1
|
Tian M, Zhou Y, Guo Y, Xia Q, Wang Z, Zheng X, Shen J, Guo J, Duan S, Wang L. MicroRNAs in adipose tissue fibrosis: Mechanisms and therapeutic potential. Genes Dis 2025; 12:101287. [PMID: 40242037 PMCID: PMC12002615 DOI: 10.1016/j.gendis.2024.101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/18/2025] Open
Abstract
Adipose tissue fibrosis, characterized by abnormal extracellular matrix deposition within adipose tissue, signifies a crucial indicator of adipose tissue malfunction, potentially leading to organ tissue dysfunction. Various factors, including a high-fat diet, non-alcoholic fatty liver disease, and insulin resistance, coincide with adipose tissue fibrosis. MicroRNAs (miRNAs) represent a class of small non-coding RNAs with significant influence on tissue fibrosis through diverse signaling pathways. For instance, in response to a high-fat diet, miRNAs can modulate signaling pathways such as TGF-β/Smad, PI3K/AKT, and PPAR-γ to impact adipose tissue fibrosis. Furthermore, miRNAs play roles in inhibiting fibrosis in different contexts: suppressing corneal fibrosis via the TGF-β/Smad pathway, mitigating cardiac fibrosis through the VEGF signaling pathway, reducing wound fibrosis via regulation of the MAPK signaling pathway, and diminishing fibrosis post-fat transplantation via involvement in the PDGFR-β signaling pathway. Notably, the secretome released by miRNA-transfected adipose-derived stem cells facilitates targeted delivery of miRNAs to evade host immune rejection, enhancing their anti-fibrotic efficacy. Hence, this study endeavors to elucidate the role and mechanism of miRNAs in adipose tissue fibrosis and explore the mechanisms and advantages of the secretome released by miRNA-transfected adipose-derived stem cells in combating fibrotic diseases.
Collapse
Affiliation(s)
- Mei Tian
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yitong Guo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qing Xia
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinying Zheng
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Fu Y, Hu P, Hu Y, Fang Y, Zhou Y, Shi Y, Yang K, Fu T, Li W, Gritskevitch ER, Jin L, Lyu J, Zhao Q. Hepatocyte-specific RAP1B deficiency ameliorates high-fat diet-induced obesity and liver inflammation in mice. Diabetes Obes Metab 2025; 27:3036-3049. [PMID: 40083059 DOI: 10.1111/dom.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
AIM This study investigated the role of RAP1B in hepatic lipid metabolism and its implications in obesity and associated metabolic disorders, focusing on the molecular mechanisms through which RAP1B influences lipid accumulation, inflammation and oxidative stress in liver tissues and hepatocyte cell lines. MATERIALS AND METHODS Liver-specific RAP1B-knockout (LKO) and overexpression (OE) mice were generated and fed a high-fat diet for 18 weeks to evaluate systemic and hepatic metabolic changes. Comprehensive metabolic phenotyping included measurements of body weight, body fat content, activity levels, energy expenditure (EE), respiratory exchange ratio (RER), glucose tolerance test and insulin tolerance test. RAP1B-knockdown AML12 hepatocytes were used for in vitro studies. Comprehensive transcriptome and metabolome analyses identified differentially expressed genes and key metabolic shifts. Biochemical and histological analyses were performed to assess lipid accumulation, oxidative stress and inflammatory markers. RESULTS We found that LKO mice exhibited significant reductions in body weight, fat pad size and liver mass, along with decreased hepatic lipid accumulation due to enhanced lipid breakdown. These mice demonstrated improved glucose tolerance and insulin sensitivity without changes in food intake. Liver histology showed reduced F4/80-positive macrophage infiltration, indicating decreased inflammatory cell recruitment. Additionally, markers of oxidative stress were significantly lower, and molecular analysis revealed downregulation of the MAPK(p38) and NF-κB signaling pathways, further supporting an anti-inflammatory hepatic environment. In contrast, OE mice showed increased liver weight, aggravated hepatic lipid accumulation driven by enhanced lipogenesis, worsened insulin resistance and elevated inflammation. CONCLUSIONS This study highlights RAP1B's pivotal role in hepatic metabolism and positions it as a potential therapeutic target for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Yinxu Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Pingyi Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yanyang Hu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yu Fang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yaping Zhou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiqiang Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Fu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Weijia Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- International Sakharov Environmental Institute, Belarusian State University, Minsk, Republic of Belarus
| | | | - Liqin Jin
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiongya Zhao
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Yan LS, Kang JY, Gu CY, Qiu XY, Li JJ, Cheng BCY, Wang YW, Luo G, Zhang Y. Schisandra chinensis lignans ameliorate hepatic inflammation and steatosis in methionine choline-deficient diet-fed mice by modulating the gut-liver axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119801. [PMID: 40222688 DOI: 10.1016/j.jep.2025.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis is used as a traditional Chinese medicine to treat a variety of diseases. Schisandra chinensis lignans (SCL) are one of the most active components extracted from Schisandrae chinensis fructus, exhibit a broad array of pharmacological properties, especially anti-inflammatory and hepatic lipid-lowering effects, suggesting SCL may have potential anti-nonalcoholic steatohepatitis (NASH) ability. However, the therapeutic efficacy of SCL against NASH and the underlying mechanism of this action remains unclear. AIM OF THE STUDY In the current study, we aimed to investigate the anti-NASH action of SCL and explore the underlying mechanism in vitro and in vivo. We also assess the involvement of the gut-liver axis in the anti-NASH effects of SCL. METHODS Palmitic acid (PA)-treated HepG2 cells, mouse primary hepatocytes (MPHs) and methionine-choline deficient (MCD) diet-fed mice were selected as NASH models. ORO staining and qRT-PCR were performed to assess hepatic steatosis and inflammatory responses, respectively. Masson's trichrome staining was used to detect the liver fibrosis. Protein expression was detected by Western blotting or immunohistochemistry. The changes of gut microbiota were analyzed using 16S rDNA sequencing in mice. The levels of metabolites in liver and feces were measured by metabolomics. RESULTS The results showed that SCL treatment alleviated steatosis and inflammation in palmitic acid (PA)-treated HepG2 cells and mouse primary hepatocytes (MPHs). SCL treatment suppressed the phosphorylation of key components involved in NF-κB signaling and enhanced the expression of fatty acid oxidation (FAO)-related enzymes (e.g. CPT1, HMGCS2, and ACOX1) in PA-treated HepG2 cells. SCL could ameliorate hepatic steatosis and inflammation in NASH mice. SCL also ameliorated intestinal barrier injury and restructured the gut microbiota in NASH mice. SCL also modulated hepatic and colonic bile acid metabolism via FXR signaling. CONCLUSION These findings indicate that SCL treatment ameliorates hepatic inflammation and steatosis in NASH mice, potentially though to the suppression of NF-κB signaling and the promotion of fatty acid β-oxidation. Moreover, SCL could restore gut microbiota-mediated bile acid homeostasis via activation of FXR/FGF15 signaling. Our study presents a pharmacological rationale for using SCL in the management of NASH.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chun-Yu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jia-Jia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
4
|
Delalat S, Sultana I, Osman H, Sieme M, Zhazykbayeva S, Herwig M, Budde H, Kovács Á, Kaçmaz M, Göztepe E, Borgmann N, Shahriari G, Sasko B, Wintrich J, Haldenwang P, Schmidt WE, Fenske W, Khan M, Jaquet K, Mügge A, Máthé D, Tóth VE, Varga ZV, Ferdinandy P, El-Battrawy I, van Heerebeek L, Hamdani N. Dysregulated inflammation, oxidative stress, and protein quality control in diabetic HFpEF: unraveling mechanisms and therapeutic targets. Cardiovasc Diabetol 2025; 24:211. [PMID: 40369521 PMCID: PMC12080046 DOI: 10.1186/s12933-025-02734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) represents a significant risk factor for cardiovascular disease, particularly heart failure with preserved ejection fraction (HFpEF). HFpEF predominantly affects elderly individuals and women, and is characterized by dysfunctions associated with metabolic, inflammatory, and oxidative stress pathways. Despite HFpEF being the most prevalent heart failure phenotype in patients with T2DM, its underlying pathophysiological mechanisms remain inadequately elucidated. OBJECTIVE This study aims to investigate the effects of diabetes mellitus on myocardial inflammation, oxidative stress, and protein quality control (PQC) mechanisms in HFpEF, with particular emphasis on insulin signaling, autophagy, and chaperone-mediated stress responses. METHODS We conducted an analysis of left ventricular myocardial tissue from HFpEF patients, both with and without diabetes, employing a range of molecular, biochemical, and functional assays. The passive stiffness of cardiomyocytes (Fpassive) was assessed in demembranated cardiomyocytes before and after implementing treatments aimed at reducing inflammation (IL-6 inhibition), oxidative stress (Mito-TEMPO), and enhancing PQC (HSP27, HSP70). Inflammatory markers (NF-κB, IL-6, TNF-α, ICAM-1, VCAM-1, NLRP3), oxidative stress markers (ROS, GSH/GSSG ratio, lipid peroxidation), and components of signaling pathways (PI3K/AKT/mTOR, AMPK, MAPK, and PKG) were evaluated using western blotting, immunofluorescence, and ELISA techniques. RESULTS Hearts from diabetic HFpEF patients exhibited significantly heightened inflammation, characterized by the upregulation of NF-κB, IL-6, and the NLRP3 inflammasome. This increase in inflammation was accompanied by elevated oxidative stress, diminished nitric oxide (NO) bioavailability, and impaired activation of the NO-sGC-cGMP-PKG signaling pathway. Notably, dysregulation of insulin signaling was observed, as indicated by decreased AKT phosphorylation and impaired autophagy regulation mediated by AMPK and mTOR. Additionally, PQC dysfunction was evidenced by reduced expression levels of HSP27 and HSP70, which correlated with increased cardiomyocyte passive stiffness. Targeted therapeutic interventions effectively reduced Fpassive, with IL-6 inhibition, Mito-TEMPO, and HSP administration leading to improvements in cardiomyocyte mechanical properties. CONCLUSION The findings of this study elucidate a mechanistic relationship among diabetes, inflammation, oxidative stress, and PQC impairment in the context of HFpEF. Therapeutic strategies that target these dysregulated pathways, including IL-6 inhibition, mitochondrial antioxidants, and chaperone-mediated protection, may enhance myocardial function in HFpEF patients with T2DM. Addressing these molecular dysfunctions could facilitate the development of novel interventions specifically tailored to the diabetic HFpEF population.
Collapse
Affiliation(s)
- Simin Delalat
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Innas Sultana
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Hersh Osman
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Marcel Sieme
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Melissa Herwig
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Heidi Budde
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Árpád Kovács
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mustafa Kaçmaz
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Eda Göztepe
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Natalie Borgmann
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Gelareh Shahriari
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Benjamin Sasko
- Medical Department II, Marien Hospital Herne, Ruhr University Bochum, Bochum, Germany
| | - Jan Wintrich
- Medical Department II, Marien Hospital Herne, Ruhr University Bochum, Bochum, Germany
| | - Peter Haldenwang
- Department of Cardiothoracic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Wolfgang E Schmidt
- Department of Medicine I, St. Josef Hospital, UK RUB, Ruhr University Bochum, 44801, Bochum, Germany
| | - Wiebke Fenske
- Department of Internal Medicine I- General Internal Medicine, Endocrinology and Diabetology, Gastroenterology and Hepatology, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Muchtiar Khan
- Department of Cardiology, OLVG, 1091 AC, Amsterdam, The Netherlands
| | - Kornelia Jaquet
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Andreas Mügge
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó utca 37-47, 1094, Budapest, 1085, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - Viktória E Tóth
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and pharmacotherapy,, Semmelweis University, Budapest, 1089, Hungary
- Center for Pharmacology and Drug Research & Development,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltán V Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and pharmacotherapy,, Semmelweis University, Budapest, 1089, Hungary
- Center for Pharmacology and Drug Research & Development,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - Péter Ferdinandy
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and pharmacotherapy,, Semmelweis University, Budapest, 1089, Hungary
- Center for Pharmacology and Drug Research & Development,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1089, Hungary
| | - Ibrahim El-Battrawy
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany
- Department of Medicine I, St. Josef Hospital, UK RUB, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nazha Hamdani
- Medical Faculty, Department of Cellular and Translational Physiology, Institute of Physiology, Molecular and Experimental Cardiology, Institut Für Forschung und Lehre (IFL), Ruhr University Bochum, 44801, Bochum, Germany.
