1
|
Schuh GM, Maschhoff KR, Minor A, Hu W. Repression of AGO1 by AGO2 via let-7 microRNAs facilitates embryonic stem cell differentiation. RNA (NEW YORK, N.Y.) 2025; 31:772-780. [PMID: 40132882 DOI: 10.1261/rna.080426.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Argonaute (AGO) proteins are critical regulators of gene expression. Of the four AGOs in mammals, AGO1 and AGO2 are expressed in mouse embryonic stem cells (mESCs). These two proteins have opposing functions in controlling mESCs' fate decisions between pluripotency and differentiation. AGO2 promotes differentiation predominantly via the let-7 microRNAs, whereas AGO1 maintains pluripotency via modulating protein folding independent of small RNAs. These recent findings raise the question of whether and how these two AGOs are mutually regulated in mESCs. Here, using loss-of-function and gain-of-function approaches, we show that AGO2 represses the expression of AGO1 mRNA via a conserved let-7-microRNA-binding site in its 3' UTR. Mutating this binding site at the endogenous locus abolishes the AGO2-mediated repression of AGO1 mRNA and compromises the exit pluripotency of mESCs. These results indicate that the posttranscriptional regulation of AGO1 by AGO2 and let-7 microRNAs is important for stem cell differentiation, but also reveal a regulatory mechanism between the two AGO paralogs with opposing functions in controlling stem cell fate decisions.
Collapse
Affiliation(s)
- Gabrielle M Schuh
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Katharine R Maschhoff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Annastasia Minor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Wenqian Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
2
|
Fan J, Gemel J, Beyer EC, Lapping-Carr G. Plasma Levels of MicroRNA Let-7c-5p May Predict Risk of Acute Chest Syndrome in Patients with Sickle Cell Disease. Int J Mol Sci 2025; 26:3831. [PMID: 40332489 PMCID: PMC12028041 DOI: 10.3390/ijms26083831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Acute chest syndrome (ACS) is among the most serious complications of sickle cell disease (SCD). While the pathogenesis of ACS is incompletely understood, endothelial damage and microvascular occlusion are critical components. Our previous studies have implicated small extracellular vesicles in the plasma of subjects with SCD in causing endothelial dysfunction. This suggested that microRNAs within these small EVs might be responsible for endothelial damage. The sequencing of microRNAs in small EVs from the plasma of subjects with SCD revealed that several miRNAs were differentially expressed between subjects with and without ACS history, including let-7c-5p. In a replication cohort, plasma let-7c-5p levels were quantified via RT-qPCR. The baseline plasma let-7c-5p level was twofold higher in patients without previous ACS. Furthermore, we observed a positive correlation between let-7c-5p levels and time to subsequent ACS events. These findings suggest a role for let-7c-5p in endothelial disruption underlying ACS pathogenesis. It may also serve as a novel biomarker for ACS detection and the prediction of disease progression.
Collapse
Affiliation(s)
| | | | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (J.F.)
| | | |
Collapse
|
3
|
Zhu Q, Hu L, Cui C, Zang M, Dong H, Ma J. Decoding Hairpin Structure Stability in Lin28-Mediated Repression. Biochemistry 2025; 64:1276-1284. [PMID: 40020242 DOI: 10.1021/acs.biochem.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The Lin28 protein is well known for its role in inhibiting the biogenesis of microRNAs (miRNAs) that belong to the let-7 family. The Lin28 and let-7 axes are associated with several types of cancers. It is imperative to understand the underlying mechanism to treat these cancers in a more efficient way. In this study, we employed all-atom molecular dynamics simulation as a research tool to investigate the interaction formed between Lin28 and the precursor element of let-7d, one of the 12 members of the let-7 family. By constructing systems of an intact sequence length of preE-let-7d, our simulations suggest that both the loop region of the hairpin structure and the GGAG sequence can form stable interactions with the cold shock domain (CSD) and zinc knuckle domain (ZKD) regions of the protein, respectively. The system, by deleting the nucleotides GGAG at the 3' terminal, indicates that the loop region is more responsible for its ability in bypassing the binding and repression of Lin28. Additionally, using let-7c-2, which can bypass Lin28 regulation, as a template, we constructed systems with