1
|
Lu L, Jifu C, Pei B, Gao X, Xu Z, Yin X, Xia J, Wang J. USP18 is a key regulator of immune function in mouse midbrain microglia. Life Sci 2025; 374:123692. [PMID: 40348176 DOI: 10.1016/j.lfs.2025.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS Ubiquitin-specific peptidase 18 (USP18) is an important member of the deubiquitinating enzyme family, which has received much attention in recent years for its role in microglia regulation. The aim of this study was to investigate the role of USP18 in midbrain and its potential molecular mechanisms. METHODS In this study, we assessed behavioural phenotypes and pathological changes by adeno-associated virus (AAV)-mediated midbrain-specific USP18 high-expression mouse model. RNA sequencing and untargeted metabolomics were used for multi-omics analysis, and protein expression was detected by Western blot, and ELISA was used to detect neuroinflammatory factor levels. RESULTS Our analyses suggest that USP18 is a key regulator of immune activity in the midbrain. USP18 helps maintain the resting state of microglia and exerts neuroprotective effects by promoting TH protein expression. In the midbrain, interference with USP18 expression resulted in significant changes in neuroimmune responses, gene expression associated with inflammation, and metabolite levels. Notably, the TLR signalling pathway was significantly enriched. Loss of USP18 led to a significant increase in the expression of TLR2, Iba-1, and GFAP proteins and a significant decrease in TH levels, and this change was particularly pronounced in microglia. Importantly, the changes observed in USP18 silencing were also reflected in brain tissues of human neurodegenerative diseases. SIGNIFICANCE This study reveals the critical role of USP18 in midbrain and microglia, and suggests it can finely regulate neuroinflammatory and immune responses by modulating TLR2 protein levels. The findings provide new ideas for understanding mechanisms of neurodegenerative diseases and developing therapeutic strategies.
Collapse
Affiliation(s)
- Linxia Lu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Cili Jifu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Baoxin Pei
- College of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Xuming Gao
- College of Biology and Agriculture, Jiamusi University, Jiamusi, Heilongjiang Province 154007, China
| | - Zhenyu Xu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Xianglin Yin
- College of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, China
| | - Jun Xia
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| | - Jingtao Wang
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China; College of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
2
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Microglia Single-Cell RNA-Seq Enables Robust and Applicable Markers of Biological Aging. Aging Cell 2025:e70095. [PMID: 40371813 DOI: 10.1111/acel.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
"Biological aging clocks"-composite molecular markers thought to capture an individual's biological age-have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA-sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets in humans and mice, we develop and compare computational approaches for generating transcriptome-wide summaries from microglia to establish robust and applicable aging clocks. Our results reveal that unsupervised, frequency-based summarization approaches, which encode distributions of cells across molecular subtypes, strike a balance in accuracy, interpretability, and computational efficiency. Notably, our computationally derived microglia markers achieve strong accuracy in predicting chronological age across three diverse single-cell datasets, suggesting that microglia exhibit characteristic changes in gene expression during aging and development that can be computationally summarized to create robust markers of biological aging. We further extrapolate and demonstrate the applicability of single-cell-based microglia clocks to readily available bulk RNA-seq data with an environmental input (early life stress), indicating the potential for broad utility of our models across genomic modalities and for testing hypotheses about how environmental inputs affect brain age. Such single-cell-derived markers can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony S Zannas
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Yu Y, Lv J, Ma D, Han Y, Zhang Y, Wang S, Wang Z. Microglial ApoD-induced NLRC4 inflammasome activation promotes Alzheimer's disease progression. Animal Model Exp Med 2025; 8:773-783. [PMID: 38520135 DOI: 10.1002/ame2.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective therapies. It is well known that chronic neuroinflammation plays a critical role in the onset and progression of AD. Well-balanced neuronal-microglial interactions are essential for brain functions. However, determining the role of microglia-the primary immune cells in the brain-in neuroinflammation in AD and the associated molecular basis has been challenging. METHODS Inflammatory factors in the sera of AD patients were detected and their association with microglia activation was analyzed. The mechanism for microglial inflammation was investigated. IL6 and TNF-α were found to be significantly increased in the AD stage. RESULTS Our analysis revealed that microglia were extensively activated in AD cerebra, releasing sufficient amounts of cytokines to impair the neural stem cells (NSCs) function. Moreover, the ApoD-induced NLRC4 inflammasome was activated in microglia, which gave rise to the proinflammatory phenotype. Targeting the microglial ApoD promoted NSC self-renewal and inhibited neuron apoptosis. These findings demonstrate the critical role of ApoD in microglial inflammasome activation, and for the first time reveal that microglia-induced inflammation suppresses neuronal proliferation. CONCLUSION Our studies establish the cellular basis for microglia activation in AD progression and shed light on cellular interactions important for AD treatment.
Collapse
Affiliation(s)
- Yaliang Yu
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Jianzhou Lv
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Dan Ma
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Ya Han
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Yaheng Zhang
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Shanlong Wang
- Clinical Lab, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Zhitao Wang
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
6
|
Joly P, Labsy R, Silvin A. Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:880-888. [PMID: 40073104 DOI: 10.1093/jimmun/vkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 03/14/2025]
Abstract
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration. Monocytes' infiltration and differentiation into monocyte-derived macrophages (MDMs) in the brain contribute to this diversity. Microbiota's role in brain diseases has been recently highlighted, revealing how microbial signals, such as metabolites, influence microglia and MDMs. In this brief review, we describe how these signals can influence microglia through their sensome and shape MDMs from their development in the bone marrow to their differentiation in the brain. Monocytes could then be a crucial player in the constitution of a dysbiotic gut-brain axis in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Paul Joly
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Reyhane Labsy
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| |
Collapse
|
7
|
Chen D, Wang C, Chen X, Li J, Chen S, Li Y, Ma F, Li T, Zou M, Li X, Huang X, Zhang YW, Zhao Y, Bu G, Zheng H, Chen XF, Zhang J, Zhong L. Brain-wide microglia replacement using a nonconditioning strategy ameliorates pathology in mouse models of neurological disorders. Sci Transl Med 2025; 17:eads6111. [PMID: 40305572 DOI: 10.1126/scitranslmed.ads6111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 05/02/2025]
Abstract
Growing genetic and pathological evidence has identified microglial dysfunction as a key contributor to the pathogenesis and progression of various neurological disorders, positioning microglia replacement as a promising therapeutic strategy. Traditional bone marrow transplantation (BMT) methods for replenishing brain microglia have limitations, including low efficiency and the potential for brain injury because of preconditioning regimens, such as irradiation or chemotherapy. Moreover, BM-derived cells that migrate to the brain do not recapitulate the phenotypic and functional properties of resident microglia. Here, we present a microglia transplantation strategy devoid of any conditioning, termed "tricyclic microglial depletion for transplantation" (TCMDT). This approach leverages three cycles of microglial depletion using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, creating an optimal window for efficient engraftment of exogenous microglia. Transplantation of primary cultured microglia by TCMDT successfully restored the identity and functions of endogenous microglia. To evaluate the therapeutic potential of TCMDT, we applied this strategy to two distinct mouse models of neurologic disorder. In a Sandhoff disease model, a neurodegenerative lysosomal storage disorder caused by hexosaminidase subunit beta (Hexb) deficiency, TCMDT effectively replaced deficient microglia, attenuating neurodegeneration and improving motor performance. Similarly, in an Alzheimer's disease (AD)-related amyloid mouse model carrying the triggering receptor expressed on myeloid cells 2 (Trem2) R47H mutation, our transplantation strategy rescued microglial dysfunction and mitigated AD-related pathology. Overall, our study introduces TCMDT as a practical, efficient, and safe approach for microglia replacement, suggesting therapeutic potential for treating neurological disorders associated with microglial dysfunction.