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands.
- Medical Faculty, Department Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, MA 2/156, 44780, Bochum, Germany.
- Institut Für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Gudrunstraße 56, 44791, Bochum, Germany.
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Zhang Y, Tian R, Feng X, Xiao B, Yue Q, Wei J, Wang L. Overexpression of METTL3 in lung cancer cells inhibits radiation-induced bystander effect. Biochem Biophys Res Commun 2025; 761:151714. [PMID: 40184791 DOI: 10.1016/j.bbrc.2025.151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Radiation-induced bystander effects (RIBE) increase the complexity of radiation therapy (RT). m6A modification is implicated in ionizing radiation damage. This study aims to investigate the RIBE and the mechanism after promoting m6A modification. METHODS Lung adenocarcinoma cells were treated to simulate a hypoxic and 0.5 Gy RT environment. The expression levels of METTL3, METTL14, and YTDHF2 were quantified by RT-qPCR. Paracellular clonogenicity and the expression of 53BP1 and γ-H2AX were assessed by immunofluorescence. The proliferative rate was evaluated by CCK-8. Probes were employed to measure ROS levels. Micronucleus formation was evaluated microscopically. m6A-mRNA/lncRNA microarrays, MERIP-PCR, RT-qPCR, and ELISA were utilized to assess m6A modification levels and the expression of inflammatory factors. RESULTS m6A modification levels were significantly diminished under hypoxic, low-dose irradiation conditions. The overexpression of METTL3 in irradiated cancer cells resulted in increased clonogenicity and proliferation of paracellular cells, suppressed the rate of micronucleus formation, and reduced DNA damage by modulating the inflammatory response. m6A-mRNA/lncRNA microarray analyses revealed a higher correlation of inflammatory molecules NF-κB and TRAF6. Further analysis demonstrated that the m6A modification levels of inflammation-related factors such as IL-6, TLR4, NF-κB2, and TRAF6 were significantly up-regulated, while their mRNA expression levels were notably decreased. Additionally, the expression of IL-10 and TGF-β was significantly reduced, with no significant changes observed in IL-1 expression. CONCLUSION The overexpression of METTL3 facilitated m6A modification and mitigated the inflammatory response, thereby promoting paracellular cloning and proliferation, inhibiting micronucleus formation, alleviating DNA damage, and achieving the objective of suppression of RIBE.
Collapse
Affiliation(s)
- Yong Zhang
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Rongrong Tian
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Xudong Feng
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Bin Xiao
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Qi Yue
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Jinling Wei
- The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Li Wang
- The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Zein L, Dietrich M, Balta D, Bader V, Scheuer C, Zellner S, Weinelt N, Vandrey J, Mari MC, Behrends C, Zunke F, Winklhofer KF, Van Wijk SJL. Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival. Autophagy 2025; 21:1075-1095. [PMID: 39744815 PMCID: PMC12013452 DOI: 10.1080/15548627.2024.2443945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/21/2025] Open
Abstract
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation. Linear (M1) poly-Ub, catalyzed by the linear ubiquitin chain assembly complex (LUBAC) E3 ligase and removed by OTULIN (OTU deubiquitinase with linear linkage specificity) exerts important functions in immune signaling and cell survival, but the role of M1 poly-Ub in lysosomal homeostasis remains unexplored. Here, we demonstrate that L-leucyl-leucine methyl ester (LLOMe)-damaged lysosomes accumulate M1 poly-Ub in an OTULIN- and K63 Ub-dependent manner. LMP-induced M1 poly-Ub at damaged lysosomes contributes to lysosome degradation, recruits the NFKB (nuclear factor kappa B) modulator IKBKG/NEMO and locally activates the inhibitor of NFKB kinase (IKK) complex to trigger NFKB activation. Inhibition of lysosomal degradation enhances LMP- and OTULIN-regulated cell death, indicating pro-survival functions of M1 poly-Ub during LMP and potentially lysophagy. Finally, we demonstrate that M1 poly-Ub also occurs at damaged lysosomes in primary mouse neurons and induced pluripotent stem cell-derived primary human dopaminergic neurons. Our results reveal novel functions of M1 poly-Ub during lysosomal homeostasis, LMP and degradation of damaged lysosomes, with important implications for NFKB signaling, inflammation and cell death.Abbreviation: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRISPR: clustered regularly interspaced short palindromic repeats; CHUK/IKKA: component of inhibitor of nuclear factor kappa B kinase complex; CUL4A-DDB1-WDFY1: cullin 4A-damage specific DNA binding protein 1-WD repeat and FYVE domain containing 1; DGCs: degradative compartments; DIV: days in vitro; DUB: deubiquitinase/deubiquitinating enzyme; ELDR: endo-lysosomal damage response; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; GBM: glioblastoma multiforme; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: inhibitor of NFKB kinase; iPSC: induced pluripotent stem cell; KBTBD7: kelch repeat and BTB domain containing 7; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LCD: lysosomal cell death; LGALS: galectin; LMP: lysosomal membrane permeabilization; LLOMe: L-leucyl-leucine methyl ester; LOP: loperamide; LUBAC: linear ubiquitin chain assembly complex; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IĸBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; OPTN: optineurin; ORAS: OTULIN-related autoinflammatory syndrome; OTULIN: OTU deubiquitinase with linear linkage specificity; RING: really interesting new gene; RBR: RING-in-between-RING; PLAA: phospholipase A2 activating protein; RBCK1/HOIL-1: RANBP2-type and C3HC4-type zinc finger containing 1; RNF31/HOIP: ring finger protein 31; SHARPIN: SHANK associated RH domain interactor; SQSTM1/p62: sequestosome 1; SR-SIM: super-resolution-structured illumination microscopy; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TH: tyrosine hydroxylase; TNF/TNFα: tumor necrosis factor; TNFRSF1A/TNFR1-SC: TNF receptor superfamily member 1A signaling complex; TRIM16: tripartite motif containing 16; Ub: ubiquitin; UBE2QL1: ubiquitin conjugating enzyme E2 QL1; UBXN6/UBXD1: UBX domain protein 6; VCP/p97: valosin containing protein; WIPI2: WD repeat domain, phosphoinositide interacting 2; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Dietrich
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph Scheuer
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Suzanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Nadine Weinelt
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Muriel C. Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Sjoerd J. L. Van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Liu H, Yu Y, Wang C, Wang Y, Wu R, Zhang Z, Liu D, Liao M, Rong X, Li B, Luo Z, Zhang Z. The molecular mechanism of gspD gene in regulating the biological characteristics, pathogenicity and virulence gene expression of Photobacterium damselae subsp. damselae. Int J Biol Macromol 2025; 306:141559. [PMID: 40020817 DOI: 10.1016/j.ijbiomac.2025.141559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The pathogenic bacterium Photobacterium damselae subsp. damselae (PDD) has the capacity to infect various mariculture fish species. The Type II secretion system is a component of PDD, facilitating the secretion of extracellular products. The gspD gene encodes the outer membrane secretory channel protein of T2SS. To investigate the role of the gspD gene in T2SS during PDD infection, we generated a gspD gene deletion mutant of PDD (ΔgspD-PDD) using a suicide plasmid-mediated homologous recombination technique and compared the biological characteristics, virulence gene expression, and pathogenicity of ΔgspD-PDD with those of the wild-type strain (WT-PDD). Our results indicated that the hemolytic activity and phospholipase activity of ΔgspD-PDD were significantly diminished compared to WT-PDD, and the complementation strain was restored to levels similar to those of the WT-PDD. The expression levels of T2SS-related genes and the virulence genes were significantly down-regulated, while the outer membrane-related gene and flagella-related genes exhibited significant up-regulation. The LD50 values of ΔgspD-PDD and its ECP in Sebastes schlegelii were 62.70-fold and 18.76-fold higher than those of WT-PDD, respectively. In summary, the mutation of the gspD gene may lead to the down-regulation of T2SS-related genes, resulting in aberrant secretion of ECPs in PDD and subsequently diminishing its pathogenicity.
Collapse
Affiliation(s)
- Haozhe Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Yongxiang Yu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Qingdao, Shandong 266237, China
| | - Chunyuan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yingeng Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Qingdao, Shandong 266237, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Zhiqi Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Dingyuan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Meijie Liao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Qingdao, Shandong 266237, China
| | - Xiaojun Rong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Qingdao, Shandong 266237, China
| | - Bin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Qingdao, Shandong 266237, China
| | - Zhang Luo
- College of Fisheries, Tianjin Agricultural University, Tianjin 300392, China
| | - Zheng Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Gou L, Yue GGL, Chan BCL, Lau AHY, Puno PT, Lau CBS. Unveiling the role of mast cells in breast cancer-a case study of natural product Eriocalyxin B as an inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156596. [PMID: 40049107 DOI: 10.1016/j.phymed.2025.156596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/27/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Inflammation and breast cancer are closely associated. Considering that mast cells are essential component of inflammatory cells, its relationship with breast cancer arose rising attention. PURPOSE This study aims to elucidate the influence of mast cells on triple negative breast cancer (TNBC) and explore potential therapeutic interventions targeting mast cells. METHODS The study employed proteomic analysis and molecular investigations to examine disparities between mast cells from healthy mice and those from breast tumor-bearing mice. Additionally, the natural product Ericalyxin B (Eri B) was utilized for its anti-inflammatory and anti-breast cancer properties. Ex vivo and in vivo treatments of Eri B were conducted to assess its impact on mast cell-mediated promotion of breast cancer. RESULTS The crosstalk between mast cells and TNBC cells was found to enhance proliferation, invasion, and migration of TNBC cells. Mast cells from breast tumor-bearing mice exhibited disparities compared to those from healthy mice, as confirmed by proteomic analysis. Treatment with Eri B suppressed the promoting effect of mast cells on breast cancer by inhibiting the TAK1/NF-κB signaling pathway and downregulating downstream cytokine release. In vivo treatment with Eri B also reduced mast cell numbers and tryptase levels in tumors. CONCLUSION This is the first study to compare disparities between mast cells derived from healthy mice and those from breast tumor-bearing mice, while also revealing the effects of the natural product Eri B on mast cells in breast cancer. Our findings highlighted the crucial role of mast cells as potential targets for triple negative breast cancer therapy and suggests that Eri B holds promise in suppressing breast cancer progression by regulating mast cells.
Collapse
Affiliation(s)
- Leilei Gou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Alaster Hang-Yung Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pema Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Liu X, Lin Y, Zhuang Q, Deng H, Liu A, Sun J. BTK inhibitors resistance in B cell malignancies: Mechanisms and potential therapeutic strategies. Blood Rev 2025; 71:101273. [PMID: 40000280 DOI: 10.1016/j.blre.2025.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have shown prominent clinical efficacy in patients with B cell malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and Waldenström's macroglobulinemia. Nevertheless, numerous factors contribute to BTKi resistance, encompassing genetic mutations, chromosomal aberrations, dysregulation of protein expression, tumor microenvironment, and metabolic reprogramming. Accordingly, potential therapeutic strategies have been explored to surmount BTKi resistance, including noncovalent BTKi, BTK proteolysis-targeting chimeras, and combination therapies. Herein, we summarize the mechanisms responsible for BTKi resistance as well as the current preclinical and clinical strategies to address BTKi resistance in B cell malignancies treatment.