mutated loop region sequences in miRNAs and tested their stabilities. Our simulation results coincide well with experimental observations. Based on both simulation results and statistical analysis from two databases, we hypothesized that two factors, namely, the interaction between terminal nucleotides and the ring tension originating from the middle nucleotides, can significantly influence their stabilities. Systems combining strong and weak terminal interactions with large and small ring tensions were recruited to validate our hypothesis. Our findings offer a new perspective and shed light on strategies for designing sequences to regulate the interactions formed between proteins and hairpin structures.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Limu Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chang Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Zang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), & Institute for Brain Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Peng J, Lv L, Zhou Y, Wang X, Hu C. PHAX enhanced LIN28B-mediated PBX3 mRNA stability to promote esophageal cancer development. Cancer Sci 2025; 116:808-823. [PMID: 39668567 PMCID: PMC11875786 DOI: 10.1111/cas.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
The abnormal expression of PHAX was observed in esophageal cancer, however, its specific function and mechanism remain to be further elucidated. We demonstrated that PHAX, LIN28B, and PBX3 were upregulated in esophageal cancer, while TET2 was downregulated. Elevated PHAX correlated with adverse outcomes among esophageal cancer patients. PHAX or PBX3 knockdown not only inhibited esophageal cancer cell proliferation, and promoted apoptosis and autophagy in vitro, but it also repressed tumor growth and lung metastasis in mice. Mechanically, PHAX stabilized PBX3 mRNA through interacting with LIN28B. PBX3 directly bound to the TET2 promoter region and inhibited its expression. In conclusion, PHAX directly bound to LIN28B and enhanced LIN28B-mediated stabilization of PBX3 mRNA, leading to upregulation of PBX3. PBX3 then transcriptionally repressed TET2 expression to promote esophageal cancer cell proliferation, and suppress apoptosis and autophagy. Targeting this signaling cascade could represent a promising therapeutic strategy for esophageal cancer.
Collapse
Affiliation(s)
- Jie Peng
- Department of HaematologyXiangya Hospital, Central South UniversityChangshaChina
| | - Liang Lv
- Department of Gastroenterology, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuqian Zhou
- Department of Gastroenterology, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuehong Wang
- Department of Gastroenterology, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Changmei Hu
- Department of Gastroenterology, Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
5
|
Lou D, Wang J, Zhang H, Jia Q, Liu L, Bian Y, Di Y, Shan C. Tripartite Motif Containing 71 Suppresses Tumor Growth by Down-Regulating eIF5A2 Expression in Laryngeal Squamous Cell Carcinoma. Appl Biochem Biotechnol 2025; 197:1504-1515. [PMID: 39579322 DOI: 10.1007/s12010-024-05084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
The incidence of laryngeal squamous cell carcinoma (LSCC) has been rising recently. LSCC is one of the most prevalent malignant tumors of the head and neck. In this study, we aimed to investigate whether tripartite motif containing 71 (TRIM71) could serve as a molecular target for the treatment of LSCC. The mRNA and protein levels were examined by using real-time qPCR and Western blot, respectively. Cell proliferation was determined by cell-counting kit 8 assay. To further confirm the function of TRIM71 in LSCC, an in vivo cell line-derived xenograft study was conducted. The half-life of eukaryotic translation initiation factor 5A2 (eIF5A2) protein was measured by cycloheximide chase assay. Our results showed that TRIM71 was significantly downregulated in LSCC tumor tissues. TRIM71 overexpression significantly inhibited LSCC cell growth and suppressed tumor volume and weight in the xenograft models. The interaction between TRIM71 and eIF5A2 was verified by co-immunoprecipitation assay. Moreover, overexpression of TRIM71 in LSCC cells significantly inhibited the protein expression of eIF5A2 by down-regulating its stability, while it did not affect its mRNA level. In contrast, overexpression of eIF5A2 abolished the anti-tumor effects of TRIM71. In summary, TRIM71 may exert its anti-tumor effects through regulating eIF5A2, highlighting the potential of TRIM71 as an effective therapeutic target for the treatment of LSCC.