Collapse
Affiliation(s)
- Dadian Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, Xiamen Medical Quality Control Center for Neurology, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xi Chen
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiayu Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanzhong Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fangling Ma
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengling Zou
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Fen Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Jie Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Zhong
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
8
|
Kalkman HO, Smigielski L. Ceramides may Play a Central Role in the Pathogenesis of Alzheimer's Disease: a Review of Evidence and Horizons for Discovery. Mol Neurobiol 2025:10.1007/s12035-025-04989-0. [PMID: 40295359 DOI: 10.1007/s12035-025-04989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
While several hypotheses have been proposed to explain the underlying mechanisms of Alzheimer's disease, none have been entirely satisfactory. Both genetic and non-genetic risk factors, such as infections, metabolic disorders and psychological stress, contribute to this debilitating disease. Multiple lines of evidence indicate that ceramides may be central to the pathogenesis of Alzheimer's disease. Tumor necrosis factor-α, saturated fatty acids and cortisol elevate the brain levels of ceramides, while genetic risk factors, such as mutations in APP, presenilin, TREM2 and APOE ε4, also elevate ceramide synthesis. Importantly, ceramides displace sphingomyelin and cholesterol from lipid raft-like membrane patches that connect the endoplasmic reticulum and mitochondria, disturbing mitochondrial oxidative phosphorylation and energy production. As a consequence, the flattening of lipid rafts alters the function of γ-secretase, leading to increased production of Aβ42. Moreover, ceramides inhibit the insulin-signaling cascade via at least three mechanisms, resulting in the activation of glycogen synthase kinase-3 β. Activation of this kinase has multiple consequences, as it further deteriorates insulin resistance, promotes the transcription of BACE1, causes hyperphosphorylation of tau and inhibits the transcription factor Nrf2. Functional Nrf2 prevents apoptosis, mediates anti-inflammatory activity and improves blood-brain barrier function. Thus, various seemingly unrelated Alzheimer's disease risk factors converge on ceramide production, whereas the elevated levels of ceramides give rise to the well-known pathological features of Alzheimer's disease. Understanding and targeting these mechanisms may provide a promising foundation for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Hans O Kalkman
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lukasz Smigielski
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Mosora O, Maier S, Manu D, Bărcuțean L, Roman M, Dumitreasă M, Bălașa R. Exosomal microRNAs as Early Transition Biomarkers from Recurrent-Remissive to Secondary Progressive Multiple Sclerosis. Int J Mol Sci 2025; 26:3889. [PMID: 40332781 PMCID: PMC12028311 DOI: 10.3390/ijms26083889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease that affects young adults, leading to neurological disability. Regardless of the studies and the research involved in developing an efficient disease-modifying therapy (DMT), relapsing-remitting multiple sclerosis (RRMS) will transition to a progressive multiple sclerosis phenotype. The moment of transition from RRMS to secondary progressive multiple sclerosis (SPMS) is difficult to predict, and the diagnosis is based on the accumulation of disabilities in the evolution of the disease. Research on microRNAs' (miRNAs) role in MS began in the early 2000s, with miR-155 frequently cited for its link to blood-brain barrier dysfunction and neurodegeneration, making it an early transition biomarker from RRMS to SPMS. The purpose of this review is to reveal the importance of finding a biomarker from the molecular field that will be able to identify the transition phase so patients can receive high-efficacy treatments and to cease the clinical progression.
Collapse
Affiliation(s)
- Oana Mosora
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.M.); (R.B.)
- Ist Neurology Clinical, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania; (L.B.); (M.R.); (M.D.)
| | - Smaranda Maier
- Ist Neurology Clinical, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania; (L.B.); (M.R.); (M.D.)
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Laura Bărcuțean
- Ist Neurology Clinical, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania; (L.B.); (M.R.); (M.D.)
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Medeea Roman
- Ist Neurology Clinical, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania; (L.B.); (M.R.); (M.D.)
| | - Mihai Dumitreasă
- Ist Neurology Clinical, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania; (L.B.); (M.R.); (M.D.)
| | - Rodica Bălașa
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (O.M.); (R.B.)
- Ist Neurology Clinical, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania; (L.B.); (M.R.); (M.D.)
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
10
|
Said N, Venketaraman V. Neuroinflammation, Blood-Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies. Viruses 2025; 17:572. [PMID: 40285014 PMCID: PMC12030944 DOI: 10.3390/v17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood-brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV.
Collapse
Affiliation(s)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|
11
|
Yamazaki R, Azuma M, Osanai Y, Kouki T, Inagaki T, Kakita A, Takao M, Ohno N. Type I collagen secreted in white matter lesions inhibits remyelination and functional recovery. Cell Death Dis 2025; 16:285. [PMID: 40221393 PMCID: PMC11993711 DOI: 10.1038/s41419-025-07633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
White matter injury is caused by cerebral blood flow disturbances associated with stroke and demyelinating diseases such as multiple sclerosis. Remyelination is induced spontaneously after white matter injury, but progressive multiple sclerosis and white matter stroke are usually characterised by remyelination failure. However, the mechanisms underlying impaired remyelination in lesions caused by demyelination and stroke remain unclear. In the current study, we demonstrated that collagen fibres accumulated in the demyelinated lesions of multiple sclerosis patients (age range 23-80 years) and white matter lesions of stroke patients (age range 80-87 years), suggesting that the accumulation of collagen fibres correlates with remyelination failure in these lesions. To investigate the function of collagen fibres in the white matter lesions, we generated two types of white matter injury in mice. We induced focal demyelination by lysolecithin (LPC) injection and ischemic stroke by endothelin 1 (ET1) injection into the internal capsule. We found that type I collagen fibres were secreted in ET1-induced lesions with impaired white matter regeneration in the chronic phase of disease. We also showed that monocyte-derived macrophages that infiltrated into lesions from the peripheral blood produced type I collagen after white matter injury, and that type I collagen also exacerbated microglial activation, astrogliosis, and axonal injury. Finally, we demonstrated that oligodendrocyte differentiation and remyelination were inhibited in the presence of type I collagen after LPC-induced demyelination. These results suggest that type I collagen secreted by monocyte-derived macrophages inhibited white matter regeneration, and therefore, the modulation of type I collagen metabolism might be a novel therapeutic target for white matter injury.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan.
| | - Morio Azuma
- Department of Pharmacology, Division of Molecular Pharmacology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takeshi Inagaki
- Department of Anatomy, Division of Forensic Medicine, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
12
|
Xu S, Fang L, Cai J, Fang S, Zhu H, Lin F, Cai X. Design and discovery of novel heteroaryl substituted pregnenolone derivatives as potent anti-neuroinflammatory agents targeting LPS-stimulated BV-2 microglial cells. Steroids 2025; 216:109588. [PMID: 40024462 DOI: 10.1016/j.steroids.2025.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
A new family of steroidal compounds based on a heteroaryl-4,5-dihydropyrazole thiazolinone core structure was designed and synthesized through structural modifications. The anti-neuroinflammatory activity of these compounds was evaluated in lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells in vitro. Among the synthesized compounds, 10b and 10d effectively inhibited nitric oxide (NO) production, with compound 10b emerging as the most potent anti-neuroinflammatory agent (IC50 = 2.05 μM). Compound 10b demonstrated significantly greater inhibitory effects than progesterone (prog) (IC50 = 3.23 μM) and reduced NO production in a concentration-dependent manner. Furthermore, compound 10b attenuated the release of pro-inflammatory mediators, including tumour necrosis factor (TNF)-α, interleukin-1β (IL-1β), interleukin-6 (IL-6), and prostaglandin E2 (PGE2). It also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Mechanistic studies revealed that compound 10b significantly suppressed the transcriptional activity of nuclear factor kappa B (NF-κB) in activated microglial cells and prevented NF-κB p65 activation and IκBα degradation. These effects were likely mediated by the inhibition of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways. Additionally, molecular docking studies suggested that the anti-neuroinflammatory effects of compound 10b may result from its hydrophobic and hydrophilic interactions with iNOS and COX-2, supporting its proposed mechanism of action. In summary, these findings suggest that compound 10b exerts anti-neuroinflammatory effects in LPS-stimulated BV-2 microglial cells by modulating key inflammatory pathways, including NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Ling Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Jianfeng Cai
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Fei Lin
- Department of Pharmacy Intravenous Admixture Services (PIVAS), The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China.
| | - Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China.
| |
Collapse
|
13
|
Zhang R, Yao X, Li Q, Li X, Ma Q, Huang W, Hu Y, Shi X, Yang Y, Liu H. Self-assembled nanoparticles of rapamycin prodrugs for the treatment of multiple sclerosis. J Colloid Interface Sci 2025; 683:448-459. [PMID: 39740562 DOI: 10.1016/j.jcis.2024.12.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Optimizing the design of nanoparticulate co-delivery systems of antigens and immunomodulators to induce antigen-specific immune tolerance effectively remains a challenge, constrained by low drug loading capacity and premature leakage of active ingredients. Here, we report a prodrug self-assembled nanoparticles (NPs) strategy to synergistically deliver antigen and rapamycin (RAPA) into antigen-presenting cells (APCs) by simply conjugating rapamycin with an aliphatic chain. These prodrug NPs can be efficiently taken up by APCs and then release rapamycin through cleavage of the linker by intracellular esterase. Compared to other nanocarriers, rapamycin prodrug NPs exhibit high drug loading capacity and high stability, providing more rational intracellular synchronous delivery of drugs. The prodrug NPs also demonstrate improved therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE) model mice compared with free antigen and rapamycin. Our findings provide new insights into the design of tolerogenic NPs for treating multiple sclerosis (MS). This delivery platform is also applicable for the alleviation of other autoimmune diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xiaoxuan Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ximu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qing Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Weijia Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yuxin Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China.
| | - Yang Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
14
|
Hsu CH, Hsu YY, Chang BM, Raffensperger K, Kadden M, Ton HT, Ette EA, Lin S, Brooks J, Burke MW, Lee YJ, Wang PC, Shoykhet M, Tu TW. StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest. Commun Biol 2025; 8:462. [PMID: 40114030 PMCID: PMC11926354 DOI: 10.1038/s42003-025-07926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Microglia, the brain's resident macrophages, participate in development and influence neuroinflammation, which is characteristic of multiple brain pathologies. Diverse insults cause microglia to alter their morphology from "resting" to "activated" shapes, which vary with stimulus type, brain location, and microenvironment. This morphologic diversity commonly restricts microglial analyses to specific regions and manual methods. We introduce StainAI, a deep learning tool that leverages 20x whole-slide immunohistochemistry images for rapid, high-throughput analysis of microglial morphology. StainAI maps microglia to a brain atlas, classifies their morphology, quantifies morphometric features, and computes an activation score for any region of interest. As a proof of principle, StainAI was applied to a rat model of pediatric asphyxial cardiac arrest, accurately classifying millions of microglia across multiple slices, surpassing current methods by orders of magnitude, and identifying both known and novel activation patterns. Extending its application to a non-human primate model of simian immunodeficiency virus infection further demonstrated its generalizability beyond rodent datasets, providing new insights into microglial responses across species. StainAI offers a scalable, high-throughput solution for microglial analysis from routine immunohistochemistry images, accelerating research in microglial biology and neuroinflammation.