Collapse
Affiliation(s)
- Xin Liu
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufan Lin
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiqi Zhuang
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoren Deng
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jie Sun
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.
| |
Collapse
|
10
|
Pei J, Chen S, Ke Q, Pang A, Niu M, Li N, Li J, Wang Z, Wu H, Nie P. Immune response to polystyrene microplastics: Regulation of inflammatory response via the ROS-driven NF-κB pathway in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107308. [PMID: 40058300 DOI: 10.1016/j.aquatox.2025.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025]
Abstract
There is increasing apprehension regarding the rising prevalence of microplastics (MPs) in aquatic ecosystems. Although MPs cause toxicological effect on fish via diverse pathways, the precise immunotoxicological mechanism is yet to be fully understood. Utilizing zebrafish in early developmental stages and zebrafish embryonic fibroblast (ZF4) as models, this study delved into the immune response elicited by polystyrene MPs (PS-MPs). It was observed that larvae predominantly accumulate 3 μm PS-MPs in their intestines through ingestion, leading to notable changes in locomotor behavior and histopathological alterations. Further investigation revealed that short-term exposure to PS-MPs triggers oxidative stress (OS) and inflammation in zebrafish. This is evidenced by the upregulation of OS and inflammation-related genes, increased levels of reactive oxygen species (ROS), malonaldehyde (MDA), and inflammatory cytokines, altered activities of antioxidant enzymes, along with induced recruitment of leukocyte in larvae. Cellular assays confirmed that PS-MPs elevate intracellular ROS in ZF4 cells and enhance the nuclear translocation of NF-κB P65. Notably, the activation of NF-κB and the upsurge in inflammatory cytokines can be mitigated by inhibiting ROS. This research highlights the significance of the ROS-triggered NF-κB signaling cascade in PS-MPs-mediated inflammation within zebrafish, illuminating the possible processes that underlie the innate immune system of fish toxicity caused by MPs.
Collapse
Affiliation(s)
- Jincheng Pei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, PR China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | - Qingxia Ke
- Yangxin County Fishery Service Center, Huangshi, Hubei Province 435200, PR China
| | - Anning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | - Mengmeng Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | - Jiayi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Zhi Wang
- Yangxin County Fishery Service Center, Huangshi, Hubei Province 435200, PR China
| | - Hongjuan Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, PR China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China.
| |
Collapse
|
11
|
Wei Q, Wang J, Zhang J. Inhibiting the Translocation of HMGB1 Alleviates Renal Ischemia-Reperfusion Injury by Cutting Down Inflammatory Cascade. Transplant Proc 2025; 57:646-652. [PMID: 40107932 DOI: 10.1016/j.transproceed.2025.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Ischemia and reperfusion does damage to tissues and causes the decline of organ function though the inflammatory cascade. Noteworthy, HMGB1 possess a crucial role in promoting progression of these effects in kidney. The study aimed at ascertaining the concrete mechanism of HMGB1 triggering inflammatory cascade in renal ischemia-reperfusion injury (IRI). METHODS IRI was induced in mice by clamping left renal arteries for 60 minutes followed by 24 hours of reperfusion with the removal of right kidney. The effects of HMGB1on IRI were evaluated by targeting creatinine, blood urea nitrogen, survival rates, renal morphology, and the translocation and secretion of HMGB1. In addition, the expression of Toll-like receptor 4, phosphorylated nuclear factor κB p65, nuclear factor κB p65, and inflammatory cascade molecules (interleukin [IL]-1β, and IL-6, and tumor necrosis factor-α) were carried out. RESULTS Our results demonstrated that antibody against HMGB1 (anti-HMGB1) can improve the survival rate; decrease the expression of creatinine, blood urea nitrogen, Toll-like receptor 4, phosphorylated nuclear factor κB p65, IL-1β, IL-6, and tumor necrosis factor-α; reduce renal pathological injury; alleviate the secretion of HMGB1; and suppress the translocation of HMGB1 from nucleus into cytoplasm in IRI. Notably, recombinant HMGB1, the agonist of HMGB1, can alleviate the noted effects of anti-HMGB1 in IRI. CONCLUSION HMGB1 can aggravate renal IRI by triggering the inflammatory cascade, the mechanism of which is associated with activating the Toll-like receptor 4-nuclear factor κB p65 signal pathway.
Collapse
Affiliation(s)
- Qian Wei
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, School of Medcine, University of Electronic Science and Technology, Sichuan Clinical Research Center for Kidney Disease, Chengdu, China
| | - Jia Wang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, School of Medcine, University of Electronic Science and Technology, Sichuan Clinical Research Center for Kidney Disease, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, School of Medcine, University of Electronic Science and Technology, Sichuan Clinical Research Center for Kidney Disease, Chengdu, China.
| |
Collapse
|
12
|
Kumar A, Bharadwaj T, Muthuraj L, Kumar J, Kumar P, Lalitha R, Sigamani G, Ahmad S, Bhanu P, Pathak RK, Uttarkar A, Niranjan V, Mishra V. Molecular dynamics simulation and docking studies reveals inhibition of NF-kB signaling as a promising therapeutic drug target for reduction in cytokines storms. Sci Rep 2025; 15:15225. [PMID: 40307269 PMCID: PMC12043994 DOI: 10.1038/s41598-024-78411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 05/02/2025] Open
Abstract
Nuclear factor-kappa B (NF-kB) plays a crucial role in numerous cellular processes, such as inflammation, immunological responses to infection, cell division, apoptosis, and the development of embryos and neurons. Cytokines, plays an important role in positive feedback loop and leads to inflammatory cell death through the release of pathogenic cytokine known to be cytokine storm which causes diseases like Acute Respiratory Disorder (ARD), multi-organ disorder, Hyperinflammation syndrome and may cause death. This cytochrome storm was identified in the people severely affected by covid-19. NF-kB presents a promising therapeutic opportunity to mitigate covid-19-induced cytokine storm and reduce the risk of severe morbidity and mortality resulting from the diseases. This paper therefore explores the modulation of the NF-kB pathway by inhibiting the binding of the transcription factor as a potential strategy to mitigate the morbidity and mortality caused by cytokine storms. To identify small molecule inhibitors of NF-kB signaling, we screened approximately 101 molecules in two identified pockets of NF-kB (p50/p65)-DNA complex. Each molecule was virtually screened in two pockets (A1 and A2). The focus library was developed starting from chemical structures obtained from the literature (Angelicin and Psolaren) which shows the inhibition of NF-kB signaling, as well as using artificial intelligence (WADDAICA) and rationally designed molecules. Among the 3 highest-scored ligands (NFAI64, NF30 and NF49) selected from the docking studies and further molecular dynamic investigations. The identified compound NF30 showed significantly higher binding affinity (ΔGbinding) in A2 pocket (60.92 ± 1.83 kJ/mol) as compared to the rest of the molecules, making it a promising molecule for the inhibition of NF-kB. The discovered novel compounds by computational studies could be of relevance to identify more potent inhibitors of NF-kB dependent biological functions beneficial to control the cytokine storm occurring in the patients affected with Covid-19.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - Tharun Bharadwaj
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - Likith Muthuraj
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - Jitendra Kumar
- Biotechnology Industry Research Assistance Council (BIRAC), NSIC Business Park, NSIC Bhawan, Okhla Industrial Estate, New Delhi, 110020, India.
| | - Pravin Kumar
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India.
| | - Roopa Lalitha
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - Gladstone Sigamani
- Department of Computational Biology and AI, Kcat Enzymatic Private Limited, #16, Ramakrishnappa Road, Cox Town, Bangalore, 560005, India
| | - Shaban Ahmad
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Piyush Bhanu
- Xome Life Sciences, Bangalore Bioinnovation Center, Helix Biotech Park, Bangalore, 560100, India
| | - Ravi Kant Pathak
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi GT Rd, Phagwara, Punjab, 144001, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, RV Vidyanikethan Post, Mysuru Road, Banglore, 560059, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, RV Vidyanikethan Post, Mysuru Road, Banglore, 560059, India
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi, 110003, India
| |
Collapse
|
13
|
Lee S, Ho YY, Hao S, Ouyang Y, Liew UL, Goyal A, Li S, Barbour JA, He M, Huang Y, Wong JWH. A tumour necrosis factor-α responsive cryptic promoter drives overexpression of the human endogenous retrovirus ERVK-7. J Biol Chem 2025:108568. [PMID: 40316021 DOI: 10.1016/j.jbc.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
Endogenous retroviruses (ERVs) shape human genome functionality and influence disease pathogenesis, including cancer. ERVK-7, a significant ERV, acts as an immune modulator and prognostic marker in lung adenocarcinoma (LUAD). Although ERVK-7 overexpression has been linked to the amplification of the 1q22 locus in approximately 10% of LUAD cases, it predominantly arises from alternative regulatory mechanisms. Our findings indicate that the canonical 5' long terminal repeat (LTR) of ERVK-7 is methylated and inactive, necessitating the use of alternative upstream promoters. We identified two novel transcripts, ERVK-7.long and ERVK-7.short, arising from distinct promoters located 2.8 kb and 13.8 kb upstream of the 5'LTR of ERVK-7, respectively. ERVK-7.long is predominantly overexpressed in LUAD. Through comprehensive epigenetic mapping and single-cell transcriptomics, we demonstrate that ERVK-7.long activation is predetermined by cell lineage, specifically in small airway epithelial cells (SAECs), where its promoter displays tumor-specific H3K4me3 modifications. Single-cell RNA sequencing further reveals a distinct enrichment of ERVK-7.long in LUAD tumor cells and alveolar type 2 epithelial cells, underscoring a cell-type-specific origin. Additionally, inflammatory signaling significantly influences ERVK-7 expression; TNF-α enhances ERVK-7.long, while interferon signaling preferentially augments ERVK-7.short by differential recruitment of NF-κB/RELA and IRF to their respective promoters. This differential regulation clarifies the elevated ERVK-7 expression in LUAD compared to lung squamous cell carcinoma (LUSC). Our study elucidates the complex regulatory mechanisms governing ERVK-7 in LUAD and proposes these transcripts as potential biomarkers and therapeutic targets, offering new avenues to improve patient outcomes.
Collapse
Affiliation(s)
- Sojung Lee
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yin Yee Ho
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Suyu Hao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yingqi Ouyang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - U Ling Liew
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ashish Goyal
- Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jayne A Barbour
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Mu He
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jason W H Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
14
|
Zhang QX, Zhang LJ, Zhao N, Yang L. Irisin restrains neuroinflammation in mouse experimental autoimmune encephalomyelitis via regulating microglia activation. Front Pharmacol 2025; 16:1561939. [PMID: 40365310 PMCID: PMC12069398 DOI: 10.3389/fphar.2025.1561939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Multiple sclerosis is a chronic autoimmune demyelinating disorder predominantly affecting the white matter of the central nervous system, with experimental autoimmune encephalomyelitis (EAE) serving as its classical animal model. Irisin, a glycosylated protein derived from the proteolytic cleavage of fibronectin type III domain-containing protein 5, plays a significant role in metabolic regulation and inflammatory modulation within the organism. Methods In this study, we systematically investigated the therapeutic effects and underlying mechanism of Irisin on EAE and BV2 microglial cells through comprehensive methodologies including quantitative real-time polymerase chain reaction, immunofluorescence staining and western blot. Results Irisin exerts neuroprotective effects in EAE mice, significantly ameliorating both clinical and pathological manifestations of the disease. Mechanistically, Irisin attenuated inflammatory response and reduced the number of microglia through NF-κBp65 signaling pathway. Conclusion In conclusion, these results collectively suggest that Irisin alleviates EAE progression by suppressing microglia activation via the NF-κBp65 pathway, highlighting its potential as a promising therapeutic target for multiple sclerosis treatment.