Collapse
Affiliation(s)
- Dan Lou
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
- Department of Otolaryngology, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Jianxing Wang
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haizhong Zhang
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Qiaojing Jia
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Lisha Liu
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanrui Bian
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yue Di
- Department of Otolaryngology, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, the Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
6
|
Zhang S, Yan M, Lv X, Wang P, Liu W, Hu B, Chen S, Shao Z. MiRNA Let-7i-5p-Contained Small Extracellular Vesicles from Macrophages Induce Nucleus Pulposus Cell Senescence via Targeting LIN28A. Int J Nanomedicine 2025; 20:2163-2179. [PMID: 39990291 PMCID: PMC11846513 DOI: 10.2147/ijn.s482646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/25/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose To investigate the role of macrophage-derived small extracellular vesicles (MΦ-sEVs) in nucleus pulposus (NP) cell (NPC) senescence and screen the pro-senescent micro-RNA (miRNA) in MΦ-sEVs and potential mRNA targets. Methods Bone marrow-derived macrophage (BMDM)-derived sEVs were isolated by differential centrifugation, and the phenotypes of MΦ-sEVs were identified. NPCs were treated with MΦ-sEVs, and cellular senescence levels were examined by senescence-associated β-galactosidase (SA‑β‑Gal) staining and Western blotting (WB). Activation of the senescence-associated secretory phenotype (SASP) was tested using qRT-PCR and cytometric bead arrays (CBA). LPS+IFNγ-MΦ-sEVs or IL-4-MΦ-sEVs were injected into the rat coccygeal NP tissues to determine the in vivo effects of MΦ-sEVs on intervertebral disc degeneration (IVDD) and NPC senescence. The miRNA levels in MΦ-sEVs were evaluated using PANDORA sequencing. NPCs were transfected with miRNA mimics or inhibitors to screen the miRNAs with pro-senescence effects. Results MΦ-sEVs displayed the cup-shaped morphology, with diameters mainly ranging from 40 to 200 nm. Both LPS+IFNγ-MΦ-sEVs and IL-4-MΦ-sEVs impaired NPC viability and accelerated NPC senescence. The expression levels of SASP and senescence-related proteins, including p16, p21, and p53, were elevated by MΦ-sEVs treatment. Animal experiments indicated that LPS+IFNγ-MΦ-sEVs or IL-4-MΦ-sEVs exacerbated IVDD with increased p16-positive cell ratio and activated SASP. PANDORA sequencing of MΦ-sEVs revealed high levels of let-7i-5p, which exerted pro-senescence effects by downregulating LIN28A expression. Inhibiting or silencing LIN28A by C1632 or specific siRNAs also triggered NPC senescence. Conclusion Both LPS+IFNγ-MΦ-sEVs and IL-4-MΦ-sEVs induced NPC senescence by delivering miRNA let-7i-5p to inhibit LIN28A.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Miaoheng Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
7
|
Steyn SF. An Updated Bio-Behavioral Profile of the Flinders Sensitive Line Rat: Reviewing the Findings of the Past Decade. Pharmacol Res Perspect 2025; 13:e70058. [PMID: 39786312 PMCID: PMC11717001 DOI: 10.1002/prp2.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025] Open
Abstract
The Flinders sensitive line (FSL) rat is an accepted rodent model for depression that presents with strong face, construct, and predictive validity, thereby making it suitable to investigate novel antidepressant mechanisms. Despite the translatability of this model, available literature on this model has not been reviewed for more than ten years. The PubMed, ScienceDirect and Web of Science databases were searched for relevant articles between 2013 and 2024, with keywords relating to the Flinders line rat, and all findings relevant to treatment naïve animals, included. Following screening, 77 studies were included and used to create behavioral reference standards and calculate FSL favor ratios for the various behavioral parameters. The GRADE and SYRCLE risk of bias tools were used to scale the quality of these studies. Based on these results, FSL rats display reliable and reproducible depressive-like behavior in the forced swim test, together with hyperlocomotor activity across various behavioral tests. Despite reports of increased anhedonia, anxiety-like behavior, and cognitive dysfunction, the reviewed findings indicate that these parameters are comparable between strains. For the various neuro- and biological constructs, oxidative stress, energy production, and glutamatergic, noradrenergic and serotonergic neurotransmission received the most support for strain differences. Taken together, the FSL remains a reliable, popular, and translatable rodent model of depression, with strong face and construct validity. As for predictive validity, similar review approaches should be considered to establish whether the mentioned behavioral aspects and neurochemical constructs may be more sensitive (or resistant) to certain antidepressant strategies.
