1
|
Liu Z, Guo Y, Zhang Y, Gao Y, Ning B. Metabolic reprogramming of astrocytes: Emerging roles of lactate. Neural Regen Res 2026; 21:421-432. [PMID: 39688570 DOI: 10.4103/nrr.nrr-d-24-00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate serves as a key energy metabolite in the central nervous system, facilitating essential brain functions, including energy supply, signaling, and epigenetic modulation. Moreover, it links epigenetic modifications with metabolic reprogramming. Nonetheless, the specific mechanisms and roles of this connection in astrocytes remain unclear. Therefore, this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system. The close relationship between epigenetic modifications and metabolic reprogramming was discussed. Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases. In the nervous system, lactate plays an essential role. However, its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation. The involvement of lactate in epigenetic modifications is currently a hot research topic, especially in lactylation modification, a key determinant in this process. Lactate also indirectly regulates various epigenetic modifications, such as N6-methyladenosine, acetylation, ubiquitination, and phosphorylation modifications, which are closely linked to several neurological disorders. In addition, exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments.
Collapse
Affiliation(s)
- Zeyu Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yijian Guo
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yulei Gao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Department of Spinal Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Yoshida M, Murakami T, Nishikawa K, Ishihara K, Mori Y, Tsujikawa A. Vision-Threatening Diabetic Macular Ischemia Based on Inferred Progression Pathways in OCT Angiography. OPHTHALMOLOGY SCIENCE 2025; 5:100761. [PMID: 40248822 PMCID: PMC12005287 DOI: 10.1016/j.xops.2025.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
Purpose To elucidate the progression pathways of diabetic macular ischemia (DMI) using OCT angiography (OCTA) images and to assess changes in visual acuity (VA) associated with each pathway. Design A single-center, prospective case series study. Participants One hundred fifty-one eyes from 151 patients with a 3-year follow-up period. Methods We obtained 3 × 3 mm swept-source OCTA images and conducted analyses of en face images within a central 2.5 mm diameter circle. Nonperfusion squares (NPSs) were defined as 15 × 15-pixel squares without retinal vessels. Each eye at baseline and after 3 years was embedded into a 2-dimensional uniform manifold approximation and projection space and assigned to 1 of 5 severity grades-Initial, Mild, Superficial, Moderate, and Severe-using the k-nearest neighbors method. We assessed major transitions (involving ≥4 cases) during 3 years. Subsequent probabilistic analyses enabled the construction of a graphical model, wherein directed arrows represented inferred pathways of DMI progression. From this cohort, 103 eyes of 103 patients who did not receive any ocular treatments during the follow-up period were subsequently evaluated for VA changes. Main Outcome Measures Inference of DMI progression pathways. Results In most cases, NPS counts increased in both the superficial and deep layers. The major transitions between these severity groups at 3 years displayed a unique distribution, and probabilistic analyses suggested a directed graphical model comprising 7 inferred pathways of DMI progression: Initial to Mild, Initial to Superficial, Mild to Superficial, Mild to Moderate, Superficial to Moderate, Superficial to Severe, and Moderate to Severe. Eyes of the Mild and Superficial groups had greater increases in superficial NPS within the central sector than those of the Severe group. Additionally, deep NPS counts within the central sector decreased more in the eyes of the Initial group than in those of the Superficial and Moderate groups. Notably, the eyes of the Superficial and Moderate groups exhibited greater VA deterioration at 3 years compared with those in the Initial group. Conclusions A directed graphical model of DMI progression may serve as a useful tool for inferring progression pathways and predicting VA deterioration. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Miyo Yoshida
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiichi Nishikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Ishihara
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Mori
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 PMCID: PMC11691464 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| |
Collapse
|
4
|
Fu Y, Rui X, Zhu S, Guo C, Li H, Pan Z, Wu X, He W. Research status of regenerative difficulties after central nervous system injury. Regen Ther 2025; 29:493-498. [PMID: 40390864 PMCID: PMC12088777 DOI: 10.1016/j.reth.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
Multiple studies have shown that permanent functional disabilities caused after nerve damage are mainly due to the limited ability of damaged neurons in the central nervous system (CNS) to regenerate axons and re-establish functional connections. Most axons in the CNS of adult mammals cannot reactivate their intrinsic growth program after injury, making axonal regeneration difficult when damaged. This article provides a systematic review of the response processes following CNS injury and the factors affecting repair and regeneration, focusing on the molecular mechanisms that regulate the regeneration of damaged axons, in hopes of offering new insights for the repair of CNS injuries.
Collapse
Affiliation(s)
- Yunxia Fu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xi Rui
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Shumin Zhu
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Chenqu Guo
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Haoyang Li
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhenhao Pan
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xuanhao Wu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenpeng He
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Wu ZY, Guo ZH, Lv WX, Zhan L, Zhang XY, Gao Y, Wang L, Dong JY, Dai WJ, Cao L, Wang TJ, Wang ZZ, Zhang XZ, Xiao W. Hyperacute intervention with DGMI for optimized stroke recovery: Modulating immune and inflammatory pathways in motor and sensory cortices. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119734. [PMID: 40179996 DOI: 10.1016/j.jep.2025.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Long-term neurological dysfunction following stroke significantly impairs patients' quality of life. Ginkgo biloba L (GBL), a traditional Chinese herbal medicine, has shown promise in treating ischemic stroke and related disorders. Diterpene Ginkgolides Meglumine Injection (DGMI), derived from GBL, has demonstrated improved recovery outcomes in stroke patients when administered during the hyperacute phase (HAP) in clinical studies, yet the underlying mechanisms remain elusive. MATERIALS AND METHODS Utilizing a Transient Middle Cerebral Artery Occlusion (tMCAO) model, we evaluated the effects of DGMI at varying doses and administration times on neurological function, brain injury, and identified key genes/pathways via RNA-seq and bioinformatics analyses, validated by RT-PCR. An in vitro LPS-induced astrocyte activation model was used to evaluate DGMI's anti-inflammatory effects. RESULTS DGMI administered during the hyperacute phase (HAP, 0.5 h post-tMCAO) exhibited superior neuroprotection compared to the acute phase (AP, 24 h post-tMCAO) in mice. HAP-DGMI significantly enhanced survival rates, reduced neurological deficit scores, infarct sizes, and neuronal apoptosis, with more pronounced improvements observed on days 3 and 7 post-tMCAO. Transcriptome sequencing revealed that HAP-DGMI more effectively normalized abnormal gene expression profiles, particularly in genes involved in immune and inflammatory pathways, in both motor (M1) and sensory (S1) cortices. Additionally, HAP-DGMI reversed a higher proportion of disease-characteristic pathways compared to AP. CONCLUSIONS These findings underscore the potential of early HAP intervention with DGMI in enhancing neuroprotection and functional recovery in AIS bymodulating key immune and inflammatory genes and pathways, providing experimental and theoretical support for the clinical application of DGMI.
Collapse
Affiliation(s)
- Zi-Yin Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Zhi-Hong Guo
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Wen-Xin Lv
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Le Zhan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Xin-Yao Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Yan Gao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Lei Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Jia-Yu Dong
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Wen-Jing Dai
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Tuan-Jie Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Zhen-Zhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China
| | - Xin-Zhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China.
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture (Jiangsu Kanion Pharmaceutical Co.,Ltd. & Nanjing University of Chinese Medicine), Jiangsu, Nanjing, 210000, China.
| |
Collapse
|
7
|
Sun B, Wu M, Ru Y, Meng Y, Zhang X, Wang F, Xia Z, Yang L, Zhai Y, Li G, Hu J, Qi B, Jia P, Liao S, Wang S, Zhao M, Zheng X. A Novel Compound DBZ Alleviates Chronic Inflammatory Pain and Anxiety-Like Behaviors by Targeting the JAK2-STAT3 Signaling Pathway. J Biol Chem 2025:110223. [PMID: 40349773 DOI: 10.1016/j.jbc.2025.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/15/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Chronic pain profoundly disrupts patients' daily lives and places a heavy burden on their families. Tanshinol Borneol Ester (DBZ), a novel synthetic derivative, has demonstrated anti-inflammatory and anti-atherosclerotic effects, yet its impact on the central nervous system (CNS) remains largely unexplored. This study systematically examines the CNS effects of DBZ through a combination of in vivo, in vitro, network pharmacology, and molecular docking approaches. In vivo, we utilized a mouse model of chronic inflammation induced by complete Freund's adjuvant (CFA) to evaluate DBZ's influence on pain, anxiety-like behaviors, and its modulation of inflammatory and oxidative stress markers within the anterior cingulate cortex (ACC). In vitro studies on primary mouse astrocytes assessed DBZ's effects on cell viability and inflammatory marker expression. Network pharmacology was employed to elucidate DBZ's potential molecular targets and pathways, While molecular docking provides valuable docking confirmed its interactions with key components of the JAK2-STAT3 signaling pathway. Our findings demonstrate that DBZ effectively mitigates CFA-induced chronic pain and anxiety-like behaviors. It significantly suppresses astrocytes activation, reduces levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, and diminishes oxidative stress markers such as ROS and MDA, while enhancing SOD levels. Moreover, DBZ modulates excitatory synaptic proteins and the JAK2-STAT3 signaling pathway in the ACC, suggesting its role in neuroprotection. These results position DBZ as a promising candidate for the treatment of chronic pain and anxiety, offering a potential foundation for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China; Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, PR, China
| | - Mengyao Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Yilin Ru
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Yaxi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Xin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Fengyun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China; Department of Pharmacy, Xi'an Daxing Hospital, Xi'an, 710082, PR, China
| | - Zhaodi Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR, China
| | - Yufei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Gufeng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Jinming Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Bing Qi
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, PR, China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR, China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, college of Life Science, Northwest University, Xi'an, 710069, PR, China.