Collapse
Affiliation(s)
| | | | | | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Zheng J, Yi Y, Tian T, Luo S, Liang X, Bai Y. ICI-induced cardiovascular toxicity: mechanisms and immune reprogramming therapeutic strategies. Front Immunol 2025; 16:1550400. [PMID: 40356915 PMCID: PMC12066601 DOI: 10.3389/fimmu.2025.1550400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, offering life-saving benefits to tumor patients. However, the utilize of ICI agents is often accompanied by immune-related adverse events (irAEs), among which cardiovascular toxicities have attracted more and more attention. ICI induced cardiovascular toxicities predominantly present as acute myocarditis and chronic atherosclerosis, both of which are driven by excessive immune activation. Reprogramming of T cells and macrophages has been demonstrated as a pivotal factor in the pathogenesis of these complications. Therapeutic strategies targeting glycolysis, fatty acid oxidation, reactive oxygen species (ROS) production and some other key signaling have shown promise in mitigating immune hyperactivation and inflammation. In this review, we explored the intricate mechanisms underlying ICI-induced cardiovascular toxicities and highlighted the protective potential of immune reprogramming. We emphasize the roles of T cell and macrophage reprogramming in the heart and vasculature, showcasing their contributions to both short-term and long-term regulation of cardiovascular health. Ultimately, a deeper understanding of these processes will not only enhance the safety of ICIs but also pave the way for innovative strategies to manage immune-related toxicities in cancers therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Bai
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Oliveira MDS, Dias IRSB, Costa RGA, Rodrigues ACBDC, Silva SLR, Soares MBP, Dias RB, Valverde LF, Gurgel Rocha CA, Batista AA, Correa RS, Silva VR, Granado Pina ET, Bezerra DP. Ru(II)-thymine complex suppresses acute myeloid leukemia stem cells by inhibiting NF-κB signaling. Biomed Pharmacother 2025; 187:118080. [PMID: 40288174 DOI: 10.1016/j.biopha.2025.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Acute myeloid leukemia (AML) is a lethal hematologic malignancy caused by leukemic blasts that fail to mature normally. AML has a high relapse rate, primarily due to a small subset known as leukemic stem cells (LSCs). In this work, we investigated the ability of a Ru(II)-thymine complex (RTC) with the formula [Ru(PPh3)2(Thy)(bipy)]PF6 (where PPh3 = triphenylphosphine, Thy = thymine, and bipy = 2,2'-bipyridine) to suppress AML LSCs. RTC exhibited potent cytotoxicity toward both solid and hematologic malignancies and suppressed primary AML LSCs, as observed by the reduction in the CD34 +CD38- cell population. In the AML cell line KG-1a, which has an LSC-like population, RTC reduced the number of CD34 + and CD123 + cells. A reduction in leukemic blasts was detected in the bone marrow of RTC-treated NSG mice bearing KG-1a xenografts. Increased DNA fragmentation, YO-PRO-1 staining, active caspase-3 and cleaved PARP (Asp 214) levels, and mitochondrial superoxide levels were detected in RTC-treated KG-1a cells. The pancaspase inhibitor Z-VAD-(OMe)-FMK, but not the antioxidant N-acetylcysteine, partially prevented RTC-induced cell death in KG-1a cells, indicating that RTC induces caspase-mediated apoptosis in KG-1a cells via an oxidative stress-independent pathway. In molecular mechanism studies, transcripts of the NF-κB inhibitor NFKBIA were upregulated, and the level of NF-κB p65 phosphorylated at the Ser529 residue was reduced in RTC-treated KG-1a cells, indicating that RTC may inhibit NF-κB signaling. Overall, these results indicate the anti-AML potential of RTC in AML LSCs via the suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Maiara de S Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | | | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, BA 41650-010, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, BA 44036-900, Brazil
| | - Ludmila F Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Department of Dentistry, Federal University of Sergipe, Lagarto, SE 49400-000, Brazil
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Department of Propaedeutics, Faculty of Dentistry, Federal University of Bahia (UFBA), Salvador, BA 40301-155, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13561-901, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil
| | - Eugênia T Granado Pina
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil; Research Center, National Cancer Institute (INCA), Rio de Janeiro, RJ 20230-130, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA 40296-710, Brazil.
| |
Collapse
|
17
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
18
|
Lu BT, Wang YJ, Wang L, Wu D, Lin YL, Xu JX, Zhang JN, Liu BW, Liu HY, Meng H, Gao Y, Wang HL, Kang K. Shenfu injection alleviates lipopolysaccharide-induced liver injury in septic mice. Sci Rep 2025; 15:14004. [PMID: 40263344 PMCID: PMC12015584 DOI: 10.1038/s41598-025-98740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Shenfu injection (SFI) is a traditional Chinese medicine (TCM) for treating sepsis. The purpose of this study was to evaluate the protective effect of SFI on lipopolysaccharide (LPS)-induced liver injury in septic mice. The results showed that SFI intervention reduced liver/body weight and significantly improved the survival rate of septic mice. SFI could relieve the apoptosis of liver cells and ameliorate liver function in LPS-induced septic mice. SFI also diminished the serum and liver levels of the inflammatory factors IL-1β, IL-6, IL-18, IL-12, and TNF-α in a dose-dependent manner. SFI enhanced the mitochondrial membrane potential and alleviated the mitochondrial damage of liver in septic mice. Western blot revealed that the phosphorylation levels of IκB and NF-κB p65 increased significantly in the liver of LPS-induced septic mice. After SFI intervention, the phosphorylation levels of IκB and NF-κB p65 gradually recovered, especially at high concentration. SFI treatment reduced nuclear transduction, thus reducing transcriptional activity, which indicated that NF-κB p65 signal pathway might contribute to the anti-inflammatory and anti-apoptotic activities of SFI in the liver of LPS-induced septic mice. In addition, the metabolic profile of liver tissue in the model group was different from that in the control group, and SFI significantly regulated liver purine metabolism. These valuable findings suggested that SFI could improve mitochondrial function and mitigate inflammation and apoptosis, and thus alleviate LPS-induced liver injury in septic mice. SFI may be a promising drug to treat septic liver injury.
Collapse
Affiliation(s)
- Bai-Tao Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Ya-Jun Wang
- Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150027, Heilongjiang Province, China
| | - Lei Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Di Wu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Yi-Lu Lin
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Jia-Xi Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Jia-Ning Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Bo-Wen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Hui-Ying Liu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Huan Meng
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China.
| | - Hong-Liang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Harbin, 150086, Heilongjiang Province, China.
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
19
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
20
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
21
|
Song Q, Meng Q, Meng X, Wang X, Zhang Y, Zhao T, Cong J. Size- and duration-dependent toxicity of heavy vehicle tire wear particles in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138299. [PMID: 40253784 DOI: 10.1016/j.jhazmat.2025.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tire wear particles (TWPs), as a pervasive environmental pollutant, pose significant risks to aquatic ecosystems. This study investigates the effects of small (HS) and large (HL) TWPs produced by heavy vehicles on zebrafish, focusing on physiological, microbial, and transcriptomic levels, as well as their intergenerational consequences, under short-term (15 days) and long-term (90 days) exposure. Short-term exposure to small particles (HS15) significantly reduced body width and triggered widespread oxidative stress, while long-term exposure to large particles (HL90) increased gut weight and decreased gill weight, reflecting respiratory and digestive disruptions. Tissue-level analyses revealed that smaller particles accumulated more readily in internal organs, whereas larger particles caused localized physiological stress. Gut microbiota profiling indicated a marked decline in microbial diversity, compositional shifts, and network simplification, with HL15 enriched in Acinetobacter and xenobiotic metabolism pathways, and HS15 exhibiting Proteobacteria-dominated dysbiosis and enrichment of LPS biosynthesis genes. Liver transcriptomics revealed group-specific responses: HL15 exposure activated innate immunity via the NOD-MAPK axis, while HS15 induced atypical PI3K-NF-κB signaling, potentially linked to microbial LPS. Notably, all TWP-exposed groups showed enrichment of the herpes simplex virus 1 (HSV-1) infection pathway, suggesting a conserved antiviral-like host response. Transgenerational effects were evidenced by impaired growth and significant downregulation of GH/IGF signaling and upregulation of apoptotic genes in offspring, despite only subtle transcriptomic changes in long-term exposed parents. These findings underscore the importance of particle size, exposure duration, and microbiota-gut-liver axis interactions in mediating TWP toxicity and highlight potential transgenerational risks associated with environmental microplastic exposure.
Collapse
Affiliation(s)
- Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
22
|
Lee JJ, Yang L, Kotzin JJ, Ahimovic D, Bale MJ, Nigrovic PA, Josefowicz SZ, Mathis D, Benoist C. Early transcriptional effects of inflammatory cytokines reveal highly redundant cytokine networks. J Exp Med 2025; 222:e20241207. [PMID: 39873673 PMCID: PMC11865922 DOI: 10.1084/jem.20241207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammatory cytokines are fundamental mediators of the organismal response to injury, infection, or other harmful stimuli. To elucidate the early and mostly direct transcriptional signatures of inflammatory cytokines, we profiled all immunologic cell types by RNAseq after systemic exposure to IL1β, IL6, and TNFα. Our results revealed a significant overlap in the responses, with broad divergence between myeloid and lymphoid cells, but with very few cell-type-specific responses. Pathway and motif analysis identified several main controllers (NF-κB, IRF8, and PU.1), but the largest portion of the response appears to be mediated by MYC, which was also implicated in the response to γc cytokines. Indeed, inflammatory and γc cytokines elicited surprisingly similar responses (∼50% overlap in NK cells). Significant overlap with interferon-induced responses was observed, paradoxically in lymphoid but not myeloid cell types. These results point to a highly redundant cytokine network, with intertwined effects between disparate cytokines and cell types.
Collapse
Affiliation(s)
- Juliana J. Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Jonathan J. Kotzin
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dughan Ahimovic
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Michael J. Bale
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Z. Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
23
|
Wang G, Yang Q, Han Y, Zhang Y, Pan W, Ma Z, Tian H, Qu X. miR-32-5p suppresses the progression of hepatocellular carcinoma by regulating the GSK3β/NF-κB signaling. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40170617 DOI: 10.3724/abbs.2025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal form of malignancy that seriously threatens patient survival. The global 5-year survival rate for HCC patients ranges from 15% to 19%, and nearly 80% of patients are diagnosed at an advanced stage. Therefore, exploring the mechanism of HCC development and identifying biomarkers and therapeutic targets for HCC are vital. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs, are 20-24 nucleotides (nt) long. They play pivotal roles in modulating the progression of diverse diseases. The specific role of miR-32-5p in the development of HCC remains unclear. In this study, qRT-PCR is utilized to precisely determine the downregulated expression levels of miR-32-5p in HCC. Subsequently, functional analysis reveals the suppressive role of miR-32-5p in modulating the proliferative and migratory capabilities of HCC cells. Glycogen synthase kinase 3β (GSK3β) has emerged as a potential target of miR-32-5p, which is confirmed through a dual-luciferase reporter assay. Notably, the expression of GSK3β in HCC tissue specimens is negatively correlated with the abundance of miR-32-5p, and patients with high GSK3β expression have shorter survival time. Furthermore, the targeted downregulation of GSK3β remarkably impedes the proliferation and migration of tumor cells. This study suggests that miR-32-5p inhibits the proliferation and migration of HCC through regulating the GSK3β/NF-κB signaling pathway. Therefore, this study reveals that miR-32-5p exerts its suppressive effect on HCC progression, suggesting that it is a promising target for both diagnostic and targeted therapeutic interventions against HCC.