Collapse
Affiliation(s)
- Stephan F. Steyn
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
8
|
Feng X, Du X, Yang X, Chen C, Liang Z, Xu X, Wang Y, Zheng JC, Xia X, Liu J. miR-185-5p regulates the proliferation and differentiation of neural stem/progenitor cells. Front Cell Dev Biol 2024; 12:1510746. [PMID: 39703696 PMCID: PMC11656079 DOI: 10.3389/fcell.2024.1510746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Background MicroRNAs (miRNAs) have emerged as an essential regulator of the cell fate commitment of neural stem/progenitor cells (NPCs), although the impacts of certain miRNAs on NPCs remain vague. The aim of this study is to investigate the regulatory effects of miR-185-5p on the cell fate commitment of NPCs. Methods We investigated the impact of miR-185-5p on the proliferation and differentiation capacities of primary NPCs by manipulating the expression of miR-185-5p using specific mimics and inhibitors. The effects of miR-185-5p on NPCs was confirmed in vivo through stereotactic injection of miR-185-5p antagonists to the brains of mice at postnatal day 1 (P1). Results The expression levels of miR-185-5p kept increasing in the differentiation process of NPCs in vivo and in vitro. Perturbation of miR-185-5p's function showed that miR-185-5p inhibited NPCs' proliferation and promoted embryonic NPCs to differentiate more favorably to the glial lineage. We then validated the anti-proliferation and pro-glial roles of miR-185-5p using NPCs isolated from P1 mouse brains. In vivo study further showed enlarged NPCs pools and inhibited gliogenesis in the brains of P1 mice after animals received antagomir-185-5p. Conclusion Our study suggests miR-185-5p as an important regulator for the proliferation and glial fate commitment of NPCs.
Collapse
Affiliation(s)
- Xuanran Feng
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xue Du
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyu Yang
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changqi Chen
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhanping Liang
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaonan Xu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jialin C. Zheng
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Wang Q, Zhao C, Du Q, Cao Z, Pan J. Non-coding RNA in infantile hemangioma. Pediatr Res 2024; 96:1594-1602. [PMID: 38750296 DOI: 10.1038/s41390-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 01/29/2025]
Abstract
Infantile hemangioma (IH) is the most common benign vascular tumor of infancy, but its pathogenesis has not been fully discovered. From the cellular perspective, CD133+ stem cells orchestrate the proliferation and development of IH. Regarding molecular mechanisms, hypoxia inducible factor-1α, renin-angiotensin system, and vascular endothelial growth factor are current study hotspots, while non-coding RNAs (ncRNAs) might be essential factors participating in this network. Therefore, this article reviewed published studies concerning the roles of ncRNAs in IH and listed noted miRNAs, lncRNAs, and circRNAs. Other ncRNAs, such as snRNAs, snoRNAs, and tsRNAs, though have not been examined in IH, are mentioned as well to discuss their potential functions. Due to the continuous development of sequencing technologies and computational pipelines for ncRNAs annotation, relevant studies will provide evidence to gradually enhance acknowledgments of ncRNAs' role in IH. The pathogenesis of IH might be revealed and the treatment protocol would be optimized in the future. IMPACT: Non-coding RNAs (ncRNAs) play critical roles in infantile hemangioma. This article thoroughly reviewed all ncRNAs (miRNAs, lncRNAs, and circRNAs) mentioned in previous studies regarding the pathogenesis of infantile hemangioma. Other ncRNAs are promising subjects for further investigation. This review introduced the emerging ncRNAs that need to be explored in IH.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianxin Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Cotino‐Nájera S, García‐Villa E, Cruz‐Rosales S, Gariglio P, Díaz‐Chávez J. The role of Lin28A and Lin28B in cancer beyond Let-7. FEBS Lett 2024; 598:2963-2979. [PMID: 39152528 PMCID: PMC11665955 DOI: 10.1002/1873-3468.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.
Collapse
Affiliation(s)
- Sandra Cotino‐Nájera
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Enrique García‐Villa
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Samantha Cruz‐Rosales
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Patricio Gariglio
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - José Díaz‐Chávez
- Departamento de Biología Celular, Facultad de CienciasUNAMMexico CityMexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones BiomédicasUNAM/Instituto Nacional de CancerologíaMexico CityMexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la SaludMexico
| |
Collapse
|
11
|
Piasecka A, Szcześniak M, Sekrecki M, Kajdasz A, Sznajder Ł, Baud A, Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res 2024; 52:12055-12073. [PMID: 39258536 PMCID: PMC11514471 DOI: 10.1093/nar/gkae774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.
