1
|
Qi Q, Li L, Liang H, Zeng Y. Role and research progress of histone modification in cardiovascular diseases (Review). Exp Ther Med 2025; 30:132. [PMID: 40421232 PMCID: PMC12105096 DOI: 10.3892/etm.2025.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/11/2025] [Indexed: 05/28/2025] Open
Abstract
As society evolves and lifestyles change, there has been a notable rise in the incidence of cardiovascular diseases due to a parallel rise in associated risk factors. In recent years, considerable research has been conducted on the impact of histone modifications in relation to these conditions. Processes such as acetylation, methylation and phosphorylation of histones, mediated by specific enzymes, are essential in the regulation of gene expression, which in turn influences cellular functions and the progression of diseases. Research shows that alterations in specific histone modifications are closely linked to the onset and advancement of cardiovascular conditions. For instance, significant variations in histone deacetylases and H3K27 methylation have been observed in cases of heart failure and myocardial ischemia-reperfusion injury. In the present review, it was aimed to summarize recent findings in this area, providing a foundation for further exploration of the mechanisms by which histone modifications contribute to cardiovascular diseases.
Collapse
Affiliation(s)
- Qing Qi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Lin Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Hao Liang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yidi Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Institute of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
2
|
Chen Z, Yang Z, Liu Y, Zhou Z, Men B, Yun L, Jiang J, Ge H, Dian M, He Y, Zhang R, Cai K, Rao X, Rao S. Jaceosidin overcomes osimertinib resistance in lung cancer by inducing G2/M cycle arrest through targeting DDB1. Toxicol Appl Pharmacol 2025; 499:117327. [PMID: 40187661 DOI: 10.1016/j.taap.2025.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Osimertinib is a third-generation Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor (TKI) widely used to treat advanced non-small cell lung cancer with EGFR mutations. However, resistance to osimertinib frequently develops, limiting its long-term effectiveness. PURPOSE This study aimed to establish a lung cancer TKI-resistant model and identify Traditional Chinese Medicine (TCM) components that could reverse TKI resistance, enhancing lung cancer sensitivity to targeted therapies, while exploring the underlying molecular mechanisms. MATERIALS AND METHODS Osimertinib-resistant cell lines and organoids were developed using a dose-escalation approach. A screen of 302 traditional Chinese medicine monomers revealed compounds that increased sensitivity to osimertinib. RNA sequencing and limited proteolysis coupled with small molecule mapping were employed to investigate the molecular mechanisms by which jaceosidin reverses resistance. The efficacy of the jaceosidin and osimertinib combination was confirmed in cell lines, organoids, and a mouse model. RESULTS The osimertinib-resistant lung cancer model was successfully established, and 12 compounds were identified that enhanced the sensitivity of resistant cells to osimertinib. Among these, Jaceosidin, a flavonoid compound derived from Eupatorium lindleyanum DC., was confirmed to notably increase osimertinib sensitivity. Mechanistic studies, including limited proteolysis and RNA interference analysis, demonstrated that Jaceosidin directly interacts with Damage Specific DNA Binding Protein 1 (DDB1), promoting its protein expression and downregulating CDK1/Cyclin B1 levels. This interaction induced G2/M cell cycle arrest, thereby sensitizing lung cancer cells to osimertinib. Furthermore, both in vitro and in vivo experiments confirmed that the combination of Jaceosidin and osimertinib significantly inhibited tumor growth in osimertinib-resistant models. CONCLUSION These findings offer new insights into the role of DDB1 in overcoming osimertinib resistance and suggest that combining jaceosidin with osimertinib may serve as a promising therapeutic strategy to enhance the efficacy of EGFR-TKIs treatment in resistant Non-small Cell Lung Cancer (NSCLC).
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuoying Yang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingying Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zehao Zhou
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biying Men
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Yun
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjun Jiang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haotian Ge
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meijuan Dian
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujing He
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruihao Zhang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xuguang Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Silvano S, Napolitano T, Plaisant M, Sousa-De-Veiga A, Fofo H, Ayachi C, Allegrini B, Rekima S, Pichery E, Becam J, Lepage V, Treins C, Etasse L, Tran L, Thévenet J, Pasquetti G, Kerr-Conte J, Pattou F, Botti P, Arduini A, Mizrahi J, Charles B, Collombat P. RSPO1, a potent inducer of pancreatic β cell neogenesis. Cell Rep Med 2025; 6:102126. [PMID: 40339569 DOI: 10.1016/j.xcrm.2025.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/02/2024] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Inducing the neogenesis of pancreatic insulin-producing β cells holds great promise for diabetes research. However, non-toxic compounds with such activities remain to be discovered. Herein, we report the identification of RSPO1, a key agonist of the Wnt/β-catenin pathway, as an inducer of β cell replication. Specifically, we provide evidence that RSPO1 promotes a significant increase in β cell neogenesis in vitro, ex vivo, and in vivo. Importantly, RSPO1 administration is sufficient to activate Wnt/β-catenin signaling in β cells and counter chemically induced or autoimmune-mediated diabetes. Similarly, an optimized analog of RSPO1, allowing for weekly administration, also prevents diabetes in vivo. Lastly, the treatment of transplanted human islets with RSPO1 induces a significant 2.78-fold increase in human β cell numbers in only 60 days, these cells being functional. Such activities of RSPO1 to promote β cell neogenesis could therefore represent an unprecedented hope in the continued search for diabetes alternative therapies.
Collapse
Affiliation(s)
| | | | | | - Anette Sousa-De-Veiga
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Hugo Fofo
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Chaïma Ayachi
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Benoit Allegrini
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | - Samah Rekima
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | | | - Jérôme Becam
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Valentin Lepage
- University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France
| | | | - Laura Etasse
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | - Loan Tran
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | - Julien Thévenet
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Gianni Pasquetti
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - François Pattou
- University Lille, Inserm, CHU Lille, U1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, EGID, 59000 Lille, France
| | - Paolo Botti
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
| | | | | | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France; University Nice Cote D'Azur, Inserm, CNRS, iBV, 06100 Nice, France; iBV, Institut de Biologie Valrose, University Nice Sophia Antipolis, Centre de Biochimie, Parc Valrose, 28, Avenue Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
4
|
Khazaei M, Meskaraf-asadabadi M, Ghanbari E, Khazaei AH. Antidiabetic effects of Peganum harmala seed extract on streptozotocin-induced diabetes in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:1193-1203. [PMID: 40365181 PMCID: PMC12068503 DOI: 10.22038/ajp.2024.25241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/11/2024] [Indexed: 05/15/2025]
Abstract
Objective Diabetes, a chronic metabolic disease, has many complex complications and an increasing prevalence in various societies. Despite conventional drug treatments and limited surgical and tissue transplant methods, a definitive diabetes treatment remains to be found. Restoring damaged beta cells to insulin production or prompting other pancreatic cells to secrete insulin is an essential goal of diabetes research. The present study investigated the antidiabetic and regenerative effects of Peganum harmala seed extract (PHSE) on streptozotocin (STZ)-induced diabetes in rats. Materials and Methods In this experimental in vivo study, male Wistar rats (200±10 g) were placed in 5 groups: control, untreated diabetic and diabetic groups treated with 100, 200, and 400 mg/kg doses of PHSE. Fasting blood sugar (FBS), C-peptide, insulin, and antioxidant parameters (total antioxidant capacity (TAC) and nitric oxide (NO)) of serum were measured. Pancreatic tissue was used for histologic staining and assessment of the expression of genes related to beta cell regeneration. Results PHSE significantly improved FBS, weight loss, insulin, c-peptide, TAC, NO, and expression of pancreatic genes (insulin, PDX1 and neurogenin-3) (p<0.05). It also increased the number of pancreatic beta cells. Conclusion PHSE has considerable regenerative and antidiabetic effects on changes caused by diabetes in rats' serum and pancreas.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadali Meskaraf-asadabadi
- Fertility and Infertility Research Center, Health Technology Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li S, Huang K, Xu C, Zhang H, Wang X, Zhang R, Lu Y, Mohan M, Hu C. DYRK1B phosphorylates FOXO1 to promote hepatic gluconeogenesis. Nucleic Acids Res 2025; 53:gkaf319. [PMID: 40287828 PMCID: PMC12034038 DOI: 10.1093/nar/gkaf319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), a member of the CMGC group of kinases, is linked to metabolic syndrome, though the underlying molecular mechanisms remain unclear. In this study, we show that Dyrk1b expression is induced in the liver by fasting and in diabetic mice. Through both in vivo and in vitro experiments, we demonstrate that DYRK1B promotes hepatic gluconeogenesis and glucose intolerance. Liver-specific Dyrk1b conditional knockout mice were protected from diet-induced hyperglycemia. Mechanistically, DYRK1B interacts with and phosphorylates FOXO1, primarily at Thr467/Ser468, which is essential for its nuclear localization. Additionally, DYRK1B inhibits AKT-mediated FOXO1 phosphorylation at Thr24 and Ser256, enhancing its nuclear retention. DYRK1B-mediated phosphorylation increases the expression of gluconeogenic genes and promotes gluconeogenesis. Further, AZ191, a pharmacological inhibitor of DYRK1B, significantly reduced blood glucose levels in diabetic mice. Collectively, these findings provide new insights into the role of DYRK1B in glucose metabolism and identify it as a new therapeutic target for treating diabetes.
