1
|
Tian R, Geng S, Lv X, Li W, Xu T, Sun Y. Evolutionary insights and poly(I:C)-induced changes in expression and m 6A modifications of il17ra and il17rc in Miichthysmiiuy. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110343. [PMID: 40239933 DOI: 10.1016/j.fsi.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Interleukin-17 receptor A (IL17RA) and IL17RC form a receptor complex critical for initiating IL-17A-mediated immune responses, a hallmark of T helper 17 (Th17) cells. In this study, il17ra and il17rc were identified in miiuy croaker (Miichthys miiuy) and bioinformatics analysis revealed their evolutionary and structural conservation, underscoring their roles in immunity. However, there has been little research on the IL-17 receptor family from the perspective of N6-methyladenosine (m6A) modifications. Using methylated RNA immunoprecipitation sequencing (MeRIP-seq), we identified strong m6A modifications on the last exons of il17ra and il17rc, validated by MeRIP-PCR. Poly(I:C) stimulation significantly upregulated il17ra and il17rc expression, while reducing their m6A modification levels, implicating these changes in antiviral immunity. Interestingly, cycloleucine (CL), a well-known methylation inhibitor, did not alter the expression of il17ra and il17rc but promoted the nuclear-to-cytoplasmic transport of il17ra mRNA, potentially influencing its translation process. These findings provide valuable insights into the regulatory roles of m6A modifications in il17ra and il17rc function and highlight their importance in the antiviral immune response.
Collapse
Affiliation(s)
- Ruotong Tian
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenhui Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Szopa IM, Majchrzak-Kuligowska K, Pingwara R, Kulka M, Taşdemir M, Gajewska M. A New Method of Canine CD4 + T Lymphocyte Differentiation Towards the Th17 Phenotype with Analysis of Properties and Mitochondrial Activity. Int J Mol Sci 2025; 26:4946. [PMID: 40430086 PMCID: PMC12112516 DOI: 10.3390/ijms26104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Th17 lymphocytes are a distinct subpopulation of T cells that are characterized by the production of interleukins IL-17, IL-21, IL-22, and IL-26, and high expression of RORγt. These cells play an important role in inflammation and autoimmune diseases. Recent studies using rodent and human models have also highlighted their promising properties as agents in cellular immunotherapy for cancer. However, much less is known about the properties of canine Th17 lymphocytes, despite the domestic dog being an important model used in comparative medicine. In this study, we developed methods of activation and differentiation of canine CD4+ T lymphocytes towards the Th17 phenotype. Additionally, we targeted the Wnt/β-catenin signaling pathway to modulate the efficiency of Th17 cells differentiation. CD4+ T cells were successfully activated with magnetic EpoxyBeads, and in combination with the appropriate programming medium, they acquired the Th17 phenotype. Furthermore, indomethacin, an inhibitor of the Wnt/β-catenin pathway, significantly increased the efficiency of differentiation, causing elevated production of IL-17 and changed T cell metabolism by promoting oxidative phosphorylation. The protocol elaborated in our study provides an efficient method of canine Th17 lymphocyte differentiation. Our findings also suggested that the modification of the Wnt/β-catenin signaling pathway could be a valuable strategy for optimizing canine Th17 cell differentiation and advancing cell-based immunotherapy.
Collapse
Affiliation(s)
- Iwona Monika Szopa
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.M.-K.); (R.P.); (M.G.)
| | - Kinga Majchrzak-Kuligowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.M.-K.); (R.P.); (M.G.)
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.M.-K.); (R.P.); (M.G.)
| | - Marek Kulka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Monika Taşdemir
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.M.-K.); (R.P.); (M.G.)
| |
Collapse
|
3
|
Agarwal R, Chang J, Côrtes FH, Ha C, Villalpando J, Castillo IN, Gálvez RI, Grifoni A, Sette A, Romero-Vivas CM, Heise MT, Premkumar L, Falconar AK, Weiskopf D. Chikungunya virus-specific CD4 + T cells are associated with chronic chikungunya viral arthritic disease in humans. Cell Rep Med 2025; 6:102134. [PMID: 40398392 DOI: 10.1016/j.xcrm.2025.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/02/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus that can cause chronic chikungunya virus disease (CHIKVD), which is characterized by persistent incapacitating arthralgia. Despite recurring CHIKV outbreaks and recent approval of a vaccine, the breadth and target of T cell responses in CHIKVD remain largely understudied. Here, we tested peripheral blood mononuclear cells (PBMCs) collected from CHIKV-infected individuals against overlapping peptide pools sequentially spanning the entire CHIKV proteome. We detected robust CHIKV-specific CD4+, but not CD8+, T cell responses in infected individuals. Individuals with chronic arthralgia displayed significantly higher CD4+ T cell responses against nsP1, nsP2, and E2 proteins and exhibited a significantly lower Th1 CD4+ T cell population, compared to individuals who had recovered. Additionally, CD4+ T cells in chronic individuals were marked by a predominant production of tumor necrosis factor alpha (TNF-α). Overall, our work comprehensively characterizes T cell responses in CHIKVD in humans and provides insights into the role of T cells in CHIKVD.
Collapse
Affiliation(s)
- Rimjhim Agarwal
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - James Chang
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Fernanda H Côrtes
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Laboratory of AIDS and Molecular Immunology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ 21040-360, Brazil
| | - Calvin Ha
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Villalpando
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Rosa Isela Gálvez
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Claudia M Romero-Vivas
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla 80003, Colombia
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew K Falconar
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla 80003, Colombia
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Huang X, Wang X, Feng L, Zhou R, Chen W, Jiang X, Lv F, Xu W, Xu X, Xie X, Diao Y. Combination of miRNA148a-3p binding sites and C5-12 promoter in rAAV vector synergistically reduces antigen presentation and transgene immunity. Life Sci 2025; 376:123742. [PMID: 40404114 DOI: 10.1016/j.lfs.2025.123742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/23/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy. However, the transgene- induced immune response hinders treatment efficacy. Current strategies to suppress immune responses include tissue-specific promoters and miRNA-binding sites; however, neither approach alone completely inhibits transgene-induced immune response. This study innovatively combines the C5-12 promoter and miRNA148a-3p binding sequences (miRNA148BS) in rAAV vectors express full-length ovalbumin (OVA) as a model antigen. We evaluated their effects on antigen presentation, cellular immunity, and humoral immunity. Results demonstrate that the combination of miRNA148BS and C5-12 promoter preserves expression of OVA in C2C12 cells while completely suppressing the expression in antigen-presenting cells (APC). Antigen presentation assays confirmed near-undetectable levels of the SIINFEKL peptide-MHC complex. Notably, the dual-modification strategy enabled higher and more stable transgene expression in mouse muscle compared to individual modifications. Furthermore, the combination significantly inhibited cytotoxic CTL activation and suppressed Th17 responses in vivo. This synergistic approach provides a foundation for development safe and more effective rAAV-based gene therapy.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China; School of Medicine, Huaqiao University, Quan zhou, China
| | - Xiao Wang
- School of Medicine, Huaqiao University, Quan zhou, China
| | - Lei Feng
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Ruiyang Zhou
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Weihao Chen
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Xiuting Jiang
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Fengjiao Lv
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Wentao Xu
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Xianxiang Xu
- School of Medicine, Huaqiao University, Quan zhou, China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quan zhou, China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quan zhou, China.
| |
Collapse
|
5
|
Teuscher JL, Lupatsii M, Graspeuntner S, Jonassen S, Bringewatt A, Herting E, Stichtenoth G, Bossung V, Rupp J, Härtel C, Demmert M. Persistent reduction of Bifidobacterium longum in the infant gut microbiome in the first year of age following intrapartum penicillin prophylaxis for maternal GBS colonization. Front Immunol 2025; 16:1540979. [PMID: 40443663 PMCID: PMC12119681 DOI: 10.3389/fimmu.2025.1540979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/23/2025] [Indexed: 06/02/2025] Open
Abstract
Introduction Group B Streptococcus is a significant cause of early-onset disease in term newborns, with a global incidence of 0.41/1000 live births. Intrapartum antibiotic prophylaxis (IAP) has reduced EOD incidence by over 80%, but concerns exist about its impact on the neonatal gut microbiome and potential long-term health effects. Methods This single center study examines the effects of IAP on the fecal infant microbiome in the first year of age and on the T cell phenotype in the first days after birth among 22 infants receiving IAP with penicillin due to maternal GBS colonization and 26 infants not exposed to IAP. The fecal microbiome was analyzed at birth, one month and one year of age through 16S rRNA gene sequencing. Additionally, a T cell phenotyping of peripheral blood was performed between the second and fifth day of age. Results At one month, IAP exposed infants had a significantly lower relative abundance of Bifidobacterium longum in fecal samples, an effect which was sustained at one year. In IAP exposed infants we found a proinflammatory T-helper cell profile, characterized by higher IL-17A, RORgt, and TGF-b expression. Discussion This study proposes a sustained impact of IAP on the neonatal microbiome and T cell repertoire.
Collapse
Affiliation(s)
- Jana Lucia Teuscher
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mariia Lupatsii
- Department for Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Simon Graspeuntner
- Department for Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Medical Clinic III, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Sinje Jonassen
- Clinic for Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Arne Bringewatt
- Clinic for Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Egbert Herting
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Guido Stichtenoth
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Verena Bossung
- Clinic for Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jan Rupp
- Department for Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- Pediatric Clinic and Policlinic, University Hospital Würzburg, Würzburg, Germany
| | - Martin Demmert
- Clinic for Pediatric and Adolescent Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
6
|
Oliveri F, Mink D, Muchamuel T, Basler M. Immunoproteasome Inhibition Impairs Differentiation but Not Survival of T Helper 17 Cells. Cells 2025; 14:689. [PMID: 40422192 DOI: 10.3390/cells14100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Autoimmune and inflammatory diseases are characterized by aberrant immune responses. The immunoproteasome was proposed as a target for such Th cell-mediated diseases due to its role in the activation, differentiation and function of T cells. Even though many studies demonstrated reductions in Th17 cells upon immunoproteasome inhibition, it is still unclear if the differentiation or survival of these cells is affected. Therefore, this study used DSS-induced colitis and house dust mite airway inflammation mouse models to investigate the effect of immunoproteasome inhibition on Th17 cells and Tregs at different time points. Th17 cells were almost abolished when immunoproteasome inhibition was applied continuously in DSS-induced colitis. In contrast, immunoproteasome inhibition did not decrease levels of already differentiated Th17 cells and did not enhance Treg induction. Dendritic cells were barely affected by immunoproteasome inhibition. Moreover, immunoproteasome inhibition reduced T cell activation in vitro and in vivo, suggesting impaired activation as the underlying mechanism for reduced Th17 differentiation. In conclusion, immunoproteasome inhibition reduces Th17 differentiation by impairing the activation of naïve T cells, but it does not affect the survival of already-differentiated Th17 cells and Tregs.