Collapse
Affiliation(s)
- Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał W Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał Sekrecki
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704Poznań, Poland
| | - Łukasz J Sznajder
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Anna Baud
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
12
|
Shu G, Zhao Z, Zhao T, Deng C, Zhu J, Han Y, Chen M, Jing J, Bai G, Li D, Li F, He J, Fu W, Liu G. N 6-methyladenosine modification of circMARK2 enhances cytoplasmic export and stabilizes LIN28B, contributing to the progression of Wilms tumor. J Exp Clin Cancer Res 2024; 43:191. [PMID: 38987793 PMCID: PMC11238472 DOI: 10.1186/s13046-024-03113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The potential involvement of circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification in the progression of Wilms tumor (WT) has not been fully elucidated. This study investigates the regulatory mechanisms and clinical significance of m6A-modified circMARK2 and its role in WT progression. METHODS We identified dysregulated circRNAs through deep sequencing and validated their expression by qRT-PCR in WT tissues. The biological functions of circMARK2 were assessed using clone formation, transwell migration, and orthotopic animal models. To dissect the underlying mechanisms, we employed RNA immunoprecipitation, RNA pull-down, dual-luciferase reporter assays, Western blotting, and immunofluorescence and immunohistochemical staining. RESULTS CircMARK2, upregulated in WT tissues, was found to be m6A-modified and promoted cytoplasmic export. It facilitated WT progression by stabilizing LIN28B mRNA through the circMARK2/IGF2BP2 interaction. In vitro and in vivo studies demonstrated that circMARK2 enhances the malignant behavior of WT cells. Clinically, higher circMARK2 levels in tumor tissues of WT patients were linked to increased tumor aggressiveness and reduced survival rates. CONCLUSIONS Our study provides the first comprehensive evidence that m6A-modified circMARK2 contributes to WT progression by enhancing LIN28B mRNA stability, promoting cellular aggressiveness. CircMARK2 emerges as a potential biomarker for prognosis and a promising target for therapeutic intervention in WT, underscoring the clinical relevance of m6A modification in pediatric renal cancer.
Collapse
Affiliation(s)
- Guannan Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Zhang Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Tianxin Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Changmi Deng
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Jiangquan Zhu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Yufeng Han
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Minyu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiajia Jing
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gaochen Bai
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Dian Li
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China
| | - Feng Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China.
| | - Wen Fu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China.
| | - Guochang Liu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
13
|
Chang JJS, Lin T, Jhang XY, Chan SP. hnRNP Q/SYNCRIP interacts with LIN28B and modulates the LIN28B/let-7 axis in human hepatoma cells. PLoS One 2024; 19:e0304947. [PMID: 38976670 PMCID: PMC11230530 DOI: 10.1371/journal.pone.0304947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
The RNA-binding protein LIN28B represses the biogenesis of the tumor suppressor let-7. The LIN28B/let-7 axis regulates cell differentiation and is associated with various cancers. The RNA-binding protein Q (hnRNP Q) or SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) has been implicated in mRNA splicing, mRNA transport, translation, and miRNAs biogenesis as well as metabolism in cancer. To determine whether hnRNP Q plays a role in the LIN28B/let-7 axis, we tested for interactions between hnRNP Q and LIN28B. We demonstrated that hnRNP Q interacts with LIN28B in an RNA-dependent manner. Knockdown of hnRNP Q caused reduced expression of a well-known let-7 target TRIM71, an E3 ubiquitin ligase that belongs to the RBCC/TRIM family, and also LIN28B, whose mRNA itself is down-regulated by let-7. In addition, hnRNP Q knockdown increased let-7 family miRNA levels and reduced the activity of luciferase reporters fused with the TRIM71 3'UTR or a synthetic 3'UTR carrying 8X let-7 complementary sites. Finally, depletion of hnRNP Q inhibited the proliferation of a hepatocellular carcinoma cell line, Huh7. This observation is consistent with the survival curve for liver cancer patients from the TCGA database, which indicates that high expression of hnRNP Q is a prognostic marker for a poor outcome in individuals afflicted with hepatocellular carcinoma. Together, our findings suggest that hnRNP Q interacts with LIN28B and modulates the LIN28B/let-7 axis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jason Jei-Sheng Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ti Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xin-Yue Jhang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
16
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
17
|
Welsh AM, Muljo SA. Post-transcriptional (re)programming of B lymphocyte development: From bench to bedside? Adv Immunol 2024; 161:85-108. [PMID: 38763703 DOI: 10.1016/bs.ai.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Hematopoiesis, a process which generates blood and immune cells, changes significantly during mammalian development. Definitive hematopoiesis is marked by the emergence of long-term hematopoietic stem cells (HSCs). Here, we will focus on the post-transcriptional differences between fetal liver (FL) and adult bone marrow (ABM) HSCs. It remains unclear how or why exactly FL HSCs transition to ABM HSCs, but we aim to leverage their differences to revive an old idea: in utero HSC transplantation. Unexpectedly, the expression of certain RNA-binding proteins (RBPs) play an important role in HSC specification, and can be employed to convert or reprogram adult HSCs back to a fetal-like state. Among other features, FL HSCs have a broad differentiation capacity that includes the ability to regenerate both conventional B and T cells, as well as innate-like or unconventional lymphocytes such as B-1a and marginal zone B (MzB) cells. This chapter will focus on RNA binding proteins, namely LIN28B and IGF2BP3, that are expressed during fetal life and how they promote B-1a cell development. Furthermore, this chapter considers a potential clinical application of synthetic co-expression of LIN28B and IGF2BP3 in HSCs.
