248 DOI: 10.1053/j.akdh.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025]
Abstract
Acute kidney injury, a rapid decline in kidney function coupled with physiological and homeostatic perturbations, is an independent risk factor for both short-term and long-term health outcomes. As incidence of acute kidney injury continues to rise globally, the significant clinical and economic challenge of acute kidney injury underscores the need for its prompt recognition and application of novel and germane strategies to reduce its severity and facilitate recovery. Understanding the multifaceted cascade of events engaged in pathogenesis of acute kidney injury is pivotal for the development of effective preventive and therapeutic strategies. To facilitate an in-depth discussion on emerging therapeutic targets, this review will examine the role of macrophages in kidney injury and repair, explore the alterations in mitochondrial biogenesis dynamics induced by acute kidney injury, and provide insights into the molecular mechanisms underlying the contribution of ferroptosis to kidney injury.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
45
|
Aranda-Rivera AK, Amador-Martínez I, Aparicio-Trejo OE, León-Contreras JC, Hernández-Pando R, Saavedra E, García-Arroyo FE, Pedraza-Chaverri J, Sánchez-Lozada LG, Tapia E. Sulforaphane Restores Mitochondrial β-Oxidation and Reduces Renal Lipid Accumulation in a Model of Releasing Unilateral Ureteral Obstruction. Antioxidants (Basel) 2025; 14:288. [PMID: 40227243 PMCID: PMC11939561 DOI: 10.3390/antiox14030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Obstructive nephropathy (ON), characterized by urine flow disruption, can induce chronic kidney disease (CKD). Although the release of the obstruction is performed as the primary intervention, renal pathology often persists and progresses. Accordingly, the murine model of releasing unilateral ureteral obstruction (RUUO) is valuable for investigating the molecular events underlying renal damage after obstruction release. Remarkably, after RUUO, disturbances such as oxidative stress, inflammation, lipid accumulation, and fibrosis continue to increase. Mitochondrial dysfunction contributes to fibrosis in the UUO model, but its role in RUUO remains unclear. Additionally, the impact of using antioxidants to restore mitochondrial function and prevent renal fibrosis in RUUO has not been determined. This study aimed to determine the therapeutic effect of pre-administering the antioxidant sulforaphane (SFN) in the RUUO model. SFN was administered 1 day before RUUO to evaluate mitochondrial biogenesis, fatty acids (FA) metabolism, bioenergetics, dynamics, and mitophagy/autophagy mechanisms in the kidney. Our data demonstrated that SFN enhanced mitochondrial biogenesis and reestablished mitochondrial oxygen consumption and β-oxidation. These effects collectively reduced lipid accumulation and normalized mitochondrial dynamics, mitophagy, and autophagy, thereby mitigating fibrosis after obstruction. Our findings suggest that SFN holds promise as a potential therapeutic agent in ON-induced CKD progression in RUUO and opens new avenues in studying antioxidant molecules to treat this disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Isabel Amador-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyocán, Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Fernando E. García-Arroyo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
46
|
Lan SF, Yang ZH, Feng L, Wen YT, Chen KN, Fan LL, Wang MJ, Liu WT. MTDH inhibits CrAT to promote mitochondrial damage in palmitic acid-induced renal tubular cells. Acta Diabetol 2025:10.1007/s00592-025-02476-5. [PMID: 40100360 DOI: 10.1007/s00592-025-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Mitochondrial dysfunction leading to impaired energy metabolism has been recognized as a pivotal factor contributing to renal tubular epithelial cells (RTECs) damage in the context of dyslipidemia conditions in diabetic kidney disease (DKD). The primary objective of this study is to elucidate the role and underlying mechanism of the proto-oncogene Metadherin (MTDH) in mediating mitochondrial damage within this specific pathological context in vitro. METHODS The expression of MTDH in RTECs was modulated by transfecting small interfering RNA and plasmid, while palmitic acid (PA) was employed to simulate diabetic lipid metabolism disorder. Mitochondrial damage was evaluated by examining various parameters including mitochondrial morphology, membrane potential, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) production, as well as morphological and structural alterations. Additionally, Carnitine acetyltransferase (CrAT) expression was assessed using Western blotting and quantitative real-time polymerase chain reaction, and CrAT activity was quantified. RESULT MTDH expression was upregulated in PA-induced RTECs, while CrAT expression and activity were inhibited. Downregulation of MTDH mitigated PA-induced mitochondrial damage, as demonstrated by the preservation of mitochondrial membrane potential, reduction in mitochondrial ROS production, prevention of ATP depletion, and maintenance of mitochondrial structure. This was accompanied by an upregulation in CrAT expression and activity. Conversely, overexpression of MTDH exacerbated mitochondrial dysfunction by impairing membrane potential, augmenting mitochondrial ROS production, inhibiting ATP synthesis, and suppressing CrAT expression and activity. CONCLUSION In the context of dyslipidemia conditions, MTDH is upregulated and suppresses the expression and activity of CrAT in RTECs, thereby inducing mitochondrial dysfunction and perturbing energy metabolism. These alterations exacerbate the injury to RTECs, consequently promoting the progression of DKD.