Collapse
Affiliation(s)
- Guangzhi Wang
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qianqian Yang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yaqi Han
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yunlong Zhang
- School of Medical Imaging, Shandong Second Medical University, Weifang 261053, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Tian
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xudong Qu
- Department of Intervention Radiology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
24
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2025; 46:816-828. [PMID: 39548290 PMCID: PMC11950187 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Wu C, Wang X, Li X, Li H, Peng Q, Niu X, Wu Y, Wang Z, Zhou Z. TRIM21 interacts with IκBα and negatively regulates NF-κB activation in Corynebacterium pseudotuberculosis-infected macrophages. Vet Immunol Immunopathol 2025; 282:110910. [PMID: 40020570 DOI: 10.1016/j.vetimm.2025.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Corynebacterium pseudotuberculosis, a zoonotic intracellular bacteria, is responsible for abscesses and pyogranuloma formation of the infected host, which is essentially a chronic inflammatory response. Tripartite motif-containing protein 21 (TRIM21) negatively regulates pro-inflammatory cytokines production during C. pseudotuberculosis infection, the mechanism of which remains unclear. This study found that C. pseudotuberculosis infection in macrophages induced phosphorylation of IκB and p65. TRIM21 interacted with IκBα by PRY/SPRY domain, stabilizes IκBα and negatively regulates IκBα phosphorylation in macrophages during C. pseudotuberculosis infection. In addition, TRIM21 positively regulates the ubiquitination of IκBα via K48 linkage rather than K63 linkage in C. pseudotuberculosis-infected macrophages. In brief, our research confirmed that TRIM21 negatively regulates canonical NF-κB activation by interacting with IκBα and decreasing IκBα phosphorylation in macrophages during C. pseudotuberculosis infection. Preventing inflammation induced by C. pseudotuberculosis infection through regulation of the NF-κB pathway is a potential way to control this pathogen.
Collapse
Affiliation(s)
- Chanyu Wu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaohan Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xincan Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiuyue Peng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaoxin Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Yutong Wu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, No. 1 Laolipo Nanming District, Guiyang 550025, China.
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zuoyong Zhou
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| |
Collapse
|
26
|
Al-Shami AS, Abd Elkader HTAE, Moussa N, Essawy AE, Haroun M. Early-life bisphenol A exposure causes neuronal pyroptosis in juvenile and adult male rats through the NF-κB/IL-1β/NLRP3/caspase-1 signaling pathway: exploration of age and dose as effective covariates using an in vivo and in silico modeling approach. Mol Cell Biochem 2025; 480:2301-2330. [PMID: 38941031 PMCID: PMC11961519 DOI: 10.1007/s11010-024-05039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Bisphenol A (BPA), a common endocrine-disrupting chemical, is found in a wide range of home plastics. Early-life BPA exposure has been linked to neurodevelopmental disorders; however, the link between neuroinflammation, pyroptosis, and the development of psychiatric disorders is rarely studied. The current study attempted to investigate the toxic effect of BPA on inflammatory and microglial activation markers, as well as behavioral responses, in the brains of male rats in a dose- and age-dependent manner. Early BPA exposure began on postnatal day (PND) 18 at dosages of 50 and 125 mg/kg/day. We started with a battery of behavioral activities, including open field, elevated plus- and Y-maze tests, performed on young PND 60 rats and adult PND 95 rats. BPA causes anxiogenic-related behaviors, as well as cognitive and memory deficits. The in vivo and in silico analyses revealed for the first time that BPA is a substantial activator of nuclear factor kappa B (NF-κB), interleukin (IL)-1β, -2, -12, cyclooxygenase-2, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with higher beclin-1 and LC3B levels in BPA rats' PFC and hippocampus. Furthermore, BPA increased the co-localization of caspase-1 immunoreactive neurons, as well as unique neurodegenerative histopathological hallmarks. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation are involved with changes in the brain after postnatal BPA exposure and that these alterations may be linked to the development of psychiatric conditions later in life. Collectively, our findings indicate that BPA triggers anxiety-like behaviors and pyroptotic death of nerve cells via the NF-κB/IL-1β/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Solar M, Grayck MR, McCarthy WC, Zheng L, Lacayo OA, Sherlock LG, Zhou R, Orlicky DJ, Wright CJ. Absence of IκBβ/NFκB signaling does not attenuate acetaminophen-induced hepatic injury. Anat Rec (Hoboken) 2025; 308:1251-1264. [PMID: 36426684 PMCID: PMC10209348 DOI: 10.1002/ar.25126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol [APAP]) toxicity is a common cause of acute liver failure. Innate immune signaling and specifically NFκB activation play a complex role in mediating the hepatic response to toxic APAP exposures. While inflammatory innate immune responses contribute to APAP-induced injury, these same pathways play a role in regeneration and repair. Previous studies have shown that attenuating IκBβ/NFκB signaling downstream of TLR4 activation can limit injury, but whether this pathway contributes to APAP-induced hepatic injury is unknown. We hypothesized that the absence of IκBβ/NFκB signaling in the setting of toxic APAP exposure would attenuate APAP-induced hepatic injury. To test this, we exposed adult male WT and IκBβ-/- mice to APAP (280 mg/kg, IP) and evaluated liver histology at early (2-24 hr) and late (48-72 hr) time points. Furthermore, we interrogated the hepatic expression of NFκB inflammatory (Cxcl1, Tnf, Il1b, Il6, Ptgs2, and Ccl2), anti-inflammatory (Il10, Tnfaip3, and Nfkbia), and Nrf2/antioxidant (Gclc, Hmox, and Nqo1) target genes previously demonstrated to play a role in APAP-induced injury. Conflicting with our hypothesis, we found that hepatic injury was similar in WT and IκBβ-/- mice. Acutely, the induced expression of some target genes was similar in WT and IκBβ-/- mice (Tnfaip3, Nfkbia, and Gclc), while others were either not induced (Cxcl1, Tnf, Ptgs2, and Il10) or significantly attenuated (Ccl2) in IκBβ-/- mice. At later time points, APAP-induced hepatic expression of Il1b, Il6, and Gclc was significantly attenuated in IκBβ-/- mice. Based on these findings, the therapeutic potential of targeting IκBβ/NFκB signaling to treat toxic APAP-induced hepatic injury is likely limited.
Collapse
Affiliation(s)
- Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Maya R. Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - William C. McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Oscar A. Lacayo
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Laura G. Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Ruby Zhou
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David J. Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Clyde J. Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
28
|
Ngalula S, Carlin CR. TNF-α-Driven Changes in Polarized EGF Receptor Trafficking Facilitate Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling From the Apical Surface of MDCK Epithelial Cells. Traffic 2025; 26:e70005. [PMID: 40324787 PMCID: PMC12052438 DOI: 10.1111/tra.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 05/07/2025]
Abstract
This manuscript describes a novel unconventional secretory pathway that facilitates EGF receptor (EGFR) signaling from apical membranes in polarized epithelial cells responding to immune cell mediators. Epithelial tissues provide a physical barrier between our bodies and the external environment and share an intimate relationship with circulating and local immune cells. Our studies describe an unexpected connection between the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) and EGFR typically localized to basolateral membranes in polarized epithelial cells. These two molecules sit atop complex biological networks with a long history of shared investigative interest from the vantage point of signaling pathway interactions. We have discovered that TNF-α alters the functional landscape of fully polarized epithelial cells by changing the speed and direction of EGFR secretion. Our results show apical EGFR delivery occurs within minutes of de novo synthesis likely via a direct route from the endoplasmic reticulum without passage through the Golgi complex. Additionally, our studies have revealed that apical cellular compartmentalization constitutes an important mechanism to specify EGFR signaling via phosphatidylinositol-4,5-bisphosphate 3-kinase/protein-kinase-B pathways. Our study paves the way for a better understanding of how inflammatory cytokines fine-tune local homeostatic and inflammatory responses by altering the spatial organization of epithelial cell signaling systems.
Collapse
Affiliation(s)
- Syntyche Ngalula
- Department of Molecular Biology and Microbiology, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Western Reserve University Comprehensive Cancer Center, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
29
|
Kim MY, Bang EJ, Choi YH, Hong SH. Bupleuri Radix Ameliorates Vascular Inflammation in Human Umbilical Vein Endothelial Cells via Modulation of Tight Junction Protein Expression and Inhibition of Nuclear Factor-κB Activation. J Pharmacopuncture 2025; 28:57-68. [PMID: 40165875 PMCID: PMC11933917 DOI: 10.3831/kpi.2025.28.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Objectives The vascular endothelium plays a central role in the maintenance of vascular homeostasis. Inflammation of vascular endothelial cells has been closely related to the development of a wide range of cardiovascular diseases, including atherosclerosis. Bupleuri Radix (BR) possesses several biological properties, including anticancer, antimicrobial, antiviral, immunomodulatory, and anti-inflammatory properties. Furthermore, it can prevent and cure several diseases, such as the common cold, hepatitis, menoxenia, and hyperlipidemia. However, it is unclear whether BR can regulate vascular endothelial function under inflammatory conditions induced by interleukin-1β (IL-1β), a key proinflammatory cytokine. Therefore, in this study, we aimed to investigate the effect of BR on endothelial cell function using human umbilical vein endothelial cells (HUVECs) with IL-1β-induced inflammation. Methods The effects of BR on cell migration, angiogenesis, and monocyte adhesion were determined using scratch wound-healing assay, tube-formation assay, cell adhesion assay, fluorescein isothiocyanate-dextran Transwell assay, and transepithelial electrical resistance assay. The expression of tight junction (TJ) protein and adhesion molecules was estimated using western blotting and immunofluorescence assay. The generation of reactive oxygen species was assessed using flow cytometry. Results BR significantly suppressed the proliferation, migration, and tube-formation ability of IL-1β-stimulated HUVECs, and the expression of adhesion molecules, especially intracellular adhesion molecule-1. BR also regulated TJ protein expression, thereby restoring the transepithelial electrical resistance value to a level comparable to that of IL-1β-treated HUVECs. Moreover, BR decreased the production of intracellular reactive oxygen species and the nuclear translocation of the nuclear factor-kappa-B p65 subunit. Conclusion These findings revealed for the first time that BR prevents IL-1β-induced inflammation of blood vessel. Therefore, BR has the potential to protect the damage of vascular endothelial cells and prevent the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
| | - Eun Jin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-Eui University, Busan, Republic of Korea
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Republic of Korea
| |
Collapse
|
30
|
Marín V, Villegas C, Ogundele AV, Cabrera-Pardo JR, Schmidt B, Paz C, Burgos V. Inhibitory Potential of the Drimane Sesquiterpenoids Isotadeonal and Polygodial in the NF-kB Pathway. Molecules 2025; 30:1555. [PMID: 40286191 PMCID: PMC11990674 DOI: 10.3390/molecules30071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammation contributes to the onset and development of many diseases, including neurodegenerative diseases, caused by the activation of microglia, leading to neurological deterioration. Nuclear factor-κB (NF-κB) is one of the most relevant pathways for identifying anti-inflammatory molecules. In this study, polygodial and isotadeonal, two drimane sesquiterpene dialdehydes, were isolated from Drimys winteri, a medicinal tree of the Mapuche people in Chile. Isotadeonal, or epi-polygodial, was obtained from polygodial by epimerization in basic media (60% yield, Na2CO3, r/t, 24 h). Both sesquiterpenoids were evaluated on the NF-κB pathway, with the result that isotadeonal inhibited the phosphorylation of IκB-α at 10 μM with higher potency by Western blotting. The final inhibition of the pathway was evaluated using a SEAP reporter (secreted alkaline phosphatase) on THP-1 cells. Isotadeonal inhibited SEAP with higher potency than polygodial, quercetin, and CAPE (phenethyl ester of caffeic acid). In silico analysis suggests that the α-aldehyde of isotadeonal adopts a more stable conformation in the active pocket of IκB-α than polygodial.