Collapse
Affiliation(s)
- Shanshan Li
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kai Huang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chu Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao Wang
- Key Laboratory of Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Man Mohan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
6
|
Zhang Z, Ye WW, Piro AL, Wang DS, Untereiner A, Lyons SA, Bhattacharjee A, Singh I, Beaudry JL, Orser BA, Dai FF, Wheeler MB. Glycine receptor activation promotes pancreatic islet cell proliferation via the PI3K/mTORC1/p70S6K pathway. JCI Insight 2025; 10:e178754. [PMID: 40260914 PMCID: PMC12016933 DOI: 10.1172/jci.insight.178754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Glycine and β-alanine activate glycine receptors (GlyRs), with glycine known to enhance insulin secretion from pancreatic islet β cells, primarily through GlyR activation. However, the effects of GlyR activation on β cell proliferation have not been examined. Here, we aim to investigate the potential proliferative effects of glycine and β-alanine on islets. In vitro experiments on mouse and human islets revealed that glycine and β-alanine, via GlyR activation, stimulated the proliferation of β cells and α cells, without affecting insulin or glucagon secretion. Further analysis indicated the involvement of the PI3K/mTORC1/p70S6K signaling pathway in this process. Inhibition of GlyRs and PI3K/mTORC1/p70S6K signaling attenuated proliferative effects of glycine and β-alanine. In vivo and ex vivo studies supported these findings, showing increased β and α cell mass after 12 weeks of oral administration of glycine and β-alanine, with no changes in insulin secretion or glucose homeostasis under normal conditions. However, during an acute insulin resistance induced by insulin receptor antagonist S961, glycine and β-alanine enhanced insulin secretion and reduced blood glucose levels by increasing β cell secretory capacity. These findings demonstrate glycine and β-alanine in vivo and in vitro promote islet cell proliferation via GlyR activation and the PI3K/mTORC1/p70S6K pathway, potentially providing a target to enhance islet capacity.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Physiology and
| | | | | | | | | | - Sulayman A. Lyons
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Jacqueline L. Beaudry
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Michael B. Wheeler
- Department of Physiology and
- Metabolism Research Group, Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Katz LS, Visser EJ, Plitzko KF, Pennings MAM, Cossar PJ, Tse IL, Kaiser M, Brunsveld L, Ottmann C, Scott DK. Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity. Nat Commun 2025; 16:2110. [PMID: 40025013 PMCID: PMC11873037 DOI: 10.1038/s41467-025-57241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a 'molecular glue' compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult to target TFs.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kathrin F Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Isabelle L Tse
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Liu Q, Yang C, Qi J, Shen Q, Ye M, Li H, Zhang L. Bioactivities and Structure-Activity Relationships of Harmine and Its Derivatives: A Review. Chem Biodivers 2025:e202402953. [PMID: 40024888 DOI: 10.1002/cbdv.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Natural products and their derivatives play a crucial role in treating various diseases. Harmine, a tricyclic β-carboline alkaloid isolated from the seeds of Peganum harmala L., has emerged as a promising therapeutic candidate owing to its multifaceted biological activities. Recent studies have further highlighted the enhanced therapeutic potential of harmine derivatives. To assess the current research landscape on harmine and its derivatives, we conducted a comprehensive analysis of studies published between 2019 and 2024 in scientific databases, such as PubMed, Web of Science, and Google Scholar. In this review, the possible applications of harmine and its derivatives were systematically illustrated, including biological activities, structure-activity relationships, and nanotechnology applications. Notably, the biological activities of harmine and its derivatives mainly contained antitumor, neuroprotective, antiparasitic, anti-inflammatory, and antidiabetic properties. In addition, structural modifications and the application of nanocarriers make harmine and its derivatives more druggable. The aim of this review is to summarize the recent advancements in harmine and its derivatives research, analyze emerging trends, and explore their clinical value.
Collapse
Affiliation(s)
- Qian Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Cheng Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jiamin Qi
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mingxing Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
10
|
Ems M, Brichkina A, Lauth M. A safe haven for cancer cells: tumor plus stroma control by DYRK1B. Oncogene 2025; 44:341-347. [PMID: 39863750 PMCID: PMC11790486 DOI: 10.1038/s41388-025-03275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated. In this review, we describe a seemingly paradoxical oncogenic mediator with this potential: The dual-specificity tyrosine-phosphorylation regulated kinase 1B (DYRK1B). DYRK1B promotes proliferative quiescence and yet is overexpressed or amplified in many hyperproliferative malignancies including ovarian cancer and pancreatic cancer. In particular the latter disease is a paradigmatic example for a therapy-recalcitrant and highly stroma-rich cancer entity. Here, recent evidence suggests that DYRK1B exerts its oncogenic features by installing a protective niche for cancer cells by directly affecting cancer cells but also the TME. Specifically, DYRK1B not only fosters cell-intrinsic processes like cell survival, chemoresistance, and disease recurrence, but it also upregulates TME and cancer cell-protective innate immune checkpoints and down-modulates anti-tumoral macrophage functionality. In this article, we outline the well-established cell-autonomous roles of DYRK1B and extend its importance to the TME and the control of the tumor immune stroma. In summary, DYRK1B appears as a single novel key player creating a safe haven for cancer cells by acting cell-intrinsically and-extrinsically, leading to the promotion of cancer cell survival, chemoresistance, and relapse. Thus, DYRK1B appears as an attractive drug target for future therapeutic approaches.
Collapse
Affiliation(s)
- Miriam Ems
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Philipps University Marburg, Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
11
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025; 57:131-150. [PMID: 39741186 PMCID: PMC11799530 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nat Chem Biol 2025:10.1038/s41589-024-01822-y. [PMID: 39881214 DOI: 10.1038/s41589-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms. We group the pathways according to the cellular processes they affect, that is, proliferation, conversion of other mature cell types to beta cells and beta cell differentiation from progenitor-like populations. We also suggest assays for assessing the functionality of the regenerated beta cells. Although regeneration processes differ between animal models, such as zebrafish, mice and pigs, regenerative mechanisms identified in any one animal model may be translatable to humans. Overall, chemical biology-based approaches in beta cell regeneration give hope that specific molecular pathways can be targeted to enhance beta cell regeneration.
Collapse
Affiliation(s)
- Christos Karampelias
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ka-Cheuk Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
13
|
Matsubara J, Li YF, Koul S, Mukohyama J, Salazar LEV, Isobe T, Qian D, Clarke MF, Sahoo D, Altman RB, Dalerba P. The E2F4 transcriptional repressor is a key mechanistic regulator of colon cancer resistance to irinotecan (CPT-11). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633435. [PMID: 39896677 PMCID: PMC11785039 DOI: 10.1101/2025.01.22.633435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Colorectal carcinomas (CRCs) are seldom eradicated by cytotoxic chemotherapy. Cancer cells with stem-like functional properties, often referred to as "cancer stem cells" (CSCs), display preferential resistance to several anti-tumor agents used in cancer chemotherapy, but the molecular mechanisms underpinning their selective survival remain only partially understood. Methods In this study, we used Transcription Factor Target Genes (TFTG) enrichment analysis to identify transcriptional regulators (activators or repressors) that undergo preferential activation by chemotherapy in CRC cells with a "bottom-of-the-crypt" phenotype (EPCAM+/CD44+/CD166+; CSC-enriched) as compared to CRC cells with a "top-of-the-crypt" phenotype (EPCAM+/CD44neg/CD166neg; CSC-depleted). The two cell populations were purified in parallel by fluorescence-activated cell sorting (FACS) from a patient-derived xenograft (PDX) line representative of a moderately differentiated human CRC, following in vivo chemotherapy with irinotecan (CPT-11). The transcriptional regulators identified as differentially activated were tested for differential expression in normal vs. cancer tissues, and in cell populations enriched in stem/progenitor cell-types as compared to differentiated lineages (goblet cells, enterocytes) in the mouse colon epithelium. Finally, the top candidate was tested for mechanistic contribution to drug-resistance by selective down-regulation using short-hairpin RNAs (shRNAs). Results Our analysis identified E2F4 and TFDP1, two core components of the DREAM transcriptional repression complex, as transcriptional modulators preferentially activated by irinotecan in EPCAM+/CD44+/CD166+ as compared to EPCAM+/CD44neg/CD166neg cancer cells. The expression levels of both genes (E2F4, TFDP1) were found up-regulated in CRCs as compared to human normal colon tissues, and in a sub-population of mouse colon epithelial cells enriched in stem/progenitor elements (Epcam+/Cd44+/Cd66alow/Kitneg) as compared to other sub-populations enriched in either goblet cells (Epcam+/Cd44+/Cd66alow/Kit+) or enterocytes (Epcam+/Cd44neg/Cd66ahigh). Most importantly, E2F4 down-regulation using shRNAs dramatically enhanced the sensitivity of human CRCs to in vivo treatment with irinotecan, across three independent PDX models. Conclusions Our data identified E2F4 and the DREAM repressor complex as critical regulators of human CRC resistance to irinotecan, and as candidate targets for the development of chemo-sensitizing agents.