Collapse
Affiliation(s)
- Shan-Fen Lan
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Zhen-Hua Yang
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Li Feng
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Yu-Ting Wen
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Kun-Ni Chen
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Lang-Lin Fan
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Ming-Jun Wang
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| | - Wen-Ting Liu
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| |
Collapse
|
47
|
Sun Y, Jin S, Chen J, Zhang J, Lu Y, Gu Q, Yan Z, Chen W, Chen A, Fang Y, Geng W, Xu X, Song N. Cordycepin Ameliorates Renal Interstitial Fibrosis by Inhibiting Drp1-Mediated Mitochondrial Fission. Drug Des Devel Ther 2025; 19:1271-1287. [PMID: 40026334 PMCID: PMC11869758 DOI: 10.2147/dddt.s498525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Objective This study aimed to investigate the mechanisms and specific targets of cordycepin in the treatment of renal fibrosis using a unilateral ischemia-reperfusion (UIR) model. Methods A UIR mouse model was established, followed by intraperitoneal injections of cordycepin and Mdivi-1. Masson's trichrome staining and PAS staining were used to identify renal tubulointerstitial fibrosis and assess the degree of renal injury. Fibrosis markers and mitochondrial dynamics-related proteins were evaluated using Western blotting, while differential gene expression and pathway enrichment were analyzed by RNA-seq. Molecular docking, molecular dynamics simulations and surface plasmon resonance were conducted to validate the specific binding sites of cordycepin on the target protein Drp1. Immunofluorescence and in vitro experiments further elucidated the therapeutic mechanism of cordycepin. Results In vivo experiments showed that intraperitoneal injection of cordycepin significantly reduced renal inflammation and fibrosis, lowered serum creatinine levels, and decreased collagen deposition. Transcriptome analysis revealed that cordycepin treatment downregulated the mitochondrial fission pathway and upregulated the mitochondrial fusion pathway. Western blotting showed reduced levels of fibrosis markers α-SMA and FN, as well as downregulation of Drp1, MFF, and Fis1, and upregulation of OPA1 and Mfn2. In vitro, cordycepin inhibited TGF-β-induced injury in NRK-52E cells, reducing Drp1 expression and IL-6 secretion. Crosstalk experiments confirmed that decreased IL-6 levels were crucial for cordycepin anti-fibrotic effects by suppressing fibroblast activation. Conclusion Cordycepin ameliorates renal fibrosis by targeting Drp1 to inhibit mitochondrial fission in injured renal tubular epithelial cells, reducing IL-6 secretion and inhibiting fibroblast activation.
Collapse
Affiliation(s)
- Yingxue Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Jun Chen
- Department of Pathology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, People’s Republic of China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Qiuyu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Annan Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Wenye Geng
- Scientific Research Department of Shanghai Medical College, Fudan Zhangjiang Institute, Fudan University, Shanghai, 201203, People’s Republic of China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis Quality Control Center of Shanghai, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
48
|
Yu T, Wei J, Tian L, Li W, Guo R, Wang G, Fan G, Suriguga, Zhao H, Suo F, Yang H, Yan Q, Wang Z, Liang J. Caffeine Sodium Benzoate Promotes Endothelial Dysfunction of Human Umbilical Vein Endothelial Cells by Promoting M1 Macrophage Polarization. Mol Biotechnol 2025:10.1007/s12033-025-01391-y. [PMID: 39987548 DOI: 10.1007/s12033-025-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Our previous study uncovered that long-term abuse of caffeine sodium benzoate (CSB) could lead to dysfunction in human umbilical vein endothelial cells (HUVECs). However, the mechanism by which CSB induced endothelial dysfunction remains largely unstudied. CSB containing serum (CSB-CS) was collected from patients under long-term CSB inhalation. RAW264.7 cells were treated with different concentrations of CSB-CS, after which the conditioned medium (CM) was collected and cultured with HUVECs. The migration, tube formation, and senescence of HUVECs were evaluated. CSB-CS could induce polarization of RAW264.7 cells toward the M1 phenotype, as evidenced by the elevated CD86 and iNOS levels. Additionally, the CM from CSB-treated RAW264.7 cells notably suppressed the migration, tube formation, and induced cell senescence and endothelial dysfunction in HUVECs. Moreover, the CM from CSB-treated RAW264.7 cells greatly reduced mitochondrial membrane potential level, increased the ROS production, reduced OPA1 levels, but elevated DRP1 levels in HUVECs, leading to mitochondrial fission and dysfunction. Meanwhile, the CM from CSB-treated RAW264.7 cells remarkably reduced p-AKT and p-GSK3β levels in HUVECs. Notably, promotion of mitochondrial fusion by MASM7 could mitigate mitochondrial dysfunction and endothelial dysfunction in HUVECs induced by the CM from CSB-treated RAW264.7 cells. Collectively, we found that CSB could induce mitochondrial dysfunction in HUVECs by the polarization of pro-inflammatory M1 macrophages, resulting in endothelial dysfunction. These findings may provide a foundational basis for developing treatments for diseases associated with CSB.