Collapse
Affiliation(s)
- Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Yi-Yu Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Miin Wu School of Computing, National Cheng Kung University, Tainan City, Taiwan
| | - Be-Ming Chang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Katherine Raffensperger
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
| | - Micah Kadden
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
- Pediatric Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Hoai T Ton
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
| | - Essiet-Adidiong Ette
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Yih-Jing Lee
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Paul C Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Physics, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Michael Shoykhet
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
- Pediatric Critical Care Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
15
|
Becker M, Kälin S, Neubig AH, Lauber M, Opaleva D, Hipp H, Salb VK, Ott VB, Legutko B, Kälin RE, Hippich M, Scherm MG, Nascimento LFR, Serr I, Hosp F, Nikolaev A, Mohebiany A, Krueger M, Flachmeyer B, Pfaffl MW, Haase B, Yi CX, Dietzen S, Bopp T, Woods SC, Waisman A, Weigmann B, Mann M, Tschöp MH, Daniel C. Regulatory T cells in the mouse hypothalamus control immune activation and ameliorate metabolic impairments in high-calorie environments. Nat Commun 2025; 16:2744. [PMID: 40113758 PMCID: PMC11926360 DOI: 10.1038/s41467-025-57918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The hypothalamus in the central nervous system (CNS) has important functions in controlling systemic metabolism. A calorie-rich diet triggers CNS immune activation, impairing metabolic control and promoting obesity and Type 2 Diabetes (T2D), but the mechanisms driving hypothalamic immune activation remain unclear. Here we identify regulatory T cells (Tregs) as key modulators of hypothalamic immune responses. In mice, calorie-rich environments activate hypothalamic CD4+ T cells, infiltrating macrophages and microglia while reducing hypothalamic Tregs. mRNA profiling of hypothalamic CD4+ T cells reveals a Th1-like activation state, with increased Tbx21, Cxcr3 and Cd226 but decreased Ccr7 and S1pr1. Importantly, results from Treg loss-of function and gain-of-function experiments show that Tregs limit hypothalamic immune activation and reverse metabolic impairments induced by hyper-caloric feeding. Our findings thus help refine the current model of Treg-centered immune-metabolic crosstalk in the brain and may contribute to the development of precision immune modulation for obesity and diabetes.
Collapse
Affiliation(s)
- Maike Becker
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Stefanie Kälin
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Anne H Neubig
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Michael Lauber
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Daria Opaleva
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Hannah Hipp
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Victoria K Salb
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Verena B Ott
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Roland E Kälin
- Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute for Neurosciences, Johannes Kepler University Linz and Kepler University Hospital, Linz, Austria
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Hippich
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Munich, 80939 Munich, and Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin G Scherm
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Lucas F R Nascimento
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Alma Mohebiany
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Martin Krueger
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | | | - Michael W Pfaffl
- Animal Physiology and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bettina Haase
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Dietzen
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephen C Woods
- Metabolic Diseases Institute, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ari Waisman
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
16
|
Gu Y, Luo H, Zhu J, Ma H, Zhang Y, Xing J, Liu Y, Cai Y, Sun W, Luo P. In vitro and in vivo assessment of diosmetin-loaded lactoferrin-modified liposomes for brain delivery in intracerebral hemorrhage therapy. Drug Deliv Transl Res 2025:10.1007/s13346-025-01826-8. [PMID: 40089650 DOI: 10.1007/s13346-025-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high morbidity, mortality, and disability rates, largely due to neuroinflammation. Diosmetin, a natural flavonoid, has known neuroprotective effects in cerebral ischemia/reperfusion models but has been less studied in ICH. Our previous study developed diosmetin-loaded lactoferrin-modified long-circulating liposomes (Lf-Dios-Lcl), which penetrate the BBB and improve diosmetin bioavailability and brain distribution. In this study, we found that diosmetin reduced the levels of proinflammatory cytokines (IL-1β and TNF-α) and increased the level of the anti-inflammatory cytokine IL-10 in LPS-induced BV2 cells, promoting microglial polarization toward the anti-inflammatory M2 phenotype. In ICH model rats, Lf-Dios-Lcl (1 mg/kg) effectively reduced neuroinflammation, decreased IL-1β and TNF-α levels, increased IL-10 levels, and increased the proportion of CD206-positive microglia in brain tissues. Moreover, Lf-Dios-Lcl significantly downregulated p-p38 expression, suggesting that p38 signaling activation was inhibited. Overall, Lf-Dios-Lcl demonstrated brain-targeting properties and antineuroinflammatory effects by modulating microglial polarization via the p38 pathway.
Collapse
Affiliation(s)
- Yingjiang Gu
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Hanyue Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Jun Zhu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620020, China
| | - Hao Ma
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China
| | - Yang Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuzhou Liu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Cai
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wenxia Sun
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan Province, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
17
|
Yashuo F, Chong G, Zhe Y, Lu C, Hongyu X, Yi W, Nianhong W. Electroacupuncture promotes neural function recovery by alleviating mitochondria damage in cerebral ischemia mice. Brain Res 2025; 1851:149479. [PMID: 39892805 DOI: 10.1016/j.brainres.2025.149479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
AIMS This study aimed to observe the effect of electroacupuncture (EA) at Zusanli point (ST36) on motor function of cerebral ischemia mice, and to observe the effect of EA on mitochondrial morphology of peri-infarct cortex neurons in cerebral ischemia mice. METHODS Middle cerebral artery occlusion (MCAO) was used to develop an ischemic stroke mice model. EA treatment was performed for three consecutive days for 15 min per day after MCAO modeling. We investigated the therapeutic effects of EA on MCAO mice by performing neurobehavioral assessment (modified Neurological Severity Score, Rotarod test, Open-field test and Gait analysis) and TTC staining. The morphology and function of neuronal mitochondria were evaluated by transmission electron microscopy, qRT-PCR, chemiluminescence, and western blot. Nissl staining, TUNEL staining and immunofluorescence staining were used to observe neuronal morphology and apoptosis. Furthermore, ELISA was employed to measure the expression levels of inflammatory factors in mouse serum. RESULTS EA alleviated motor dysfunction and infarct volume in mice with cerebral ischemia. It improved the neuronal mitochondria damage in MCAO mice, and decreased the protein and mRNA expression level of mitochondrial fission related proteins (FIS1 and Drp1). In addition, EA can reduce neuronal damage and apoptosis of nerve cells, and decrease the level of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) in cerebral ischemia mice. CONCLUSION EA therapy can improve motor dysfunction and alleviate the damage of neuron mitochondria in cerebral ischemic mice.
Collapse
Affiliation(s)
- Feng Yashuo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Guan Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Yang Zhe
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619 China
| | - Cao Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China
| | - Xie Hongyu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Wu Yi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China.
| | - Wang Nianhong
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China.
| |
Collapse
|
18
|
Vega García A, López-Meraz ML, González MI, Rocha L, Peixoto-Santos JE, Cavalheiro EA. Immunity and neuroinflammation in early stages of life and epilepsy. Epilepsia 2025. [PMID: 40072465 DOI: 10.1111/epi.18361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
The immune system is crucial for the correct brain development, and recent findings also point toward central control of immune response. As the immune system is not fully developed at birth, the early years become an important window for infections and for the development of epilepsy. Both central and even peripheral inflammation may impact brain function, promoting opening of the blood-brain/blood and cerebrospinal barriers and allowing entry of immune cells and cytokines, which in turn may affect neuron function and connections. The resident brain immune cells, microglia, besides providing protection, also affect neurons, myelination, and astrocyte function. They may, via the complement system, remove synapses, both physiologically and pathologically. After seizures during development, activated microglia releases proinflammatory molecules, which are detrimental for neurons, and inhibition of microglial activation shows promising antiepileptogenic effects. In addition to cytokines, seizures and excessive excitability stimulate calpain 2 expression, which can promote neuron loss and contribute to amplification of inflammatory responses via stimulation of proinflammatory cytokines. In summary, the immature immune system during postnatal early life may be an important target for the development of long-desired antiepileptogenic drugs.