Collapse
Affiliation(s)
- Junichi Matsubara
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto (Japan)
| | - Yong Fuga Li
- Department of Genetics, Stanford University, Stanford, CA (USA)
- Department of Bioengineering, Stanford University, Stanford, CA (USA)
- Illumina Inc., San Diego, CA (USA)
| | - Sanjay Koul
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health (HMH), Nutley, NJ (USA)
- Department of Biological Sciences and Geology, Queensborough Community College (QCC), The City University of New York (CUNY), Bayside, NY (USA)
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
| | - Junko Mukohyama
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Department of Surgery, Institute of Medical Science, University of Tokyo, Tokyo (Japan)
| | - Luis E. Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY (USA)
| | - Taichi Isobe
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
- Department of Comprehensive Oncology, Graduate School of Medicine, Kyushu University, Fukuoka (Japan)
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego (UCSD), San Diego, CA (USA)
- Department of Pediatrics, University of California San Diego (UCSD), San Diego, CA (USA); Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY (USA)
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, CA (USA)
- Department of Bioengineering, Stanford University, Stanford, CA (USA)
| | - Piero Dalerba
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health (HMH), Nutley, NJ (USA)
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY (USA)
- Department of Medical Sciences, Hackensack Meridian School of Medicine (HMSOM), Nutley, NJ (USA)
- Lombardi Comprehensive Cancer Center (LCCC), Georgetown University, Washington, DC (USA)
| |
Collapse
|
14
|
Zhang X, Cao C, Zheng F, Liu C, Tian X. Therapeutic Potential of GLP-1 Receptor Agonists in Diabetes and Cardiovascular Disease: Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07670-9. [PMID: 39832069 DOI: 10.1007/s10557-025-07670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice. OBJECTIVE This review aims to comprehensively summarize the role of GLP-1 RAs in the management of diabetes mellitus (DM) and cardiovascular disease (CVD), with a particular emphasis on the underlying signal transduction pathways and their therapeutic potential. METHODS A comprehensive review was carried out through literature research. RESULTS AND DISCUSSION In pancreatic β-cells, GLP-1 RAs regulate the secretion of insulin and glucagon in a glucosedependent manner by influencing signaling pathways such as cAMP, PI3K, and MAPK. They also contribute to the regulation of blood glucose levels by promoting the proliferation of β-cells and inhibiting apoptosis in these cells. Recent comprehensive studies have also demonstrated the favorable impact of GLP-1 RAs on cardiovascular wellbeing. In addition to the cardiovascular protection afforded by glucose metabolism regulation, a large body of evidence from animal and cellular studies has corroborated the beneficial effects of GLP-1 RAs on conditions such as heart failure (HF), hypertension, and ischemic cardiomyopathy. These benefits are mainly attributed to the alleviation of inflammatory responses, reduction of oxidative stress, and prevention of cell apoptosis. Clinical data shows that GLP-1 RAs can reduce the risk of major adverse cardiovascular events (MACE) in diabetic patients. CONCLUSION GLP-1 RAs play an important role in the management of both diabetes and cardiovascular diseases. They show potential therapeutic value through the modulation of multiple signal transduction pathways. However, there may still be some issues in practical applications that require further research and resolution.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China
| | - Chao Cao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Chang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Xiuqing Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China.
| |
Collapse
|
15
|
Basurto‐Islas G, Diaz MC, Ocampo LMZ, Martínez‐Herrera M, López‐Camacho PY. Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease. Arch Pharm (Weinheim) 2025; 358:e2400721. [PMID: 39888017 PMCID: PMC11781347 DOI: 10.1002/ardp.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory impairments and is considered the most prevalent form of dementia. Among the contributing factors to AD lies the hyperphosphorylation of the microtubule-associated protein tau. Phosphorylated tau reduces its affinity for microtubules and triggers other posttranslational modifications that result in its aggregation and assembly into filaments. These structures progressively accumulate within neurons leading to neurodegeneration. While current AD medications often involve undesirable side effects, the exploration of natural products as a potential therapeutic alternative has gained considerable attention. Numerous compounds have shown potential capacity for reducing tau pathology through different mechanisms, such as inhibiting kinases to reduce tau hyperphosphorylation, enhancing phosphatase activity, and blocking fibril formation. Since tau hyperphosphorylation-induced aggregation is pivotal in AD onset, this review aims to elucidate the potential of natural products in modulating this crucial molecular mechanism.
Collapse
Affiliation(s)
| | | | | | - Melchor Martínez‐Herrera
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| | - Perla Y. López‐Camacho
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| |
Collapse
|
16
|
Lan C, Fang G, Qiu C, Li X, Yang F, Yang Y. Inhibition of DYRK1A attenuates vascular remodeling in pulmonary arterial hypertension via suppressing STAT3/Pim-1/NFAT pathway. Clin Exp Hypertens 2024; 46:2297642. [PMID: 38147409 DOI: 10.1080/10641963.2023.2297642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling caused by the excessive proliferation and survival of pulmonary artery smooth muscle cells (PASMCs). Dual-specificity tyrosine regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in the regulation of multiple biological functions, including cell proliferation and survival. However, the role and underlying mechanisms of DYRK1A in PAH pathogenesis remain unclear. We found that DYRK1A was upregulated in PASMCs in response to hypoxia, both in vivo and in vitro. Inhibition of DYRK1A by harmine significantly attenuated hypoxia-induced pulmonary hypertension and pulmonary artery remodeling. Mechanistically, we found that DYRK1A promoted pulmonary arterial remodeling by enhancing the proliferation and survival of PASMCs through activating the STAT3/Pim-1/NFAT pathway, because STAT3 gain-of-function via adeno-associated virus serotype 2 (AAV2) carrying the constitutively active form of STAT3 (STAT3C) nearly abolished the protective effect of harmine on PAH. Collectively, our results reveal a significant role for DYRK1A in pulmonary arterial remodeling and suggest it as a drug target with translational potential for the treatment of PAH.
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiuchuan Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Sylvester-Armstrong KR, Reeder CF, Powell A, Becker MW, Hagan DW, Chen J, Mathews CE, Wasserfall CH, Atkinson MA, Egerman R, Phelps EA. Serum from pregnant donors induces human beta cell proliferation. Islets 2024; 16:2334044. [PMID: 38533763 PMCID: PMC10978022 DOI: 10.1080/19382014.2024.2334044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Pancreatic beta cells are among the slowest replicating cells in the human body and have not been observed to increase in number except during the fetal and neonatal period, in cases of obesity, during puberty, as well as during pregnancy. Pregnancy is associated with increased beta cell mass to meet heightened insulin demands. This phenomenon raises the intriguing possibility that factors present in the serum of pregnant individuals may stimulate beta cell proliferation and offer insights into expansion of the beta cell mass for treatment and prevention of diabetes. The primary objective of this study was to test the hypothesis that serum from pregnant donors contains bioactive factors capable of inducing human beta cell proliferation. An immortalized human beta cell line with protracted replication (EndoC-βH1) was cultured in media supplemented with serum from pregnant and non-pregnant female and male donors and assessed for differences in proliferation. This experiment was followed by assessment of proliferation of primary human beta cells. Sera from five out of six pregnant donors induced a significant increase in the proliferation rate of EndoC-βH1 cells. Pooled serum from the cohort of pregnant donors also increased the rate of proliferation in primary human beta cells. This study demonstrates that serum from pregnant donors stimulates human beta cell proliferation. These findings suggest the existence of pregnancy-associated factors that can offer novel avenues for beta cell regeneration and diabetes prevention strategies. Further research is warranted to elucidate the specific factors responsible for this effect.
Collapse
Affiliation(s)
| | - Callie F. Reeder
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Andrece Powell
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - D. Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Robert Egerman
- Department of Obstetrics & Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine and University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Karakose E, Wang X, Wang P, Carcamo S, Demircioglu D, Lambertini L, Wood O, Kang R, Lu G, Scott DK, Garcia-Ocaña A, Argmann C, Sebra RP, Hasson D, Stewart AF. Cycling alpha cells in regenerative drug-treated human pancreatic islets may serve as key beta cell progenitors. Cell Rep Med 2024; 5:101832. [PMID: 39626675 PMCID: PMC11722108 DOI: 10.1016/j.xcrm.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Diabetes results from an inadequate number of insulin-producing human beta cells. There is currently no clinically available effective means to restore beta cell mass in millions of people with diabetes. Although the DYRK1A inhibitors, either alone or in combination with GLP-1 receptor agonists (GLP-1) or transforming growth factor β (TGF-β) superfamily inhibitors (LY), induce beta cell replication and increase beta cell mass, the precise mechanisms of action remain elusive. Here we perform single-cell RNA sequencing on human pancreatic islets treated with a DYRK1A inhibitor, either alone or with GLP-1 or LY. We identify cycling alpha cells as the most responsive cells to DYRK1A inhibition. Lineage trajectory analyses suggest that cycling alpha cells may serve as precursor cells that transdifferentiate into beta cells. Collectively, in addition to enhancing expression of beta cell phenotypic genes in beta cells, our findings suggest that regenerative drugs may be targeting cycling alpha cells in human islets.