| |
Collapse
|
8
|
Chen J, Xu S, Wang L, Liu X, Liu G, Tan Q, Li W, Zhang S, Du Y. Refining the interactions between microglia and astrocytes in Alzheimer's disease pathology. Neuroscience 2025; 573:183-197. [PMID: 40120713 DOI: 10.1016/j.neuroscience.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microglia and astrocytes are central to the pathogenesis and progression of Alzheimer's Disease (AD), working both independently and collaboratively to regulate key pathological processes such as β-amyloid protein (Aβ) deposition, tau aggregation, neuroinflammation, and synapse loss. These glial cells interact through complex molecular pathways, including IL-3/IL-3Ra and C3/C3aR, which influence disease progression and cognitive decline. Emerging research suggests that modulating these pathways could offer therapeutic benefits. For instance, recombinant IL-3 administration in mice reduced Aβ plaques and improved cognitive functions, while C3aR inhibition alleviated Aβ and tau pathologies, restored synaptic function, and corrected immune dysregulation. However, the effects of these interactions are context-dependent. Acute C3/C3aR activation enhances microglial Aβ clearance, whereas chronic activation impairs it, highlighting the dual roles of glial signaling in AD. Furthermore, C3/C3aR signaling not only impacts Aβ clearance but also modulates tau pathology and synaptic integrity. Given AD's multifactorial nature, understanding the specific pathological environment is crucial when investigating glial cell contributions. The interplay between microglia and astrocytes can be both neuroprotective and neurotoxic, depending on the disease stage and brain region. This complexity underscores the need for targeted therapies that modulate glial cell activity in a context-specific manner. By elucidating the molecular mechanisms underlying microglia-astrocyte interactions, this research advances our understanding of AD and paves the way for novel therapeutic strategies aimed at mitigating neurodegeneration and cognitive decline in AD and related disorders.
Collapse
Affiliation(s)
- Jiangmin Chen
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuyu Xu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Li Wang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Xinyuan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qian Tan
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Weixian Li
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Shuai Zhang
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China
| | - Yanjun Du
- College of Acupuncture-Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, China; Hubei Shizhen Laboratory, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, China; Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
9
|
Qian M, Wang Z, Liu H, Zhang X, Xu J, Zhang Y, Chen L, Zhou Z, Yu Y, Dong W. Reactive astrocytes in spinal cord injury: An analysis of heterogeneity based on temporality and spatiality, potential therapies, and limitations. J Neuropathol Exp Neurol 2025:nlaf042. [PMID: 40314931 DOI: 10.1093/jnen/nlaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Spinal cord injury (SCI) constitutes a profound central nervous system disorder characterized by significant neurological dysfunction and sensory loss below the injury site. SCI elicits a multifaceted cellular response in which the proliferation of reactive astrocytes and the ensuing diversity in their functions and phenotypes play pivotal roles within the injury microenvironment, especially during the secondary phases of the condition. This review explores the activation and heterogeneity of astrocytes following SCI. It underscores the necessity of delineating the heterogeneity among reactive astrocyte subpopulations throughout the secondary injury phase of SCI. Developing therapeutic strategies that capitalize on the beneficial properties of certain reactive astrocyte subpopulations while mitigating the adverse effects of others could have profound implications for future clinical management of SCI.
Collapse
Affiliation(s)
- Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zheng Wang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hang Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 2025; 22:88. [PMID: 40166412 PMCID: PMC11956146 DOI: 10.3892/br.2025.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood-brain barrier (BBB) and protects the brain from harmful blood-borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Jiaqi Yuan
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
11
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Padilha RB, de Lima Rosa G, Müller Guzzo EF, Domingues Lourenço de Lima AM, Lazzarotto G, Sulzbach AC, Calcagnotto ME, Coitinho AS. Prednisolone attenuates seizure severity and neuroinflammation in a pentylenetetrazole-induced acute epilepsy model. Brain Res 2025; 1860:149672. [PMID: 40318760 DOI: 10.1016/j.brainres.2025.149672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Epilepsy is a brain disorder characterized by alterations in the neuronal environment that predispose individuals to spontaneous and recurrent epileptic seizures. One of the major challenges in recent years has been the accurate diagnosis and appropriate pharmacological management of the condition. When seizures are not well controlled, individuals may develop status epilepticus, a condition with an unfavorable prognosis that requires immediate attention and treatment. Furthermore, approximately 30 % of patients are refractory to conventional treatments. In this study, we evaluated the effects of prednisolone in an acute animal model of epileptic seizures induced by pentylenetetrazole (PTZ) at doses of 1 mg/kg and 5 mg/kg. We analyzed the severity of epileptic seizures and the modulation of pro-inflammatory cytokines in treated animals. Four treatment groups were used: saline solution, diazepam (2 mg/kg), prednisolone (1 mg/kg), and prednisolone (5 mg/kg). The animals were treated, and after 30 min, PTZ (60 mg/kg) was administered. Levels of the cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus and prefrontal cortex. Animals treated with prednisolone exhibited less severe epileptic seizures compared to the saline group, along with reduced levels of pro-inflammatory cytokines, particularly in the prefrontal cortex. Some animals were also assessed using EEG. Consistent with our previous studies, prednisolone demonstrated an anticonvulsant effect at doses of 1 mg/kg and 5 mg/kg in the acute PTZ-induced seizure model.
Collapse
Affiliation(s)
- Rafael Bremm Padilha
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil; Laboratório de Neuroimunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil; Laboratório de Neuroimunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Laboratório de Neuroimunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil
| | | | - Gabriela Lazzarotto
- Laboratório de Neurofisiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab.), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Carolina Sulzbach
- Laboratório de Neuroimunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Laboratório de Neurofisiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab.), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil; Laboratório de Neuroimunologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos, 2600 Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Ding R, Gao L, Wang X, Yang J, Han X, Fei S, Wang J, Zhang X, Wang H, Shang X, Wu L. High-fat diet and chronic restraint stress exacerbate anxiety-depressive behaviors via astrocytic A1 phenotype transformation. Sci Rep 2025; 15:15031. [PMID: 40301496 PMCID: PMC12041363 DOI: 10.1038/s41598-025-99355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Obesity and depression are likely to co-occur. However, there are few reports on the relationship between obesity and depression. We aimed to investigate the effect of high-fat diet combined with chronic restraint stress on depressive-like behaviors, focusing on the phenotypic transformation of astrocytes. Male C57BL/6 mice were randomly divided into four equal groups: control, high-fat diet (HFD), chronic restraint stress (CRS) and HFD + CRS groups. They were subjected to an 8-week high-fat diet and 3-week restraint stress stimulation. In vitro, palmitic acid (PA) and corticosterone (Cort) were used to mimic HFD and CRS respectively on C8-D1A astrocytes. Our results showed that HFD aggravates anxiety and depression-like behaviors and learning and memory deficits induced by CRS, as reflected by sucrose preference, forced swimming test, tail suspension tests, open field test and the Morris water maze. The expression level of C3 protein in the hippocampus of the mice in the HFD + CRS group was three times that of the CON group. HFD combined with CRS significantly inhibited the protein expression of the Wnt/β-catenin signaling pathway. Consistent with the results of animal experiments, the results of the in vitro experiments showed that the protein expressions of A1 astrocytes marker in C8-D1A astrocytes were much higher in the PA + Cort group. And the protein expressions the Wnt/β-catenin signaling pathway-associated proteins were obviously lower in the PA + Cort group. Furthermore, Wnt/β-catenin pathway agonist SKL2001 treatment decreased the A1 astrocytes marker expressions in C8-D1A astrocytes, and improves the anxiety and depression-like behaviors and learning and memory deficits in HFD mice combined with CRS. This study suggested that HFD combined with CRS could promote the transformation of astrocytes into A1 type and the Wnt/β-catenin signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Ran Ding
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Linyin Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Xindi Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Jinxia Yang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Xuemei Han
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Shuailong Fei
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Jian Wang
- Experiment Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiujun Zhang
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China
| | - Haitao Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
| | - Xueliang Shang
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
| | - Lei Wu
- Hebei Key Laboratory of Mental Health and Brain Science, School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, People's Republic of China.