Collapse
Affiliation(s)
- Angelica Vega García
- Neurological Diseases Medical Research Unit, Specialty Hospital, "Dr. Bernardo Sepúlveda", National Medical Center "XXI, Century", Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - María Leonor López-Meraz
- Laboratorio de Epilepsia Experimental, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, Mexico
| | - Marco I González
- Department of Neurology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jose Eduardo Peixoto-Santos
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - Esper Abrão Cavalheiro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| |
Collapse
|
19
|
Torell F, Dimitriou M. Sensorimotor function: Muscle spindle macrophages in the loop. Curr Biol 2025; 35:R180-R182. [PMID: 40068612 DOI: 10.1016/j.cub.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Motor coordination relies on muscle spindles and the stretch reflexes they enable. A new study shows that spindle-resident macrophages can drive sensory signaling and muscle contraction. This implicates immune cells in a process considered the exclusive domain of neuromuscular systems.
Collapse
Affiliation(s)
- Frida Torell
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden
| | - Michael Dimitriou
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
20
|
Heffernan ÁB, Steinruecke M, Dempsey G, Chandran S, Selvaraj BT, Jiwaji Z, Stavrou M. Role of glia in delirium: proposed mechanisms and translational implications. Mol Psychiatry 2025; 30:1138-1147. [PMID: 39463449 PMCID: PMC11835730 DOI: 10.1038/s41380-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Delirium is a common acute onset neurological syndrome characterised by transient fluctuations in cognition. It affects over 20% of medical inpatients and 50% of those critically ill. Delirium is associated with morbidity and mortality, causes distress to patients and carers, and has significant socioeconomic costs in ageing populations. Despite its clinical significance, the pathophysiology of delirium is understudied, and many underlying cellular mechanisms remain unknown. There are currently no effective pharmacological treatments which directly target underlying disease processes. Although many studies focus on neuronal dysfunction in delirium, glial cells, primarily astrocytes, microglia, and oligodendrocytes, and their associated systems, are increasingly implicated in delirium pathophysiology. In this review, we discuss current evidence which implicates glial cells in delirium, including biomarker studies, post-mortem tissue analyses and pre-clinical models. In particular, we focus on how astrocyte pathology, including aberrant brain energy metabolism and glymphatic dysfunction, reactive microglia, blood-brain barrier impairment, and white matter changes may contribute to the pathogenesis of delirium. We also outline limitations in this body of work and the unique challenges faced in identifying causative mechanisms in delirium. Finally, we discuss how established neuroimaging and single-cell techniques may provide further mechanistic insight at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Áine Bríd Heffernan
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Georgia Dempsey
- School of Medicine, University of St Andrews, St Andrews, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Zoeb Jiwaji
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B. MicroRNA frontiers: Illuminating early detection paths in multiple sclerosis. Mult Scler Relat Disord 2025; 95:106237. [PMID: 39970864 DOI: 10.1016/j.msard.2024.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 02/21/2025]
Abstract
Multiple sclerosis (MS) manifests as progressive disability stemming from the demyelination of axons within the central nervous system, resulting in neuronal loss and atrophy in the brain and spinal cord. Diagnosis typically entails a thorough assessment of medical history, symptoms, physical examination, and various diagnostic procedures, including magnetic resonance imaging, cerebrospinal fluid analysis, blood tests, and electrophysiology. However, existing biomarkers often fail to reliably correlate with disease progression. Understanding the molecular mechanisms driving disease progression, particularly the transition from relapsing-remitting MS (RRMS), marked by inflammation, to secondary progressive MS (SPMS), characterized by neurodegeneration, remains a formidable challenge for healthcare providers. Despite extensive research efforts, dependable markers indicating disease stage and activity remain elusive. Circulating microRNAs (miRNAs) have emerged as promising candidates for both MS diagnosis and prognosis due to their altered expression patterns across the disease spectrum. Differential expression of miRNA panels between RRMS and SPMS holds the potential to offer valuable insights into disease progression and to inform treatment strategies aimed at halting disability advancement. This review seeks to delve into current research exploring the differences in miRNA panel expression across various phases of MS.
Collapse
Affiliation(s)
- Mahdi Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Behzad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamraz Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Bishnoi IR, Bordt EA. Sex and Region-Specific Differences in Microglial Morphology and Function Across Development. NEUROGLIA (BASEL, SWITZERLAND) 2025; 6:2. [PMID: 40181886 PMCID: PMC11967618 DOI: 10.3390/neuroglia6010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Microglia are exceptionally dynamic resident innate immune cells within the central nervous system, existing on a continuum of morphologies and functions throughout their lifespan. They play vital roles in response to injuries and infections, clearing cellular debris, and maintaining neural homeostasis throughout development. Emerging research suggests that microglia are strongly influenced by biological factors, including sex, developmental stage, and their local environment. This review synthesizes findings on sex differences in microglial morphology and function in key brain regions, including the frontal cortex, hippocampus, amygdala, hypothalamus, basal ganglia, and cerebellum, across the lifespan. Where available, we examine how gonadal hormones influence these microglial characteristics. Additionally, we highlight the limitations of relying solely on morphology to infer function and underscore the need for comprehensive, multimodal approaches to guide future research. Ultimately, this review aims to advance the dialogue on these spatiotemporally heterogeneous cells and their implications for sex differences in brain function and vulnerability to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Indra R. Bishnoi
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
23
|
Tamayo M, Agusti A, Molina-Mendoza GV, Rossini V, Frances-Cuesta C, Tolosa-Enguís V, Sanz Y. Bifidobacterium longum CECT 30763 improves depressive- and anxiety-like behavior in a social defeat mouse model through the immune and dopaminergic systems. Brain Behav Immun 2025; 125:35-57. [PMID: 39694341 DOI: 10.1016/j.bbi.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Adolescence is a crucial period marked by profound changes in the brain. Exposure to psychological stressors such as bullying, abuse or maltreatment during this developmental period may increase the risk of developing depression, anxiety and comorbid cardiometabolic conditions. Chronic psychological stress is associated with behavioral changes and disruption of the hypothalamic-pituitary-adrenal axis, leading to corticosterone overproduction in rodents and changes in both the immune system and the gut microbiome. Here, we demonstrate the ability of Bifidobacterium longum CECT 30763 (B. longum) to ameliorate adolescent depressive and anxiety-like behaviors in a chronic social defeat (CSD) mouse model. The mechanisms underlying this beneficial effect are related to the ability of B. longum to attenuate the inflammation and immune cell changes induced by CSD after the initial stress exposure through the induction of T regulatory cells with enduring effects that may prevent and mitigate the adverse consequences of repeated stress exposure on mental and cardiometabolic health. B. longum administration also normalized dopamine release, metabolism and signaling at the end of the intervention, which may secondarily contribute to the reversal of behavioral changes. The anti-inflammatory effects of B. longum could also explain its cardioprotective effects, which were reflected in an amelioration of the oxidative stress-induced damage in the heart and improved lipid metabolism in the liver. Overall, our findings suggest that B. longum regulates the links between the immune and dopaminergic systems from the gut to the brain, potentially underpinning its beneficial psychobiotic and physiological effects in CSD.
Collapse
Affiliation(s)
- M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Tolosa-Enguís
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
24
|
Yano S, Asami N, Kishi Y, Takeda I, Kubotani H, Hattori Y, Kitazawa A, Hayashi K, Kubo KI, Saeki M, Maeda C, Hiraki C, Teruya RI, Taketomi T, Akiyama K, Okajima-Takahashi T, Sato B, Wake H, Gotoh Y, Nakajima K, Ichinohe T, Nagata T, Chiba T, Tsuruta F. Propagation of neuronal micronuclei regulates microglial characteristics. Nat Neurosci 2025; 28:487-498. [PMID: 39825140 DOI: 10.1038/s41593-024-01863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period. Neurons passing through a dense region of the developing neocortex give rise to MN and release them into the extracellular space, before being incorporated into microglia and inducing morphological changes. Two-photon imaging analyses have revealed that microglia incorporating MN tend to slowly retract their processes. Loss of the cGAS gene alleviates effects on micronucleus-dependent morphological changes. Neuronal MN-harboring microglia also exhibit unique transcriptome signatures. These results demonstrate that neuronal MN serve as niche signals that transform microglia, and provide a potential mechanism for regulation of microglial characteristics in the early postnatal neocortex.
Collapse
Affiliation(s)
- Sarasa Yano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Chugai Life Science Park Yokohama, Chugai Pharmaceutical Co. Ltd., Yokohama, Japan
| | - Natsu Asami
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji Okazaki, Japan
| | - Hikari Kubotani
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Kitazawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Kanehiro Hayashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Saeki
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Maeda
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Hiraki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Rin-Ichiro Teruya
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Takumi Taketomi
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kaito Akiyama
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Ban Sato
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Myodaiji Okazaki, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies SOKENDAI, Hayama, Japan
- Department of Systems Science, Center of Optical Scattering Image Science, Kobe University, Kobe, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Ichinohe
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo Minato-ku, Tokyo, Japan
| | - Takeshi Nagata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Information and Communication Research Division, Mizuho Research and Technologies Ltd., Tokyo, Japan
- Faculty of Mathematical Informatics, Meiji Gakuin University, Yokohama, Japan
| | - Tomoki Chiba
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fuminori Tsuruta
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.