Collapse
Affiliation(s)
- Esra Karakose
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Xuedi Wang
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saul Carcamo
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deniz Demircioglu
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olivia Wood
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy Kang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geming Lu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity, Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Akhavan S, Sanati MH, Irani S, Soheili ZS, Arpanaei A. WS6 and 5-iodotubercidin small molecules and growth factors; TGF, HGF, and EGF synergistically enhance proliferation of β-like human induced pluripotent stem cells (iPSCs). J Diabetes Metab Disord 2024; 23:2355-2364. [PMID: 39610526 PMCID: PMC11599654 DOI: 10.1007/s40200-024-01503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/31/2024] [Indexed: 11/30/2024]
Abstract
Objectives It has been shown that growth factors and small molecules play an essential role in the proliferation of β cells and insulin production. In this study, we investigated the effects of small molecules (WS6 and 5-iodotubercidin) and growth factors (TGFβ, HGF, and EGF) on the proliferation of β-like human ipSCs. Methods iPSCs derived β cells were treated with small molecules and growth factors. Cytotoxic activity of small molecules and growth factors was determined using MTT assay. Insulin gene expression and secretion were measured by qPCR and ELISA, respectively. The protein expression of insulin was evaluated by western blot as well. Results Simltananeous addition of WS6 and Harmine into the culture media increased insulin gene expression compared to treatment by each molecule alone (p < 0.05). It was found that the simultaneous recruitment of EGH, HGF, and TGF-β increased insulin expression compared to treatment by each molecule alone (p < 0.05). Results showed that EGF, HGF, TGF-β growth factors increased insulin gene expression, eventually leading to insulin secretion from β cells (p < 0.05). Conclusions Growth factors and small molecules synergistically enhanced the proliferation of β cells and insulin production.
Collapse
Affiliation(s)
- Saeedeh Akhavan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Sanati
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, PO Box 14965-16, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Biochemistry, National Institute of Genetic Engineering and Biotechnology, P.O. Box: 14965/161, Tehran, Iran
| | | |
Collapse
|
20
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Azimzadeh M, Cheah PS, Ling KH. Brain insulin resistance in Down syndrome: Involvement of PI3K-Akt/mTOR axis in early-onset of Alzheimer's disease and its potential as a therapeutic target. Biochem Biophys Res Commun 2024; 733:150713. [PMID: 39307112 DOI: 10.1016/j.bbrc.2024.150713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual impairment, characterised by an extra copy of chromosome 21. After the age of 40, DS individuals are highly susceptible to accelerated ageing and the development of early-onset Alzheimer-like neuropathology. In the context of DS, the brain presents a spectrum of neuropathological mechanisms and metabolic anomalies. These include heightened desensitisation of brain insulin and insulin-like growth factor-1 (IGF-1) reactions, compromised mitochondrial functionality, escalated oxidative stress, reduced autophagy, and the accumulation of amyloid beta and tau phosphorylation. These multifaceted factors intertwine to shape the intricate landscape of DS-related brain pathology. Altered brain insulin signalling is linked to Alzheimer's disease (AD). This disruption may stem from anomalies in the extracellular aspect (insulin receptor) or the intracellular facet, involving the inhibition of insulin receptor substrate 1 (IRS1). Both domains contribute to the intricate mechanism underlying this dysregulation. The PI3K-Akt/mammalian target of the rapamycin (mTOR) axis is a crucial intracellular element of the insulin signalling pathway that connects numerous physiological processes in the cell cycle. In age-related neurodegenerative disorders like AD, aberrant modulation of the PI3K-Akt signalling cascade is a key factor contributing to their onset. Aberrant and sustained hyperactivation of the PI3K/Akt-mTOR axis in the DS brain is implicated in early symptoms of AD development. Targeting the PI3K-Akt/mTOR pathway may help delay the onset of early-onset AD in individuals with DS, offering a potential way to slow disease progression and enhance their quality of life.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Bourgeois S, Coenen S, Degroote L, Willems L, Van Mulders A, Pierreux J, Heremans Y, De Leu N, Staels W. Harnessing beta cell regeneration biology for diabetes therapy. Trends Endocrinol Metab 2024; 35:951-966. [PMID: 38644094 DOI: 10.1016/j.tem.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic β-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate β-cells directly within the pancreas; however, while several approaches for β-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in β-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sophie Coenen
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Laure Degroote
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Lien Willems
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Annelore Van Mulders
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Julie Pierreux
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Yves Heremans
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nico De Leu
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Endocrinology, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium.
| | - Willem Staels
- Genetics, Reproduction, and Development (GRAD), Beta Cell Neogenesis (BENE) Research Unit, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universiteit Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium.
| |
Collapse
|
23
|
Ables JL, Israel L, Wood O, Govindarajulu U, Fremont RT, Banerjee R, Liu H, Cohen J, Wang P, Kumar K, Lu G, DeVita RJ, Garcia-Ocaña A, Murrough JW, Stewart AF. A Phase 1 single ascending dose study of pure oral harmine in healthy volunteers. J Psychopharmacol 2024; 38:911-923. [PMID: 39301926 PMCID: PMC11549898 DOI: 10.1177/02698811241273772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Harmine is a component of the hallucinogenic brew, Ayahuasca, which also contains the psychoactive compound, N, N-dimethyltryptamine. Whether pharmaceutical-grade harmine hydrochloride (HCl) has psychoactive effects, the doses at which these might occur, and the dose-response relationship to side effects and safety in humans are unknown. METHODS We conducted a Phase 1, open-label single ascending dose trial in healthy adults with normal body mass index and no prior psychiatric illness. The primary goal was to determine the maximum tolerated dose (MTD) of oral pharmaceutical-grade harmine HCl and to characterize safety and tolerability. A secondary goal was to ascertain whether any oral dose has psychoactive effects. RESULTS Thirty-four adult participants, aged 18-55 years, were screened for study eligibility. Twenty-five participants met eligibility criteria and were randomized to a single dose of 100, 200, 300, or 500 mg of harmine HCl, respectively, using a continuous reassessment method. The most common adverse events (AEs) observed were gastrointestinal and/or neurological, dose-related, and of mild to moderate severity. The MTD was determined to be between 100 and 200 mg and is weight-based, with 90% of those participants receiving >2.7 mg/kg experiencing a dose-limiting toxicity. No serious AEs of harmine HCl were identified. CONCLUSIONS Harmine HCl can be orally administered to healthy participants in doses <2.7 mg/kg with minimal or no AEs. Doses >2.7 mg/kg are associated with vomiting, drowsiness, and limited psychoactivity. This study is the first to systematically characterize the psychoactive effects of pharmaceutical quality harmine in healthy participants.
Collapse
Affiliation(s)
- Jessica L Ables
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leah Israel
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia Wood
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Usha Govindarajulu
- Department of Population Health Science and Policy, Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel T Fremont
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronjon Banerjee
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongtao Liu
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Cohen
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Wang
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kunal Kumar
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geming Lu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - James W Murrough
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Andrew F Stewart
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Ohazama S, Fujimoto A, Konda D, Yokoyama R, Nakagawa S, Maita H. Dissecting the role of SMN multimerization in its dissociation from the Cajal body using harmine as a tool compound. J Cell Sci 2024; 137:jcs261834. [PMID: 39258320 DOI: 10.1242/jcs.261834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Survival motor neuron protein (SMN), which is linked to spinal muscular atrophy, is a key component of the Gemin complex, which is essential for the assembly of small nuclear RNA-protein complexes (snRNPs). After initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in the Cajal bodies suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN complexes from Cajal bodies remain unclear. Here, we have employed a super-resolution microscope alongside the β-carboline alkaloid harmine, which disrupts the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies in which SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.