| |
Collapse
|
14
|
Guizzetti M, Mangieri RA, Ezerskiy LA, Hashimoto JG, Bajo M, Farris SP, Homanics GE, Lasek AW, Mayfield RD, Messing RO, Roberto M. ASTROCYTES AND ALCOHOL THROUGHOUT THE LIFESPAN. Biol Psychiatry 2025:S0006-3223(25)01147-3. [PMID: 40311830 DOI: 10.1016/j.biopsych.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Evidence for involvement of astrocytes in several neurodegenerative disorders and in drug addiction has been emerging over the last two decades, but only in recent years have astrocytes been investigated for their roles in alcohol use disorder (AUD). As a result, there is a need to evaluate existing preclinical literature supporting involvement of astrocytes in the effects of alcohol exposure. Here we review emerging evidence about responses of astrocytes to alcohol, and the contributions of astrocytes to the development of AUD. We review studies of single-cell RNA sequencing with a focus on alcohol and astrocyte heterogeneity, astrocyte reactivity, and the role of astrocytes in remodeling the extracellular matrix. Effects of alcohol on astrocyte-modulated synaptic transmission are also discussed emphasizing studies never reviewed before. Since astrocytes play essential roles in brain development, we review recent research on the role of astrocytes in fetal alcohol spectrum disorders (FASD) which may also shed light on fetal development of psychiatric disorders that have a high prevalence in individuals affected by FASD. Finally, this review highlights gaps in knowledge about astrocyte biology and alcohol that need further research. Particularly, the dire need to identify astrocyte subpopulations and molecules that are susceptible to alcohol exposure and may be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Guizzetti
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR.
| | | | | | - Joel G Hashimoto
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR
| | - Michal Bajo
- The Scripps Research Institute, La Jolla, CA
| | | | | | - Amy W Lasek
- Virginia Commonwealth University, Richmond, VA
| | | | | | | |
Collapse
|
15
|
Liu X, Xia J, Shao W, Li X, Yuan D, Xie J, Zhang L, Tang Y, Zhao H, Wu P. Adhesion-Related Pathways and Functional Polarization of Astrocytes in Traumatic Brain Injury: Insights from Single-cell RNA Sequencing. Neuromolecular Med 2025; 27:30. [PMID: 40287916 DOI: 10.1007/s12017-025-08858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Traumatic brain injury (TBI) induces profound functional heterogeneity in astrocytes, yet the regulatory mechanisms underlying this diversity remain poorly understood. In this study, we analyzed single-cell RNA sequencing data from the cortex and hippocampus of TBI mouse models to characterize astrocyte subtypes and their functional dynamics. We identified two major reactive subtypes: A1 astrocytes, enriched in inflammatory response, synaptic regulation, and neurodegenerative disease-related pathways; and A2 astrocytes, enriched in lipid metabolism, extracellular matrix (ECM) remodeling, and phagosome formation pathways. These functional differences were consistently observed across datasets with varying injury severities. Notably, adhesion-related pathways-including gap junctions, adherens junctions, and calcium-dependent adhesion-showed significant subtype-specific expression patterns and temporal shifts. Pseudotime trajectory analysis further suggested a potential transition between A1 and A2 states, accompanied by dynamic regulation of adhesion-related genes. Our findings highlight the complex and context-dependent roles of astrocytes in TBI and propose cell adhesion as a key modulator of astrocyte functional polarization.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Ji Xia
- Department of Neurosurgery, Daping Hospital and Institute Research of Surgery, Army Medical University, Chongqing, 400042, China
| | - Wenjing Shao
- Department of Anesthesiology, Chongqing Huamei Plastic Surgery Hospital, Chongqing, 400015, China
| | - Xiaoming Li
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Danfeng Yuan
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Jingru Xie
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Liang Zhang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Yuqian Tang
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Hui Zhao
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China
| | - Pengfei Wu
- Institute for Traffic Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Traffic Injury and Vehicle Ergonomics, Chongqing, 400042, China.
| |
Collapse
|
16
|
Sun W, Dion E, Laredo F, Okonak A, Sepeda JA, Haykal E, Zhou M, El-Hodiri HM, Fischer AJ, Silver J, Peng J, Sas A, Tedeschi A. In vivo programming of adult pericytes aids axon regeneration by providing cellular bridges for SCI repair. Mol Ther 2025:S1525-0016(25)00294-1. [PMID: 40253585 DOI: 10.1016/j.ymthe.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025] Open
Abstract
Pericytes are contractile cells of the microcirculation that participate in wound healing after spinal cord injury (SCI). Thus far, the extent to which pericytes cause or contribute to axon growth and regeneration failure after SCI remains controversial. Here, we found that SCI leads to profound changes in vasculature architecture and pericyte coverage. We demonstrated that pericytes constrain sensory axons on their surface, causing detrimental structural and functional changes in adult dorsal root ganglion neurons that contribute to axon regeneration failure after SCI. Perhaps more excitingly, we discovered that in vivo programming of adult pericytes via local administration of platelet-derived growth factor BB (PDGF-BB) effectively promotes axon regeneration and recovery of hindlimb function by contributing to the formation of cellular bridges that span the lesion. Ultrastructural analysis showed that PDGF-BB induced fibronectin fibril alignment and extension, effectively converting adult pericytes into a permissive substrate for axon growth. In addition, PDGF-BB localized delivery positively affects the physical and chemical nature of the lesion environment, thereby creating more favorable conditions for SCI repair. Thus, therapeutic manipulation rather than wholesale ablation of pericytes can be exploited to prime axon regeneration and SCI repair.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Elliot Dion
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Fabio Laredo
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; University of Nottingham, Nottingham NG7 2QL, UK
| | - Allyson Okonak
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jesse A Sepeda
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Esraa Haykal
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juan Peng
- Center for Biostatistics and Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Sas
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Wu SR, Nowakowski TJ. Exploring human brain development and disease using assembloids. Neuron 2025; 113:1133-1150. [PMID: 40107269 PMCID: PMC12022838 DOI: 10.1016/j.neuron.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
How the human brain develops and what goes awry in neurological disorders represent two long-lasting questions in neuroscience. Owing to the limited access to primary human brain tissue, insights into these questions have been largely gained through animal models. However, there are fundamental differences between developing mouse and human brain, and neural organoids derived from human pluripotent stem cells (hPSCs) have recently emerged as a robust experimental system that mimics self-organizing and multicellular features of early human brain development. Controlled integration of multiple organoids into assembloids has begun to unravel principles of cell-cell interactions. Moreover, patient-derived or genetically engineered hPSCs provide opportunities to investigate phenotypic correlates of neurodevelopmental disorders and to develop therapeutic hypotheses. Here, we outline the advances in technologies that facilitate studies by using assembloids and summarize their applications in brain development and disease modeling. Lastly, we discuss the major roadblocks of the current system and potential solutions.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Hou Y, Zhang Y, Ma L, Luo D, Wang W, E. S, Huang C, Hou Y, Chen S, Zhan J, Xu L, Lin D. Tauroursodeoxycholic acid regulates macrophage/monocyte distribution and improves spinal microenvironment to promote nerve regeneration through inhibiting NF-κB signaling pathway in spinal cord injury. Front Pharmacol 2025; 16:1554945. [PMID: 40276612 PMCID: PMC12019990 DOI: 10.3389/fphar.2025.1554945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Following spinal cord injury (SCI), blood-borne monocytes infiltrate the spinal cord, differentiate into macrophages, and dominate the lesion site. Inflammatory responses mediated by macrophages determine nerve regeneration and functional recovery after SCI. Tauroursodeoxycholic acid (TUDCA) shows a neuroprotective effect in different SCI animal models. However, the underlying mechanism of TUDCA regulating monocytes/macrophages to impact nerve regeneration after SCI has not been elucidated clearly. This study aims to investigate the effect of TUDCA on monocyte/macrophage distribution and nerve regeneration in the subacute stage of SCI. Methods Transwell analysis, Bromodeoxyuridine (BrdU) staining, and TUNEL staining were performed to evaluate the effect of TUDCA on regulating the inflammatory response to impact spinal neural stem cells (NSCs) proliferation and migration, spinal neuron survival, and axon degeneration in vitro. H&E staining, RNA sequencing, and a series of immunofluorescent staining were performed to investigate the pathological progress, gene expression changes, monocytes/macrophages distribution, and nerve regeneration after TUDCA treatment in SCI mice. Results We found TUDCA restored spinal NSCs migration and proliferation and reduced spinal NSCs and neurons apoptosis and axon degeneration by regulating inflammatory response in vitro. TUDCA treatment promoted wound healing, down-regulated genes related to inflammatory response, and up-regulated genes related to spinal cord development in SCI mice. Conclusions Our study provided evidence that TUDCA treatment regulated monocyte/macrophage distribution and improved the microenvironment to promote nerve regeneration in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yage Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Ma
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- College of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wanshun Wang
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shunmei E.