Collapse
Affiliation(s)
- Franziska Oliveri
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Mink
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Tony Muchamuel
- Department of Research, Kezar Life Sciences, Inc., South San Francisco, CA 94080, USA
| | - Michael Basler
- Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Accogli T, Hibos C, Milian L, Geindreau M, Richard C, Humblin E, Mary R, Chevrier S, Jacquin E, Bernard A, Chalmin F, Paul C, Ryffel B, Apetoh L, Boidot R, Bruchard M, Ghiringhelli F, Vegran F. The intrinsic expression of NLRP3 in Th17 cells promotes their protumor activity and conversion into Tregs. Cell Mol Immunol 2025; 22:541-556. [PMID: 40195474 PMCID: PMC12041534 DOI: 10.1038/s41423-025-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Th17 cells can perform either regulatory or inflammatory functions depending on the cytokine microenvironment. These plastic cells can transdifferentiate into Tregs during inflammation resolution, in allogenic heart transplantation models, or in cancer through mechanisms that remain poorly understood. Here, we demonstrated that NLRP3 expression in Th17 cells is essential for maintaining their immunosuppressive functions through an inflammasome-independent mechanism. In the absence of NLRP3, Th17 cells produce more inflammatory cytokines (IFNγ, Granzyme B, TNFα) and exhibit reduced immunosuppressive activity toward CD8+ cells. Moreover, the capacity of NLRP3-deficient Th17 cells to transdifferentiate into Treg-like cells is lost. Mechanistically, NLRP3 in Th17 cells interacts with the TGF-β receptor, enabling SMAD3 phosphorylation and thereby facilitating the acquisition of immunosuppressive functions. Consequently, the absence of NLRP3 expression in Th17 cells from tumor-bearing mice enhances CD8 + T-cell effectiveness, ultimately inhibiting tumor growth.
Collapse
Affiliation(s)
- Théo Accogli
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
| | | | - Lylou Milian
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - Corentin Richard
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | | | - Sandy Chevrier
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Elise Jacquin
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
| | | | - Fanny Chalmin
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Catherine Paul
- LIIC, EA7269, Université de Bourgogne Franche Comté, Dijon, France
- Immunology and Immunotherapy of Cancer Laboratory, EPHE, PSL Research University, Paris, France
| | - Berhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Romain Boidot
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - François Ghiringhelli
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Vegran
- INSERM, Dijon, France.
- University of Burgundy, Dijon, France.
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France.
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France.
| |
Collapse
|
8
|
Dema M, Eixarch H, Hervera A, Castillo M, Villar LM, Montalban X, Espejo C. Disease Aggravation With Age in an Experimental Model of Multiple Sclerosis: Role of Immunosenescence. Aging Cell 2025; 24:e14491. [PMID: 39894902 PMCID: PMC12073911 DOI: 10.1111/acel.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The onset of multiple sclerosis (MS) in older individuals correlates with a higher risk of developing primary progressive MS, faster progression to secondary progressive MS, and increased disability accumulation. This phenomenon can be related to age-related changes in the immune system: with age, the immune system undergoes a process called immunosenescence, characterized by a decline in the function of both the innate and adaptive immune responses. This decline can lead to a decreased ability to control inflammation and repair damaged tissue. Additionally, older individuals often experience a shift toward a more pro-inflammatory state, known as inflammaging, which can exacerbate the progression of neurodegenerative diseases like MS. Therefore, age-related alterations in the immune system could be responsible for the difference in the phenotype of MS observed in older and younger patients. In this study, we investigated the effects of age on the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). Our findings indicate that EAE is more severe in aged mice due to a more inflammatory and neurodegenerative environment in the central nervous system. Age-related changes predominantly affect adaptive immunity, characterized by altered T cell ratios, a pro-inflammatory Th1 response, increased regulatory T cells, exhaustion of T cells, altered B cell antigen presentation, and reduced NK cell maturation and cytotoxicity. Transcriptomic analysis reveals that fewer pathways and transcription factors are activated with age in EAE. These findings allow us to identify potential therapeutic targets specific to elderly MS patients and work on their development in the future.
Collapse
Affiliation(s)
- María Dema
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Herena Eixarch
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Arnau Hervera
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Mireia Castillo
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Luisa M. Villar
- Departmento de InmunologíaHospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Xavier Montalban
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Carmen Espejo
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR)Hospital Universitari Vall d'HebronBarcelonaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
9
|
Jiang SS, Li Q, Wang T, Huang YT, Luo TT, Liu W. The reduction effect on sensitization of sesame protein Ses i 3 of ultrasound-assisted glycation treatment through modulation of T cell differentiation. Int J Biol Macromol 2025; 307:142112. [PMID: 40089237 DOI: 10.1016/j.ijbiomac.2025.142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
This study aimed to investigate the potential reduction on the sensitization of sesame protein Ses i 3 through ultrasound-assisted glycation. Ses i 3 was extracted and purified using an immunoaffinity column, and the allergenicity changes of Ses i 3 were assessed by a comprehensive strategy, and T cell polarization was also assessed in vivo. Results showed ultrasound-assisted glycation treated Ses i 3 was more easily digestible; and the cell degranulation model showed the histamine, tryptase, and β-hexosaminidase induced by ultrasound-assisted glycation treatment were significantly decreased; besides, the serological results demonstrated that a notable decrease in the binding ability of immunoglobulin E (IgE) and IgG; finally, a BALB/c mice model demonstrated an alleviation of allergic responses induced by ultrasonic-assisted glycation treatment. Meanwhile, the results in vivo also found that ultrasonic-assisted glycation treated Ses i 3 induced enhanced Helper T cell (TH) 1 cell differentiation while weakening TH2 cell differentiation, promoting TH1/TH2 balance polarization. Additionally, it induced stronger regulatory T (Treg) cell differentiation, and suppressed TH17 cell differentiation, promoting Treg/TH17 balance. This study demonstrated that the sensitization of Ses i 3 was reduced after ultrasonic-assisted glycation treatment, and this effect was associated with the modulation of T cell differentiation.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Ting-Ting Luo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Weilin Liu
- Qingdao Municipal Hospital Group, Qindao, Shandong 266000, China
| |
Collapse
|
10
|
Dai M, Du P, Li Y, Wang X, Chen J, Liu H, Zhang W, Zhou J, Li X, Wang Y. Peptide-based hydrogel co-assembled with antibody-drug for enhanced retinal cell uptake and attenuated experimental autoimmune uveitis. Eur J Pharm Biopharm 2025; 210:114691. [PMID: 40054506 DOI: 10.1016/j.ejpb.2025.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Effective treatment of chronic posterior ocular diseases such as uveitis, diabetic retinopathy, and age-related macular degeneration requires improvements in targeted drug delivery strategies. This study introduces a novel injectable drug delivery system co-assembled with a peptide-based hydrogel and secukinumab (SEK), an IL-17A neutralising monoclonal antibody, targeting retinal pigmented epithelium (RPE) cells. Compared to a SEK solution, the SEK loaded hydrogel significantly enhanced the protein uptake (3.7 times higher) by RPE cells in an inflammatory state after 24 hours of treatment and increased the drug concentration in retinal tissues during 20 days of treatment. A single intravitreal injection of the SEK loaded hydrogel effectively suppressed inflammation in a uveitis model. It also reduced the immunoreactivity of microglia and T helper 17 cells, preserved the integrity of the blood-retina barrier, mitigated retinal cell apoptosis, and facilitated the recovery of the retinal function. This delivery system comprising an antibody-drug co-assembled with a peptide-based hydrogel shows promising potential for targeting the retina and treating complex chronic posterior ocular diseases.
Collapse
Affiliation(s)
- Mali Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Pengyuan Du
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yijing Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaiting Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinrun Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenqiao Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jianhong Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yuqin Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
11
|
Paton H, Sarkar P, Gurung P. An overview of host immune responses against Leishmania spp. infections. Hum Mol Genet 2025:ddaf043. [PMID: 40287829 DOI: 10.1093/hmg/ddaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Leishmania spp. infections pose a significant global health challenge, affecting approximately 1 billion people across more than 88 endemic countries. This unicellular, obligate intracellular parasite causes a spectrum of diseases, ranging from localized cutaneous lesions to systemic visceral infections. Despite advancements in modern medicine and increased understanding of the parasite's etiology and associated diseases, treatment options remain limited to pentavalent antimonials, liposomal amphotericin B, and miltefosine. A deeper understanding of the interactions between immune and non-immune cells involved in the clearance of Leishmania spp. infections could uncover novel therapeutic strategies for this debilitating disease. This review highlights recent progress in elucidating how various cell types contribute to the regulation and resolution of Leishmania spp. infections.