Collapse
Affiliation(s)
- Saki Ohazama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Akiko Fujimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Daisuke Konda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryota Yokoyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
25
|
Machi JF, Altilio I, Qi Y, Morales AA, Silvestre DH, Hernandez DR, Da Costa-Santos N, Santana AG, Neghabi M, Nategh P, Castro TL, Werneck-de-Castro JP, Ranji M, Evangelista FS, Vazquez-Padron RI, Bernal-Mizrachi E, Rodrigues CO. Endothelial c-Myc knockout disrupts metabolic homeostasis and triggers the development of obesity. Front Cell Dev Biol 2024; 12:1407097. [PMID: 39100099 PMCID: PMC11294153 DOI: 10.3389/fcell.2024.1407097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: Obesity is a major risk factor associated with multiple pathological conditions including diabetes and cardiovascular disease. Endothelial dysfunction is an early predictor of obesity. However, little is known regarding how early endothelial changes trigger obesity. In the present work we report a novel endothelial-mediated mechanism essential for regulation of metabolic homeostasis, driven by c-Myc. Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in metabolic homeostasis during aging and high-fat diet exposure. Body weight and metabolic parameters were collected over time and tissue samples collected at endpoint for biochemical, pathology and RNA-sequencing analysis. Animals exposed to high-fat diet were also evaluated for cardiac dysfunction. Results: In the present study we demonstrate that EC-Myc KO triggers endothelial dysfunction, which precedes progressive increase in body weight during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals showed significant increase in white adipose tissue mass relative to control littermates, which was associated with sex-specific changes in whole body metabolism and increase in systemic leptin. Overexpression of endothelial c-Myc attenuated diet-induced obesity and visceral fat accumulation and prevented the development of glucose intolerance and cardiac dysfunction. Transcriptome analysis of skeletal muscle suggests that the protective effects promoted by endothelial c-Myc overexpression are associated with the expression of genes known to increase weight loss, energy expenditure and glucose tolerance. Conclusion: Our results show a novel important role for endothelial c-Myc in regulating metabolic homeostasis and suggests its potential targeting in preventing obesity and associated complications such as diabetes type-2 and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jacqueline F. Machi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Isabella Altilio
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Yue Qi
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Alejo A. Morales
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego H. Silvestre
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diana R. Hernandez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nicolas Da Costa-Santos
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Aline G. Santana
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Mehrnoosh Neghabi
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Parisa Nategh
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Thiago L. Castro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - João P. Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mahsa Ranji
- Department of Electrical Engineering and Computer Science, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
26
|
Rosselot C, Li Y, Wang P, Alvarsson A, Beliard K, Lu G, Kang R, Li R, Liu H, Gillespie V, Tzavaras N, Kumar K, DeVita RJ, Stewart AF, Stanley SA, Garcia-Ocaña A. Harmine and exendin-4 combination therapy safely expands human β cell mass in vivo in a mouse xenograft system. Sci Transl Med 2024; 16:eadg3456. [PMID: 38985854 PMCID: PMC12051162 DOI: 10.1126/scitranslmed.adg3456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing β cells are reduced in number in most people with diabetes, but most individuals still have some residual β cells. However, none of the many diabetes drugs in common use increases human β cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human β cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on β cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human β cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human β cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human β cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human β cell mass occurred through mechanisms that included enhanced human β cell proliferation, function, and survival. The increase in human β cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor-GLP1RA combination for diabetes treatment.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yansui Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kara Beliard
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geming Lu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Randy Kang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Rosemary Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongtao Liu
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Virginia Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
27
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
28
|
Jimenez-Gonzalez M, Stanley S. Optogenetic control of β cell function. Nat Biomed Eng 2024; 8:801-803. [PMID: 38057429 DOI: 10.1038/s41551-023-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Affiliation(s)
| | - Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Dalle S. Targeting Protein Kinases to Protect Beta-Cell Function and Survival in Diabetes. Int J Mol Sci 2024; 25:6425. [PMID: 38928130 PMCID: PMC11203834 DOI: 10.3390/ijms25126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of diabetes is increasing worldwide. Massive death of pancreatic beta-cells causes type 1 diabetes. Progressive loss of beta-cell function and mass characterizes type 2 diabetes. To date, none of the available antidiabetic drugs promotes the maintenance of a functional mass of endogenous beta-cells, revealing an unmet medical need. Dysfunction and apoptotic death of beta-cells occur, in particular, through the activation of intracellular protein kinases. In recent years, protein kinases have become highly studied targets of the pharmaceutical industry for drug development. A number of drugs that inhibit protein kinases have been approved for the treatment of cancers. The question of whether safe drugs that inhibit protein kinase activity can be developed and used to protect the function and survival of beta-cells in diabetes is still unresolved. This review presents arguments suggesting that several protein kinases in beta-cells may represent targets of interest for the development of drugs to treat diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| |
Collapse
|
30
|
Moon JH, Choe HJ, Lim S. Pancreatic beta-cell mass and function and therapeutic implications of using antidiabetic medications in type 2 diabetes. J Diabetes Investig 2024; 15:669-683. [PMID: 38676410 PMCID: PMC11143426 DOI: 10.1111/jdi.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Nowadays, the focus of diabetes treatment has switched from lowering the glucose level to preserving glycemic homeostasis and slowing the disease progression. The main pathophysiology of both type 1 diabetes and long-standing type 2 diabetes is pancreatic β-cell mass loss and dysfunction. According to recent research, human pancreatic β-cells possess the ability to proliferate in response to elevated insulin demands. It has been demonstrated that in insulin-resistant conditions in humans, such as obesity or pregnancy, the β-cell mass increases. This ability could be helpful in developing novel treatment approaches to restore a functional β-cell mass. Treatment strategies aimed at boosting β-cell function and mass may be a useful tool for managing diabetes mellitus and stopping its progression. This review outlines the processes of β-cell failure and detail the many β-cell abnormalities that manifest in people with diabetes mellitus. We also go over standard techniques for determining the mass and function of β-cells. Lastly, we provide the therapeutic implications of utilizing antidiabetic drugs in controlling the mass and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Joon Ho Moon
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| | - Hun Jee Choe
- Department of Internal MedicineHallym University Dongtan Sacred Heart HospitalHwaseongSouth Korea
| | - Soo Lim
- Department of Internal MedicineSeoul National University College of MedicineSeongnamSouth Korea
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamSouth Korea
| |
Collapse
|
31
|
Jones Lipinski RA, Stancill JS, Nuñez R, Wynia-Smith SL, Sprague DJ, Nord JA, Bird A, Corbett JA, Smith BC. Zinc-chelating BET bromodomain inhibitors equally target islet endocrine cell types. Am J Physiol Regul Integr Comp Physiol 2024; 326:R515-R527. [PMID: 38618911 PMCID: PMC11381023 DOI: 10.1152/ajpregu.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to β cells by exploiting the high-zinc (Zn2+) concentration in β cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β cells stimulated with the proinflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β cells and mTomato in insulin-negative cells (non-β cells). Surprisingly, Zn2+ chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic β cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in β cells to accumulate in β cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.
Collapse
Affiliation(s)
- Rachel A Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel J Sprague
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joshua A Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Amir Bird
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
32
|
Wang P, Wood O, Choleva L, Liu H, Karakose E, Lambertini L, Pillard A, Wu V, Garcia-Ocana A, Scott DK, Kumar K, DeVita RJ, Stewart AF. Select DYRK1A Inhibitors Enhance Both Proliferation and Differentiation in Human Pancreatic Beta Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594179. [PMID: 38798411 PMCID: PMC11118480 DOI: 10.1101/2024.05.17.594179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The small molecule DYRK1A inhibitor, harmine, induces human beta cell proliferation, expands beta cell mass, enhances expression of beta cell phenotypic genes, and improves human beta cell function i n vitro and in vivo . It is unknown whether the "pro-differentiation effect" is a DYRK1A inhibitor class-wide effect. Here we compare multiple commonly studied DYRK1A inhibitors. Harmine, 2-2c and 5-IT increase expression of PDX1, MAFA, NKX6.1, SLC2A2, PCSK1, MAFB, SIX2, SLC2A2, SLC30A8, ENTPD3 in normal and T2D human islets. Unexpectedly, GNF4877, CC-401, INDY, CC-401 and Leucettine fail to induce expression of these essential beta cell molecules. Remarkably, the pro-differentiation effect is independent of DYRK1A inhibition: although silencing DYRK1A induces human beta cell proliferation, it has no effect on differentiation; conversely, harmine treatment enhances beta cell differentiation in DYRK1A-silenced islets. A careful screen of multiple DYRK1A inhibitor kinase candidate targets was unable to identify pro-differentiation pathways. Overall, harmine, 2-2c and 5-IT are unique among DYRK1A inhibitors in their ability to enhance both beta cell proliferation and differentiation. While beta cell proliferation is mediated by DYRK1A inhibition, the pro-differentiation effects of harmine, 2-2c and 5-IT are distinct, and unexplained in mechanistic terms. These considerations have important implications for DYRK1A inhibitor pharmaceutical development.
Collapse
|
33
|
Lee RA, Chopra DG, Nguyen V, Huang XP, Zhang Y, Shariati K, Yiv N, Schugar R, Annes J, Roth B, Ku GM. An shRNA screen in primary human beta cells identifies the serotonin 1F receptor as a negative regulator of survival during transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591950. [PMID: 38746433 PMCID: PMC11092577 DOI: 10.1101/2024.05.01.591950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Islet transplantation can cure type 1 diabetes, but peri-transplant beta cell death limits this procedure to those with low insulin requirements. Improving human beta cell survival or proliferation may make islet transplantation a possibility for more type 1 patients. To identify novel regulators of beta cell survival and proliferation, we conducted a pooled small hairpin RNA (shRNA) screen in primary human beta cells transplanted into immunocompromised mice. shRNAs targeting several cyclin dependent kinase inhibitors were enriched after transplant. Here, we focused on the Gi/o-coupled GPCR, serotonin 1F receptor ( HTR1F, 5-HT 1F ) which our screen identified as a negative regulator of beta cell numbers after transplant. In vitro , 5-HT 1F knockdown induced human beta cell proliferation but only when combined with harmine and exendin-4. In vivo , knockdown of 5-HT 1F reduced beta cell death during transplant. To demonstrate the feasibility of targeting 5-HT 1F in islet transplant, we identified and validated a small molecule 5-HT 1F antagonist. This antagonist increased glucose stimulated insulin secretion from primary human islets and cAMP accumulation in primary human beta cells. Finally, the 5-HT 1F antagonist improved glycemia in marginal mass, human islet transplants into immunocompromised mice. We identify 5-HT 1F as a novel druggable target to improve human beta cell survival in the setting of islet transplantation. One Sentence Summary Serotonin 1F receptor (5-HT 1F ) negatively regulates insulin secretion and beta cell survival during transplant.
Collapse
|
34
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
35
|
Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, Yu X, Su Z. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chin Med J (Engl) 2024; 137:791-805. [PMID: 38479993 PMCID: PMC10997226 DOI: 10.1097/cm9.0000000000003034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Pancreatic β-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing β-cells and hence restoring insulin production are gaining attention in translational diabetes research, and β-cell replenishment has been the main focus for diabetes treatment. Significant findings in β-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate β-cells. In this review, we summarize current knowledge on the mechanisms implicated in β-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to β-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting β-cell proliferation, inducing non-β-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for β-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous β-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.
Collapse
Affiliation(s)
- Daxin Cui
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingrong Feng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siman Lei
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
36
|
Henderson SH, Sorrell FJ, Bennett JM, Fedorov O, Hanley MT, Godoi PH, Ruela de Sousa R, Robinson S, Navratilova IH, Elkins JM, Ward SE. Imidazo[1,2-b]pyridazines as inhibitors of DYRK kinases. Eur J Med Chem 2024; 269:116292. [PMID: 38479168 DOI: 10.1016/j.ejmech.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.