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, China
| | | | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shudong Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangliang Xu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Yamasaki R. Microglia/Macrophages in Autoimmune Demyelinating Encephalomyelitis (Multiple Sclerosis/Neuromyelitis Optica). Int J Mol Sci 2025; 26:3585. [PMID: 40332086 PMCID: PMC12026516 DOI: 10.3390/ijms26083585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Microglia and macrophages are critical mediators of immune responses in the central nervous system. Their roles range from homeostatic maintenance to the pathogenesis of autoimmune demyelinating diseases such as multiple sclerosis and neuromyelitis optica spectrum disorder. This review explores the origins of microglia and macrophages, as well as their mechanisms of activation, interactions with other neural cells, and contributions to disease progression and repair processes. It also highlights the translational relevance of insights gained from animal models and the therapeutic potential of targeting microglial and macrophage activity in multiple sclerosis and neuromyelitis optica spectrum disorder.
Collapse
Affiliation(s)
- Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Branca JJV, Gulisano M, Pacini A. Protective Roles of Zinc and Selenium Against Oxidative Stress in Brain Endothelial Cells Under Shear Stress. Antioxidants (Basel) 2025; 14:451. [PMID: 40298794 PMCID: PMC12024363 DOI: 10.3390/antiox14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Hypertension is a major risk factor for cerebrovascular diseases due to its damaging effects on the blood-brain barrier (BBB) and associated pathologies. Oxidative stress-induced endothelial damage plays a critical role in BBB disruption, potentially leading to cognitive impairment and neurodegeneration. In this study, we investigated the protective effects of two essential trace elements, zinc (Zn) and selenium (Se), against oxidative stress in human brain endothelial cells (HBCE5i) exposed to hypertensive shear stress. Using an innovative millifluidic system (LiveBox2), which allows for the precise simulation of continuous flow conditions, we replicated the hemodynamic forces associated with hypertension. METHODS Cells were treated with ZnCl2 (5-50 µM) or Na2SeO3 (50-500 nM) at concentrations selected based on previous studies and confirmed by cytotoxicity assays. RESULTS Our results demonstrated that shear stress significantly altered the localization of the tight junction protein zonula occludens-1 (ZO-1) and induced the nuclear translocation of the transcription factor NRF2, a hallmark of oxidative stress. Importantly, treatment with 10 µM ZnCl2 preserved ZO-1 membrane localization and prevented NRF2 translocation, as confirmed by quantitative image analysis. In contrast, Na2SeO3 did not provide comparable protection, although modest improvements in ZO-1 localization were observed in some replicates. DISCUSSION We discuss potential reasons for selenium's limited efficacy, including differences in bioavailability and cellular uptake. Our findings underscore zinc's promising role as a neurovascular protector and suggest that further investigation into more complex in vitro models and in vivo studies is warranted.
Collapse
Affiliation(s)
| | | | - Alessandra Pacini
- Department Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, L.go Brambilla 3, 50134 Firenze, Italy; (J.J.V.B.); (M.G.)
| |
Collapse
|
22
|
Fonseca SSS, S. Port’s NM, Aguiar GPS, Botelho EP, Couto NMG, Pinheiro WBS, Khayat AS, Yamada ES, Costa ET, Sena CBC, Arruda MSP, Bahia CP, Pereira A. Brosimine B and the biphasic dose-response: insights into hormesis and retinal neuroprotection. Front Pharmacol 2025; 16:1558726. [PMID: 40264659 PMCID: PMC12012618 DOI: 10.3389/fphar.2025.1558726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction The biphasic dose-response behavior, also known as hormesis, is a characteristic feature of numerous natural products. It is defined by beneficial effects at low concentrations and toxicity at higher doses. This study investigates the hormetic effects of Brosimine B, a flavonoid derived from Brosimum acutifolium, on retinal cell viability under oxidative stress. Methods To simulate ischemic conditions, we used an oxygen-glucose deprivation (OGD) model. Retinal cells were treated with varying concentrations of Brosimine B, and analyses of cell viability, reactive oxygen species (ROS) production, and antioxidant enzyme activity were performed. Results Brosimine B at 10 µM significantly enhanced cell viability and reduced ROS production, likely through modulation of oxidative stress-protective enzymes such as catalase. However, higher concentrations (>10 µM) induced cytotoxic effects. A computational modeling approach using a hormetic (inverted U-shaped) model revealed biologically interpretable parameters, including a peak response at 10.2 µM and a hormetic zone width (σ = 6.5 µM) (R2 = 0.984). Discussion These results confirm that Brosimine B exhibits hormetic neuroprotective effects within a well-defined concentration window, supporting its potential as a therapeutic agent for oxidative stress-related retinal damage. The study highlights the value of computational modeling in optimizing dose-response analyses, offering a framework for refining natural product therapies and predicting toxicological thresholds in pharmacological applications.
Collapse
Affiliation(s)
- Susanne Suely Santos Fonseca
- Institute of Technology, Federal University of Pará, Belém, Pará, Brazil
- Oncology Research Center, Hospital University João of Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Natacha M. S. Port’s
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Eliã P. Botelho
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Nádia M. G. Couto
- Central Extraction Laboratory, Federal University of Pará, Belém, Pará, Brazil
| | | | - André Salim Khayat
- Oncology Research Center, Hospital University João of Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Elizabeth S. Yamada
- Laboratory of Experimental Neuropathology, Hospital University João of Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Edmar T. Costa
- Laboratory of Experimental Neuropathology, Hospital University João of Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Carlomagno P. Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Antonio Pereira
- Institute of Technology, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
23
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Colombari E, Biancardi VC, Colombari DSA, Katayama PL, Medeiros FDCD, Aitken AV, Xavier CH, Pedrino GR, Bragin DE. Hypertension, blood-brain barrier disruption and changes in intracranial pressure. J Physiol 2025; 603:2245-2261. [PMID: 40163552 DOI: 10.1113/jp285058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intracranial pressure (ICP) is pressure within the cranium, between 5 and 15 mmHg in a normal brain, and is influenced by the dynamic balance between brain tissue, cerebrospinal fluid (CSF) and cerebral blood volume. ICP is vital for cerebral health, impacting outcomes in various neurological conditions. Disruptions, such as cerebral haemorrhage, hydrocephalus and malignant hypertension, can lead to elevated ICP, a dangerous condition known as intracranial hypertension (IH). Systemic hypertension significantly impacts cerebral health by causing microvascular damage, dysfunction of the blood-brain barrier (BBB) and impairment of intracranial compliance (ICC). This increases the risk of IH), cerebral ischaemia, neuroinflammation and lacunar infarction, further worsening neurological dysfunction. This review describes the complex relationship between hypertension and ICP regulation, focusing on the mechanisms underlying ICP and ICC adjustments in hypertensive conditions and emphasizing the role of BBB integrity and cerebral blood flow (CBF) dynamics. It discusses how the sympathetic output might change the regulation of CBF and the maintenance of ICP, highlighting how hypertensive conditions can impair this mechanism, increasing the risk of cerebral ischaemia. The neurovascular unit, including astrocytes and microglia, plays a significant role in this process, contributing to IH in hypertensive patients. Understanding the effects of hypertension on ICP and ICC could lead to therapies aimed at preserving BBB integrity, reducing inflammation and improving cerebral compliance, potentially preventing brain dysfunction and reducing stroke risk in hypertensive patients. This review underscores the need for early detection and intervention to mitigate the severe consequences of uncontrolled hypertension on cerebral health.
Collapse
Affiliation(s)
- Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vinícia Campana Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Débora Simões Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Pedro Lourenço Katayama
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernanda de Campos de Medeiros
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Carlos Henrique Xavier
- Department of Physiological Science, Biological Science Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Science, Biological Science Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
25
|
Carabias CS, Alves VC, Hernández Laín A, Lagares A. Characterization of Chitinase 3-like protein 1 spatiotemporal distribution in human post-traumatic brain contusions and other neuropathological scenarios. J Neuropathol Exp Neurol 2025; 84:305-328. [PMID: 39832298 DOI: 10.1093/jnen/nlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified. Hence, we examined a comprehensive collection of histologically defined acute and subacute human cerebral contusions with various surgical intervals using immunohistochemistry, validated through double immunofluorescence for markers such as GFAP, NeuN, MBP, and Iba-1, along with Fluoro-Jade C histofluorescence staining. CHI3L1 was found at meningeal interfaces, showing significant thickening of subpial glial plate. Paradoxically, CHI3L1-positive astrocytes were identified in neuroanatomical locations distant from hemorrhagic foci, where numerous eosinophilic ischemic neurons also exhibited CHI3L1 immunoreactivity. CHI3L1 immunostaining extended into white matter tracts and highlighted various phagocytic or activated microglia forms after delayed surgical decompressions. Given these findings, we advise against using CHI3L1 as a reactive astrogliosis marker due to its expression in multiple cell types, including astrocytes, neurons, oligodendrocytes, ependymocytes, leptomeningeal cells, microglia, and blood vessels. This non-selective response underscores the potential for CHI3L1 elevation patterns in biofluids to reflect the overall lesion burden extent.