Collapse
Affiliation(s)
- Hanna Paton
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
| | - Prabuddha Sarkar
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Center for Immunology and Immune Based Disease, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Iowa City Veterans Affairs (VA) Medical Center, 601 US-6, Iowa City, IA 52246, United States
| |
Collapse
|
12
|
Lin Y, Zhao X, Yang Z, Dongfang Z, Zeng Y, Du C, Li J, Yin X, Xiao J, Hu C, Huang M, Huang F, Yu X. Integrating transcriptomics and network pharmacology to reveal the effect and mechanism of Bai-Jie-Jing-Xie ointment on improving skin inflammation of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119680. [PMID: 40158831 DOI: 10.1016/j.jep.2025.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a global chronic, immune-mediated, inflammatory skin disease. Bai-Jie-Jing-Xie (BJJX) ointment has been widely used in the clinic practice for its notable efficacy and is an empirical prescription for psoriasis treatment in hospitals. Nevertheless, its precise mechanism of action on psoriasis remains unclear. AIM OF THE STUDY To study the mechanism of action of the hospital empirical prescription BJJX in the treatment of psoriasis. MATERIAL AND METHODS Imiquimod (IMQ) was used to induce the psoriasis model in BALB/c mice and UPLC-MS/MS analysis was used for quality control. Subsequently, a combination of network pharmacology (NP) and Transcriptomic (RNA-Seq) methodology was used to assess the potential targets and mechanisms of action of BJJX on psoriasis. Finally, further validation was performed using flow cytometry, RT-qPCR, and western blotting. RESULTS BJJX significantly ameliorated IMQ-induced skin damage in psoriatic mice, reduced keratinocyte proliferation, and inhibited the levels of inflammatory factors (IL-23, IL-22, IL-17A, IL-6, IL-1β, and IL-8). NP predicts that BJJX may exert its therapeutic effects on psoriasis by modulating the IL-17 signaling pathway and Th17 cell differentiation. RNA-Seq analysis showed that BJJX regulated the expression of IL-17 pathway-related genes. Further experimental results demonstrated that BJJX treatment significantly reduced the mRNA expression of inflammatory factors CXCL2, CXCL3, MMP13, IL-1β, IL-23, IL-22, and IL-17A, as well as the proportion of Th17 cells. In addition, BJJX significantly inhibited the protein expression of JAK2 and STAT3. CONCLUSIONS BJJX attenuated IMQ-induced skin lesions in psoriasis mice by decreasing the expression of cytokines and chemokines mediated by the Th17/IL-17 axis. This study revealed, for the first time, the mechanism used by BJJX to treat psoriasis, providing a new paradigm for its pharmacological role in the clinical treatment of psoriasis.
Collapse
Affiliation(s)
- Yuping Lin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xiujuan Zhao
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Ziqing Yang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Zihan Dongfang
- School of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yongcheng Zeng
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chenghong Du
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Jiang Li
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xunqing Yin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Juan Xiao
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chunyan Hu
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Mei Huang
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Feng Huang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Xiaoling Yu
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| |
Collapse
|
13
|
Sidharthan S, D G, Kheur S, Mohapatra S. Assessment of the role of Th17 cell and related biomarkers in periodontitis: A systematic review. Arch Oral Biol 2025; 175:106272. [PMID: 40359716 DOI: 10.1016/j.archoralbio.2025.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE This study aimed to investigate the evidence for presence of Th17 cells and their biomarkers, and to assess their impact on the immune-inflammatory response in periodontitis. MATERIALS AND METHODS An electronic search was performed in MEDLINE (PubMed), SCOPUS, EBSCOhost, and Google Scholar databases from their earliest records to April 2023. Additionally, the reference lists of included articles and grey literature were hand-searched. Study selection and quality assessment of the included articles was performed using the Newcastle-Ottawa scale. RESULTS This systematic review included case-control, cross-sectional, and cohort studies published in English, specifically those evaluating the presence and influence of Th17 or its related biomarkers in the progression of periodontal disease. Of the 26,797 articles screened, 47 studies met the eligibility criteria and were included. The studies varied in design, molecular methods, and sample types. CONCLUSION This systematic review confirms the presence of Th17 cells and related biomarkers in periodontal tissues, highlighting their role in the immune-inflammatory response and pathogenesis of periodontitis. The review underscores the need for more comprehensive research to overcome current limitations and effectively translate these findings into clinical practice.
Collapse
Affiliation(s)
- Sangamithra Sidharthan
- Department of Periodontology and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India.
| | - Gopalakrishnan D
- Department of Periodontology and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| | - Subhashree Mohapatra
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant Tukaram Nagar, Pimpri, Pune, Maharashtra 411018, India
| |
Collapse
|
14
|
Stacchiotti C, Mazzella di Regnella S, Cinotti M, Spalloni A, Volpe E. Neuroinflammation and Amyotrophic Lateral Sclerosis: Recent Advances in Anti-Inflammatory Cytokines as Therapeutic Strategies. Int J Mol Sci 2025; 26:3854. [PMID: 40332510 PMCID: PMC12028049 DOI: 10.3390/ijms26083854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neuroinflammation is an inflammatory response occurring within the central nervous system (CNS). The process is marked by the production of pro-inflammatory cytokines, chemokines, small-molecule messengers, and reactive oxygen species. Microglia and astrocytes are primarily involved in this process, while endothelial cells and infiltrating blood cells contribute to neuroinflammation when the blood-brain barrier (BBB) is damaged. Neuroinflammation is increasingly recognized as a pathological hallmark of several neurological diseases, including amyotrophic lateral sclerosis (ALS), and is closely linked to neurodegeneration, another key feature of ALS. In fact, neurodegeneration is a pathological trigger for inflammation, and neuroinflammation, in turn, contributes to motor neuron (MN) degeneration through the induction of synaptic dysfunction, neuronal death, and inhibition of neurogenesis. Importantly, resolution of acute inflammation is crucial for avoiding chronic inflammation and tissue destruction. Inflammatory processes are mediated by soluble factors known as cytokines, which are involved in both promoting and inhibiting inflammation. Cytokines with anti-inflammatory properties may exert protective roles in neuroinflammatory diseases, including ALS. In particular, interleukin (IL)-10, transforming growth factor (TGF)-β, IL-4, IL-13, and IL-9 have been shown to exert an anti-inflammatory role in the CNS. Other recently emerging immune regulatory cytokines in the CNS include IL-35, IL-25, IL-37, and IL-27. This review describes the current understanding of neuroinflammation in ALS and highlights recent advances in the role of anti-inflammatory cytokines within CNS with a particular focus on their potential therapeutic applications in ALS. Furthermore, we discuss current therapeutic strategies aimed at enhancing the anti-inflammatory response to modulate neuroinflammation in this disease.
Collapse
Affiliation(s)
- Costanza Stacchiotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Mazzella di Regnella
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| | - Miriam Cinotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Santa Lucia Foundation, 00143 Rome, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| |
Collapse
|
15
|
Gatica S, Paillal N, Rangel-Ramírez MA, Méndez L, Fernández-Tello A, Kalergis AM, Bueno SM, González PA, Soto JA, Simon F, Carreño LJ, Melo-Gonzalez F, Riedel CA. Gestational Hypothyroxinemia Shifts Th1/Th17 Immunity and Innate Lymphoid Cell Balance in the Adult Offspring during the Presymptomatic Stage of Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation 2025; 32:126-138. [PMID: 40209697 DOI: 10.1159/000545578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Thyroid hormone homeostasis during pregnancy is crucial for proper neurodevelopment and cognitive capacity during adulthood. Accumulating evidence reveals that gestational hypothyroxinemia (HTX) modulates the immune response of the adult offspring. METHODS In the present study, adult mice gestated in HTX and their euthyroid counterparts were induced with a mild form of experimental autoimmune encephalomyelitis (EAE), a widespread model of multiple sclerosis, and analyzed at baseline and 7 days after EAE induction. RESULTS Levels of circulating IL-17 were significantly lower in mice gestated in HTX at both timepoints, while circulating IFN-γ was significantly higher only in mice gestated in HTX, 7 days after EAE induction. A significant increase in type 1 innate lymphoid cells (ILC1) was found only in mice gestated in HTX 7 days after EAE induction, while type 3 innate lymphoid cells (ILC3) populations showed no variation. Interestingly, a significant increase of Th17 CD4+ cells was found only in mice of euthyroid gestation, 7 days after EAE induction. CONCLUSION These results highlight the repercussions of thyroid hormone impairment in utero at adult ages while dissecting on the pathogenesis of EAE in terms of Th1/Th17 balance from an innate immune perspective. These findings contribute to the advancement of our comprehension of the presymptomatic stage of EAE, unveiling new paths for basic and translational research in the field of neuroinflammation.
Collapse
Affiliation(s)
- Sebastian Gatica
- Laboratorio de Endocrino-Inmunología, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Nicolas Paillal
- Laboratorio de Endocrino-Inmunología, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma Andreina Rangel-Ramírez
- Laboratorio de Endocrino-Inmunología, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Luis Méndez
- Laboratorio de Endocrino-Inmunología, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Odontología, Laboratorio de Odontología Traslacional, Universidad Andres Bello, Santiago, Chile
| | - Alonso Fernández-Tello
- Laboratorio de Endocrino-Inmunología, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Translational Immunology Laboratory, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Laboratorio de Fisiopatología Integrativa, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Melo-Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Translational Immunology Laboratory, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A Riedel
- Laboratorio de Endocrino-Inmunología, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
16
|
Osaki M, Sakaguchi S. Soluble CTLA-4 regulates immune homeostasis and promotes resolution of inflammation by suppressing type 1 but allowing type 2 immunity. Immunity 2025; 58:889-908.e13. [PMID: 40168991 DOI: 10.1016/j.immuni.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Cytotoxic T-lymphocyte-associated antigen -4 (CTLA-4) is a co-inhibitory receptor that restricts T cell activation. CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms, but the key producers, kinetics, and functions of sCTLA-4 are unclear. Here, we investigated the roles of sCTLA-4 in immune regulation under non-inflammatory and inflammatory conditions. Effector regulatory T (Treg) cells were the most active sCTLA-4 producers in basal and inflammatory states, with distinct kinetics upon T cell receptor (TCR) stimulation. We generated mice specifically deficient in sCTLA-4 production, which exhibited spontaneous activation of type 1 immune cells and heightened autoantibody/immunoglobulin E (IgE) production. Conversely, mCTLA-4-deficient mice developed severe type 2-skewed autoimmunity. sCTLA-4 blockade of CD80/86 on antigen-presenting cells inhibited T helper (Th)1, but not Th2, differentiation in vitro. In vivo, Treg-produced sCTLA-4, suppressed Th1-mediated experimental colitis, and enhanced wound healing but hampered tumor immunity. Thus, sCTLA-4 is essential for immune homeostasis and controlling type 1 immunity while allowing type 2 immunity to facilitate resolution in inflammatory conditions.