Collapse
Affiliation(s)
- Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (V.M.); (A.V.O.)
| | - Cecilia Villegas
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Ayorinde Víctor Ogundele
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (V.M.); (A.V.O.)
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Avenida Collao 1202, Concepcion 4051381, Chile;
- College of Dental Medicine, Roseman University of Health Sciences, 10894 S. River Front Parkway, South Jordan, UT 84095, USA
| | - Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (V.M.); (A.V.O.)
| | - Viviana Burgos
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4780000, Chile
| |
Collapse
|
31
|
Shokr MM, Eladawy RM. HMGB1: Different secretion pathways with pivotal role in epilepsy and major depressive disorder. Neuroscience 2025; 570:55-67. [PMID: 39970982 DOI: 10.1016/j.neuroscience.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
High-mobility group box 1 (HMGB1) protein is a highly prevalent protein that, once it is translocated to an extracellular site, can contribute to the pathogenesis of autoimmune and inflammatory responses, including epilepsy and depression. The conditions needed for release are associated with the production of multiple isoforms, and this translocation may occur in response to both immune cell activation and cell death. HMGB1 has been shown to interact with different mediators, including exportin 1, notch receptors, mitogen-activated protein kinase, STAT, tumor protein 53, and inflammasomes. Furthermore, as a crucial inflammatory mediator, HMGB1 has demonstrated upregulated expression and a higher percentage of translocation from the nucleus to the cytoplasm, acting on downstream receptors such as toll-like receptor 4 and receptor for advanced glycation end products, thereby activating interleukin-1 beta and nuclear factor kappa-B, intensifying inflammatory responses. In this review, we aim to discuss the different molecular interactions for the secretion of HMGB1 along with its pivotal role in epilepsy and major depressive disorder.
Collapse
Affiliation(s)
- Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt.
| | - Reem M Eladawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt
| |
Collapse
|
32
|
Tamimi R, Benisi SZ, Boroujeni ME, Torkamani MJ. Review on the molecular mechanisms of low-level laser therapy: gene expression and signaling pathways. Lasers Med Sci 2025; 40:160. [PMID: 40131476 DOI: 10.1007/s10103-025-04393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Low-level laser therapy (LLLT) has been shown to influence cellular and molecular processes in irradiated tissues and cells. By altering gene expression and activating specific laser-induced signaling pathways, LLLT can impact key cellular activities such as proliferation, differentiation, migration, and metabolism. This review focuses on exploring the molecular-level effects of LLLT, examining how different wavelengths interact with various cell lines, including stem cells, to induce these changes in gene expression and signaling pathways. A comprehensive review was performed by analyzing relevant literature published between 2003 and 2024. The search utilized databases such as PubMed, Scopus, MEDLINE, EMBASE, and Google Scholar. Selection criteria were based on the presence of keywords including "gene expression," "signaling pathways," "molecular mechanisms," "photobiomodulation," and "LLLT." Among the 150 recent studies on low-level laser therapy and its molecular and cellular effects on irradiated cells, articles related to changes in gene expression and laser-induced signaling pathways were reviewed. Low-level laser therapy exhibits varying effects based on the parameters and wavelengths used. Red and infrared lasers are particularly effective for promoting cell proliferation, differentiation, reducing inflammation, and enhancing wound healing. Blue lasers tend to inhibit cell proliferation, while green lasers are effective in reducing inflammation and aiding in conditions such as intervertebral disc (IVD) degeneration. These effects are linked to changes in gene expression and laser-induced signaling pathways, highlighting the importance of selecting the appropriate laser type for specific therapeutic goals.
Collapse
Affiliation(s)
- Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Tehran, Iran.
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | | |
Collapse
|
33
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
34
|
Czajkowski M, Wierzbicki PM, Dolny M, Matuszewski M, Hakenberg OW. Inflammation in Penile Squamous Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2025; 26:2785. [PMID: 40141426 PMCID: PMC11943298 DOI: 10.3390/ijms26062785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammation appears to play a crucial role in the development and progression of penile cancer (PeCa). Two molecular pathways of PeCa are currently described: HPV-dependent and HPV-independent. The tumor immune microenvironment (TIME) of PeCa is characterized by the presence of tumor-associated macrophages, cancer-associated fibroblasts, and tumor-infiltrating lymphocytes. The components of the TIME produce pro-inflammatory cytokines and chemokines, which have been found to be overexpressed in PeCa tissues and are associated with tumor progression and unfavorable prognoses. Additionally, the nuclear factor kappa B (NF-κB) pathway and secreted phosphoprotein 1 (SPP1) have been implicated in PeCa pathogenesis. Elevated C-reactive protein (CRP) levels and the neutrophil-to-lymphocyte ratio (NLR) have been identified as potential prognostic biomarkers in PeCa. This overview presents the complex contribution of the inflammatory process and collates projects aimed at modulating TIME in PeCa.
Collapse
Affiliation(s)
- Mateusz Czajkowski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Piotr M. Wierzbicki
- Department of Histology, Medical University of Gdańsk, Dębinki, 80-211 Gdansk, Poland;
| | - Maciej Dolny
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Marcin Matuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland; (M.D.); (M.M.)
| | - Oliver W. Hakenberg
- Department of Urology, University Medical Center Rostock, 18055 Rostock, Germany;
- Department of Urology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
35
|
Muramoto S, Shimizu S, Shirakawa S, Ikeda H, Miyamoto S, Jo M, Takemori U, Morimoto C, Wu Z, Tozaki-Saitoh H, Oda K, Inoue E, Nonaka S, Nakanishi H. Noradrenaline Synergistically Enhances Porphyromonas gingivalis LPS and OMV-Induced Interleukin-1 β Production in BV-2 Microglia Through Differential Mechanisms. Int J Mol Sci 2025; 26:2660. [PMID: 40141302 PMCID: PMC11942402 DOI: 10.3390/ijms26062660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Infection with Porphyromonas gingivalis (Pg), which is a major periodontal pathogen, causes a large number of systemic diseases based on chronic inflammation such as diabetes and Alzheimer's disease (AD). However, it is not yet fully understood how Pg can augment local systemic immune and inflammatory responses during progression of AD. There is a strong association between depression and elevated levels of inflammation. Noradrenaline (NA) is a key neurotransmitter that modulates microglial activation during stress conditions. In this study, we have thus investigated the regulatory mechanisms of NA on the production of interleukin-1β (IL-1β) by microglia following stimulation with Pg virulence factors, lipopolysaccharide (LPS), and outer membrane vesicles (OMVs). NA (30-1000 nM) significantly enhanced the mRNA level, promoter activity, and protein level of IL-1β up to 20-fold in BV-2 microglia following treatment with Pg LPS (10 μg/mL) and OMVs (150 μg of protein/mL) in a dose-dependent manner. Pharmacological studies have suggested that NA synergistically augments the responses induced by Pg LPS and OMVs through different mechanisms. AP-1 is activated by the β2 adrenergic receptor (Aβ2R)-mediated pathway. NF-κB, which is activated by the Pg LPS/toll-like receptor 2-mediated pathway, is required for the synergistic effect of NA on the Pg LPS-induced IL-1β production by BV-2 microglia. Co-immunoprecipitation combined with Western blotting and the structural models generated by AlphaFold2 suggested that cross-coupling of NF-κB p65 and AP-1 c-Fos transcription factors enhances the binding of NF-κB p65 to the IκB site, resulting in the synergistic augmentation of the IL-1β promoter activity. In contrast, OMVs were phagocytosed by BV-2 microglia and then activated the TLR9/p52/RelB-mediated pathway. The Aβ2R/Epac-mediated pathway, which promotes phagosome maturation, may be responsible for the synergistic effect of NA on the OMV-induced production of IL-1β in BV-2 microglia. Our study provides the first evidence that NA synergistically enhances the production of IL-1β in response to Pg LPS and OMVs through distinct mechanisms.
Collapse
Affiliation(s)
- Sakura Muramoto
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Sachi Shimizu
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Sumika Shirakawa
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Honoka Ikeda
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Sayaka Miyamoto
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Misato Jo
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Uzuki Takemori
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Chiharu Morimoto
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hidetoshi Tozaki-Saitoh
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa 831-8501, Japan;
| | - Kosuke Oda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan
| | - Erika Inoue
- School of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (S.M.); (S.S.); ; (S.S.); (H.I.); (S.M.); (M.J.); (U.T.); (C.M.); (E.I.)
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| |
Collapse
|
36
|
Zhao ZW, Wang YC, Chen PC, Tzeng SF, Chen PS, Kuo YM. Dopamine D1 receptor agonist alleviates post-weaning isolation-induced neuroinflammation and depression-like behaviors in female mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:6. [PMID: 40065395 PMCID: PMC11895232 DOI: 10.1186/s12993-025-00269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Major depressive disorder is a significant global cause of disability, particularly among adolescents. The dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders. RESULTS Adolescent mice underwent 8 weeks of PWI before evaluating their depression-like behaviors and the activation status of microglia in the frontostriatal regions. Selective D1-like dopamine receptor agonist SKF-81,297 was administered into the medial prefrontal cortex (mPFC) of PWI mice to assess its antidepressant and anti-microglial activation properties. The effects of SKF-81,297 on inflammatory signaling pathways were examined in BV2 microglial cells. After 8 weeks of PWI, female mice exhibited more severe depression-like behaviors than males, with greater microglial activation in the frontostriatal regions. Microglial activation in mPFC was the most prominent among the three frontostriatal regions examined, and it was positively correlated with the severity of depression-like behaviors. Female PWI mice exhibited increased expression of dopamine D2 receptors (D2R). SKF-81,297 treatment alleviated depression-like behaviors and local microglial activation induced by PWI; however, SKF-81,297 induced these alterations in naïve mice. In vitro, SKF-81,297 decreased pro-inflammatory cytokine release and phosphorylations of JNK and ERK induced by lipopolysaccharide, while in untreated BV2 cells, SKF-81,297 elicited inflammation. CONCLUSIONS This study highlights a sex-specific susceptibility to PWI-induced neuroinflammation and depression. While targeting the D1R shows potential in alleviating PWI-induced changes, further investigation is required to evaluate potential adverse effects under normal conditions.