Collapse
Affiliation(s)
- Cristina Sánchez Carabias
- Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Victoria Cunha Alves
- Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Aurelio Hernández Laín
- Department of Neuropathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Neuro-oncology Research Unit, Area 1: Cancer, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Pathology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alfonso Lagares
- Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
26
|
Song S, Kang M, Lee J, Yang YR, Lee H, Kim JI, Kim B, Choi HS, Hong EB, Nam MH, Suh PG, Kim J. Role of phospholipase Cη1 in lateral habenula astrocytes in depressive-like behavior in mice. Exp Mol Med 2025; 57:872-887. [PMID: 40204881 PMCID: PMC12046024 DOI: 10.1038/s12276-025-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025] Open
Abstract
Phospholipase C (PLC) enzymes play crucial roles in intracellular calcium-signaling transduction. Several brain PLC subtypes have been extensively studied, implicating them in psychiatric disorders such as depression, epilepsy and schizophrenia. However, the role of the recently identified PLCη remains largely unknown. We found that PLCη1 is prominently expressed in lateral habenula (LHb) astrocytes. Here, to investigate its physiological role, we generated astrocyte-specific PLCη1 conditional knockout (cKO) mice (Plch1f/f; Aldh1l1-CreERT2). In these cKO mice, we observed a reduction in cellular morphological complexity metrics, such as total process length, as well as a decrease in the passive membrane conductance of LHb astrocytes. Additionally, neuronal function was impacted by the cKO, as the synaptic efficacy and firing rates of LHb neurons increased, while extrasynaptic long-term depression was impaired. Both tonic α-amino-3-hydroxy-5-methyl-4-isoxazolepdlropionic acid receptor/N-methyl-D-aspartate receptor (AMPAR/NMDAR) currents and extracellular glutamate levels were reduced. Interestingly, chemogenetic activation of astrocytes restored the reduced tonic AMPAR/NMDAR currents in cKO mice. Furthermore, LHb astrocyte-specific deletion of PLCη1 via AAV-GFAP-Cre injection induced depressive-like behaviors in mice, which were reversed by chemogenetic activation of LHb astrocytes. Finally, we found that restraint stress exposure decreased Plch1 mRNA expression in the LHb. These findings suggest that PLCη1 could be a potential therapeutic target for depression and highlight the critical role of astrocytes in the etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sukwoon Song
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Miseon Kang
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jiyoung Lee
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ho Lee
- Cancer Experimental Resources Branch, National Cancer Center, Goyang, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Beomsue Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun-Bin Hong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
27
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
28
|
Młynarska E, Barszcz E, Budny E, Gajewska A, Kopeć K, Wasiak J, Rysz J, Franczyk B. The Gut-Brain-Microbiota Connection and Its Role in Autism Spectrum Disorders. Nutrients 2025; 17:1135. [PMID: 40218893 PMCID: PMC11990867 DOI: 10.3390/nu17071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions with a heterogeneous and multifactorial etiology that is not yet fully understood. Among the various factors that may contribute to ASD development, alterations in the gut microbiota have been increasingly recognized. Microorganisms in the gastrointestinal tract play a crucial role in the gut-brain axis (GBA), affecting nervous system development and behavior. Dysbiosis, or an imbalance in the microbiota, has been linked to both behavioral and gastrointestinal (GI) symptoms in individuals with ASD. The microbiota interacts with the central nervous system through mechanisms such as the production of short-chain fatty acids (SCFAs), the regulation of neurotransmitters, and immune system modulation. Alterations in its composition, including reduced diversity or an overabundance of specific bacterial taxa, have been associated with the severity of ASD symptoms. Dietary modifications, such as gluten-free or antioxidant-rich diets, have shown potential for improving gut health and alleviating behavioral symptoms. Probiotics, with their anti-inflammatory properties, may support neural health and reduce neuroinflammation. Fecal microbiota transplantation (FMT) is being considered, particularly for individuals with persistent GI symptoms. It has shown promising outcomes in enhancing microbial diversity and mitigating GI and behavioral symptoms. However, its limitations should be considered, as discussed in this narrative review. Further research is essential to better understand the long-term effects and safety of these therapies. Emphasizing the importance of patient stratification and phenotype characterization is crucial for developing personalized treatment strategies that account for individual microbiota profiles, genetic predispositions, and coexisting conditions. This approach could lead to more effective interventions for individuals with ASD. Recent findings suggest that gut microbiota may play a key role in innovative therapeutic approaches to ASD management.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Barszcz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Kacper Kopeć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
29
|
Wang C, Fan X, Shi Y, Tang F. Radiation-Induced Brain Injury with Special Reference to Astrocytes as a Therapeutic Target. J Integr Neurosci 2025; 24:25907. [PMID: 40152565 DOI: 10.31083/jin25907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 03/29/2025] Open
Abstract
Radiotherapy is one of the primary modalities for oncologic treatment and has been utilized at least once in over half of newly diagnosed cancer patients. Cranial radiotherapy has significantly enhanced the long-term survival rates of patients with brain tumors. However, radiation-induced brain injury, particularly hippocampal neuronal damage along with impairment of neurogenesis, inflammation, and gliosis, adversely affects the quality of life for these patients. Astrocytes, a type of glial cell that are abundant in the brain, play essential roles in maintaining brain homeostasis and function. Despite their importance, the pathophysiological changes in astrocytes induced by radiation have not been thoroughly investigated, and no systematic or comprehensive review addressing the effects of radiation on astrocytes and related diseases has been conducted. In this paper, we review current studies on the neurophysiological roles of astrocytes following radiation exposure. We describe the pathophysiological changes in astrocytes, including astrogliosis, astrosenescence, and the associated cellular and molecular mechanisms. Additionally, we summarize the roles of astrocytes in radiation-induced impairments of neurogenesis and the blood-brain barrier (BBB). Based on current research, we propose that brain astrocytes may serve as potential therapeutic targets for treating radiation-induced brain injury (RIBI) and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, Jiangsu, China
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602 Singapore, Singapore
| |
Collapse
|
30
|
Wang M, Yang J, Wang S, Gill H, Cheng H. Immunotherapy and the Tumor Microenvironment in Brain Metastases from Non-Small Cell Lung Cancer: Challenges and Future Directions. Curr Oncol 2025; 32:171. [PMID: 40136375 PMCID: PMC11941645 DOI: 10.3390/curroncol32030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Brain metastases (BMs) are a relatively common and severe complication in advanced non-small cell lung cancer (NSCLC), significantly affecting patient prognosis. Metastatic tumor cells can alter the brain tumor microenvironment (TME) to promote an immunosuppressive state, characterized by reduced infiltration of tumor-infiltrating lymphocytes (TILs), diminished expression of programmed death-ligand 1 (PD-L1), and changes in other proinflammatory factors and immune cell populations. Microglia, the resident macrophages of the brain, play a pivotal role in modulating the central nervous system (CNS) microenvironment through interactions with metastatic cancer cells, astrocytes, and infiltrating T cells. The M2 phenotype of microglia contributes to immunosuppression in BM via the activation of signaling pathways such as STAT3 and PI3K-AKT-mTOR. Recent advances have enhanced our understanding of the immune landscape of BMs in NSCLC, particularly regarding immune evasion within the CNS. Current immunotherapeutic strategies, including immune checkpoint inhibitors, have shown promise for NSCLC patients with BM, demonstrating intracranial activity and manageable safety profiles. Future research is warranted to further explore the molecular and immune mechanisms underlying BM, aiming to develop more effective treatments.