Collapse
Affiliation(s)
- Motonao Osaki
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
17
|
Sakurai M, Yamanishi K, Hata M, Mukai K, Ogino S, Hosoi Y, Gamachi N, Takabayashi N, Watanabe Y, Yamanishi C, Matsunaga H. Exploring immunological and molecular mechanisms involved in obsessive-compulsive disorder with comorbid neurodevelopmental disorders. J Psychiatr Res 2025; 184:56-64. [PMID: 40036942 DOI: 10.1016/j.jpsychires.2025.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is a psychiatric disease with a prevalence of 2%-3%. Despite the effectiveness of antidepressants, such as serotonin reuptake inhibitors, for treating OCD, its pathogenesis remains unclear. Recent research has implicated immunological mechanisms, particularly in OCD patients with comorbid neurodevelopmental disorders (NDD), such as autism spectrum disorder, attention deficit/hyperactive disorder, and Tourette's disorder. To examine these mechanisms, we investigated immunological factors involved in OCD patients with any NDD comorbidity (OCD + NDD group), compared with those without comorbid NDD (OCD group). MATERIALS AND METHODS Twenty-eight OCD patients treated at Hyogo Medical University Hospital were recruited for this study. Of them, 14 patients with NDD comorbidity (OCD + NDD) were compared with 14 patients without comorbid NDD (OCD). RNA was extracted from blood samples and analyzed using RNA sequencing and Ingenuity Pathway Analysis (IPA). Plasma levels of IL11 and IL17A were measured with ELISA. RESULTS RNA sequencing identified 716 significantly differentially expressed genes, with 47 related to immune functions, in the OCD + NDD group compared with the OCD group. IL11 and IL17A were central, with IL11 linked to neutrophil production and IL17A to T cell migration and cytokine secretion. Pathway analysis indicated complex interactions among these genes. DISCUSSION This study highlights significant immunological changes in OCD patients with any NDD. Decreased anti-inflammatory IL11 and increased proinflammatory IL17A suggest a shift towards inflammation, which may contribute to neurodevelopmental issues. CONCLUSION Immunological dysregulation in OCD with comorbid NDD may offer potential therapeutic targets. Immune gene interactions should be further investigated in effort to improve treatment strategies for treatment-refractory OCD patients, especially those with neurodevelopmental comorbidities.
Collapse
Affiliation(s)
- Masahiko Sakurai
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan; Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| | - Masaki Hata
- Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Keiichiro Mukai
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shun Ogino
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yukihiko Hosoi
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Naomi Gamachi
- Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Noriyuki Takabayashi
- Hirakata General Hospital for Developmental Disorders, 2-1-1, Tsudahigashi, Hirakata, Osaka, 573-0122, Japan.
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, 2-1-1, Tsudahigashi, Hirakata, Osaka, 573-0122, Japan.
| | - Chiaki Yamanishi
- Hirakata General Hospital for Developmental Disorders, 2-1-1, Tsudahigashi, Hirakata, Osaka, 573-0122, Japan.
| | - Hisato Matsunaga
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan; Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
18
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2025; 48:295-312. [PMID: 39325360 PMCID: PMC11996958 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
19
|
Wu C, Yang X, Yang K, Yu Q, Huang C, Li F, Zhang L, Zhu D. Compensatory effect-based oxidative stress management microneedle for psoriasis treatment. Bioact Mater 2025; 46:229-241. [PMID: 39811463 PMCID: PMC11732109 DOI: 10.1016/j.bioactmat.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects. DNA nanostructures with the advantage of being more stable than linear nucleic acid molecules in physiological environments were exquisitely fabricated and incorporated into microneedles (MN). These nanostructures regulate ROS levels and facilitate the delivery of IL-17A siRNA to psoriatic lesions. Our findings demonstrate that this transdermal drug delivery system effectively manages ROS levels in the psoriatic microenvironment, inhibiting pyroptosis and abnormal immune activation. Moreover, modulating ROS levels enhances the therapeutic impact of IL-17A siRNA, offering a promising in situ treatment approach for psoriasis.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xinyu Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Kaiyue Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
20
|
Yang K, Liu Q, Fan A, Lin H, Wang X, Cui T, Fan G, Li L. Th17 Cells in Cardiovascular Disease. Cell Biochem Funct 2025; 43:e70069. [PMID: 40181529 DOI: 10.1002/cbf.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/12/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Recent research has shown a strong link between Th17 cells and their cytokine IL-17, and various cardiovascular diseases such as atherosclerosis, myocardial infarction, myocarditis, and arrhythmia. Moreover, Th17 cell signalling is likely to be a key factor in cardiovascular disease. Here, we summarize recent advances in the source, function, regulation, and the effects of Th17 signaling in cardiovascular disease. Research on Th17 will suggest more specific strategies to manipulate these functions. Thus, effective treatment of cardiovascular disease and future clinical treatment will be possible.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Liu
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aodi Fan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanqing Lin
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xizheng Wang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Tian X, Peng F, Xiong X, Xu X, Zan Y, Wang X, Yu B, Liu Z, He X, Huang Z. Artemisinin analogues are effective in the treatment of psoriasis by targeting RORγt. Mol Immunol 2025; 180:11-22. [PMID: 39987640 DOI: 10.1016/j.molimm.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Psoriasis is a chronic inflammatory skin autoimmune disease. Th17 cells, when pathologically activated, significantly contribute to the progression of psoriasis. The symptoms of this skin condition could be notably alleviated by targeting and suppressing the activity of these cells. Retinoic acid receptor-associated orphan nuclear hormone receptor γ-t (RORγt), a critical transcription factor in Th17 cells, emerges as a promising therapeutic target for autoimmune conditions which are mediated by the dysregulation of these cells. In this study, we designed and synthesised a series of artemisinin analogues based on the chemical structure of artemisinin, and screened 3 compounds, QHS-1, QHS-2, and QHS-3, with better inhibition efficiency of RORγt activity. We found that each of the three artemisinin analogues were demonstrated efficacy in curbing IMQ-induced skin inflammation and the abnormal proliferation of keratinocytes within the BALB/c mouse model of psoriasis. Our findings indicate that the three artemisinin analogues not only effectively mitigated skin inflammation and the abnormal proliferation of keratinocytes in the IMQ-induced psoriasis model of BALB/c mice but also curtailed the infiltration of immune cells and the production of pro-inflammatory cytokines in the dermis. Furthermore, these compounds modulated the cytokine expression profiles within Th17 cells. They exerted a suppressive effect on the activity of Th17 cells by targeting RORγt, thereby dampening the inflammatory response in the dorsal skin of the mice. This inhibition led to a reduction in the pathological proliferation of keratinocytes. In conclusion, our research underscores the promising therapeutic potential of artemisinin analogues in the treatment of psoriasis, offering a slate of candidate compounds which could pave the way for novel drug development in this field.
Collapse
Affiliation(s)
- Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yu Zan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xinran Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
22
|
Kulig P, Brazauskas P, Suffiotti M, Raoult E, Babilonski U, Renault B, Grieder U, Vezzali E, Blattmann P, Martinic MM, Murphy MJ. Efficacy of IDOR-1117-2520, a novel, orally available CCR6 antagonist in preclinical models of skin dermatitis. Br J Pharmacol 2025. [PMID: 40156059 DOI: 10.1111/bph.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND AND PURPOSE The chemokine receptor CCR6 guides pathogenic T17 cells, implicated in autoimmune diseases including psoriasis, to sites of inflammation via the chemokine CCL20. Therefor, pharmacological inhibition of CCR6+ immune cell migration provides a novel therapeutic approach. Translatability of such an intervention has not yet been assessed in detail. We evaluated the translatability of the Aldara® mouse model induced skin inflammation to psoriasis, with particular focus on immune cell trafficking and assessed the efficacy of IDOR-1117-2520, a highly selective, potent and orally available CCR6 small inhibitor. EXPERIMENTAL APPROACH Effects of IDOR-1117-2520 were investigated in the Aldara® and IL23 mouse models of skin inflammation using flow cytometry, RNA sequencing and transcriptome-based cell type deconvolution approaches to characterise immune cell migration patterns. These results were compared to human psoriasis transcriptomics data. KEY RESULTS IDOR-1117-2520 dose dependently reduced infiltration of CCR6+ immune cells into inflamed skin, and was equally efficacious as IL-17 and IL-23 inhibition in models of skin inflammation. Pathway analysis showed molecular similarities in the immune response between human psoriasis and the Aldara® mouse model. IL-17/IL-23 pathway genes were expressed in both human psoriasis and the mouse model. CCR6 inhibition modulated multiple pathways associated with inflammation beyond the proximal IL-17/IL-23 pathway. A chemokine-chemokine receptor interaction map implicated CCL20-CCR6 as the dominant axis in recruiting pathogenic T17 cells in both the model and in human psoriasis. CONCLUSION AND IMPLICATIONS IDOR-1117-2520 could provide a promising novel targeted approach to treating psoriasis and, potentially, other autoimmune diseases involving the CCR6/CCL20 axis and the IL-17/IL-23 pathway. IDOR-1117-2520 is currently being evaluated in a clinical phase 1 trial (ISRCTN28892128).