Collapse
Affiliation(s)
- Alia M Welsh
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stefan A Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
18
|
Baek SC, Kim B, Jang H, Kim K, Park IS, Min DH, Kim VN. Structural atlas of human primary microRNAs generated by SHAPE-MaP. Mol Cell 2024; 84:1158-1172.e6. [PMID: 38447581 DOI: 10.1016/j.molcel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MicroRNA (miRNA) maturation is critically dependent on structural features of primary transcripts (pri-miRNAs). However, the scarcity of determined pri-miRNA structures has limited our understanding of miRNA maturation. Here, we employed selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), a high-throughput RNA structure probing method, to unravel the secondary structures of 476 high-confidence human pri-miRNAs. Our SHAPE-based structures diverge substantially from those inferred solely from computation, particularly in the apical loop and basal segments, underlining the need for experimental data in RNA structure prediction. By comparing the structures with high-throughput processing data, we determined the optimal structural features of pri-miRNAs. The sequence determinants are influenced substantially by their structural contexts. Moreover, we identified an element termed the bulged GWG motif (bGWG) with a 3' bulge in the lower stem, which promotes processing. Our structure-function mapping better annotates the determinants of pri-miRNA processing and offers practical implications for designing small hairpin RNAs and predicting the impacts of miRNA mutations.
Collapse
Affiliation(s)
- S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Boseon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Harim Jang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Il-Soo Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dal-Hee Min
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
19
|
Yan L, Sun J, Wang Y, Liu X, Hu J, Sun M, Suo X, Duan R, Yuan C. Lin28 affects the proliferation and osteogenic differentiation of human dental pulp stem cells by directly inhibiting let-7b maturation. BDJ Open 2024; 10:17. [PMID: 38443392 PMCID: PMC10914815 DOI: 10.1038/s41405-024-00194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE Activation of Lin28 gene under certain conditions promotes tissue damage repair. However, it remains unknown whether conditional expression of Lin28 facilitates the recovery of damaged pulp tissue. In the study, we focus on exploring the effects and possible regulatory mechanisms of Lin28 on the proliferation and differentiation of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS We adopted techniques such as the ethynyl-2'-deoxyuridine (EdU) incorporation assay, RNA-protein immunoprecipitation (RIP) analysis, and luciferase assays to study the regulation of hDPSCs by Lin28. Furthermore, gain-of-function and loss-of-function analyses were also used in explored factors regulating hDPSCs activation. RESULTS The results show that Lin28 inhibited osteogenic differentiation by directly targets pre-let-7b. Through bioinformatics sequencing and dual luciferase experiments we learned that let-7b directly targets the IGF2BP2 3'UTR. Silencing of IGF2BP2 showed a similar biological effect as overexpression of let-7b. Overexpression of IGF2BP2 counteracted the differentiation-promoting effects produced by let-7b overexpression. DISCUSSION/CONCLUSIONS In conclusion, the RNA-binding protein Lin28 regulates osteogenic differentiation of hDPSCs by inhibiting let-7 miRNA maturation. And mature let-7b directly regulated the expression of IGF2BP2 by targeting the 3'UTR region of IGF2BP2 mRNA thus further inhibiting the differentiation of hDPSCs.