Collapse
Affiliation(s)
- Zi-Wei Zhao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yun-Chen Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
37
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
38
|
Wang C, Li X, Ye T, Gu J, Zheng Z, Chen G, Dong J, Zhou W, Shi J, Zhang L. Polydatin, a derivative of resveratrol, ameliorates busulfan-induced oligozoospermia in mice by inhibiting NF-κB pathway activation and suppressing ferroptosis. Bioorg Chem 2025; 156:108170. [PMID: 39848165 DOI: 10.1016/j.bioorg.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol (RES), is extracted as a monomer compound from the dried rhizome of Polygonum cuspidatum. Our laboratory synthesized PD via the biotransformation of resveratrol. To assess the reproductive protective effects of PD, an oligozoospermia mouse model was induced by administering 30 mg/kg busulfan (BUS) via intraperitoneal injection. Initially, mice were categorized into groups based on PD concentrations of 10, 50, and 100 mg/kg. Subsequently, the optimal concentration of 10 mg/kg was ascertained based on testis weight and spermatological parameters. Additionally, a 10 mg/kg resveratrol group was included as a control. The findings revealed that exposure to BUS resulted in a reduction of testicular weight, diminished spermatogenic cells and epididymal sperm counts, increased sperm deformity, disordered testicular cytoskeleton, compromised blood-testis barrier integrity, and a significant decrease in serum sex hormone levels, notably testosterone. This resulted in decreased expression of androgen receptors and other testosterone-related proteins, increased levels of malondialdehyde and reactive oxygen species, and promoted testicular ferroptosis. However, PD could successfully reverse these injuries. High-throughput sequencing data demonstrated that polydatin significantly downregulated the expression of inflammatory and metabolic genes, including PRKCQ and CARD11. These proteins are pivotal in the activation of the NF-κB pathway during the inflammatory response. Molecular docking studies showed that PD could interact with PRKCQ and CARD11 to reduce the level of inflammation. Additionally, PD was shown to interact with the ferroptosis-promoting gene ACSL4, modulating ferroptosis. In summary, PD facilitates the reversal of BUS-induced oligozoospermia through the mitigation of oxidative stress and inflammation, the inhibition of ferroptosis, and the modulation of hormonal levels.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiale Gu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Zihan Zheng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Guangtong Chen
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Wenbiao Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
39
|
Cao Z, Zhang Y, Jia H, Sun X, Feng Y, Wu H, Xu B, Wei Z. Immune checkpoint inhibitors mediate myocarditis by promoting macrophage polarization via cGAS/STING pathway. Cytokine 2025; 187:156873. [PMID: 39884185 DOI: 10.1016/j.cyto.2025.156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear. METHODS In order to establish a Immune checkpoint inhibitors-associated myocarditis model, BALB/c mice were injected with mouse cardiac troponin I peptide and anti-mouse programmed death 1 antibody. Echocardiography and HE staining were then performed to assess cardiac function and inflammation. Macrophages and damaged DNA in mouse heart tissue were detected by immunofluorescence. The mitochondrial damage of macrophages was observed by electron microscope. In vitro experiments, RAW264.7 was used to detect macrophage polarization after anti-PD-1 antibody induction and STING inhibition by qPCR and flow cytometry. Mitochondrial damage was detected by immunofluorescence, and activation of the cGAS-STING signaling pathway was evaluated by protein imprinting analysis. RESULTS In the Immune checkpoint inhibitors-associated myocarditis model, DNA damage was found to activate the cGAS-STING pathway and macrophages were polarized to M1 type. In vitro experiments, anti-PD-1 antibody activate the cGAS-STING pathway through the release of damaged DNA from macrophage mitochondrial damage, causing macrophage polarization into a pro-inflammatory phenotype leading to autoimmune myocarditis. CONCLUSION Our results suggested that the cGAS-STING pathway played a key role in myocarditis caused by immune checkpoint inhibitors. It provided a new possibility for Immune checkpoint inhibitors to be widely used in clinic.
Collapse
Affiliation(s)
- Zhenzhu Cao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yu Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Huihui Jia
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| |
Collapse
|
40
|
Son SK, Moon JS, Yang DW, Jung NR, Kang JH, Lee BN, Kim SH, Kim MS. Role of FOXO3a in LPS-induced inflammatory conditions in human dental pulp cells. J Oral Biosci 2025; 67:100614. [PMID: 39824385 DOI: 10.1016/j.job.2025.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVES We investigated the involvement of FOXO3a in lipopolysaccharide (LPS)-induced inflammation in primary human dental pulp cells (HDPCs). METHODS HDPCs that were isolated from donors undergoing tooth extraction for orthodontic purposes were cultured with or without 1 μg/mL LPS at various intervals. The FOXO3a localization in the HDPCs was verified using immunofluorescence. Proinflammatory cytokines, such as interleukin (IL) 1β, IL6, and IL8, as well as their underlying mechanisms were assessed by observing gene and protein expressions through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses. RESULTS LPS treatment enhanced the expressions of IL1β, IL6, and IL8 in HDPCs, concurrently activating nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). Furthermore, FOXO3a expression was higher in the LPS-stimulated HDPCs, as confirmed by immunofluorescence localization. The results of loss-/gain-of-function approaches confirmed the regulatory role of FOXO3a in inflammatory HDPCs. FOXO3a knockdown attenuated proinflammatory cytokine expression; FOXO3a overexpression augmented their expression levels. FOXO3a inhibited retinoic acid receptor-related orphan receptor alpha (RORα) expression, thereby inactivating NFκB. CONCLUSION Our findings suggest that FOXO3a contributes to homeostasis in HDPCs through modulating the expression of proinflammatory cytokines under inflammatory conditions.
Collapse
Affiliation(s)
- Su-Kyung Son
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Dong-Wook Yang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Na-Ri Jung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jee-Hae Kang
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Bin-Na Lee
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
41
|
Yang S, Zhang Y, Zheng C. β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy. Cell Biochem Biophys 2025; 83:1249-1262. [PMID: 39424766 DOI: 10.1007/s12013-024-01559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Podocyte injury plays a pivotal role in the pathogenesis of diabetic nephropathy (DN), leading to proteinuria formation. β-Sitosterol is a natural compound with anti-inflammatory, anti-diabetic, nephroprotective and antioxidant properties. The studyaimed to explore whether and how β-Sitosterol protected podocytes against high glucose (HG)-induced inflammatory andoxidative injury. DN cell models were established by stimulating podocytes or renal tubular epithelial cells (HK-2) cells with 25 mM glucose. Cell viability and apoptosis were evaluated using cell counting kit-8 assays and flow cytometry analyses. Westernblotting was used to quantify protein levels of genes related to podocyte injury, HK-2 cell damage, inflammation, and TLR4/NF-кB pathway. Contents of oxidative stress biomarkers were evaluated by corresponding commercial kits while proinflammatorycytokine levels were determined by enzyme-linked immunosorbent assay. Immunofluorescence staining was performed todetect intracellular levels of reactive oxygen species (ROS) and Nrf2 nuclear translocation. Experimental results revealed that HG treatment induced podocyte dysfunction by impairing cell viability while accelerating theapoptosis, and the changes were reversed by β-sitosterol treatment. Moreover, β-sitosterol repressed HG-evoked oxidative stressby reducing ROS and malondialdehyde (MDA) levels while increasing activities of antioxidant enzymes. The reduction ofproinflammatory cytokines mediated by β-sitosterol in HG-stimulated podocytes suggested the anti-inflammatory role of β-sitosterol. Additionally, the activation of the TLR4/NF-кB signaling induced by HG was inhibited by β-sitosterol in podocytes.Inactivation of the TLR4 using TAK-242 enhanced the protective effects of β-sitosterol against HG-mediated oxidative stressand inflammation. Similarly, β-sitosterol also protected HK-2 cells from HG-induced oxidative stress, inflammation, andapoptosis. In summary, β-sitosterol exerts anti-inflammatory, anti-oxidative, and anti-apoptotic activities in HG-induced podocytes or HK-2 cells by inhibiting TLR4/NF-кB signaling.
Collapse
Affiliation(s)
| | | | - Chenghong Zheng
- Hubei University of Chinese Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China.
| |
Collapse
|
42
|
You YL, Byun HJ, Chang YB, Kim H, Lee H, Suh HJ, Jeon JY, Kim BR, Hwang JE, Lee JH, Choi HS. Euglena gracilis-derived β-glucan ameliorates particulate matter (PM 2.5)-induced airway inflammation by modulating nuclear factor kappa B, mitogen-activated protein kinase, and nuclear factor erythroid 2-related factor 2 signaling pathways in A549 cells and BALB/c mice. Int J Biol Macromol 2025; 296:139671. [PMID: 39798741 DOI: 10.1016/j.ijbiomac.2025.139671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
This study aimed to investigate the effects of β-glucan derived from Euglena gracilis (EGB), an edible microalga, on particulate matter (PM2.5)-induced airway inflammation in A549 cells and BALB/c mice. EGB effectively suppressed the mRNA and protein levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-8) and mediators (iNOS, COX-2), while inhibiting the NF-κB and MAPK signaling pathways triggered by PM2.5 exposure and reducing nuclear NF-κB levels. Additionally, EGB decreased PM2.5-induced ROS production and increased the protein levels of NRF2 and HO-1, along with genes encoding antioxidant enzymes (catalase, GPx, SOD1), associated with elevated nuclear NRF2 levels. EGB reduced immune cell infiltration and inflammatory cytokine levels in BALF and serum, both of which increased by PM2.5 exposure. EGB also significantly increased alveolar numbers while decreasing the gene expression of MMP1/9/13. Furthermore, EGB suppressed PM2.5-induced bronchial thickening and collagen-1 deposition by downregulating TGF-β1 expression, and alleviated goblet cell hyperplasia and mucin production in lung tissues. These results suggest that EGB effectively reduces PM2.5-induced airway inflammation by suppressing NF-κB and MAPK signaling pathways, lowering pro-inflammatory cytokines, and activating the NRF2-HO-1 signaling pathway to enhance antioxidant enzyme expression. This study highlights the potential of EGB as an edible functional agent for controlling PM-related airway inflammation.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ha-Jun Byun
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyowon Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Jeon
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Bo-Ra Kim
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Eun Hwang
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Jun Hee Lee
- Health R&D Institute, Daesang Corp., Seoul 07789, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
43
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Hirai M, Amaliin K, Huang JR, Aktar S, Mori Y, Arii J. HHV-6B ribonucleotide reductase sequesters NF-κB subunit p65 to inhibit innate immune responses. iScience 2025; 28:111710. [PMID: 39877902 PMCID: PMC11772975 DOI: 10.1016/j.isci.2024.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Human herpesvirus 6B (HHV-6B) belongs to the genus Roseolovirus of the betaherpesvirus subfamily, causing exanthema subitum and encephalitis. Although viral ribonucleotide reductase (RNR) is conserved in betaherpesviruses, it has lost its enzymatic activity. Human cytomegalovirus (HCMV) belongs to the other betaherpesvirus genus, Cytomegalovirus; its RNR inhibits nuclear factor-kappa B (NF-κB) signaling via interaction with the adaptor molecule RIPK1. However, the significance of enzymatically inactive RNR in roseoviruses is unclear. Here, we show that the RNRs from all three human roseoloviruses inhibit NF-κB activation. HHV-6B RNR sequesters NF-κB subunit p65 in the cytoplasm and inhibits its translocation into the nucleus. Silencing HHV-6B RNR increased the expression of inflammatory molecules in infected cells. This study reveals that inhibiting NF-κB is a conserved role of the RNR in betaherpesviruses but that the precise mechanisms responsible for these effects are different.