Collapse
Affiliation(s)
- Paulina Kulig
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Pijus Brazauskas
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Madeleine Suffiotti
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Emilie Raoult
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Ulrike Babilonski
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Bérengère Renault
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Ursula Grieder
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Enrico Vezzali
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Peter Blattmann
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Marianne M Martinic
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Mark J Murphy
- Department of Translational and Pharmacological Science, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
23
|
Wang R, Wu D, Wang C, Livingston A, Wu X, Liu M, Yang XO. Platelet-Sourced TGF-β Promotes Th17 Responses and Enhances Airway Neutrophilia. Biomolecules 2025; 15:482. [PMID: 40305199 PMCID: PMC12024734 DOI: 10.3390/biom15040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Microbial, especially fungal, sensitization has been associated with the development and exacerbation of treatment-refractory neutrophilic asthma. Among the airway-inhabiting fungi, Aspergillus fumigatus and Candida albicans are the dominant species that elicit protective T helper (Th) 17 and other T cell responses, contributing to airway neutrophilia and steroid resistance. However, it is not fully understood how fungal airway colonization impacts the immunopathogenesis of asthma. Here, we used a neutrophilic asthma model induced by C. albicans to study the immune regulation of this disease. We found that intranasal administration of C. albicans induced platelet infiltration into the lung. Platelet-expressed latent TGF-β could be activated specifically by Th17 cells and drive the commitment, maintenance, and expansion of Th17 cells. In Candida-induced asthma, an adoptive transfer of platelets enhanced Th17 responses, increasing airway neutrophil influx. Thus, managing airway mycobiota and reducing platelet intrapulmonary infiltration may serve as a promising interventional approach.
Collapse
Affiliation(s)
- Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| | - Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (C.W.); (M.L.)
| | - Amanda Livingston
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (C.W.); (M.L.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| |
Collapse
|
24
|
Lu L, Feng J, Zhang S, He H, Hu Z, Yang L, Liu Y, Zhao B, Wang T. Vitiligo associated with type 2 immune inhibitors: FAERS analysis and literature review. J Dermatol 2025. [PMID: 40087891 DOI: 10.1111/1346-8138.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
With the widespread use of type 2 immune response inhibitors (IRIs), there is growing concern about their association with the occurrence of vitiligo. This study aimed to comprehensively search for cases of vitiligo associated with type 2 IRIs in the US Food and Drug Administration Adverse Event Reporting System (FAERS). We retrieved the clinical characteristics of cases from January 2004 to September 2024 from the FAERS database. Disproportionality and Bayesian analyses were conducted to detect signals for vitiligo associated with type 2 IRIs. A total of 86 cases of vitiligo were identified in association with these inhibitors. The mean onset time was 326 days. Vitiligo associated with dupilumab was the most common (81.4%), with the highest reporting odds ratio (2.67, 95% confidence interval 2.11-3.4), proportional reporting ratio (2.67, χ2 = 70.59), information component (1.38, [IC025 = 1.09), and empirical Bayes geometric mean (2.61, EBGM05 = 2.14). The link between vitiligo and type 2 IRIs underscores the need for continued pharmacovigilance to better understand these drugs and the incidence of related conditions.
Collapse
Affiliation(s)
- Lu Lu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jindi Feng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Huimin He
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Zhonghui Hu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Bin Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
25
|
Saavedra-Almarza J, Malgue F, García-Gómez M, Gouët S, Edwards N, Palma V, Rosemblatt M, Sauma D. Unveiling the role of resident memory T cells in psoriasis. J Leukoc Biol 2025; 117:qiae254. [PMID: 39689031 DOI: 10.1093/jleuko/qiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by periods of remission and relapse. In this pathology, keratinocytes, dendritic cells, and different subpopulations of T cells are critical to developing psoriatic lesions. Although current treatments can reduce symptoms, they reappear in previously injured areas months after stopping treatment. Evidence has pointed out that besides T-helper 17 cells, other T-cell subsets may be involved in relapses. This review focuses on the leading evidence linking resident memory T cells and P2X7 receptor to psoriasis' pathogenesis and their role in this pathology. Finally, we discuss some of the most widely used experimental murine models and novel strategies to investigate further the role of resident memory T cells in psoriasis.
Collapse
Affiliation(s)
- Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Felipe Malgue
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Solange Gouët
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Providencia, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
| |
Collapse
|
26
|
Khalil B, Sharif-Askari NS, Selvakumar B, Mdkhana B, Hachim I, Zakri A, Hundt J, Hamid Q, Halwani R. Vitamin D3 suppresses NLRP3 inflammasome pathway and enhances steroid sensitivity in a neutrophilic steroid hyporesponsive asthma mouse model. Inflamm Res 2025; 74:51. [PMID: 40082319 DOI: 10.1007/s00011-025-02009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE Severe steroid hyporesponsive asthma is a heterogeneous group of chronic inflammatory diseases characterized by irreversible airflow limitation, hyperresponsiveness, inflammation, and remodelling of the airways. Severe asthmatics account for more than 60% of asthma-related healthcare cost worldwide given they are hyporesponsive to corticosteroids and due to the absence of targeted treatment specifically for the T helper-17 (Th-17) high endotype. Hence, there is a clear unmet need to investigate other treatment options to control patients' symptoms. The role of the NLRP3 inflammasome pathway has been highlighted in the literature to contribute to disease pathogenesis and severity. Interestingly, vitamin D3 is an important regulator of the NLRP3 inflammasome pathway. METHODS Using house dust mite (HDM) and lipopolysaccharide (LPS), we induced a neutrophilic steroid hyporesponsive asthma mouse model to investigate the effect of vitamin D3 on downregulating the NLRP3 inflammasome pathway and enhancing steroid sensitivity. RESULTS We showed that calcitriol, the active form of vitamin D3, could downregulate the NLRP3 inflammasome pathway. This was associated with a significant reduction in airway hyperresponsiveness, IL-17 release, neutrophil infiltration, and mucus secretion. Further, calcitriol enhanced steroid sensitivity by inhibiting the expression of GR-β. Mechanistically, calcitriol targeted the NLRP3 inflammasome to ubiquitination. CONCLUSIONS Our research highlights the potential use of calcitriol as a low cost and accessible supplement to ameliorate airway inflammation during severe steroid hyporesponsive asthma.
Collapse
Affiliation(s)
- Bariaa Khalil
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bushra Mdkhana
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ibrahim Hachim
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Adel Zakri
- Department of Plant Production, Faculty of Agriculture and Food Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jennifer Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
27
|
Elzubeir A, High J, Hammond M, Shepstone L, Pond M, Walmsley M, Trivedi P, Culver E, Aithal G, Dyson J, Thorburn D, Alexandre L, Rushbrook S. Assessing brodalumab in the treatment of primary sclerosing cholangitis (SABR-PSC pilot study): protocol for a single-arm, multicentre, pilot study. BMJ Open Gastroenterol 2025; 12:e001596. [PMID: 40032516 PMCID: PMC11877274 DOI: 10.1136/bmjgast-2024-001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a rare immune-mediated hepatobiliary disease, characterised by progressive biliary fibrosis, cirrhosis, and end-stage liver disease. As yet, no licensed pharmacological therapy exists. While significant advancements have been made in our understanding of the pathophysiology, the exact aetiology remains poorly defined. Compelling evidence from basic science and translational studies implicates the role of T helper 17 cells (Th17) and the interleukin 17 (IL-17) pro-inflammatory signalling pathway in the pathogenesis of PSC. However, exploration of the safety and efficacy of inhibiting the IL-17 pathway in PSC is lacking. METHODS AND ANALYSIS This is a phase 2a, open-label, multicentre pilot study, testing the safety of brodalumab, a recombinant human monoclonal antibody that binds with high affinity to interleukin-17RA, in adults with PSC. This study will enrol 20 PSC patients across five large National Health Service tertiary centres in the UK. The primary outcome of the study relates to determining the safety and feasibility of administering brodalumab in early, non-cirrhotic PSC patients. Secondary efficacy outcomes include non-invasive assessment of liver fibrosis, changes in alkaline phosphatase values and other liver biochemical readouts, assessment of biliary metrics through quantitative MR cholangiography+, and quality of life evaluation on completion of follow-up (using the 5D-itch tool, the PSC-patient-reported outcome and PSC-specific Chronic Liver Disease Questionnaire). ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the London Bridge Research Ethics Committee (REC23/LO/0718). Written informed consent will be obtained from all trial participants prior to undertaking any trial-specific examinations or investigations. On completion of the study, results will be submitted for publication in peer-reviewed journals and presented at national and international hepatology meetings. A summary of the findings will also be shared with participants and PSC communities. TRIAL REGISTRATION NUMBER ISRCTN15271834.