- Center for Quantum and Information Life Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
25
|
Webster SE, Les SM, Deleon N, Heck DM, Tsuj NL, Clemente MJ, Jones P, Holodick NE. Secreted IgM deficiency alters the retinal landscape enhancing neurodegeneration associated with aging. Immun Ageing 2025; 22:9. [PMID: 39994686 PMCID: PMC11849284 DOI: 10.1186/s12979-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Maintenance of the retina, part of the central nervous system, and other structures in the eye is critical for vision preservation. Aging increases the prevalence of vision impairment, including glaucoma, macular degeneration, and diabetic retinopathy. The retina is primarily maintained by glial cells; however, recent literature suggests that lymphocytes may play a role in the homeostasis of central nervous system tissues. Natural antibodies are produced by B cells without infection or immunization and maintain tissue homeostasis. Here, we explored the potential role of natural immunoglobulin M (IgM) produced by B lymphocytes in maintaining retinal health during aging in mice. RESULTS Our results indicate that the vitreous humor of both mice and humans contains IgM and IgG, suggesting that these immunoglobulins may play a role in ocular function. Furthermore, we observed that aged mice lacking secreted IgM (µs-/-) exhibited pronounced retinal degeneration, accompanied by reactive gliosis, and a proinflammatory cytokine environment. This contrasts with the aged wild-type counterparts, which retain their ability to secrete IgM and maintain a better retinal structure and anti-inflammatory environment. In addition to these findings, the absence of secreted IgM was associated with significant alterations in the retinal pigment epithelium, including disruptions to its morphology and signs of increased stress. This was further observed in changes to the blood-retinal-barrier, which is critical for regulation of retinal homeostasis. CONCLUSIONS These data suggest a previously unrecognized association between a lack of secreted IgM and alterations in the retinal microenvironment, leading to enhanced retinal degeneration during aging. Although the precise mechanism remains unclear, these findings highlight the potential importance of secreted IgM in processes that support retinal health over time. By increasing our understanding of ocular aging, these results show that there is a broader role for the immune system in retinal function and integrity in advanced age, opening new areas for the exploration of immune-related interventions in age-associated retinal conditions.
Collapse
Affiliation(s)
- Sarah E Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| | - Sydney M Les
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, United States of America
| | - Nico Deleon
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Daken M Heck
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Naomi L Tsuj
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Michael J Clemente
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Flow Cytometry and Imaging Core, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Prentiss Jones
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Nichol E Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
- Flow Cytometry and Imaging Core, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| |
Collapse
|
26
|
Jiménez A, Estudillo E, Guzmán-Ruiz MA, Herrera-Mundo N, Victoria-Acosta G, Cortés-Malagón EM, López-Ornelas A. Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics 2025; 17:281. [PMID: 40142945 PMCID: PMC11945272 DOI: 10.3390/pharmaceutics17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) is a critical structure that maintains brain homeostasis by selectively regulating nutrient influx and waste efflux. Not surprisingly, it is often compromised in neurodegenerative diseases. In addition to its involvement in these pathologies, the BBB also represents a significant challenge for drug delivery into the central nervous system. Nanoparticles (NPs) have been widely explored as drug carriers capable of overcoming this barrier and effectively transporting therapies to the brain. However, their potential to directly address and ameliorate BBB dysfunction has received limited attention. In this review, we examine how NPs enhance drug delivery across the BBB to treat neurodegenerative diseases and explore emerging strategies to restore the integrity of this vital structure.
Collapse
Affiliation(s)
- Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico;
| | - Mara A. Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Nieves Herrera-Mundo
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Georgina Victoria-Acosta
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enoc Mariano Cortés-Malagón
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| |
Collapse
|
27
|
Hafeez MT, Gao H, Ju F, Qi F, Li T, Zhang S. Transcriptomic Analysis Divulges Differential Expressions of Microglial Genes After Microglial Repopulation in Mice. Int J Mol Sci 2025; 26:1494. [PMID: 40003960 PMCID: PMC11855859 DOI: 10.3390/ijms26041494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Microglia are key immune cells in the central nervous system (CNS) and maintain hemostasis in physiological conditions. Microglial depletion leads to rapid repopulation, but the gene expression and signaling pathways related to repopulation remain unclear. Here, we used RNA sequencing (RNA-Seq) analysis to profile the transcriptome of microglia-depleted tissue by taking advantage of a conditional genetic microglial depletion model (CX3CR1CreER/+ system). Differential gene expression (DGE) sequencing analysis showed that 1226 genes were differentially up- and downregulated in both groups compared to control. Our data demonstrated that many microglial genes were highly regulated on day 3 after depletion but the numbers of differentially expressed genes were reduced by day 7. Gene ontology (GO) analysis categorized these differentially expressed genes on day 3 and day 7 to the specific biological processes, such as cell proliferation, cell activation, and cytokine and chemokine production. DGE analysis indicated that specific genes related to proliferation were regulated after depletion. Consistent with the changes in transcriptome, the histological analysis of transgenic mice revealed that the microglia after depletion undergo proliferation and activation from day 3 to day 7. Collectively, these results suggest that transcriptomic changes in microglial genes during depletion have a profound implication for the renewal and activation of microglia and may help to understand the regulatory mechanism of microglial activation in disease conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Wei Z, Jin F, Li T, He Y, Qian L, Ma J, Yuan T, Yu X, Zheng W, Javanmardi N, Pena-Pitrach E, Wang T, Xu J, Feng ZQ. Biofluid-Permeable and Erosion-Resistant Wireless Neural-Electronic Interfaces for Neurohomeostasis Modulation. ACS NANO 2025; 19:4541-4560. [PMID: 39818765 DOI: 10.1021/acsnano.4c14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions. Here, we developed a biofluid-permeable and erosion-resistant wireless neural-electronic interface (BNEI) that is composed of a flexible 3D interconnected poly(l-lactide) fibrous network with a dense and axially aligned piezoelectrical molecular chain arrangement architecture. The organized molecular chain structure enhances the tortuous pathway and longitudinal piezoelectric coefficient of poly(l-lactide) fibers, improves their water barrier properties, and enables efficient conversion of low-intensity acoustic vibrations transmitted in biofluids into electrical signals, achieving long-term stable and wireless neuromodulation. A 3-month clinical trial demonstrated that the BNEI can effectively accelerate the pathological cascade in peripheral neuropathy for nerve regeneration and transcranially modulate cerebellar-cerebral circuit dynamics, suppressing seizures in temporal lobe epilepsy. The BNEI can be a clinically scalable approach for wireless neuromodulation that is broadly applicable to the modulation of neurohomeostasis in both the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, P. R. China
| | - Xin Yu
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, P. R. China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Esteban Pena-Pitrach
- Department of Manufacturing Technology Catalonia Spain, Polytechnic University of Catalonia, Catalonia 08700, Spain
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jianda Xu
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou 213003, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
29
|
Zhang Y, Du B, Zou M, Peng B, Rao Y. Neuronal Ceroid Lipofuscinosis-Concepts, Classification, and Avenues for Therapy. CNS Neurosci Ther 2025; 31:e70261. [PMID: 39925015 PMCID: PMC11808193 DOI: 10.1111/cns.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by excessive accumulation of lysosomal lipofuscin. Thirteen subtypes of NCL have been identified, each associated with distinct genes encoding various transmembrane proteins, secretory proteins, or lysosomal enzymes. Clinically, NCL manifests in infants through vision impairment, motor and cognitive dysfunctions, epilepsy, and premature death. The pathological complexity of NCL has hindered the development of effective clinical protocols. Current treatment modalities, including enzyme replacement therapy, pharmacological approaches, gene therapy, and stem cell therapy, have demonstrated limited efficacy. However, emerging evidence suggests a significant relationship between NCL and microglial cells, highlighting the potential of novel microglial cell replacement therapies. This review comprehensively examines the pathogenic genes associated with various NCL subtypes, elucidating their roles, clinical presentations, and corresponding mouse models. Especially, we thoroughly discuss the advances in the clinical study of potential therapeutics, which crucially calls for early diagnosis and treatment more than ever.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bingying Du
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
- Department of NeurologyThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Miaozhan Zou
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bo Peng
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
| |
Collapse
|
30
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
31
|
Henry RJ, Loane DJ. Unraveling the complexity of microglial responses in traumatic brain and spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:113-132. [PMID: 40148040 DOI: 10.1016/b978-0-443-19102-2.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in neuroimmune signaling, neuroprotection, and neuroinflammation. In the healthy CNS, microglia adopt a surveillant and antiinflammatory phenotype characterized by a ramified scanning morphology that maintains CNS homeostasis. In response to acquired insults, such as traumatic brain injury (TBI) or spinal cord injury (SCI), microglia undergo a dramatic morphologic and functional switch to that of a reactive state. This microglial switch is initially protective and supports the return of the injured tissue to a physiologic homeostatic state. However, there is now a significant body of evidence that both TBI and SCI can result in a chronic state of microglial activation, which contributes to neurodegeneration and impairments in long-term neurologic outcomes in humans and animal models. In this review, we discuss the complex role of microglia in the pathophysiology of TBI and SCI, and recent advancements in knowledge of microglial phenotypic states in the injured CNS. Furthermore, we highlight novel therapeutic strategies targeting chronic microglial responses in experimental models and discuss how they may ultimately be translated to the clinic for human brain and SCI.