Collapse
Affiliation(s)
- Scott H Henderson
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9RH, UK.
| | - Fiona J Sorrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - James M Bennett
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Marcus T Hanley
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK
| | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Roberta Ruela de Sousa
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Sean Robinson
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Iva Hopkins Navratilova
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK; University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK; Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil.
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK.
| |
Collapse
|
37
|
Choi J, Cayabyab F, Perez H, Yoshihara E. Scaling Insulin-Producing Cells by Multiple Strategies. Endocrinol Metab (Seoul) 2024; 39:191-205. [PMID: 38572534 PMCID: PMC11066437 DOI: 10.3803/enm.2023.1910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 04/05/2024] Open
Abstract
In the quest to combat insulin-dependent diabetes mellitus (IDDM), allogenic pancreatic islet cell therapy sourced from deceased donors represents a significant therapeutic advance. However, the applicability of this approach is hampered by donor scarcity and the demand for sustained immunosuppression. Human induced pluripotent stem cells are a game-changing resource for generating synthetic functional insulin-producing β cells. In addition, novel methodologies allow the direct expansion of pancreatic progenitors and mature β cells, thereby circumventing prolonged differentiation. Nevertheless, achieving practical reproducibility and scalability presents a substantial challenge for this technology. As these innovative approaches become more prominent, it is crucial to thoroughly evaluate existing expansion techniques with an emphasis on their optimization and scalability. This manuscript delineates these cutting-edge advancements, offers a critical analysis of the prevailing strategies, and underscores pivotal challenges, including cost-efficiency and logistical issues. Our insights provide a roadmap, elucidating both the promises and the imperatives in harnessing the potential of these cellular therapies for IDDM.
Collapse
Affiliation(s)
- Jinhyuk Choi
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fritz Cayabyab
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harvey Perez
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
38
|
McCarty SM, Clasby MC, Sexton JZ. High-Throughput Methods for the Discovery of Small Molecule Modulators of Pancreatic Beta-Cell Function and Regeneration. Assay Drug Dev Technol 2024; 22:148-159. [PMID: 38526231 PMCID: PMC11236284 DOI: 10.1089/adt.2023.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
The progression of type II diabetes (T2D) is characterized by a complex and highly variable loss of beta-cell mass, resulting in impaired insulin secretion. Many T2D drug discovery efforts aimed at discovering molecules that can protect or restore beta-cell mass and function have been developed using limited beta-cell lines and primary rodent/human pancreatic islets. Various high-throughput screening methods have been used in the context of drug discovery, including luciferase-based reporter assays, glucose-stimulated insulin secretion, and high-content screening. In this context, a cornerstone of small molecule discovery has been the use of immortalized rodent beta-cell lines. Although insightful, this usage has led to a more comprehensive understanding of rodent beta-cell proliferation pathways rather than their human counterparts. Advantages gained in enhanced physiological relevance are offered by three-dimensional (3D) primary islets and pseudoislets in contrast to monolayer cultures, but these approaches have been limited to use in low-throughput experiments. Emerging methods, such as high-throughput 3D islet imaging coupled with machine learning, aim to increase the feasibility of integrating 3D microtissue structures into high-throughput screening. This review explores the current methods used in high-throughput screening for small molecule modulators of beta-cell mass and function, a potentially pivotal strategy for diabetes drug discovery.
Collapse
Affiliation(s)
- Sean M. McCarty
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, Michigan, USA
| | - Martin C. Clasby
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Wortham M, Ramms B, Zeng C, Benthuysen JR, Sai S, Pollow DP, Liu F, Schlichting M, Harrington AR, Liu B, Prakash TP, Pirie EC, Zhu H, Baghdasarian S, Auwerx J, Shirihai OS, Sander M. Metabolic control of adaptive β-cell proliferation by the protein deacetylase SIRT2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581864. [PMID: 38464227 PMCID: PMC10925077 DOI: 10.1101/2024.02.24.581864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Selective and controlled expansion of endogenous β-cells has been pursued as a potential therapy for diabetes. Ideally, such therapies would preserve feedback control of β-cell proliferation to avoid excessive β-cell expansion and an increased risk of hypoglycemia. Here, we identified a regulator of β-cell proliferation whose inactivation results in controlled β-cell expansion: the protein deacetylase Sirtuin 2 (SIRT2). Sirt2 deletion in β-cells of mice increased β-cell proliferation during hyperglycemia with little effect in homeostatic conditions, indicating preservation of feedback control of β-cell mass. SIRT2 restrains proliferation of human islet β-cells cultured in glucose concentrations above the glycemic set point, demonstrating conserved SIRT2 function. Analysis of acetylated proteins in islets treated with a SIRT2 inhibitor revealed that SIRT2 deacetylates enzymes involved in oxidative phosphorylation, dampening the adaptive increase in oxygen consumption during hyperglycemia. At the transcriptomic level, Sirt2 inactivation has context-dependent effects on β-cells, with Sirt2 controlling how β-cells interpret hyperglycemia as a stress. Finally, we provide proof-of-principle that systemic administration of a GLP1-coupled Sirt2-targeting antisense oligonucleotide achieves β-cell selective Sirt2 inactivation and stimulates β-cell proliferation under hyperglycemic conditions. Overall, these studies identify a therapeutic strategy for increasing β-cell mass in diabetes without circumventing feedback control of β-cell proliferation.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Bastian Ramms
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Chun Zeng
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Jacqueline R Benthuysen
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Somesh Sai
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dennis P Pollow
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Michael Schlichting
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Austin R Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Bradley Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Thazha P Prakash
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Elaine C Pirie
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Han Zhu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Siyouneh Baghdasarian
- Departments of Medicine and Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Johan Auwerx
- Laboratory of Integrated Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Orian S Shirihai
- Departments of Medicine and Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
40
|
Kimani CN, Reuter H, Kotzé SH, Venter P, Ramharack P, Muller CJF. Pancreatic beta cell regenerative potential of Zanthoxylum chalybeum Engl. Aqueous stem bark extract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117374. [PMID: 37944876 DOI: 10.1016/j.jep.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum chalybeum Engl. is endemic to Africa and has been used traditionally to treat diabetes mellitus. Moreover, its pharmacological efficacy has been confirmed experimentally using in vitro and in vivo models of diabetes. However, the effects of Z. chalybeum extracts and its major constituent compounds on beta cell and islet regeneration are not clear. Further, the mechanisms associated with observed antidiabetic effects at the beta cell level are not fully elucidated. AIM OF THE STUDY We determined the beta cell regenerative efficacy of Z. chalybeum aqueous stem bark extract, identified the chemical compounds in Z. chalybeum aqueous stem bark extracts and explored their putative mechanisms of action. MATERIALS AND METHODS Phytochemical profiling of the Z. chalybeum extract was achieved using ultra high-performance liquid chromatography hyphenated to high-resolution mass spectrometry. Thereafter, molecular interactions of the compounds with beta cell regeneration targets were evaluated via molecular docking. In vitro, effects of the extract on cell viability, proliferation, apoptosis and oxidative stress were investigated in RIN-5F beta cells exposed to palmitate or streptozotocin. In vivo, pancreas tissue sections from streptozotocin-induced diabetic male Wistar rats treated with Z. chalybeum extract were stained for insulin, glucagon, pancreatic duodenal homeobox protein 1 (Pdx-1) and Ki-67. RESULTS Based on ligand target and molecular docking interactions diosmin was identified as a dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitor. In vitro, Z. chalybeum augmented cell viability and cell proliferation while in palmitate-pre-treated cells, the extract significantly increased cell activity after 72 h. In vivo, although morphometric analysis showed decreased islet and beta cell size and density, observation of increased Pdx-1 and Ki-67 immunoreactivity in extract-treated islets suggests that Z. chalybeum extract has mild beta cell regenerative potential mediated by increased cell proliferation. CONCLUSIONS Overall, the mitogenic effects observed in vitro, were not robust enough to elicit sufficient recovery of functional beta cell mass in our in vivo model, in the context of a sustained diabetic milieu. However, the identification of diosmin as a potential Dyrk1A inhibitor merits further inquiry into the attendant molecular interactions.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Department of Non-communicable Diseases, Institute of Primate Research, PO Box 24481, Karen, Nairobi, Kenya.