Collapse
MESH Headings
- Humans
- Cholangitis, Sclerosing/drug therapy
- Cholangitis, Sclerosing/immunology
- Pilot Projects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Multicenter Studies as Topic
- Treatment Outcome
- Adult
- Clinical Trials, Phase II as Topic
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/administration & dosage
- Quality of Life
- United Kingdom
- Male
- Female
- Th17 Cells/immunology
- Th17 Cells/drug effects
- Receptors, Interleukin-17/antagonists & inhibitors
Collapse
Affiliation(s)
- Amera Elzubeir
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Juliet High
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Matthew Hammond
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Lee Shepstone
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Martin Pond
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | | | - Palak Trivedi
- NIHR Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emma Culver
- Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Guruprasad Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jessica Dyson
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Douglas Thorburn
- University College London institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Leo Alexandre
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Simon Rushbrook
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| |
Collapse
|
28
|
Ahmed S, Liu G, Sadiq A, Farooq U, Yang H, Yongbin L, Yiyu S, Xiaodong W, Jiang X. Integration of Immune Responses and Transcriptomic Signatures Reveals the Efficacy of Maternal Genetic Vaccination in a Pregnant Model and Its Neonates. Immunology 2025; 174:322-339. [PMID: 39762199 DOI: 10.1111/imm.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 02/07/2025] Open
Abstract
Maternal vaccination is essential for safeguarding both mother and foetus from infectious diseases. This study investigated the immunogenicity and efficacy of a maternal ORF-B2L genetic vaccine in a pregnant rat model, focusing on maternal-neonatal immune modulation, placental and neonatal spleen transcriptomics and the underlying mechanisms contributing to neonatal immune development. Female rats received intramuscular injections of either a gene vaccine (GV) containing 200 μg of recombinant ORF-B2L DNA and 50 μg of a subunit protein or an empty plasmid as a control. Results showed significantly higher levels of specific anti-B2L antibodies and Th1 and Th2 cytokine levels in both maternal and neonatal sera from the GV group compared to the control group (p < 0.05). Transcriptome analysis identified 1295 differentially expressed genes (DEGs) in the placenta and 998 DEGs in the neonatal spleen, with upregulated pathways associated with immune cell recruitment, cytokine signalling and hormone regulation in the GV group. Notably, upregulated DEGs such as TLR4, ESR1 and various cytokine/chemokine-related genes in the placenta suggest enhanced immune regulation and foetal protection. In the neonatal spleen, increased expression of IL-1β, IL-6, IL-10 and CD69 indicates enhanced T and B cell development and pathogen defence. The upregulation of IL-1β suggests a Th1 response, while elevated IL-10 indicates a potential Th2-biased immunity, reflecting a balanced Th1/Th2 response that is crucial for effective adaptive immunity. Overall, maternal ORF-B2L genetic vaccination induces a robust immune response, enhancing maternal-foetal protection and shaping neonatal immune responses, offering valuable insights for optimizing maternal vaccination strategies.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Liu Yongbin
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wang Xiaodong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Yuan L, Liu Y, Fan L, Sun C, Ran S, Huang K, Shen Y. Identification of Potential Hub Genes Related to Acute Pancreatitis and Chronic Pancreatitis via Integrated Bioinformatics Analysis and In Vitro Analysis. Mol Biotechnol 2025; 67:1188-1200. [PMID: 38520499 DOI: 10.1007/s12033-024-01118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/25/2024]
Abstract
Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyan Fan
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266042, China
| | - Cai Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sha Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
30
|
Olsthoorn SEM, van Krimpen A, Hendriks RW, Stadhouders R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunol Rev 2025; 330:e70010. [PMID: 40016948 PMCID: PMC11868696 DOI: 10.1111/imr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Asthma is a common chronic inflammatory disease of the airways. A substantial number of patients present with severe and therapy-resistant asthma, for which the underlying biological mechanisms remain poorly understood. In most asthma patients, airway inflammation is characterized by chronic activation of type 2 immunity. CD4+ T helper 2 (Th2) cells are the canonical producers of the cytokines that fuel type 2 inflammation: interleukin (IL)-4, IL-5, IL-9, and IL-13. However, more recent findings have shown that other lymphocyte subsets, in particular group 2 innate lymphoid cells (ILC2s) and type 2 CD8+ cytotoxic T (Tc2) cells, can also produce large amounts of type 2 cytokines. Importantly, a substantial number of severe therapy-resistant asthma patients present with chronic type 2 inflammation, despite the high sensitivity of Th2 cells for suppression by corticosteroids-the mainstay drugs for asthma. Emerging evidence indicates that ILC2s and Tc2 cells are more abundant in severe asthma patients and can adopt corticosteroid-resistance states. Moreover, many severe asthma patients do not present with overt type 2 airway inflammation, implicating non-type 2 immunity as a driver of disease. In this review, we will discuss asthma pathophysiology and focus on the roles played by ILC2s, Tc2 cells, and non-type 2 lymphocytes, placing special emphasis on severe disease forms.
Collapse
Affiliation(s)
- Simone E. M. Olsthoorn
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
31
|
Bu S, Liu M, Yang L, Lee P, Miller H, Park CS, Byazrova M, Filatov A, Benlagha K, Gaber T, Buttgereit F, Gong Q, Zhai Z, Liu C. The function of T cells in immune thrombocytopenia. Front Immunol 2025; 16:1499014. [PMID: 40061938 PMCID: PMC11885273 DOI: 10.3389/fimmu.2025.1499014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease, characterized by increased bleeding due to a reduced platelet count. The pathogenesis of ITP is very complex and involves autoantibody production and T-cell-mediated immune abnormalities. An imbalance of effector and regulatory CD4+ T cells and the breach of tolerance primarily cause ITP, leading to the dysfunctional development of autoreactive Th cells (including Th1, Th2, and Th17 cells) and Tregs. The loss of auto-platelet antigen tolerance in ITP results in autoantibody- and cytotoxic T-cell-mediated platelet clearance. T-cell-related genetic risk factors significantly influence the development and progression of this disease. New therapies targeting T cells have emerged as potentially effective cures for this disease. This review summarizes the role of T cells in ITP.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Liu
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Maria Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- German Rheumatism Research Centre (DRFZ) Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Zeng Q, Guo H, Tang N, Renavikar PS, Karandikar NJ, Lovett-Racke AE, Racke MK, Yan C, Tang R, Sinha S, Ghosh K, Ryal JP, Ouyang S, Chen M, Amari F, Vincenzo C, Pope RM, Li Y, Yang H, Langdon WY, Zhang J. K27-linked RORγt ubiquitination by Nedd4 potentiates Th17-mediated autoimmunity. J Biomed Sci 2025; 32:26. [PMID: 39972304 PMCID: PMC11841259 DOI: 10.1186/s12929-025-01120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The HECT E3 ubiquitin ligase Nedd4 has been shown to positively regulate T cell responses, but its role in T helper (Th) cell differentiation and autoimmunity is unknown. Th17 cells are believed to play a pivotal role in the development and pathogenesis of autoimmune diseases. Nevertheless, the regulation of RORγt activation during Th17 cell differentiation by TCR signaling is yet to be elucidated. These uncharted aspects inspire us to explore the potential role of Nedd4 in Th17-mediated autoimmunity. METHODS We evaluated the impact of Nedd4 deficiency on mouse T cell development and differentiation using flow cytometry and siRNA transfection, and subsequently validated these findings in T cells from patients with multiple sclerosis (MS). Furthermore, we investigated the influence of Nedd4 deficiency on Th17-mediated autoimmunity through experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Subsequently, we elucidated the molecular mechanism underlying the interaction between Nedd4 and RORgt through immunoprecipitation, mass spectrometry analysis, and lentiviral transduction. Additionally, we identified Nedd4 as an E3 ubiquitin ligase for RORγt. Moreover, we characterized the tyrosine residue sites and polyubiquitination patterns involved in RORγt ubiquitination. RESULTS In this study, we report that loss of Nedd4 in T cells specifically impairs pathogenic and non-pathogenic Th17 responses, and Th17-mediated EAE development. At the molecular level, Nedd4 binds to the PPLY motif within the ligand binding domain of RORγt, and targets RORγt at K112 for K27-linked polyubiquitination, thus augmenting its activity. CONCLUSION Nedd4 is a crucial E3 ubiquitin ligase for RORγt in the regulating Th17 cell development and offers potential therapeutic benefits for treating Th17-mediated autoimmune diseases.
Collapse
MESH Headings
- Nedd4 Ubiquitin Protein Ligases/genetics
- Nedd4 Ubiquitin Protein Ligases/metabolism
- Nedd4 Ubiquitin Protein Ligases/immunology
- Animals
- Th17 Cells/immunology
- Mice
- Ubiquitination
- Humans
- Autoimmunity/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/genetics
- Mice, Inbred C57BL
- Cell Differentiation
Collapse
Affiliation(s)
- Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.
- Clinical Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hui Guo
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.
| | - Na Tang
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Pranav S Renavikar
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Nitin J Karandikar
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael K Racke
- Department of Neurology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chengkai Yan
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Rong Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Sushmita Sinha
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Krishnendu Ghosh
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jeremy P Ryal
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Song Ouyang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, OH, 43210, USA
| | - Coppola Vincenzo
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - R Marshall Pope
- Proteomics Facility, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Yalan Li
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, OH, 43210, USA
| | - Huan Yang
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
- Clinical Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wallace Y Langdon
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
33
|
Rida Zainab S, Zeb Khan J, Khalid Tipu M, Jahan F, Irshad N. A review on multiple sclerosis: Unravelling the complexities of pathogenesis, progression, mechanisms and therapeutic innovations. Neuroscience 2025; 567:133-149. [PMID: 39709058 DOI: 10.1016/j.neuroscience.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.e. autoreactive T & B-Cells and macrophage infiltration into the CNS leads to inflammation, demyelination, and neurodegeneration. Disease progression of MS varies among individuals transitioning from one form of relapsing-remitting to secondary progressive MS (SPMS). Research advances have unfolded various molecular targets involved in MS from oxidative stress to blood-brain barrier (BBB) disruption. Different pathways are being targeted so far such as inflammatory and cytokine signaling pathways to overcome disease progression. Therapeutic innovations have significantly transformed the management of MS, especially the use of disease-modifying therapies (DMTs) to reduce relapse rates and control disease progression. Advancements in research, neuroprotective strategies, and remyelination strategies hold promising results in reversing CNS damage. Various mice models are being adopted for testing new entities in MS research.
Collapse
Affiliation(s)
- Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Faryal Jahan
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad, Pakistan.
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
34
|
Gong B, Zhang C, Hu S, Zhang X, Zou H, Li J, Wang J, Kao Y, Liu F. Network pharmacology and experimental verification in vivo reveal the mechanism of Zhushao Granules against ulcerative colitis. Biol Proced Online 2025; 27:7. [PMID: 39953430 PMCID: PMC11827476 DOI: 10.1186/s12575-025-00268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Zhushao Granules (ZSG) had exhibited beneficial effects in the treatment of ulcerative colitis (UC) as an effective herbal prescription in Traditional Chinese Medicine. However, the underlying anti-inflammatory mechanism of ZSG remains unclear. This study aimed to decipher the mechanism of ZSG against UC combining network pharmacology and animal-based experiments. METHODS Network pharmacology was employed to identify active components and therapeutic targets of ZSG against UC. The protein-protein interaction (PPI) network was constructed among the therapeutic targets using the STRING database, and GO and pathway analyses were carried out using DAVID. Then, the "herb-component-target-pathway" network based on therapeutic targets was established and the topological parameters were subsequently calculated to identify hub active components, targets and pathways by Cytoscape. Finally, the therapeutic function and the special pathway of ZSG against UC were validated using a TNBS-induced UC model in BABL/c mice. RESULTS Ninety-four active components of ZSG and 460 potential targets were acquired from the Encyclopedia of Traditional Chinese Medicine and Tradition Chinese Medicine Systems Pharmacology Database and Analysis Platform. 884 potential targets of UC were obtained from OMIM and HINT. Sixty-two overlapping potential targets were identified as therapeutic targets of ZSG against UC. PPI network filtered out 61 therapeutic targets. GO and pathway analyses extracted 48, 25, and 98 terms corresponding to biological processes, molecular functions and Reactome pathways, respectively. Enrichment analysis suggested that the therapeutic targets were mainly involved in immune regulation, especially RIP-mediated NF-κB activation via ZBP1. Topological analysis of the "herb-component-target-pathway" network recognized 9 hub components, 20 hub targets and 18 hub pathways. The animal-based experiments revealed that ZSG ameliorated symptoms and histological changes in TNBS-induced colitis by significantly inhibiting the ZBP1/RIP/NF-κB pathway. CONCLUSIONS ZSG might alleviate the mucosal damage and ameliorate colitis via targeting ZBP1/RIP/NF-κB pathway, which laid the theoretical foundation for the clinical application and further study of ZSG and provided new insights into UC treatment.