Collapse
Affiliation(s)
- Rebecca J Henry
- Department of Pharmacology, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Jensen P, Ozenne B, Meden P, Feng L, Thomsen G, Knudsen L, Steglich‐Arnholm H, Møller K, Thomsen C, Svarer C, Beliveau V, Mikkelsen J, Knudsen G, H Pinborg L. Poststroke Translocator Protein Expression Dynamics and Correlations to Chronic Infarction: A [123I]-CLINDE-SPECT Study. J Neuroimaging 2025; 35:e70002. [PMID: 39803801 PMCID: PMC11726615 DOI: 10.1111/jon.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND AND PURPOSE This study aims to investigate the longitudinal changes in translocator protein (TSPO) following stroke in different brain regions and potential associations with chronic brain infarction. METHODS Twelve patients underwent SPECT using the TSPO tracer 6-Chloro-2-(4'-123I-Iodophenyl)-3-(N,N-Diethyl)-Imidazo[1,2-a]Pyridine-3-Acetamide, as well as structural MRI, at 10, 41, and 128 days (median) after ischemic infarction in the middle cerebral artery. TSPO expression was measured in lesional (MRI lesion and SPECT lesion), connected (pons and ipsilesional thalamus), and nonconnected (ipsilesional cerebellum and contralesional occipital cortex) regions. Correlations were explored between the volume of chronic infarction and TSPO expression in nonconnected regions of interest (ROIs) at 128 days RESULTS: Throughout the study period, TSPO levels decreased by 24%-33% in lesional ROIs, while levels increased in connected ROIs by 35%-69% and in nonconnected ROIs by 53%-77%. At 128 days poststroke, TSPO expression in ipsilesional cerebellum positively correlated with chronic infarction volume (p = 0.002, r2 = 0.72). CONCLUSIONS This study expands the current knowledge of spatial and temporal TSPO expression in humans by quantifying TSPO changes in lesional, connected, and nonconnected brain regions at three time points after cerebral infarction as well as correlating late-stage TSPO upregulation and chronic infarction volume.
Collapse
Affiliation(s)
- Per Jensen
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
- Epilepsy ClinicRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Brice Ozenne
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
- Department of Public Health, Section of BiostatisticsUniversity of CopenhagenCopenhagenDenmark
| | - Per Meden
- Department of NeurologyBispebjerg Hospital, University of CopenhagenCopenhagenDenmark
| | - Ling Feng
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Gerda Thomsen
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Lars Knudsen
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
| | | | - Kirsten Møller
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of NeuroanaesthesiologyRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Carsten Thomsen
- Department of RadiologyRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Claus Svarer
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Vincent Beliveau
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Jens Mikkelsen
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
- Faculty of Health and MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Gitte Knudsen
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
- Faculty of Health and MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Lars H Pinborg
- Neurobiology Research UnitRigshospitalet, University of CopenhagenCopenhagenDenmark
- Epilepsy ClinicRigshospitalet, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
33
|
Jiang S, Xu R. The Current Potential Pathogenesis of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2025; 62:221-232. [PMID: 38829511 DOI: 10.1007/s12035-024-04269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease mainly characterized by the accumulation of ubiquitinated proteins in the affected motor neurons. At present, the accurate pathogenesis of ALS remains unclear and there are still no effective treatment measures for ALS. The potential pathogenesis of ALS mainly includes the misfolding of some pathogenic proteins, the genetic variation, mitochondrial dysfunction, autophagy disorders, neuroinflammation, the misregulation of RNA, the altered axonal transport, and gut microbial dysbiosis. Exploring the pathogenesis of ALS is a critical step in searching for the effective therapeutic approaches. The current studies suggested that the genetic variation, gut microbial dysbiosis, the activation of glial cells, and the transportation disorder of extracellular vesicles may play some important roles in the pathogenesis of ALS. This review conducts a systematic review of these current potential promising topics closely related to the pathogenesis of ALS; it aims to provide some new evidences and clues for searching the novel treatment measures of ALS.
Collapse
Affiliation(s)
- Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Center South University, Jiangxi Hospital. No. 152 of Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Center South University, Jiangxi Hospital. No. 152 of Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
34
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
35
|
Xu B, Tang C, Han R, Zhu C, Yang Y, Li H, Wu N, He D. Targeting the chemokine-microglia nexus: A novel strategy for modulating neuroinflammation in Alzheimer's disease. J Alzheimers Dis Rep 2025; 9:25424823251326044. [PMID: 40321241 PMCID: PMC12049630 DOI: 10.1177/25424823251326044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 05/08/2025] Open
Abstract
An increasing body of evidence suggests neuroinflammation has a prominent role in the pathogenesis of Alzheimer's disease (AD). The amyloid-β-tau-neurodegeneration (ATN) classification system is now being expanded toward an amyloid-β-tau neurodegeneration-neuroinflammation (ATN(I)) system. Activated microglia and reactive astrocytes are the key hubs for neuroinflammation in AD, and chemokines are recognized as pivotal modulators of microglial innate immune functions. In this review, based on the chemokine-microglia regulatory axis, we elucidate the mechanisms through which chemokines influence microglial function, potentially modulating neurotoxicity or neuroprotection in AD. The key chemokines that significantly affect microglial polarization, such as CCL2, CCL3, and CXCL1, are summarized, and their role in disease progression are elaborated. Additionally, we explore prospective therapeutic interventions centered on the chemokine-microglia regulatory axis, offering valuable perspectives on pathobiology of AD and avenues for pharmacological advancements.
Collapse
Affiliation(s)
- Bingyang Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Tang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rongshou Han
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaomin Zhu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxuan Yang
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Heyi Li
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ning Wu
- Chemistry and Biochemistry Laboratory, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
36
|
Hayes CA, Wilson D, De Leon MA, Mustapha MJ, Morales S, Odden MC, Ashpole NM. Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions. Front Neuroendocrinol 2025; 76:101161. [PMID: 39536910 DOI: 10.1016/j.yfrne.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age and insulin-like growth factor-1 (IGF-1) have an inverse association with cognitive decline and dementia. IGF-1 is known to have important pleiotropic functions beginning in neurodevelopment and extending into adulthood such as neurogenesis. At the cellular level, IGF-1 has pleiotropic signaling mechanisms through the IGF-1 receptor on neurons and neuroglia to attenuate inflammation, promote myelination, maintain astrocytic functions for homeostatic balances, and neuronal synaptogenesis. In preclinical rodent models of aging and transgenic models of IGF-1, increased IGF-1 improves cognition in a variety of behavioral paradigms along with reducing IGF-1 via knockout models being able to induce cognitive impairment. At the clinical levels, most studies highlight that increased levels of IGF-1 are associated with better cognition. This review provides a comprehensive and up-to-date evaluation of the association between IGF-1 and cognition at the cellular signaling levels, preclinical, and clinical levels.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Destiny Wilson
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Miguel A De Leon
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Sharon Morales
- Department of Biomedical Science, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
37
|
León-Rodríguez A, Grondona JM, Marín-Wong S, López-Aranda MF, López-Ávalos MD. Long-term reprogramming of primed microglia after moderate inhibition of CSF1R signaling. Glia 2025; 73:175-195. [PMID: 39448548 DOI: 10.1002/glia.24627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In acute neuroinflammation, microglia activate transiently, and return to a resting state later on. However, they may retain immune memory of such event, namely priming. Primed microglia are more sensitive to new stimuli and develop exacerbated responses, representing a risk factor for neurological disorders with an inflammatory component. Strategies to control the hyperactivation of microglia are, hence, of great interest. The receptor for colony stimulating factor 1 (CSF1R), expressed in myeloid cells, is essential for microglia viability, so its blockade with specific inhibitors (e.g. PLX5622) results in significant depletion of microglial population. Interestingly, upon inhibitor withdrawal, new naïve microglia repopulate the brain. Depletion-repopulation has been proposed as a strategy to reprogram microglia. However, substantial elimination of microglia is inadvisable in human therapy. To overcome such drawback, we aimed to reprogram long-term primed microglia by CSF1R partial inhibition. Microglial priming was induced in mice by acute neuroinflammation, provoked by intracerebroventricular injection of neuraminidase. After 3-weeks recovery, low-dose PLX5622 treatment was administrated for 12 days, followed by a withdrawal period of 7 weeks. Twelve hours before euthanasia, mice received a peripheral lipopolysaccharide (LPS) immune challenge, and the subsequent microglial inflammatory response was evaluated. PLX5622 provoked a 40%-50% decrease in microglial population, but basal levels were restored 7 weeks later. In the brain regions studied, hippocampus and hypothalamus, LPS induced enhanced microgliosis and inflammatory activation in neuraminidase-injected mice, while PLX5622 treatment prevented these changes. Our results suggest that PLX5622 used at low doses reverts microglial priming and, remarkably, prevents broad microglial depletion.