Collapse
Affiliation(s)
- Liu Yan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Jing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yushan Wang
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xinxin Liu
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jiayi Hu
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mengxin Sun
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xi Suo
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
20
|
Tan T, Gao B, Yu H, Pan H, Sun Z, Lei A, Zhang L, Lu H, Wu H, Daley GQ, Feng Y, Zhang J. Dynamic nucleolar phase separation influenced by non-canonical function of LIN28A instructs pluripotent stem cell fate decisions. Nat Commun 2024; 15:1256. [PMID: 38341436 PMCID: PMC10858886 DOI: 10.1038/s41467-024-45451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liquid phase separation (LLPS) in mouse embryonic stem cells (mESCs) and in vitro. The RNA binding domains (RBD) and intrinsically disordered regions (IDR) of LIN28A contribute to LIN28A and the other nucleolar proteins' phase-separated condensate establishment. S120A, S200A and R192G mutations in the IDR result in subcellular mislocalization of LIN28A and abnormal nucleolar phase separation. Moreover, we find that the naive-to-primed pluripotency state conversion and the reprogramming are associated with dynamic nucleolar remodeling, which depends on LIN28A's phase separation capacity, because the LIN28A IDR point mutations abolish its role in regulating nucleolus and in these cell fate decision processes, and an exogenous IDR rescues it. These findings shed light on the nucleolar function in pluripotent stem cell states and on a non-canonical RNA-independent role of LIN28A in phase separation and cell fate decisions.
Collapse
Affiliation(s)
- Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongru Pan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhen Sun
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hengxing Lu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Choi SW, Abitbol JM, Cheng AG. Hair Cell Regeneration: From Animals to Humans. Clin Exp Otorhinolaryngol 2024; 17:1-14. [PMID: 38271988 PMCID: PMC10933805 DOI: 10.21053/ceo.2023.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cochlear hair cells convert sound into electrical signals that are relayed via the spiral ganglion neurons to the central auditory pathway. Hair cells are vulnerable to damage caused by excessive noise, aging, and ototoxic agents. Non-mammals can regenerate lost hair cells by mitotic regeneration and direct transdifferentiation of surrounding supporting cells. However, in mature mammals, damaged hair cells are not replaced, resulting in permanent hearing loss. Recent studies have uncovered mechanisms by which sensory organs in non-mammals and the neonatal mammalian cochlea regenerate hair cells, and outlined possible mechanisms why this ability declines rapidly with age in mammals. Here, we review similarities and differences between avian, zebrafish, and mammalian hair cell regeneration. Moreover, we discuss advances and limitations of hair cell regeneration in the mature cochlea and their potential applications to human hearing loss.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Busan, Korea
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
24
|
Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet 2023; 24:816-833. [PMID: 37380761 PMCID: PMC11087887 DOI: 10.1038/s41576-023-00611-y] [Citation(s) in RCA: 326] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/30/2023]
Abstract
Ever since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR-Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Gayan Senavirathne
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
25
|
Zhang Q, Zhou X, Li X, Yao S, Jiang S, Zhang R, Zou Z, Liao L, Dong J. Effect of down-regulation of let-7c/g on triggering a double-negative feedback loop and promoting restenosis. Chin Med J (Engl) 2023; 136:2484-2495. [PMID: 37433785 PMCID: PMC10586861 DOI: 10.1097/cm9.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are the main causes of restenosis (RS) in diabetic lower extremity arterial disease (LEAD). However, the relevant pathogenic mechanisms are poorly understood. METHODS In this study, we introduced a "two-step injury protocol" rat RS model, which started with the induction of atherosclerosis (AS) and was followed by percutaneous transluminal angioplasty (PTA). Hematoxylin-eosin (HE) staining and immunohistochemistry staining were used to verify the form of RS. Two-step transfection was performed, with the first transfection of Lin28a followed by a second transfection of let-7c and let-7g, to explore the possible mechanism by which Lin28a exerted effects. 5-ethynyl-2΄-deoxyuridine (EdU) and Transwell assay were performed to evaluate the ability of proliferation and migration of VSMCs. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect the expression of Lin28a protein and let-7 family members. RESULTS Using a combination of in vitro and in vivo experiments, we discovered that let-7c, let-7g, and microRNA98 (miR98) were downstream targets of Lin28a. More importantly, decreased expression of let-7c/let-7g increased Lin28a, leading to further inhibition of let-7c/let-7g. We also found an increased level of let-7d in the RS pathological condition, suggesting that it may function as a protective regulator of the Lin28a/let-7 loop by inhibiting the proliferation and migration of VSMCs. CONCLUSION These findings indicated the presence of a double-negative feedback loop consisting of Lin28a and let-7c/let-7g, which may be responsible for the vicious behavior of VSMCs in RS.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