Collapse
Affiliation(s)
- Mansaku Hirai
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Khoir Amaliin
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jing Rin Huang
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Salma Aktar
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
45
|
Lee SA, Lee CH, Lee SH, Do E, Kim DK, Huh TL, Kim CS. Inhibitory Effects of Heat-Processed Gynostemma pentaphyllum Extract (Actiponin ®) and Its Components on Cartilage Breakdown in Osteoarthritis. Int J Mol Sci 2025; 26:1728. [PMID: 40004191 PMCID: PMC11855050 DOI: 10.3390/ijms26041728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoarthritis (OA), caused by the long-term use of joints, is a representative degenerative disease in the elderly. However, recently, the age of onset has been decreasing owing to excessive activities among young people in their 20s and 30s. Gynostemma pentaphyllum (Thunb.) Makino (GP), a perennial herb of the Cucurbitaceae family, has been used since the Ming dynasty as a medicinal material to treat various ailments, such as rheumatism, liver disease, and diabetes. In this study, we investigated the anti-arthritic effects of heat-processed Gynostemma pentaphyllum extract (Actiponin (AP)) and its derivatives, damulin A (DA) and damulin B (DB), using in vitro (primary rat chondrocytes and SW1353 cells) and in vivo (destabilization of the medial meniscus (DMM)-induced OA model) systems. Histological analysis results from the in vivo study showed that the group that underwent DMM surgery induced degeneration by the loss of proteoglycan and the destruction of cartilage (OARSI score 14 ± 0.57), whereas the group that received AP daily for 8 weeks maintained an intact condition (OARSI score 5 ± 0.28 at 200 mg/kg, p < 0.001). In addition, cartilage thickness and chondrocytes were reduced in the DMM group, but were restored in the AP-administered group. Furthermore, the von Frey analysis results showed that the pain threshold of the DMM group was considerably low (54.5 g at 8 weeks), whereas that of the AP group was dose-dependently increased (65.5, 69.5, 70.3, and 71.8 at 8 weeks for 30, 50, 100, and 200 mg/kg, respectively). In vitro studies showed that AP, DA, and DB reduced the expression of interleukin-1β alone-induced nitrite; inducible nitric oxide synthase; cyclooxygenase-2; matrix metallopeptidase 1/3/13; and a disintegrin and metalloproteinase with thrombospondin motifs 4/5. They also restored the expression of collagen type II and aggrecan, which are components of the extracellular matrix. The anti-arthritic effects of AP, DA, and DB were confirmed to be mediated by the mitogen-activated protein kinase and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. Collectively, these results suggest that AP is a potential therapeutic agent for mitigating OA progression and chondroprotection.
Collapse
Affiliation(s)
- Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| | - Chan Hwi Lee
- TG Biotech Research Institute, Technobuilding, Kyungpook National University, 47, Gyeongdae-ro 17-gil, Buk-gu, Daegu 41566, Republic of Korea; (C.H.L.); (S.H.L.); (E.D.)
| | - Sun Hee Lee
- TG Biotech Research Institute, Technobuilding, Kyungpook National University, 47, Gyeongdae-ro 17-gil, Buk-gu, Daegu 41566, Republic of Korea; (C.H.L.); (S.H.L.); (E.D.)
| | - Eunju Do
- TG Biotech Research Institute, Technobuilding, Kyungpook National University, 47, Gyeongdae-ro 17-gil, Buk-gu, Daegu 41566, Republic of Korea; (C.H.L.); (S.H.L.); (E.D.)
| | - Do Kyung Kim
- Department of Oral Biology, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| | - Tae-Lin Huh
- TG Biotech Research Institute, Technobuilding, Kyungpook National University, 47, Gyeongdae-ro 17-gil, Buk-gu, Daegu 41566, Republic of Korea; (C.H.L.); (S.H.L.); (E.D.)
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
46
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
47
|
Xiao K, Chen Z, He S, Long Q, Chen Y. The role of NF-κB pathway and its regulation of inflammatory cytokines in scleral remodeling of form-deprivation mice model. Immunol Res 2025; 73:48. [PMID: 39920470 DOI: 10.1007/s12026-025-09596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Myopia has become a worldwide public health problem. In this study, we constructed a form deprivation (FD) myopia mouse model and explored the potential role of NF-κB pathway and inflammatory cytokines in scleral remodeling during myopia development. Wild-type (WT) mice and C6-knockout (KO) mice were categorized into two groups: FD and normal control (NC). The right eye was covered using a translucent balloon for 4 weeks, and the left eye remained untreated which served as self-control. NC group received no treatment. Refractive error and axial length were measured at baseline, 2 weeks, 4 weeks later under normal visual conditions, and 4 weeks after FD. The mRNA and protein levels of scleral TNF-α, IL-6, IL-1β, MMP-2, collagen I, and p-NF-κB p65 were detected using quantitative PCR and western blot. Under normal visual conditions, no significant difference existed in refraction and axial length between WT and C6 KO mice. After 4 weeks of deprivation, the interocular differences of C6 KO mice were lower than those of WT mice (refraction - 2.41 ± 0.86D vs. - 4.33 ± 0.87D, P = 0.003; axial length 0.044 ± 0.028 mm vs. 0.082 ± 0.026 mm, P = 0.034). Moreover, TNF-α, IL-6, IL-1β, MMP-2, and p-NF-κB p65 levels increased, and collagen I levels decreased in deprived eyes of WT mice. Whereas these trends were weakened in C6 KO mice. Scleral C5b-9 could activate the NF-κB pathway, promoting the expression of inflammatory cytokines and MMP-2 levels, which ultimately affected scleral remodeling.
Collapse
Affiliation(s)
- Kang Xiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhengyu Chen
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
48
|
Arenas V, Castaño JL, Domínguez JJ, Yáñez L, Pipaón C. Distinct NF-kB Regulation Favors a Synergic Action of Pevonedistat and Laduviglusib in B-Chronic Lymphocytic Leukemia Cells Ex Vivo. Cancers (Basel) 2025; 17:533. [PMID: 39941899 PMCID: PMC11816723 DOI: 10.3390/cancers17030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Chronic lymphocytic leukemia (CLL) remains an incurable B-cell malignancy. B-CLL cells exhibit an extended lifespan in part due to the activation of survival pathways such as NF-kB. A crosstalk between NF-kB and GSK-3β pathways has been reported. NF-kB has also been identified as a primary target of the NEDD8-activating enzyme inhibitor MLN4924. Our objective was to investigate potential synergies of MLN4924 with other NF-kB-targeting agents for the treatment of CLL and elucidate the mechanisms of action underlying this pathway regulation. Methods: To assess the cytotoxic efficacy of the combined ex vivo treatment with CHIR-99021 and MLN4924, we employed 7-AAD staining and XTT viability assays on primary samples from CLL patients. Subsequently, we conducted various analyses to identify the molecular mechanisms underlying the cytotoxic effects of this combination. Results: We discovered a discrepancy between the mRNA and protein levels of IkBɑ and provided evidence of translational control over its expression. This observation may explain why, unlike other cell types, B-CLL cells did not activate NF-kB signaling following inhibition of GSK-3ß. Furthermore, we describe a synergistic effect between a specific GSK-3ß inhibitor, CHIR-99021/Laduviglusib, and the NEDD8-activating enzyme inhibitor MLN4924/Pevonedistat, at doses that only slightly affect healthy B cell viability ex vivo. We investigated the molecular basis of this co-induction of cell death by analyzing the alterations in apoptosis-related gene expression. We found that the combinational treatment enhances a reduction in BCL2 mRNA expression levels, providing an alternative approach for BCL-2 inhibition in CLL that could have therapeutic implications for the treatment of refractory CLL cases. Conclusions: our findings revealed a unique interaction between GSK-3ß and NF-kB pathways in CLL and their regulation of BCL2 expression.
Collapse
Affiliation(s)
- Víctor Arenas
- Molecular Hematology Laboratory, Marqués de Valdecilla Research Institute, 39008 Santander, Spain; (V.A.); (J.L.C.)
| | - Jose Luis Castaño
- Molecular Hematology Laboratory, Marqués de Valdecilla Research Institute, 39008 Santander, Spain; (V.A.); (J.L.C.)
| | - Juan José Domínguez
- Hematology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (J.J.D.); (L.Y.)
| | - Lucrecia Yáñez
- Hematology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (J.J.D.); (L.Y.)
| | - Carlos Pipaón
- Molecular Hematology Laboratory, Marqués de Valdecilla Research Institute, 39008 Santander, Spain; (V.A.); (J.L.C.)
| |
Collapse
|
49
|
Swetha K, Indumathi MC, Kishan R, Siddappa S, Chen CH, Marathe GK. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol Trace Elem Res 2025:10.1007/s12011-025-04531-2. [PMID: 39907886 DOI: 10.1007/s12011-025-04531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Severe acute pancreatitis (SAP) leads to systemic inflammation, resulting in multiorgan damage. Acute lung injury and acute respiratory distress syndrome develop in one-third of SAP patients, with a high mortality rate of 60% due to secondary complications. Patients with pancreatitis often have selenium deficiency, and selenium supplements may provide beneficial effects. This study examined the protective role of selenium in a model of SAP induced by caerulein + lipopolysaccharide (cae + LPS). Mice were administered selenium (1 mg/kg) before being challenged with caerulein (6 injections of 50 μg/kg) and LPS (10 mg/kg). At 3 h after the last caerulein injection, blood was collected for estimating pancreatic enzymes and cytokine levels, and the mice were euthanized. We performed morphological and histological studies, measured levels of protease and oxidative stress markers and conducted western blot, ELISA, and RT-qPCR analyses. We examined lung tissue histologically and estimated myeloperoxidase levels. Selenium pretreatment significantly reduced pancreatic enzyme levels such as amylase, lipase, and proteases (specifically MMPs) and reversed tissue injury in the pancreas and lungs caused by cae + LPS. In addition, selenium-treated mice showed decreased levels of inflammatory markers and chemokines. Examination of the downstream inflammatory pathways confirmed the protective effect of selenium, which mediates its anti-inflammatory and antioxidant action by inhibiting the major inflammatory signaling pathways (MAPKs, NF-κB, and STAT3) and activating the phosphorylation of Nrf2 via Nrf2/HO-1 pathways. These findings suggest that selenium may be a potential therapeutic option for treating SAP-associated secondary complications.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India
| | | | - Raju Kishan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India
| | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India.
| |
Collapse
|
50
|
Jiang J, Wang Q, Wu Q, Deng B, Guo C, Chen J, Zeng J, Guo Y, Ma X. Angel or devil: the dual roles of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside in the development of liver injury based on integrating pharmacological techniques: a systematic review. Front Pharmacol 2025; 16:1523713. [PMID: 39963244 PMCID: PMC11830817 DOI: 10.3389/fphar.2025.1523713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Background and purpose 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) exhibits a dualistic pharmacological profile, acting as both a hepatoprotective and hepatotoxic agent, which is intricately linked to its interaction with multiple signaling pathways and its stereoisomeric forms, namely, cis-SG and trans-SG. The purpose of this study is to evaluate both the hepatoprotective and hepatotoxic effects of TSG and give therapeutic guidance. Methods This study performed a systematic search of eight databases to identify preclinical literature up until March 2024. The CAMARADES system evaluated evidence quality and bias. STATA and Python were used for statistical analysis, including dose-effect maps, 3D maps and radar charts to show the dose-time-effect relationship of TSG on hepatoprotection and hepatotoxicity. Results After a rigorous screening process, a total of 24 studies encompassing 564 rodents were selected for inclusion in this study. The findings revealed that TSG exhibited bidirectional effects on the levels of ALT and AST, while also regulating the levels of ALT, AST, TNF-α, IL-6, serum TG, serum TC, SOD, MDA, IFN-γ, and apoptosis rate. The histological analysis of liver tissue confirmed the regulatory effects of TSG, and a comprehensive analysis revealed the optimal protective dosage range was 27.27-38.81 mg/kg/d and the optimal toxic dosage range was 51.93-76.07 mg/kg/d. TSG exerts the dual effects on liver injury (LI) through the network of Keap1/Nrf2/HO-1/NQO1, NF-κB, PPAR, PI3K/Akt, JAK/STAT and TGF-β pathways. Conclusion TSG could mediate the pathways of oxidation, inflammation, and metabolism to result in hepatoprotection (27.27-38.81 mg/kg/d) and hepatotoxicity (51.93-76.07 mg/kg/d).
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiu Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qiang Wu
- Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Bobin Deng
- School of Pharmacy, Xian Medical University, Xi’an, China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|