Collapse
Affiliation(s)
- Ana León-Rodríguez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - Sonia Marín-Wong
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel F López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| | - María D López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain
| |
Collapse
|
38
|
Dhariwal R, Dave K, Jain M. Omics-based analysis of mitochondrial dysfunction and BBB integrity in post-COVID-19 sequelae. Sci Rep 2024; 14:31016. [PMID: 39730725 DOI: 10.1038/s41598-024-82180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
The SARS-CoV-2 virus that resulted in the COVID-19 pandemic has been implicated in a range of neurological issues, such as encephalopathy, stroke, and cognitive decline. Although the precise mechanism causing these issues is unknown, mounting evidence shows that blood-brain barrier (BBB) disruption is probable2 a major factor. The integrity of the blood-brain barrier (BBB), a highly selective barrier that divides the brain from the systemic circulation, is crucial for preserving normal brain function. By analysing the multi-transcriptome data, this work explores the neurological impacts of the SARS-CoV-2 virus and provides insight into the molecular mechanisms behind BBB breakdown and neurological symptoms in COVID-19 patients. The endothelial cells of BBB expresses inflammatory genes in response to the systemic inflammation induced due to SARS-CoV-2 remnants in the body. This raises the possibility that systemic inflammation brought on by SARS-CoV-2 and BBB integrity are correlated. Furthermore, the study highlights the pathways involved in oxidative stress and endothelial cell activation, revealing their role in COVID-19 passage through BBB and induction of systemic inflammation and advancement toward neurological disorders. The article showcases the evidence that mitochondrial dysfunction is a major aftermath associated with SARS-CoV-2 infection as the impaired Mitochondria leads to an accumulation of reactive oxygen species (ROS), triggering endothelial dysfunction, and leading to the passage of harmful molecules across the BBB. This study offers insightful information that may open up the possibilities for new treatment plans by targeting biomarkers specifically associated with inflammation and BBB dysfunctioning conditions.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India
- Parul Institute of Applied Sciences, Department of Life Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
- Parul Institute of Paramedical and Health Sciences Faculty of Medicine, Parul University,, Vadodara, Gujarat-391760, India.
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India.
- Parul Institute of Applied Sciences, Department of Life Sciences, Parul University, Vadodara, 391760, Gujarat, India.
| |
Collapse
|
39
|
Yin Z, Leonard AK, Porto CM, Xie Z, Silveira S, Culley DJ, Butovsky O, Crosby G. Microglia in the aged brain develop a hypoactive molecular phenotype after surgery. J Neuroinflammation 2024; 21:323. [PMID: 39696348 DOI: 10.1186/s12974-024-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Microglia, the resident immune cells of the brain, play a crucial role in maintaining homeostasis in the central nervous system (CNS). However, they can also contribute to neurodegeneration through their pro-inflammatory properties and phagocytic functions. Acute post-operative cognitive deficits have been associated with inflammation, and microglia have been implicated primarily based on morphological changes. We investigated the impact of surgery on the microglial transcriptome to test the hypothesis that surgery produces an age-dependent pro-inflammatory phenotype in these cells. METHODS Three-to-five and 20-to-22-month-old C57BL/6 mice were anesthetized with isoflurane for an abdominal laparotomy, followed by sacrifice either 6 or 48 h post-surgery. Age-matched controls were exposed to carrier gas. Cytokine concentrations in plasma and brain tissue were evaluated using enzyme-linked immunosorbent assays (ELISA). Iba1+ cell density and morphology were determined by immunohistochemistry. Microglia from both surgically treated mice and age-matched controls were isolated by a well-established fluorescence-activated cell sorting (FACS) protocol. The microglial transcriptome was then analyzed using quantitative polymerase chain reaction (qPCR) and RNA sequencing (RNAseq). RESULTS Surgery induced an elevation in plasma cytokines in both age groups. Notably, increased CCL2 was observed in the brain post-surgery, with a greater change in old compared to young mice. Age, rather than the surgical procedure, increased Iba1 immunoreactivity and the number of Iba1+ cells in the hippocampus. Both qPCR and RNAseq analysis demonstrated suppression of neuroinflammation at 6 h after surgery in microglia isolated from aged mice. A comparative analysis of differentially expressed genes (DEGs) with previously published neurodegenerative microglia phenotype (MGnD), also referred to disease-associated microglia (DAM), revealed that surgery upregulates genes typically downregulated in the context of neurodegenerative diseases. These surgery-induced changes resolved by 48 h post-surgery and only a few DEGs were detected at that time point, indicating that the hypoactive phenotype of microglia is transient. CONCLUSIONS While anesthesia and surgery induce pro-inflammatory changes in the plasma and brain of mice, microglia adopt a homeostatic molecular phenotype following surgery. This effect seems to be more pronounced in aged mice and is transient. These results challenge the prevailing assumption that surgery activates microglia in the aged brain.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Anna K Leonard
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carl M Porto
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | | | - Deborah J Culley
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Crosby
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Park JE, Park HY, Kim YS, Park M. The Role of Diet, Additives, and Antibiotics in Metabolic Endotoxemia and Chronic Diseases. Metabolites 2024; 14:704. [PMID: 39728485 DOI: 10.3390/metabo14120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Dietary patterns, including high-fat and high-carbohydrate diets (HFDs and HCDs), as well as non-dietary factors such as food additives and antibiotics, are strongly linked to metabolic endotoxemia, a critical driver of low-grade chronic inflammation. This review explores the mechanisms through which these factors impair intestinal permeability, disrupt gut microbial balance, and facilitate lipopolysaccharide (LPS) translocation into the bloodstream, contributing to metabolic disorders such as obesity, type 2 diabetes mellitus, and inflammatory bowel disease. Methods: The analysis integrates findings from recent studies on the effects of dietary components and gut microbiota interactions on intestinal barrier function and systemic inflammation. Focus is given to experimental designs assessing gut permeability using biochemical and histological methods, alongside microbiota profiling in both human and animal models. Results: HFDs and HCDs were shown to increase intestinal permeability and systemic LPS levels, inducing gut dysbiosis and compromising barrier integrity. The resulting endotoxemia promoted a state of chronic inflammation, disrupting metabolic regulation and contributing to the pathogenesis of various metabolic diseases. Food additives and antibiotics further exacerbated these effects by altering microbial composition and increasing gut permeability. Conclusions: Diet-induced alterations in gut microbiota and barrier dysfunction emerge as key mediators of metabolic endotoxemia and related disorders. Addressing dietary patterns and their impact on gut health is crucial for developing targeted interventions. Further research is warranted to standardize methodologies and elucidate mechanisms for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Ji-Eun Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
- Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young-Soo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeonju 55365, Republic of Korea
| |
Collapse
|
41
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
42
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Tu H, Yuan L, Ni B, Lin Y, Wang K. Siglecs-mediated immune regulation in neurological disorders. Pharmacol Res 2024; 210:107531. [PMID: 39615617 DOI: 10.1016/j.phrs.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
The surfaces of various immune cells are rich in glycan chains, including the sialic-acid-binding immunoglobulin-like lectins (Siglecs) family. As an emerging glyco-immune checkpoint, Siglecs have the ability to bind and interact with various glycoproteins, thereby eliciting a series of downstream reactions to modulate the immune response. The impact of Siglecs has been extensively studied in tumor immunotherapy. However, research in neurological disorders and neurological diseases is very limited, and therapeutic options involving Siglecs need further exploration. Siglecs play a crucial role in the development, homeostasis, and repair processes of the nervous system, especially in degenerative diseases. This review summarizes studies on the immunomodulatory role mediated by Siglecs expressed on different immune cells in various neurological disorders, elucidates how dysregulated sialic acid contributes to several psychiatric disorders, and discusses the progress and limitations of research on the treatment of neurological disorders.