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, PO Box 334, Basseterre, Saint Kitts and Nevis
| | - Pieter Venter
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Christo John Frederick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
41
|
Katz LS, Brill G, Wang P, Lambertini L, Zhang P, Haldeman JM, Liu H, Newgard CB, Stewart AF, Garcia-Ocaña A, Scott DK. Transcriptional activation of the Myc gene by glucose in β-cells requires a ChREBP-dependent 3-D chromatin interaction between the Myc and Pvt1 genes. Mol Metab 2024; 79:101848. [PMID: 38042369 PMCID: PMC10714240 DOI: 10.1016/j.molmet.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
OBJECTIVE All forms of diabetes result from insufficient functional β-cell mass. Thus, achieving the therapeutic goal of expanding β-cell mass requires a better mechanistic understanding of how β-cells proliferate. Glucose is a natural β-cell mitogen that mediates its effects in part through the glucose-responsive transcription factor, carbohydrate response element binding protein (ChREBP) and the anabolic transcription factor, MYC. However, mechanistic details by which glucose activates Myc at the transcriptional level are poorly understood. METHODS Here, siRNA was used to test the role of ChREBP in the glucose response of MYC, ChIP and ChIPseq to identify potential regulatory binding sites, chromatin conformation capture to identify DNA/DNA interactions, and an adenovirus was constructed to expresses x-dCas9 and an sgRNA that specifically disrupts the recruitment of ChREBP to a specific targeted ChoRE. RESULTS We found that ChREBP is essential for glucose-mediated transcriptional induction of Myc, and for increases in Myc mRNA and protein abundance. Further, ChIPseq revealed that the carbohydrate response element (ChoRE) nearest to the Myc transcriptional start site (TSS) is immediately upstream of the gene encoding the lncRNA, Pvt1, 60,000 bp downstream of the Myc gene. Chromatin Conformation Capture (3C) confirmed a glucose-dependent interaction between these two sites. Transduction with an adenovirus expressing x-dCas9 and an sgRNA specifically targeting the highly conserved Pvt1 ChoRE, attenuates ChREBP recruitment, decreases Myc-Pvt1 DNA/DNA interaction, and decreases expression of the Pvt1 and Myc genes in response to glucose. Importantly, isolated and dispersed rat islet cells transduced with the ChoRE-disrupting adenovirus also display specific decreases in ChREBP-dependent, glucose-mediated expression of Pvt1 and Myc, as well as decreased glucose-stimulated β-cell proliferation. CONCLUSIONS The mitogenic glucose response of Myc is mediated via glucose-dependent recruitment of ChREBP to the promoter of the Pvt1 gene and subsequent DNA looping with the Myc promoter.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Gabriel Brill
- Pharmacologic Sciences Department, Stony Brook University, Stony Brook, NY, USA(5)
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Pili Zhang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | | | - Hongtao Liu
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | | | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA
| | - Adolfo Garcia-Ocaña
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, NY 10029, USA.
| |
Collapse
|
42
|
Nevzorova YA, Cubero FJ. Obesity under the moonlight of c-MYC. Front Cell Dev Biol 2023; 11:1293218. [PMID: 38116204 PMCID: PMC10728299 DOI: 10.3389/fcell.2023.1293218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
The moonlighting protein c-Myc is a master regulator of multiple biological processes including cell proliferation, differentiation, angiogenesis, apoptosis and metabolism. It is constitutively and aberrantly expressed in more than 70% of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is involved in several inflammatory, autoimmune, metabolic and other non-cancerous diseases. In this review, we addressed the role of c-Myc in obesity. Obesity is a systemic disease, accompanied by multi-organ dysfunction apart from white adipose tissue (WAT), such as the liver, the pancreas, and the intestine. c-Myc plays a big diversity of functions regulating cellular proliferation, the maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range of metabolic genes, modulates the inflammatory response, induces insulin resistance (IR), and contributes to the regulation of intestinal dysbiosis. Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in order to mitigate obesity and its consequences.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
43
|
Ruffell SGD, Crosland‐Wood M, Palmer R, Netzband N, Tsang W, Weiss B, Gandy S, Cowley‐Court T, Halman A, McHerron D, Jong A, Kennedy T, White E, Perkins D, Terhune DB, Sarris J. Ayahuasca: A review of historical, pharmacological, and therapeutic aspects. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e146. [PMID: 38868739 PMCID: PMC11114307 DOI: 10.1002/pcn5.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Ayahuasca is a psychedelic plant brew originating from the Amazon rainforest. It is formed from two basic components, the Banisteriopsis caapi vine and a plant containing the potent psychedelic dimethyltryptamine (DMT), usually Psychotria viridis. Here we review the history of ayahuasca and describe recent work on its pharmacology, phenomenological responses, and clinical applications. There has been a significant increase in interest in ayahuasca since the turn of the millennium. Anecdotal evidence varies significantly, ranging from evangelical accounts to horror stories involving physical and psychological harm. The effects of the brew on personality and mental health outcomes are discussed in this review. Furthermore, phenomenological analyses of the ayahuasca experience are explored. Ayahuasca is a promising psychedelic agent that warrants greater empirical attention regarding its basic neurochemical mechanisms of action and potential therapeutic application.
Collapse
Affiliation(s)
- Simon G. D. Ruffell
- Onaya ScienceIquitosPeru
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Max Crosland‐Wood
- Onaya ScienceIquitosPeru
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Rob Palmer
- Onaya ScienceIquitosPeru
- School of MedicineUniversity of YaleNew HavenConnecticutUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - WaiFung Tsang
- Onaya ScienceIquitosPeru
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Brandon Weiss
- Onaya ScienceIquitosPeru
- Division of PsychiatryImperial College LondonLondonUK
| | | | - Tessa Cowley‐Court
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Andreas Halman
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | | | - Angelina Jong
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Daniel Perkins
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- Centre for Mental HealthSwinburne UniversityMelbourneAustralia
| | - Devin B. Terhune
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Jerome Sarris
- Psychae InstituteMelbourneVictoriaAustralia
- NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
- Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
44
|
Miyata Y, Nishida E. Identification of FAM53C as a cytosolic-anchoring inhibitory binding protein of the kinase DYRK1A. Life Sci Alliance 2023; 6:e202302129. [PMID: 37802655 PMCID: PMC10559228 DOI: 10.26508/lsa.202302129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
The protein kinase DYRK1A encoded in human chromosome 21 is the major contributor to the multiple symptoms observed in Down syndrome patients. In addition, DYRK1A malfunction is associated with various other neurodevelopmental disorders such as autism spectrum disorder. Here, we identified FAM53C with no hitherto known biological function as a novel suppressive binding partner of DYRK1A. FAM53C is bound to the catalytic protein kinase domain of DYRK1A, whereas DCAF7/WDR68, the major DYRK1A-binding protein, binds to the N-terminal domain of DYRK1A. The binding of FAM53C inhibited autophosphorylation activity of DYRK1A and its kinase activity to an exogenous substrate, MAPT/Tau. FAM53C did not bind directly to DCAF7/WDR68, whereas DYRK1A tethered FAM53C and DCAF7/WDR68 by binding concurrently to both of them, forming a tri-protein complex. DYRK1A possesses an NLS and accumulates in the nucleus when overexpressed in cells. Co-expression of FAM53C induced cytoplasmic re-localization of DYRK1A, revealing the cytoplasmic anchoring function of FAM53C to DYRK1A. Moreover, the binding of FAM53C to DYRK1A suppressed the DYRK1A-dependent nuclear localization of DCAF7/WDR68. All the results show that FAM53C binds to DYRK1A, suppresses its kinase activity, and anchors it in the cytoplasm. In addition, FAM53C is bound to the DYRK1A-related kinase DYRK1B with an Hsp90/Cdc37-independent manner. The results explain for the first time why endogenous DYRK1A is distributed in the cytoplasm in normal brain tissue. FAM53C-dependent regulation of the kinase activity and intracellular localization of DYRK1A may play a significant role in gene expression regulation caused by normal and aberrant levels of DYRK1A.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Giri PS, Bharti AH, Kode J, Begum R, Dwivedi M. Harmine and Kaempferol treatment enhances NFATC1 and FOXP3 mediated regulatory T-cells' suppressive capacity in generalized vitiligo. Int Immunopharmacol 2023; 125:111174. [PMID: 37951194 DOI: 10.1016/j.intimp.2023.111174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Generalized vitiligo (GV) is an autoimmune disease characterized by the progressive loss of melanocytes. OBJECTIVES Current study was undertaken to assess in-vitro therapeutic potential of Harmine and Kaempferol for GV. METHODS Calcium, calcineurin, NFATC1 levels, cell proliferation were assessed by various kits and ORAI1, PEIZO1, Calcineurin, GSK3B, DYRK1A transcripts and IFN-γ,IL-10,TGF-β protein levels were assessed by qPCR and ELISA in blood and skin biopsy samples from Tregs of 52 patients and 50 controls. RESULTS Harmine and Kaempferol treatment enhances Treg suppressive capacity, NFATs and FOXP3 expression in blood and skin Tregs of GV patients (p < 0.05). Furthermore, Harmine and Kaempferol treatment in Tregs increased calcineurin and NFATC1 activity and decreased DYRK1A transcripts in blood and skin Tregs of GV patients(p < 0.05). In-silico analysis revealed that Harmine and Kaempferol might boost Treg suppressive capacity by increasing calcineurin dephosphorylation activity leading to increase NFATs activation and also increase nuclear retention of NFATs by inhibiting DYRK1a phosphorylation activity. Moreover, calcineurin and NFATC1 activity in Tregs were positively correlated with Treg suppressive capacity, NFATC1 and FOXP3 expression (p < 0.05), whereas, DYRK1A transcripts were negatively correlated with Treg suppressive capacity, NFATC1 and FOXP3 expression (p < 0.05). These compounds significantly increased melanocytes' survival and proliferation in Treg:CD4+/CD8+:SK-Mel-28 cell line co-culture system from GV patients (p < 0.0001). CONCLUSIONS For the first time the study suggests that Harmine and Kaempferol treated Tregs could control the CD8+ and CD4+T-cells' proliferation and IFN-γ production, leading to melanocytes' survival and proliferation. These compounds may serve as novel Treg-based therapeutics for GV; however, in vivo studies are warranted to assess the safety and efficacy of these compounds.