Collapse
Affiliation(s)
- Meng Wang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| | - Jihua Yang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| | - Shuai Wang
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| | - Harjot Gill
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Haiying Cheng
- Department of Oncology (Medical Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.W.)
| |
Collapse
|
31
|
Drozhdev AI, Gorbatenko VO, Goriainov SV, Chistyakov DV, Sergeeva MG. ATP Alters the Oxylipin Profiles in Astrocytes: Modulation by High Glucose and Metformin. Brain Sci 2025; 15:293. [PMID: 40149814 PMCID: PMC11940397 DOI: 10.3390/brainsci15030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Astrocytes play a key role in the inflammatory process accompanying various neurological diseases. Extracellular ATP accompanies inflammatory processes in the brain, but its effect on lipid mediators (oxylipins) in astrocytes remains elusive. Metformin is a hypoglycemic drug with an anti-inflammatory effect that has been actively investigated in the context of therapy for neuroinflammation, but its mechanisms of action are not fully elucidated. Therefore, we aimed to characterize the effects of ATP on inflammatory markers and oxylipin profiles; determine the dependence of these effects on the adaptation of astrocytes to high glucose levels; and evaluate the possibility of modulating ATP effects using metformin. Methods: We estimated the ATP-mediated response of primary rat astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation. Cell responses were assessed by monitoring changes in the expression of inflammatory markers (TNFα, IL-6, IL-10, IL-1β, iNOS, and COX-2) and the synthesis of oxylipins (41 compounds), assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Intracellular pathways were assessed by analyzing the phosphorylation of p38; ERK MAPK; transcription factors STAT3 and NF-κB; and the enzymes mediating oxylipin synthesis, COX-1 and cPLA2. Results: The stimulation of cells with ATP does not affect the expression of pro-inflammatory markers, increases the activities of p38 and ERK MAPKs, and activates oxylipin synthesis, shifting the profiles toward an increase in anti-inflammatory compounds (PGD2, PGA2, 12-HHT, and 18-HEPE). The ATP effects are reduced in HG astrocytes. Metformin potentiated ATP-induced oxylipin synthesis (11-HETE, PGD2, 12-HHT, 15-HETE, 13-HDoHE, and 15-HETrE), which was predominantly evident in NG cells. Conclusions: Our data provide new evidence showing that ATP induces the release of anti-inflammatory oxylipins, and metformin enhances these effects. These results should be considered in the development of anti-inflammatory therapeutic approaches aimed at modulating astrocyte function in various pathologies.
Collapse
Affiliation(s)
- Alexey I. Drozhdev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Vladislav O. Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Sergey V. Goriainov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Dmitry V. Chistyakov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
32
|
Zheng MY, Luo LZ. The Role of IL-17A in Mediating Inflammatory Responses and Progression of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2505. [PMID: 40141149 PMCID: PMC11941770 DOI: 10.3390/ijms26062505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
IL-17A has been implicated as a critical pro-inflammatory cytokine in the pathogenesis of autoimmune and neurodegenerative disorders. Emerging evidence indicates its capacity to activate microglial cells and astrocytes, subsequently inducing the production of inflammatory mediators that exacerbate neuronal injury and functional impairment. Clinical observations have revealed a demonstrated association between IL-17A concentrations and blood-brain barrier (BBB) dysfunction, creating a pathological feedback loop that amplifies neuro-inflammatory responses. Recent advances highlight the cytokine's critical involvement in neurodegenerative disorders through multiple molecular pathways. Therapeutic interventions utilizing monoclonal antibodies (mAbs) against IL-17A or its cognate receptor (IL-17R) have shown promising clinical potential. This review systematically examines the IL-17A-mediated neuro-inflammatory cascades; the mechanistic contributions to neurodegenerative pathology in the established disease models including multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis; and current therapeutic strategies targeting the IL-17A signaling pathways. The analysis provides novel perspectives on optimizing cytokine-directed therapies while identifying the key challenges and research priorities for translational applications in neurodegeneration.
Collapse
Affiliation(s)
- Miao-Yan Zheng
- School of Pharmacy, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou 350122, China;
| | - Lian-Zhong Luo
- School of Pharmacy, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou 350122, China;
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen 361023, China
| |
Collapse
|
33
|
Bedeschi M, Cavassi E, Romeo A, Tesei A. Glioblastoma Tumor Microenvironment and Purinergic Signaling: Implications for Novel Therapies. Pharmaceuticals (Basel) 2025; 18:385. [PMID: 40143161 PMCID: PMC11944773 DOI: 10.3390/ph18030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Glial-origin brain tumors, particularly glioblastomas (GBMs), are known for their devastating prognosis and are characterized by rapid progression and fatal outcomes. Despite advances in surgical resection, complete removal of the tumor remains unattainable, with residual cells driving recurrence that is resistant to conventional therapies. The GBM tumor microenviroment (TME) significantly impacts tumor progression and treatment response. In this review, we explore the emerging role of purinergic signaling, especially the P2X7 receptor (P2X7R). Due to its unique characteristics, it plays a key role in tumor progression and offers a potential therapeutic strategy for GBM through TME modulation. We discuss also the emerging role of the P2X4 receptor (P2X4R) as a promising therapeutic target. Overall, targeting purinergic signaling offers a potential approach to overcoming current GBM treatment limitations.
Collapse
Affiliation(s)
- Martina Bedeschi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| | - Elena Cavassi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| | - Antonino Romeo
- Radiation Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.B.); (E.C.)
| |
Collapse
|
34
|
McInnis JJ, LeComte MD, Reed LF, Torsney EE, Del Rio-Guerra R, Poynter ME, Spees JL. Microglial cell proliferation is regulated, in part, by reactive astrocyte ETB R signaling after ischemic stroke. Exp Neurol 2025; 385:115125. [PMID: 39716588 PMCID: PMC11781953 DOI: 10.1016/j.expneurol.2024.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/01/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETBR) signaling. Using a genetic loss-of-function screen, we identified angiopoietin-2 (Ang-2) as a factor produced by reactive astrocytes in response to ET. In experiments with primary adult astrocytes stimulated by IRL1620, a specific ETBR agonist, we found that ERK1/2 and NFkB mediated the effects of ET on Ang-2 production. To determine astroglial Ang-2 levels in vivo, reactive astrocytes expressing the high affinity glutamate transporter (GLAST, EAAT1) were isolated by magnetic-activated cell sorting 3 days after stroke. Astrocytes obtained from the ipsilateral hemisphere expressed significantly more Ang-2 compared with astrocytes isolated from the contralateral hemisphere, or from cortices of sham-operated (control) mice. Notably, analysis of microglia sorted from CX3CR1-eGFP mice demonstrated increased cell surface expression of Tie-2, the Ang-2 receptor, on cells obtained from ipsilateral versus contralateral tissue. Addition of recombinant Ang-2 to astrocyte-conditioned medium significantly increased the number of SIM-A9 murine microglial cells cultured under hypoxic conditions (1 % oxygen for 48 h). In transgenic GFAP-CreER™-EDNRB-fl/fl mice with stroke, conditional knockout of astroglial ETBR significantly decreased the number of proliferating cells in the peri-infarct area with a microglial phenotype (Ki67+/CD11b+). Our results indicate that Ang-2, and possibly other paracrine effectors functioning downstream of astroglial ETBR signaling, are important mediators of microglial cell dynamics after stroke.
Collapse
Affiliation(s)
- John J McInnis
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Matthew D LeComte
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Leah F Reed
- Department of Medicine, Pulmonary Disease and Critical Care, University of Vermont, Burlington, VT 05405, USA
| | - Emily E Torsney
- Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Roxana Del Rio-Guerra
- Harry Hood Bassett Flow Cytometry and Cell Sorting Facility, University of Vermont, Burlington, VT 05401, USA
| | - Matthew E Poynter
- Department of Medicine, Pulmonary Disease and Critical Care, University of Vermont, Burlington, VT 05405, USA
| | - Jeffrey L Spees
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
35
|
Chen L, Zhao X, Sheng R, Lazarovici P, Zheng W. Artemisinin alleviates astrocyte overactivation and neuroinflammation by modulating the IRE1/NF-κB signaling pathway in in vitro and in vivo Alzheimer's disease models. Free Radic Biol Med 2025; 229:96-110. [PMID: 39826816 DOI: 10.1016/j.freeradbiomed.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Recent studies have shown that neuroinflammation and heightened glial activity, particularly astrocyte overactivation, are associated with Alzheimer's disease (AD). Abnormal accumulation of amyloid-beta (Aβ) induces endoplasmic reticulum (ER) stress and activates astrocytes. Artemisinin (ART), a frontline anti-malarial drug, has been found to have neuroprotective properties. However, its impact on astrocytes remains unclear. In this study, we used Aβ1-42 induced astrocyte cultures and 3 × Tg-AD mice as in vitro and in vivo models, respectively, to investigate the effects of ART on AD related astrocyte overactivation and its underlying mechanisms. ART attenuated Aβ1-42-induced astrocyte activation, ER stress, and inflammatory responses in astrocyte cultures by inhibiting IRE1 phosphorylation and the NF-κB pathway, as evidenced by the overexpression of IRE1 WT and IRE1-K599A (kinase activity invalidated), along with application of activators and inhibitors related to ER stress. Furthermore, ART alleviated the detrimental effects and restored neurotrophic function of astrocytes on co-cultured neurons, preventing neuronal apoptosis during Aβ1-42 treatment. In 3 × Tg-AD mice, ART treatment improved cognitive function and reduced astrocyte overactivation, neuroinflammation, ER stress, and neuronal apoptosis. Moreover, ART attenuated the upregulation of IRE1/NF-κB pathway activity in AD mice. Astrocyte-specific overexpression of IRE1 via adeno-associated virus in AD mice reversed the ameliorating effects of ART. Our findings suggest that ART inhibits astrocyte overactivation and neuroinflammation in both in vitro and in vivo AD models by modulating the IRE1/NF-κB signaling pathway, thereby enhancing neuronal functions. This study underscores the therapeutic potential of ART in AD and highlights the significance of modulating the ER stress-inflammatory cycle and normalizing astrocyte-neuron communication.