Collapse
Affiliation(s)
- Benjiao Gong
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chenglin Zhang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shaofei Hu
- Department of Pharmacy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xueying Zhang
- Life Science and Technology College, Shandong Second Medical University, Weifang, China
| | - Hui Zou
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jiayao Li
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jiahui Wang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Yanlei Kao
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, China.
| | - Fujun Liu
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
35
|
Qi L, Wang J, Hou S, Liu S, Zhang Q, Zhu S, Liu S, Zhang S. Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189264. [PMID: 39805342 DOI: 10.1016/j.bbcan.2025.189264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC. Single-cell multi-omics technology, particularly single-cell transcriptome sequencing, have shed light on the expression profiles of individual cells and the molecular characteristics of distinct tumor cell populations. This review summarizes the latest literature on single-cell research in the field of ESCC, aiming to elucidate the heterogeneity of tumor cells, immune cells, and stromal cells at the single-cell level. Furthermore, it explores the impact of cellular interactions within the TME on the progression of ESCC. By compiling a comprehensive overview of single-cell omics research on ESCC, this article aims to enhance our understanding of ESCC diagnosis and treatment by elucidating the intricate interplay within the TME. It explores the cellular composition, spatial arrangement, and functional attributes of the ESCC TME, offering potential therapeutic targets and biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Jiaxin Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Songyuan Hou
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Siying Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Shengtao Zhu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| |
Collapse
|
36
|
He N, Yuan D, Luo M, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Ferroptosis contributes to immunosuppression. Front Med 2025; 19:1-22. [PMID: 39560919 DOI: 10.1007/s11684-024-1080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 11/20/2024]
Abstract
As a novel form of cell death, ferroptosis is mainly regulated by the accumulation of soluble iron ions in the cytoplasm and the production of lipid peroxides and is closely associated with several diseases, including acute kidney injury, ischemic reperfusion injury, neurodegenerative diseases, and cancer. The term "immunosuppression" refers to various factors that can directly harm immune cells' structure and function and affect the synthesis, release, and biological activity of immune molecules, leading to the insufficient response of the immune system to antigen production, failure to successfully resist the invasion of foreign pathogens, and even organ damage and metabolic disorders. An immunosuppressive phase commonly occurs in the progression of many ferroptosis-related diseases, and ferroptosis can directly inhibit immune cell function. However, the relationship between ferroptosis and immunosuppression has not yet been published due to their complicated interactions in various diseases. Therefore, this review deeply discusses the contribution of ferroptosis to immunosuppression in specific cases. In addition to offering new therapeutic targets for ferroptosis-related diseases, the findings will help clarify the issues on how ferroptosis contributes to immunosuppression.
Collapse
Affiliation(s)
- Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, China.
- National Medicine Functional Experimental Teaching Center, Changsha, 410008, China.
| |
Collapse
|
37
|
Feng S, Li S, Wu Z, Li Y, Wu T, Zhou Z, Liu X, Chen J, Fu S, Wang Z, Zhong Z, Zhong Y. Saffron improves the efficacy of immunotherapy for colorectal cancer through the IL-17 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118854. [PMID: 39326815 DOI: 10.1016/j.jep.2024.118854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron is one of the traditional medicinal herbs, which contains various active ingredients, such as safranal, crocin, saffron acid, etc. It has anti-inflammatory, antioxidant, and anti-cancer properties, and is widely used in clinical practice. The anti-cancer efficacy of saffron has been previously confirmed, but its anti-cancer mechanism in colorectal cancer remains unclear. OBJECTIVE We investigated the effect of active compounds of saffron on the efficacy of immunotherapy for colorectal cancer. METHODS TCMSP and liquid chromatography-mass spectrometry analysis (LC-MS), GeneCards, and DisGeNET databases were used to identify the active compounds of saffron, drug targets and the disease targets of colorectal cancer. They were then subjected to Gene Ontology Enrichment (GO) and Signalling Pathway Enrichment (KEGG) analyses. The core targets and corresponding compounds were selected for molecular docking. The effect of active components of saffron on the proliferation of CT26 and HCT116 cells was investigated using the cell counting kit-8 (CCK-8). In vitro experiments were conducted by subcutaneous injection of CT26 cells to establish a colon cancer model. Enzyme-linked immunosorbent assay (ELISA), western blotting (WB), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and flow cytometry (FCM) were employed to validate the effects of saffron on colorectal cancer immunotherapy. RESULTS 1. LC-MS analysis revealed that the main active component of saffron extract was crocin. The active chemicals of saffron intersected with 170 colorectal cancer targets, with 17 predicting targets for saffron treatment. GO and KEGG enrichment analyses revealed that the active components of saffron can prevent colorectal cancer development by enhancing Th17 cell differentiation and the IL-17 signaling pathway. 2. In vitro studies revealed that saffron alcohol extract, crocin, and safranal can suppress the proliferation of CT26 and HCT116 cells. 3. In vivo studies showed that crocin and safranal can increase the body mass and decrease the tumor mass of loaded mice, decrease the serum level of IL-17, and lower the mRNA expression level of IL-17, IL-6, TNF-α, TGF-β, and PD-L1 and IL-17, PD-L1 protein in tumors. This inhibitory effect was strengthened after combined immunotherapy. In addition, saffron modulated CD4+ and CD8+ T cells and the CD4+/CD8+T ratio in mouse spleens. CONCLUSION The active components of saffron can reduce the expression of inflammatory factors and ameliorate the immunological microenvironment of tumors via the IL-17 signaling pathway, thereby improving the efficacy of immunotherapy for colorectal cancer. This study provides pharmacological support for the application of saffron in enhancing the efficacy of immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Siqi Feng
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Shiying Li
- Seoul National University, Seoul, Korea.
| | - Zhonghua Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yun Li
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Tingting Wu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Zhangjie Zhou
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jian Chen
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Shujuan Fu
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| | - Zhiying Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | | | - Yi Zhong
- Shanghai TCM-integrated Hospital, Shanghai University of TCM, Shanghai, China.
| |
Collapse
|
38
|
Zhang Q, Yang Z, Ou X, Zhang M, Qin X, Wu G. The role of immunity in insulin resistance in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2025; 15:1464561. [PMID: 39911236 PMCID: PMC11797073 DOI: 10.3389/fendo.2024.1464561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent disorder of the endocrine system with significant clinical implications, often leading to health complications related to adipose tissue accumulation, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes mellitus. While the precise pathogenesis of PCOS remains unclear, it is now recognized that genetic, endocrine, and metabolic dysregulations all contribute significantly to its onset. The immunopathogenesis of PCOS has not been extensively explored, but there is growing speculation that immune system abnormalities may play a pivotal role. This chronic inflammatory state is exacerbated by factors such as obesity and hyperinsulinemia. Therefore, this review aims to elucidate the interplay between IR in PCOS patients, the controlled immune response orchestrated by immune cells and immunomodulatory molecules, and their interactions with adipocytes, hyperandrogenemia, chronic inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Ou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengying Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gengxiang Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 PMCID: PMC11751394 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
40
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
41
|
Nasrabadi ME, Al-Harrasi A, Mohammadi S, Zarif Azam Kardani F, Rahmati M, Memarian A. Pioglitazone as a potential modulator in autoimmune diseases: a review on its effects in systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and multiple sclerosis. Expert Rev Clin Immunol 2025; 21:5-15. [PMID: 39279585 DOI: 10.1080/1744666x.2024.2401614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Current medications for autoimmune disorders often induce broad-ranging side effects, prompting a growing interest in therapies with more specific immune system modulation. Pioglitazone, known for its anti-diabetic properties, is increasingly recognized for significant immunomodulatory potential. Beyond its traditional use in diabetes management, pioglitazone emerges as a promising therapeutic candidate for autoimmune disorders. AREAS COVERED This comprehensive review explores pioglitazone's impact on four prominent autoimmune conditions: systemic lupus erythematosus, psoriasis, inflammatory bowel disease, and multiple sclerosis. We focus on pioglitazone's diverse effects on immune cells and cytokines in these diseases, highlighting its potential as a valuable therapeutic option for autoimmune diseases. Here we have reviewed the latest and most current research literature available on PubMed, based on research published in the last 15 years. EXPERT OPINION Pioglitazone as an immunomodulatory agent can regulate T cell differentiation, inhibit inflammatory cytokines, and promote anti-inflammatory macrophages. While further clinical studies are needed to fully understand its mechanisms and optimize treatment strategies, pioglitazone represents a potential therapeutic approach to improve outcomes for patients with these challenging autoimmune conditions. The future of autoimmune disease research may involve personalized treatment approaches, and collaborative efforts to improve patient quality of life.