Collapse
Affiliation(s)
- Prashant S Giri
- C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Ankit H Bharti
- Aura Skin Care, Laxmi Icon 2(nd) Floor, Unai Road, Near Swaminarayan Temple, Vyara 394650, Gujarat, India
| | - Jyoti Kode
- Kode Lab, Tumor Immunology & Immunotherapy Group, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Mitesh Dwivedi
- C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India.
| |
Collapse
|
46
|
Kang RB, Lee J, Varela M, Li Y, Rosselot C, Zhang T, Karakose E, Stewart AF, Scott DK, Garcia-Ocana A, Lu G. Human Pancreatic α-Cell Heterogeneity and Trajectory Inference Analysis Using Integrated Single Cell- and Single Nucleus-RNA Sequencing Platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567715. [PMID: 38014078 PMCID: PMC10680843 DOI: 10.1101/2023.11.19.567715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Prior studies have shown that pancreatic α-cells can transdifferentiate into β-cells, and that β-cells de-differentiate and are prone to acquire an α-cell phenotype in type 2 diabetes (T2D). However, the specific human α-cell and β-cell subtypes that are involved in α-to-β-cell and β-to-α-cell transitions are unknown. Here, we have integrated single cell RNA sequencing (scRNA-seq) and single nucleus RNA-seq (snRNA-seq) of isolated human islets and human islet grafts and provide additional insight into α-β cell fate switching. Using this approach, we make seven novel observations. 1) There are five different GCG -expressing human α-cell subclusters [α1, α2, α-β-transition 1 (AB-Tr1), α-β-transition 2 (AB-Tr2), and α-β (AB) cluster] with different transcriptome profiles in human islets from non-diabetic donors. 2) The AB subcluster displays multihormonal gene expression, inferred mostly from snRNA-seq data suggesting identification by pre-mRNA expression. 3) The α1, α2, AB-Tr1, and AB-Tr2 subclusters are enriched in genes specific for α-cell function while AB cells are enriched in genes related to pancreatic progenitor and β-cell pathways; 4) Trajectory inference analysis of extracted α- and β-cell clusters and RNA velocity/PAGA analysis suggests a bifurcate transition potential for AB towards both α- and β-cells. 5) Gene commonality analysis identifies ZNF385D, TRPM3, CASR, MEG3 and HDAC9 as signature for trajectories moving towards β-cells and SMOC1, PLCE1, PAPPA2, ZNF331, ALDH1A1, SLC30A8, BTG2, TM4SF4, NR4A1 and PSCK2 as signature for trajectories moving towards α-cells. 6) Remarkably, in contrast to the events in vitro , the AB subcluster is not identified in vivo in human islet grafts and trajectory inference analysis suggests only unidirectional transition from α-to-β-cells in vivo . 7) Analysis of scRNA-seq datasets from adult human T2D donor islets reveals a clear unidirectional transition from β-to-α-cells compatible with dedifferentiation or conversion into α-cells. Collectively, these studies show that snRNA-seq and scRNA-seq can be leveraged to identify transitions in the transcriptional status among human islet endocrine cell subpopulations in vitro , in vivo , in non-diabetes and in T2D. They reveal the potential gene signatures for common trajectories involved in interconversion between α- and β-cells and highlight the utility and power of studying single nuclear transcriptomes of human islets in vivo . Most importantly, they illustrate the importance of studying human islets in their natural in vivo setting.
Collapse
|
47
|
Zhang Y, Li X, Xing J, Zhou J, Li H. Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules. Biomedicines 2023; 11:2913. [PMID: 38001913 PMCID: PMC10669320 DOI: 10.3390/biomedicines11112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Chemical transdifferentiation is a technique that utilizes small molecules to directly convert one cell type into another without passing through an intermediate stem cell state. This technique offers several advantages over other methods of cell reprogramming, such as simplicity, standardization, versatility, no ethical and safety concern and patient-specific therapies. Chemical transdifferentiation has been successfully applied to various cell types across different tissues and organs, and its potential applications are rapidly expanding as scientists continue to explore new combinations of small molecules and refine the mechanisms driving cell fate conversion. These applications have opened up new possibilities for regenerative medicine, disease modeling, drug discovery and tissue engineering. However, there are still challenges and limitations that need to be overcome before chemical transdifferentiation can be translated into clinical practice. These include low efficiency and reproducibility, incomplete understanding of the molecular mechanisms, long-term stability and functionality of the transdifferentiated cells, cell-type specificity and scalability. In this review, we compared the commonly used methods for cell transdifferentiation in recent years and discussed the current progress and future perspective of the chemical transdifferentiation of somatic cells and its potential impact on biomedicine. We believe that with ongoing research and technological advancements, the future holds tremendous promise for harnessing the power of small molecules to shape the cellular landscape and revolutionize the field of biomedicine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Xuefeng Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jianyu Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150006, China;
| | - Jinsong Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
48
|
Pustelny K, Grygier P, Barzowska A, Pucelik B, Matsuda A, Mrowiec K, Slugocka E, Popowicz GM, Dubin G, Czarna A. Binding mechanism and biological effects of flavone DYRK1A inhibitors for the design of new antidiabetics. Sci Rep 2023; 13:18114. [PMID: 37872245 PMCID: PMC10593742 DOI: 10.1038/s41598-023-44810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The selective inhibition of kinases from the diabetic kinome is known to promote the regeneration of beta cells and provide an opportunity for the curative treatment of diabetes. The effect can be achieved by carefully tailoring the selectivity of inhibitor toward a particular kinase, especially DYRK1A, previously associated with Down syndrome and Alzheimer's disease. Recently DYRK1A inhibition has been shown to promote both insulin secretion and beta cells proliferation. Here, we show that commonly available flavones are effective inhibitors of DYRK1A. The observed biochemical activity of flavone compounds is confirmed by crystal structures solved at 2.06 Å and 2.32 Å resolution, deciphering the way inhibitors bind in the ATP-binding pocket of the kinase, which is driven by the arrangement of hydroxyl moieties. We also demonstrate antidiabetic properties of these biomolecules and prove that they could be further improved by therapy combined with TGF-β inhibitors. Our data will allow future structure-based optimization of the presented scaffolds toward potent, bioavailable and selective anti-diabetic drugs.
Collapse
Affiliation(s)
- Katarzyna Pustelny
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Przemyslaw Grygier
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Agata Barzowska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Alex Matsuda
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Mrowiec
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Emilia Slugocka
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland.
| |
Collapse
|
49
|
Wang Y, Huo Y, Wang S, Zheng T, Du W. β-Carboline Alkaloids Resist the Aggregation and Cytotoxicity of Human Islet Amyloid Polypeptide. Chembiochem 2023; 24:e202300395. [PMID: 37485551 DOI: 10.1002/cbic.202300395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
β-Carboline alkaloids have a variety of pharmacological activities, such as antitumor, antibiosis and antidiabetes. Harmine and harmol are two structurally similar β-carbolines that occur in many medicinal plants. In this work, we chose harmine and harmol to impede the amyloid fibril formation of human islet amyloid polypeptide (hIAPP) associated with type 2 diabetes mellitus (T2DM), by a series of physicochemical and biochemical methods. The results indicate that harmine and harmol effectively prevent peptide fibril formation and alleviate toxic oligomer species. In addition, both small molecules exhibit strong binding affinities with hIAPP mainly through hydrophobic and hydrogen bonding interactions, thus reducing the cytotoxicity induced by hIAPP. Their distinct binding pattern with hIAPP is closely linked to the molecular configuration of the two small molecules, affecting their ability to impede peptide aggregation. The study is of great significance for the application and development of β-carboline alkaloids against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Shao Wang
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| |
Collapse
|
50
|
Burman M, Bag S, Ghosal S, Karmakar S, Pramanik G, Chinnadurai RK, Bhowmik S. Exploring the Structural Importance of the C3=C4 Double Bond in Plant Alkaloids Harmine and Harmaline on Their Binding Interactions with Hemoglobin. ACS OMEGA 2023; 8:37054-37064. [PMID: 37841109 PMCID: PMC10568691 DOI: 10.1021/acsomega.3c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Harmine and harmaline are two structurally similar heterocyclic β-carboline plant alkaloids with various therapeutic properties, having a slight structural difference in the C3=C4 double bond. In the present study, we have reported the nature of the interaction between hemoglobin (Hb) with harmine and harmaline by employing several multispectroscopic, calorimetric, and molecular docking approaches. Fluorescence spectroscopic studies have shown stronger interaction of harmine with Hb compared to that of almost structurally similar harmaline. Steady-state anisotropy experiments further show that the motional restriction of harmine in the presence of Hb is substantially higher than that of the harmaline-Hb complex. Circular dichroism (CD) study demonstrates no conformational change of Hb in the presence of both alkaloids, but CD study in 1-cm cuvette path length also demonstrates stronger affinity of harmine toward Hb compared to harmaline. From the thermal melting study, it has been found that both harmine and harmaline slightly affect the stability of Hb. From isothermal titration calorimetry (ITC), we have found that the binding process is exothermic and enthalpy driven. Molecular docking studies indicated that both harmine and harmaline prefer identical binding sites in Hb. This study helps us to understand that slight structural differences in harmine and harmaline can alter the interaction properties significantly, and this key information may help in the drug discovery processes.
Collapse
Affiliation(s)
- Mangal
Deep Burman
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sagar Bag
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth
(Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Sudip Karmakar
- UGC-DAE
Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC-DAE
Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Raj Kumar Chinnadurai
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth
(Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Sudipta Bhowmik
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth
(Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|