Collapse
Affiliation(s)
- Huifang Tu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Limei Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Ni
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300190, China.
| | - Kaiyuan Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
44
|
Althammer F, Roy RK, Kirchner MK, Podpecan Y, Helen J, McGrath S, Lira EC, Stern JE. Angiotensin-II drives changes in microglia-vascular interactions in rats with heart failure. Commun Biol 2024; 7:1537. [PMID: 39562706 PMCID: PMC11577102 DOI: 10.1038/s42003-024-07229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknown. Using a well-established ischemic HF rat model, we demonstrate the increased abundance of vessel-associated microglia (VAM) in HF rat hippocampi, along with an increased expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to brain capillaries, along with increased expression of TNFα. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to blood vessels, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Yuval Podpecan
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jemima Helen
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Shaina McGrath
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Elba Campos Lira
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
45
|
Nairuz T, Heo JC, Lee JH. Differential Glial Response and Neurodegenerative Patterns in CA1, CA3, and DG Hippocampal Regions of 5XFAD Mice. Int J Mol Sci 2024; 25:12156. [PMID: 39596222 PMCID: PMC11594373 DOI: 10.3390/ijms252212156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, the distinct patterns of glial response and neurodegeneration within the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus were examined in 5XFAD mice at 6 and 12 months of age. The primary feature of this transgenic mouse model is the rapid onset of amyloid pathology. We employed quantitative assessments via immunohistochemistry, incorporating double staining techniques, followed by observation with light microscopy and subsequent digital analysis of microscopic images. We identified significantly increased Aβ deposition in these three hippocampal regions at 6 and 12 months of transgenic mice. Moreover, the CA1 and CA3 regions showed higher vulnerability, with signs of reactive astrogliosis such as increased astrocyte density and elevated GFAP expression. Additionally, we observed a significant rise in microglia density, along with elevated inflammatory markers (TNFα) in these hippocampal regions. These findings highlight a non-uniform glial and neuronal response to Aβ plaque deposition within the hippocampal regions of 5xFAD mice, potentially contributing to the neurodegenerative and memory deficit characteristics of Alzheimer's disease in this model.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (J.-C.H.)
| |
Collapse
|
46
|
Moulton C, Baroni A, Quagliarini E, Leone L, Digiacomo L, Morotti M, Caracciolo G, Podda MV, Tasciotti E. Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics. Front Immunol 2024; 15:1447567. [PMID: 39600701 PMCID: PMC11588692 DOI: 10.3389/fimmu.2024.1447567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, significant advancements have been made in utilizing nanoparticles (NPs) to modulate immune responses within the central nervous system (CNS), offering new opportunities for nanotherapeutic interventions in neurological disorders. NPs can serve as carriers for immunomodulatory agents or platforms for delivering nucleic acid-based therapeutics to regulate gene expression and modulate immune responses. Several studies have demonstrated the efficacy of NP-mediated immune modulation in preclinical models of neurological diseases, including multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. While challenges remain, advancements in NPs engineering and design have led to the development of NPs using diverse strategies to overcome these challenges. The nano-bio interface with the immune system is key in the conceptualization of NPs to efficiently act as nanotherapeutics in the CNS. The biomolecular corona plays a pivotal role in dictating NPs behavior and immune recognition within the CNS, giving researchers the opportunity to optimize NPs design and surface modifications to minimize immunogenicity and enhance biocompatibility. Here, we review how NPs interact with the CNS immune system, focusing on immunosurveillance of NPs, NP-induced immune reprogramming and the impact of the biomolecular corona on NPs behavior in CNS immune responses. The integration of NPs into CNS nanotherapeutics offers promising opportunities for addressing the complex challenges of acute and chronic neurological conditions and pathologies, also in the context of preventive and rehabilitative medicine. By harnessing the nano-bio immune interface and understanding the significance of the biomolecular corona, researchers can develop targeted, safe, and effective nanotherapeutic interventions for a wide range of CNS disorders to improve treatment and rehabilitation. These advancements have the potential to revolutionize the treatment landscape of neurological diseases, offering promising solutions for improved patient care and quality of life in the future.
Collapse
Affiliation(s)
| | - Anna Baroni
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ennio Tasciotti
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, Università telematica San Raffaele, Rome, Italy
| |
Collapse
|
47
|
Stanley N, Dhawka L, Jaikumar S, Huang YC, Zannas AS. Leveraging Single-Cell RNA-Seq to Generate Robust Microglia Aging Clocks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.05.616811. [PMID: 39554035 PMCID: PMC11566008 DOI: 10.1101/2024.10.05.616811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
'Biological aging clocks' - composite molecular markers thought to capture an individual's biological age - have been traditionally developed through bulk-level analyses of mixed cells and tissues. However, recent evidence highlights the importance of gaining single-cell-level insights into the aging process. Microglia are key immune cells in the brain shown to adapt functionally in aging and disease. Recent studies have generated single-cell RNA sequencing (scRNA-seq) datasets that transcriptionally profile microglia during aging and development. Leveraging such datasets, we develop and compare computational approaches for generating transcriptome-wide summaries to establish robust microglia aging clocks. Our results reveal that unsupervised, frequency-based featurization approaches strike a balance in accuracy, interpretability, and computational efficiency. We further extrapolate and demonstrate applicability of such microglia clocks to readily available bulk RNA-seq data with environmental inputs. Single-cell-derived clocks can yield insights into the determinants of brain aging, ultimately promoting interventions that beneficially modulate health and disease trajectories.
Collapse
Affiliation(s)
- Natalie Stanley
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| | - Luvna Dhawka
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Sneha Jaikumar
- Department of Computer Science and Computational Medicine Program, The University of North Carolina at Chapel Hill
| | - Yu-Chen Huang
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill
| | - Anthony S Zannas
- Department of Psychiatry, The University of North Carolina at Chapel Hill
- Department of Genetics, The University of North Carolina at Chapel Hill
| |
Collapse
|
48
|
Jiang X, Li F, Mei J, Wu T, Zhu J, Li Z, Wu Z, Jiang H, Li N, Lei L. Brain Immune Cell Infiltration and Serum Metabolomic Characteristics Reveal that Lauric Acid Promotes Immune Cell Infiltration in Brain and Streptococcus suis Meningitis in Mice. Mol Neurobiol 2024; 61:9302-9319. [PMID: 38625620 DOI: 10.1007/s12035-024-04144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Although naturally Streptococcus suis serotype 2 (SS2) causes meningitis resulting in death or sequela of neurological symptoms in pigs and humans, severely threatening public health in the world, it has been difficult to build up and confirm experimental meningitis mouse models with obvious neurological syndrome for about two decades, which strongly hampers the in-depth study on the control measures and mechanisms of SS2-induced meningitis. In this study, a typical meningitis mouse model of SS2 was successfully established, as confirmed by the behavioral indicators of balance beam test, suspension test, and gait analysis. With bacteria gathering in the brain, distinguishable unique features including meningeal thickening, vacuolization of the Nissl body, brain barrier damage, glial cell activation, and more infiltration of T cells, macrophages, and DCs are observed in SS2 meningitis mice with typical neurological signs. Some meningitis mice were also accompanied by identical nephritis, ophthalmia, and cochlearitis. Investigation of the metabolic features demonstrated the downregulated cholic acid and upregulated 2-hydroxyvaleric acid, tetrahydrocortisone, nicotinic acid, and lauric acid in blood serum of mice and piglets with meningitis. And feeding trials show that lauric acid can promote meningitis by promoting the infiltration of immune cells into brain. These findings demonstrated that infection of ICR (improved castle road) mice with SS2 was able to induce typical meningitis accompanied by immune cell infiltration and lauric acid upregulation. These data provide a basis for the deep study of SS2 meningitis.
Collapse
Affiliation(s)
- Xuan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Fengyang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jikun Mei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Tong Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Junhui Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ziheng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshuai Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hexiang Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Na Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Liancheng Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- College of Animal Science, Yangtze University, Jingzhou, Hubei, 434023, People's Republic of China.
| |
Collapse
|
49
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
50
|
Wang X, Campbell B, Bodogai M, McDevitt RA, Patrikeev A, Gusev F, Ragonnaud E, Kumaraswami K, Shirenova S, Vardy K, Alameh MG, Weissman D, Ishikawa-Ankerhold H, Okun E, Rogaev E, Biragyn A. CD8 + T cells exacerbate AD-like symptoms in mouse model of amyloidosis. Brain Behav Immun 2024; 122:444-455. [PMID: 39191349 PMCID: PMC11409913 DOI: 10.1016/j.bbi.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Alzheimer's disease (AD) is linked to toxic Aβ plaques in the brain and activation of innate responses. Recent findings however suggest that the disease may also depend on the adaptive immunity, as B cells exacerbate and CD8+ T cells limit AD-like pathology in mouse models of amyloidosis. Here, by artificially blocking or augmenting CD8+ T cells in the brain of 5xFAD mice, we provide evidence that AD-like pathology is promoted by pathogenic, proinflammatory cytokines and exhaustion markers expressing CXCR6+ CD39+CD73+/- CD8+ TRM-like cells. The CD8+ T cells appear to act by targeting disease associated microglia (DAM), as we find them in tight complexes with microglia around Aβ plaques in the brain of mice and humans with AD. We also report that these CD8+ T cells are induced by B cells in the periphery, further underscoring the pathogenic importance of the adaptive immunity in AD. We propose that CD8+ T cells and B cells should be considered as therapeutic targets for control of AD, as their ablation at the onset of AD is sufficient to decrease CD8+ T cells in the brain and block the amyloidosis-linked neurodegeneration.
Collapse
Affiliation(s)
- Xin Wang
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Britney Campbell
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, Baltimore, MD, USA
| | - Anton Patrikeev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fedor Gusev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Konda Kumaraswami
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Karin Vardy
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | | | - Drew Weissman
- Institute of RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Surgical Research at the Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Evgeny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunolgy, USA.
| |
Collapse
|