Collapse
Affiliation(s)
- Mohammad Esmail Nasrabadi
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Saeed Mohammadi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fateme Zarif Azam Kardani
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
42
|
Zhang M, Guan Y, Han M, Kong F, Xu A, Jin X, Hu X, Dong F, Zhang N, Peng X, Liu D, Chen Y, Zhao R, Zhu X, Zhang Y, Lu C, Hou W, Liu L, Li D, Zhang Z, Zhang X, Zhang S. Foxo1 drives the TGFβ1-dependent dichotomy of Th17 cell fates. J Leukoc Biol 2024; 117:qiae004. [PMID: 38193891 DOI: 10.1093/jleuko/qiae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
T-helper 17 cells play a dual role in immunological responses, serving as essential components in tissue homeostasis and host defense against microbial pathogens while also contributing to proinflammatory conditions and autoimmunity. While transforming growth factor β1 is pivotal for the differentiation of nonpathogenic T-helper 17 cells, the role of transforming growth factor β3 and activin in steering T-helper 17 cells toward a pathogenic phenotype has been acknowledged. However, the molecular mechanisms governing this dichotomy remain elusive. In this study, we demonstrate that the transcription factor Foxo1 is upregulated in a transforming growth factor β1 dose-dependent manner, serving as a critical regulator that specifically modulates the fate of pathogenic T-helper 17 cells. Analyses in both patients with uveitis and an experimental autoimmune uveitis mouse model reveal a strong correlation between disease severity and diminished Foxo1 expression levels. Ectopic expression of Foxo1 selectively attenuates T-helper 17A production under pathogenic T-helper 17-inducing conditions. Moreover, enhanced Foxo1 expression, triggered by transforming growth factor β1 signaling, is implicated in fatty acid metabolism pathways that favor nonpathogenic T-helper 17 differentiation. Our drug screening identifies several US Food and Drug Administration-approved compounds can upregulate Foxo1. Collectively, our findings offer evidence that Foxo1 serves as a molecular switch to specifically control pathogenic vs nonpathogenic T-helper 17 differentiation in a transforming growth factor β1-dependent manner. Targeting Foxo1 could be a promising therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Mengjuan Zhang
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yude Guan
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Meijuan Han
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Fandi Kong
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Aoyu Xu
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiaohan Jin
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiao Hu
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Fang Dong
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Nianchao Zhang
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiuping Peng
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Dantong Liu
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yongyan Chen
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Ruxin Zhao
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiulei Zhu
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yanan Zhang
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Congcong Lu
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Wen Hou
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Lei Liu
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Dan Li
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China
| | - Song Zhang
- College of Life Sciences, Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
43
|
Sun S, Chen Y, Ouyang Y, Tang Z. Regulatory Roles of SWI/SNF Chromatin Remodeling Complexes in Immune Response and Inflammatory Diseases. Clin Rev Allergy Immunol 2024; 68:2. [PMID: 39751934 DOI: 10.1007/s12016-024-09011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention. This review presents a summary of the significant functions of SWI/SNF complexes during the overall process from the development to the activation of innate and adaptive immune cells. In addition, the correlation between various SWI/SNF subunits and diverse inflammatory diseases is explored. Further investigations are warranted in terms of the mechanism of SWI/SNF complexes' preference for binding sites and opposite pro-/anti-inflammatory effects. In conclusion, further efforts are needed to evaluate the druggability of targeting SWI/SNF complexes in inflammatory diseases, and we hope this review will inspire the development of novel immune modulators in clinical practice.
Collapse
Affiliation(s)
- Shunan Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
44
|
Hao ZN, Tan XP, Zhang Q, Li J, Xia R, Ma Z. Lactate and Lactylation: Dual Regulators of T-Cell-Mediated Tumor Immunity and Immunotherapy. Biomolecules 2024; 14:1646. [PMID: 39766353 PMCID: PMC11674224 DOI: 10.3390/biom14121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Lactate and its derivative, lactylation, play pivotal roles in modulating immune responses within the tumor microenvironment (TME), particularly in T-cell-mediated cancer immunotherapy. Elevated lactate levels, a hallmark of the Warburg effect, contribute to immune suppression through CD8+ T cell functionality and by promoting regulatory T cell (Treg) activity. Lactylation, a post-translational modification (PTM), alters histone and non-histone proteins, influencing gene expression and further reinforcing immune suppression. In the complex TME, lactate and its derivative, lactylation, are not only associated with immune suppression but can also, under certain conditions, exert immunostimulatory effects that enhance cytotoxic responses. This review describes the dual roles of lactate and lactylation in T-cell-mediated tumor immunity, analyzing how these factors contribute to immune evasion, therapeutic resistance, and immune activation. Furthermore, the article highlights emerging therapeutic strategies aimed at inhibiting lactate production or disrupting lactylation pathways to achieve a balanced regulation of these dual effects. These strategies offer new insights into overcoming tumor-induced immune suppression and hold the potential to improve the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Zhi-Nan Hao
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
| | - Xiao-Ping Tan
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
- The Third Clinical Medical College of Yangtze University, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou 434023, China
| | - Qing Zhang
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
| | - Jie Li
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- Digestive Disease Research Institution of Yangtze University, Yangtze University, Jingzhou 434023, China;
| | - Ruohan Xia
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Zhaowu Ma
- Department of Gastroenterology, First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou 434023, China; (Z.-N.H.); (Q.Z.); (J.L.)
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
45
|
Gubernatorova EO, Samsonov MY, Drutskaya MS, Lebedeva S, Bukhanova D, Materenchuk M, Mutig K. Targeting inerleukin-6 for renoprotection. Front Immunol 2024; 15:1502299. [PMID: 39723211 PMCID: PMC11668664 DOI: 10.3389/fimmu.2024.1502299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic effects including a major role in inflammation. IL-6 signals either via membrane-bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting distinct cell types and eliciting various metabolic, cytoprotective, or pro-inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been developed for therapy of autoimmune and chronic non-renal inflammatory diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the IL-6 trans-signaling add to the available therapeutic options. Animal data and accumulating clinical experience strongly suggest that suppression of IL-6 signaling pathways bears therapeutic potential in acute and chronic kidney diseases. The present work analyses the renoprotective potential of clinically relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and kidney transplantation with focus on current achievements and future prospects.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
46
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
47
|
Brescia C, Audia S, Pugliano A, Scaglione F, Iuliano R, Trapasso F, Perrotti N, Chiarella E, Amato R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS 2024; 132:1026-1045. [PMID: 38239016 DOI: 10.1111/apm.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 11/26/2024]
Abstract
The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Alessia Pugliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Federica Scaglione
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| |
Collapse
|
48
|
Wang Y, Zhang J, Shao C. Cytological changes in radiation-induced lung injury. Life Sci 2024; 358:123188. [PMID: 39481833 DOI: 10.1016/j.lfs.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication associated with radiotherapy for thoracic tumors. Based on the pathological progression, it can be categorized into two stages: early radiation pneumonitis and late radiation pulmonary fibrosis. The occurrence of RILI not only constrains the therapeutic dose that can be administered to the tumor target area but also significantly impairs patients' health and quality of life, thereby limiting the efficacy and applicability of radiotherapy. To effectively prevent and mitigate the development of RILI, it is crucial to disclose its underlying mechanisms. This review aims to elucidate the specific mechanisms involved in RILI and to examine the roles of various cell types, including lung parenchymal cells and different immune cells. The functions and interactions of lung epithelial cells, pulmonary vascular endothelial cells, a variety of immune cells, and fibroblasts during different stages of inflammation, tissue repair, and fibrosis following radiation-induced lung injury are analyzed. A comprehensive understanding of the dynamic changes in these cellular components is anticipated to offer new strategies for the prevention of RILI.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
49
|
Yang J, Cui S, Shao B, Zhao Y, Wang Z, Liu Q, Zhang Y, Yang D. ScRNA-seq reveals trained immunity-engaged Th17 cell activation against Edwardsiella piscicida-induced intestinal inflammation in teleost. Microbiol Res 2024; 289:127912. [PMID: 39326350 DOI: 10.1016/j.micres.2024.127912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Mucosal immunity typically involves innate and adaptive immune cells, while the cellular mechanism of teleost's intestinal immune cells that engages gut homeostasis against bacterial infection remains largely unknown. Taking advantage of the enteric fish pathogen (Edwardsiella piscicida) infection-induced intestinal inflammation in turbot (Scophthalmus maximus), we find that β-glucan training could mitigate the bacterial infection-induced intestinal inflammation. Through single-cell transcriptome profiling and cellular function analysis, we identify that E. piscicida infection could tune down the activation of intestinal Th17 cells, while β-glucan-training could preserve the potential to amplify and restore the function of intestinal Th17 cells. Moreover, through pharmacological inhibitor treatment, we identify that Th17 cells are essential for ameliorating bacterial infection-induced intestinal inflammation in teleost. Taken together, these results suggest a new concept of trained immunity activation to regulate the intestinal Th17 cells' function, which might contribute to better developing strategies for maintaining gut homeostasis against bacterial infection.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Shu Cui
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Boning Shao
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbo Zhao
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
50
|
Lee SY, Moon YM, Kim EK, Lee AR, Jeon SB, Lee CR, Choi JW, Cho ML. Aberrant overexpression of the autoantigen protein vimentin promotes Th17 cell differentiation and autoimmune arthritis via activation of STAT3 signaling. Clin Immunol 2024; 269:110383. [PMID: 39454740 DOI: 10.1016/j.clim.2024.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Vimentin contributes to the positioning and function of organelles, cell migration, adhesion, and division. However, secreted vimentin accumulates on the cell surface (Mor-Vaknin et al., 2003; Ramos et al., 2020 [1,2]) where it acts as a coreceptor for viral infection and as an autoantigen in inflammatory and autoimmune diseases. The roles of vimentin in Th17 cells were examined in mice with knockdown of vimentin. We also examined whether STAT3 is required for vimentin expression. Vimentin expression was significantly increased in Th17 cells through STAT3 activation, and vimentin+ IL-17+ T cells were markedly increased in the joint and spleen tissues of CIA mice. The arthritis score and expression levels of proinflammatory cytokines were significantly decreased in CIA mice treated with vimentin shRNA vector. In this study, we demonstrated that vimentin is significantly expressed in Th17 cells through STAT3 activation. Our results provide new insights into the role of vimentin in Th17 cells and the complex pathogenesis of RA.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Young-Mee Moon
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun-Kyung Kim
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Su Been Jeon
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Chae Rim Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.
| |
Collapse
|