Collapse
Affiliation(s)
- Lei Chen
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, China
| | - Xia Zhao
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China
| | - Rui Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, China.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112002, Israel
| | - Wenhua Zheng
- Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau, Taipa, China.
| |
Collapse
|
36
|
Bianchimano P, Leone P, Smith EM, Gutierrez-Vazquez C, Wind-Andersen E, Bongers G, Cristancho S, Weiner HL, Clemente JC, Tankou SK. Oral vancomycin treatment alters levels of indole derivatives and secondary bile acids modulating the expression of mTOR pathway genes in astrocytes during EAE. Brain Behav Immun 2025; 125:355-370. [PMID: 39826581 DOI: 10.1016/j.bbi.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Astrocytes play important roles in the central nervous system (CNS) during health and disease. Prior studies have shown that gut commensal-derived indole derivatives as well as secondary bile acids modulate astrocyte function during the late stage of EAE (recovery phase). Here we showed that administering vancomycin to mice starting during the early stage of EAE improved disease recovery, an effect that is mediated by the gut microbiota. We observed that 6 taxa within the Clostridia vadin BB60 group were enriched in vancomycin-treated mice compared to untreated EAE mice. Vancomycin-treated EAE mice also had elevated serum levels of the anti-inflammatory tryptophan-derived metabolite, indole-3-lactic acid and decreased levels of deoxycholic acid, a pro-inflammatory secondary bile acid. RNA sequencing revealed altered expression of several genes belonging to the mammalian target of rapamycin (mTOR) pathway in astrocytes obtained during the late stage of EAE from vancomycin-treated EAE mice. Furthermore, we observed a link between serum levels of indole derivatives and bile acids and expression of several genes belonging to the mTOR pathway. Interestingly, the mTOR signaling cascades have been implicated in several key biological processes including innate (e.g., astrocyte) immune responses as well as neuronal toxicity/degeneration. In addition, rapamycin, a specific inhibitor of mTOR, has been shown to inhibit the induction and progression of established EAE. Collectively, our findings suggest that the neuroprotective effect of vancomycin is at least partially mediated by indole derivatives and secondary bile acids modulating the expression of mTOR pathway genes in astrocytes.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Leone
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cristina Gutierrez-Vazquez
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Erli Wind-Andersen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerold Bongers
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sebastian Cristancho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Jose C Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Dept of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
Wen Y, Guo F, Gu T, Zeng Y, Cao X. Transcriptomic Regulation by Astrocytic m6A Methylation in the mPFC. Genes Cells 2025; 30:e70003. [PMID: 39904743 PMCID: PMC11794193 DOI: 10.1111/gtc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Astrocytes, the most prevalent type of glial cells, have been found to play a crucial part in numerous physiological functions. By offering metabolic and structural support, astrocytes are vital for the proper functioning of the brain and regulating information processing and synaptic transmission. Astrocytes located in the medial prefrontal cortex (mPFC) are highly responsive to environmental changes and have been associated with the development of brain disorders. One of the primary mechanisms through which the brain responds to environmental factors is epitranscriptome modification. M6-methyladenosine methylation is the most prevalent internal modification of eukaryotic messenger RNA (mRNA), and it significantly impacts transcript processing and protein synthesis. However, the effects of m6A on astrocyte transcription and function are still not well understood. Our research demonstrates that ALKBH5, an RNA demethylase of m6A found in astrocytes, affects gene expression in the mPFC. These findings suggest that further investigation into the potential role of astrocyte-mediated m6A methylation in the mPFC is warranted.
Collapse
Affiliation(s)
- You‐Lu Wen
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Fang Guo
- Department of Neurobiology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Ting‐ting Gu
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Yan‐ping Zeng
- Department of Psychology and Behavior, Guangdong 999 Brain Hospital, Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhouChina
| | - Xiong Cao
- Department of Neurobiology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
38
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Abdelhameed MF, Rizk MZ, Beherei HH. Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis. Biometals 2025; 38:203-229. [PMID: 39543075 PMCID: PMC11754386 DOI: 10.1007/s10534-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC. The remyelinating neuroprotective potential of BBN-IONP relative to free BBN was evaluated against cuprizone (CPZ)-induced neurotoxicity (rats administered 0.2% CPZ powder (w/w) for five weeks). CPZ rats were treated with either free BBN or IONP-BBN (50 mg/kg/day, orally) for 14 days. Cognitive function was estimated using Y-maze. Biochemically, total antioxidant capacity lipid peroxides and reduced glutathione in the brain tissue, as well as, serum interferon-gamma levels were estimated. Moreover, the genetic expression contents of myelin basic protein Matrix metallopeptidase-9 Tumor necrosis factor-α (TNF-α), and S100β were measured. The histopathological patterns and immunohistochemical assessment of Glial Fibrillary Acidic Protein in both cerebral cortex and hippocampus CA1 regions were investigated. CPZ-rats treated with either free BBN or IONP-BBN demonstrated memory restoring, anti-oxidative, anti-inflammatory, anti-astrocytic, and remyelinating activities. Comparing free BBN with IONP-BBN revealed that the latter altered the neuromodulating activities of BBN, showing superior neuroprotective activities of IONP-BBN relative to BBN. In conclusion, both forms of BBN possess neuroprotective potential. However, the use of IONPs for brain delivery and the safety of these nano-based forms need further investigation.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
39
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
40
|
Tian L, Chen J, Liu X, Wei Y, Zhao Y, Shi Y, Li K, Liu H, Lai W, Lin B. Prenatal exposure on nanoplastics: A study of spatial transcriptomics in hippocampal offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125480. [PMID: 39644950 DOI: 10.1016/j.envpol.2024.125480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Nanoplastics, as environmental contaminants, are thought to have irreversible impacts on the developing brains of infants and early children; however, the degree of the effects and the mechanisms of damage are unknown. In this study, spatial transcriptomics was used to investigate changes in the hippocampal region of rats descended from maternal exposure to polystyrene nanoplastics (PS-NPs), and the transcriptomes of each spot were sequenced, allowing us to visualize the hippocampus's transcriptional landscape as well as clarify the gene expression profiles of each cell type. Spatial transcriptomics was used to explore changes in the hippocampus region of rats exposed to PS-NPs during brain formation and maturation.The study's findings showed that the offspring hippocampal region had fewer neurons, more astrocytes, and more excitatory neurons 1(ExN1). The pseudo-time study of astrocytes revealed a decrease in C3-type astrocytes and an increase in C2-type astrocytes. This finding raises the possibility that memory impairment in the offspring may result from the developmental obstruction of astrocytes following the intervention of PS-NPs. Moreover, the annotations of four hippocampus regions, CA1, CA2-3, DG, and HILUS, as well as the GO and GSVA of several cell types, revealed deficiencies that can contribute to learning memory impairment. The analysis suggested that decreased neuroglutamate (Glutamate) and γ-aminobutyric acid (GABA) secretion in offspring after PS-NPs intervention was associated with depression. Lastly, intercellular communication revealed alterations in several ligand receptor pathways associated with an increase in astrocytes. In conclusion, spatial transcriptomics reveals that maternal exposure to nanoplastics influences the development of the offspring's hippocampal brain and causes neurotoxicity, which accounts for the offspring's reduction in learning memory function.
Collapse
Affiliation(s)
- Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Jiang Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China; School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Yizhe Wei
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Yiming Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China; School of Public Health, North China University of Science and Technology, Tangshan, 063200, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
41
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
42
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
43
|
Yang ZF, Jiang XC, Gao JQ. Present insights into the progress in gene therapy delivery systems for central nervous system diseases. Int J Pharm 2025; 669:125069. [PMID: 39662855 DOI: 10.1016/j.ijpharm.2024.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Central nervous system (CNS) diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), spinal cord injury (SCI), and ischemic strokes and certain rare diseases, such as amyotrophic lateral sclerosis (ALS) and ataxia, present significant obstacles to treatment using conventional molecular pharmaceuticals. Gene therapy, with its ability to target previously "undruggable" proteins with high specificity and safety, is increasingly utilized in both preclinical and clinical research for CNS ailments. As our comprehension of the pathophysiology of these conditions deepens, gene therapy stands out as a versatile and promising strategy with the potential to both prevent and treat these diseases. Despite the remarkable progress in refining and enhancing the structural design of gene therapy agents, substantial obstacles persist in their effective and safe delivery within living systems. To surmount these obstacles, a diverse array of gene delivery systems has been devised and continuously improved. Notably, Adeno-Associated Virus (AAVs)-based viral gene vectors and lipid-based nanocarriers have each advanced the in vivo delivery of gene therapies to various extents. This review aims to concisely summarize the pathophysiological foundations of CNS diseases and to shed light on the latest advancements in gene delivery vector technologies. It discusses the primary categories of these vectors, their respective advantages and limitations, and their specialized uses in the context of gene therapy delivery.