Collapse
Affiliation(s)
- Tianwei Yu
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Jiale Wei
- Postgraduate Student in Clinical Laboratory Diagnostics, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Lili Tian
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Weixin Li
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Rong Guo
- Postgraduate Student in Clinical Laboratory Diagnostics, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guohong Wang
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Guoying Fan
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Suriguga
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China
| | - Huiying Zhao
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Feiya Suo
- Department of Clinical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010000, China.
| | - Quanzhi Yan
- Department of Transfusion Medicine, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China.
| | - Zhenfei Wang
- Molecular Diagnostic Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China.
| | - Junqing Liang
- Department of Breast Surgery, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010020, China.
| |
Collapse
|
49
|
Stem AD, Michel CR, Harris PS, Rogers KL, Gibb M, Roncal-Jimenez CA, Reisdorph R, Johnson RJ, Roede JR, Fritz KS, Brown JM. Modulation of the thiol redox proteome by sugarcane ash-derived silica nanoparticles: insights into chronic kidney disease of unknown etiology. Part Fibre Toxicol 2025; 22:3. [PMID: 39910563 PMCID: PMC11800628 DOI: 10.1186/s12989-025-00619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION Chronic kidney disease of unknown etiology (CKDu) is an epidemic which is increasingly prevalent among agricultural workers and nearby communities, particularly those involved in the harvest of sugarcane. While CKDu is likely multifactorial, occupational exposure to silica nanoparticles (SiNPs), a major constituent within sugarcane ash, has gained increased attention as a potential contributor. SiNPs have high potential for generation of reactive oxygen species (ROS), and their accumulation in kidney could result in oxidative stress induced kidney damage consistent with CKDu pathology. METHODS In order to characterize the impact of sugarcane ash derived (SAD) SiNPs on human kidney proximal convoluted tubule (PCT) cells and identify potential mechanisms of toxicity, HK-2 cells were exposed to treatments of either pristine, manufactured, 200 nm SiNPs or SAD SiNPs and changes to cellular energy metabolism and redox state were determined. To determine how the cellular redox environment may influence PCT cell function and toxicity, the redox proteome was examined using cysteine-targeted click chemistry proteomics. RESULTS Pristine, 200 nm SiNPs induced minimal changes to energy metabolism and proteomic profiles in vitro while treatment with SAD SiNPs resulted in mitochondrial membrane hyperpolarization, inhibited mitochondrial respiration, increased reactive oxygen species generation, and redox proteomic trends suggesting activation of aryl hydrocarbon receptor (AHR) and other signaling pathways with known roles in mitochondrial inhibition and CKD progression. CONCLUSION Results suggest that PCT cell exposure to SAD SiNPs could promote glycolytic and fibrotic shifts consistent with CKDu pathology via oxidative stress-mediated disruption of redox signaling pathways.
Collapse
Affiliation(s)
- Arthur D Stem
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Keegan L Rogers
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Matthew Gibb
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO, USA.
| |
Collapse
|
50
|
Li X, Chen J, Li J, Zhang Y, Xia J, Du H, Sheng C, Huang M, Shen W, Cai G, Wu L, Bai X, Chen X. ATGL regulates renal fibrosis by reprogramming lipid metabolism during the transition from AKI to CKD. Mol Ther 2025; 33:805-822. [PMID: 39748508 PMCID: PMC11853023 DOI: 10.1016/j.ymthe.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Acute kidney injury (AKI) can progress to chronic kidney disease (CKD) and subsequently to renal fibrosis. Poor repair of renal tubular epithelial cells (TECs) after injury is the main cause of renal fibrosis. Studies have shown that restoring damaged fatty acid β-oxidation (FAO) can reduce renal fibrosis. Adipose triglyceride lipase (ATGL) is a key enzyme that regulates lipid hydrolysis. This study, for the first time, demonstrated that ATGL was downregulated in the renal TEC in the AKI-CKD transition mouse model. Moreover, treatment with the ATGL inhibitor atglistatin exacerbated lipid accumulation and downregulated the FAO level and mitochondrial function, while it increased the level of oxidative stress injury and apoptosis, resulting in aggravated renal fibrosis. In contrast, ATGL overexpression suppressed lipid accumulation, improved the FAO level and mitochondrial function, and attenuated oxidative stress and apoptosis, thereby ameliorating fibrosis in vitro and in vivo. In summary, ATGL regulates renal fibrosis by reprogramming lipid metabolism in renal TECs. This study provided new avenues and targets for treating CKD.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Jianwen Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Jun Li
- School of Basic Medical Sciences, Fudan University, Dong'An Road 130, Shanghai 200032, China
| | - Yixuan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Jikai Xia
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Chunjia Sheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xueyuan Bai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China.
| |
Collapse
|