Collapse
Affiliation(s)
- Ze-Feng Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| |
Collapse
|
44
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
45
|
Protzmann J, Zeitelhofer M, Stefanitsch C, Torrente D, Adzemovic MZ, Matjunins K, Randel SJ, Lewandowski SA, Muhl L, Eriksson U, Nilsson I, Su EJ, Lawrence DA, Fredriksson L. PDGFRα inhibition reduces myofibroblast expansion in the fibrotic rim and enhances recovery after ischemic stroke. J Clin Invest 2025; 135:e171077. [PMID: 39808499 PMCID: PMC11870733 DOI: 10.1172/jci171077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Ischemic stroke is a major cause of disability in adults. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge. Here we report that genetic or pharmacologic inhibition of the PDGF-CC/PDGFRα pathway, which has previously been implicated in stroke pathology, significantly reduced myofibroblast expansion in the border of the fibrotic scar and improved outcome in a sensory-motor integration test after experimental ischemic stroke. This was supported by gene expression analyses of cerebrovascular fragments showing upregulation of profibrotic/proinflammatory genes, including genes of the TGF pathway, after ischemic stroke or intracerebroventricular injection of active PDGF-CC. Further, longitudinal intravital 2-photon imaging revealed that inhibition of PDGFRα dampened the biphasic pattern of stroke-induced vascular leakage and enhanced vascular perfusion in the ischemic lesion. Importantly, we found PDGFRα inhibition to be effective in enhancing functional recovery when initiated 24 hours after ischemic stroke. Our data implicate the PDGF-CC/PDGFRα pathway as a crucial mediator modulating post-stroke pathology and suggest a post-acute treatment opportunity for patients with ischemic stroke targeting myofibroblast expansion to foster long-term CNS repair.
Collapse
Affiliation(s)
- Jil Protzmann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Torrente
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Milena Z. Adzemovic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kirils Matjunins
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stella J.I. Randel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Enming J. Su
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
47
|
Yuan Y, Liu H, Dai Z, He C, Qin S, Su Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci Bull 2025; 41:131-154. [PMID: 39080102 PMCID: PMC11748647 DOI: 10.1007/s12264-024-01258-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 01/19/2025] Open
Abstract
In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.
Collapse
Affiliation(s)
- Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Maximova OA, Anzick SL, Sturdevant DE, Bennett RS, Faucette LJ, St. Claire M, Whitehead SS, Kanakabandi K, Sheng ZM, Xiao Y, Kash JC, Taubenberger JK, Martens C, Cohen JI. Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system. PLoS Pathog 2025; 21:e1012530. [PMID: 39841753 PMCID: PMC11753669 DOI: 10.1371/journal.ppat.1012530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/26/2024] [Indexed: 01/24/2025] Open
Abstract
Viral infections of the central nervous system (CNS) are a major cause of morbidity largely due to lack of prevention and inadequate treatments. While mortality from viral CNS infections is significant, nearly two thirds of the patients survive. Thus, it is important to understand how the human CNS can successfully control virus infection and recover. Since it is not possible to study the human CNS throughout the course of viral infection at the cellular level, here we analyzed a non-lethal viral infection in the CNS of nonhuman primates (NHPs). We inoculated NHPs intracerebrally with a high dose of La Crosse virus (LACV), a bunyavirus that can infect neurons and cause encephalitis primarily in children, but with a very low (≤ 1%) mortality rate. To profile the CNS response to LACV infection, we used an integrative approach that was based on comprehensive analyses of (i) spatiotemporal dynamics of virus replication, (ii) identification of types of infected neurons, (iii) spatiotemporal transcriptomics, and (iv) morphological and functional changes in CNS intrinsic and extrinsic cells. We identified the location, timing, and functional repertoire of optimal transcriptional and translational regulation of the primate CNS in response to virus infection of neurons. These CNS responses involved a well-coordinated spatiotemporal interplay between astrocytes, lymphocytes, microglia, and CNS-border macrophages. Our findings suggest a multifaceted program governing an optimal CNS response to virus infection with specific events coordinated in space and time. This allowed the CNS to successfully control the infection by rapidly clearing the virus from infected neurons, mitigate damage to neurophysiology, activate and terminate immune responses in a timely manner, resolve inflammation, restore homeostasis, and initiate tissue repair. An increased understanding of these processes may provide new therapeutic opportunities to improve outcomes of viral CNS diseases in humans.
Collapse
Affiliation(s)
- Olga A. Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Sarah L. Anzick
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Richard S. Bennett
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Lawrence J. Faucette
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | | | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Kishore Kanakabandi
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Zong-mei Sheng
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - John C. Kash
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Jeffery K. Taubenberger
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Craig Martens
- Rocky Mountain Laboratories, Research Technologies Branch, Genomics Research Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Hamilton, Montana, United States of America
| | - Jeffrey I. Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America
| |
Collapse
|
49
|
Qu X, Yang R, Tan C, Chen H, Wang X. Astrocytes-Secreted WNT5B Disrupts the Blood-Brain Barrier Via ROR1/JNK/c-JUN Cascade During Meningitic Escherichia Coli Infection. Mol Neurobiol 2025; 62:661-673. [PMID: 38896157 DOI: 10.1007/s12035-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The blood-brain barrier (BBB) is a complex structure that separates the central nervous system (CNS) from the peripheral blood circulation. Effective communication between different cell types within the BBB is crucial for its proper functioning and maintenance of homeostasis. In this study, we demonstrate that meningitic Escherichia coli (E. coli)-induced WNT5B plays a role in facilitating intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). We discovered that astrocytes-derived WNT5B activates the non-canonical WNT signaling pathway JNK/c-JUN in BMECs through its receptor ROR1, leading to inhibition of ZO-1 expression and impairment of the tight junction integrity in BMECs. Notably, our findings reveal that c-JUN, a transcription factor, directly regulates ZO-1 expression. By employing a dual luciferase reporting system and chromatin immunoprecipitation techniques, we identified specific binding sites of c-JUN on the ZO-1 promoter region. Overall, our study highlights the involvement of WNT5B in mediating intercellular communication between astrocytes and BMECs, provides insights into the role of WNT5B in meningitic E. coli-induced disruption of BBB integrity, and suggests potential therapeutic targeting of WNT5B as a strategy to address BBB dysfunction.
Collapse
Affiliation(s)
- Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
50
|
Singh S, Kannan M, Oladapo A, Deshetty UM, Ray S, Buch S, Periyasamy P. Ethanol modulates astrocyte activation and neuroinflammation via miR-339/NLRP6 inflammasome signaling. Free Radic Biol Med 2025; 226:1-12. [PMID: 39522566 DOI: 10.1016/j.freeradbiomed.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Alcohol is the most abused substance among adolescents and has a profound impact on health, society, and the economy. Alcohol intoxication is linked to neuroinflammation and neuronal damage, which result in behavioral alterations such as motor dysfunction, neuronal injury, cognitive deficits, and inflammation. Alcohol-induced neuroinflammation is associated with the activation of central nervous system cells, including astrocytes, and the release of proinflammatory cytokines. In this study, we investigated the role of the NLRP6 inflammasome signaling pathway in inducing cellular activation and neuroinflammation in human primary astrocytes exposed to ethanol. Our results demonstrated that ethanol upregulates the expression of NLRP6 inflammasome signaling mediators, including NLRP6, caspase 1, and proinflammatory cytokines IL-1β and IL-18, in human primary astrocytes. Gene silencing studies using NLRP6 siRNA further validate ethanol-mediated activation of NLRP6, cleavage of caspase 1, IL-1β, and IL-18 in human primary astrocytes. miR array analysis of ethanol-exposed human primary astrocytes reveals decreased levels of miR-339, accompanied by an upregulation of NLRP6 inflammasome signaling and astrocyte activation. Through bioinformatics analyses, Argonaute immunoprecipitation assays, and miR-339 overexpression experiments, we identify NLRP6 as a novel 3'-UTR target of miR-339. Overall, our findings confirmed the involvement of miR-339 in NLRP6 inflammasome signaling and its association with cellular activation and neuroinflammation in human primary astrocytes exposed to ethanol and provide novel insights highlighting a previously unrecognized mechanism in alcohol-induced neuroinflammation.
Collapse
Affiliation(s)
- Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|