26
|
Shang R, Lai EC. Parameters of clustered suboptimal miRNA biogenesis. Proc Natl Acad Sci U S A 2023; 120:e2306727120. [PMID: 37788316 PMCID: PMC10576077 DOI: 10.1073/pnas.2306727120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
The nuclear cleavage of a suboptimal primary miRNA hairpin by the Drosha/DGCR8 complex ("Microprocessor") can be enhanced by an optimal miRNA neighbor, a phenomenon termed cluster assistance. Several features and biological impacts of this new layer of miRNA regulation are not fully known. Here, we elucidate the parameters of cluster assistance of a suboptimal miRNA and also reveal competitive interactions amongst optimal miRNAs within a cluster. We exploit cluster assistance as a functional assay for suboptimal processing and use this to invalidate putative suboptimal substrates, as well as identify a "solo" suboptimal miRNA. Finally, we report complexity in how specific mutations might affect the biogenesis of clustered miRNAs in disease contexts. This includes how an operon context can buffer the effect of a deleterious processing variant, but reciprocally how a point mutation can have a nonautonomous effect to impair the biogenesis of a clustered, suboptimal, neighbor. These data expand our knowledge regarding regulated miRNA biogenesis in humans and represent a functional assay for empirical definition of suboptimal Microprocessor substrates.
Collapse
Affiliation(s)
- Renfu Shang
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY10065
| | - Eric C. Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY10065
| |
Collapse
|
27
|
Xiao S, Zhang W, Li J, Manley NR. Lin28 regulates thymic growth and involution and correlates with MHCII expression in thymic epithelial cells. Front Immunol 2023; 14:1261081. [PMID: 37868985 PMCID: PMC10588642 DOI: 10.3389/fimmu.2023.1261081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
Thymic epithelial cells (TECs) are essential for T cell development in the thymus, yet the mechanisms governing their differentiation are not well understood. Lin28, known for its roles in embryonic development, stem cell pluripotency, and regulating cell proliferation and differentiation, is expressed in endodermal epithelial cells during embryogenesis and persists in adult epithelia, implying postnatal functions. However, the detailed expression and function of Lin28 in TECs remain unknown. In this study, we examined the expression patterns of Lin28 and its target Let-7g in fetal and postnatal TECs and discovered opposing expression patterns during postnatal thymic growth, which correlated with FOXN1 and MHCII expression. Specifically, Lin28b showed high expression in MHCIIhi TECs, whereas Let-7g was expressed in MHCIIlo TECs. Deletion of Lin28a and Lin28b specifically in TECs resulted in reduced MHCII expression and overall TEC numbers. Conversely, overexpression of Lin28a increased total TEC and thymocyte numbers by promoting the proliferation of MHCIIlo TECs. Additionally, our data strongly suggest that Lin28 and Let-7g expression is reliant on FOXN1 to some extent. These findings suggest a critical role for Lin28 in regulating the development and differentiation of TECs by modulating MHCII expression and TEC proliferation throughout thymic ontogeny and involution. Our study provides insights into the mechanisms underlying TEC differentiation and highlights the significance of Lin28 in orchestrating these processes.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA, United States
| | | | | | | |
Collapse
|
28
|
Zhang Q, Shi M, Zheng R, Han H, Zhang X, Lin F. C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Eur J Pharmacol 2023; 956:175935. [PMID: 37541366 DOI: 10.1016/j.ejphar.2023.175935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The highly conserved RNA-binding protein LIN28B and focal adhesion kinase (FAK) are significantly upregulated in ovarian cancer (OC), serving as markers for disease progression and prognosis. Nonetheless, the correlation between LIN28B and FAK, as well as the pharmacological effects of the LIN28 inhibitor C1632, in OC cells have not been elucidated. The present study demonstrates that C1632 significantly reduced the rate of DNA replication, arrested the cell cycle at the G0/G1 phase, consequently reducing cell viability, and impeding clone formation. Moreover, treatment with C1632 decreased cell-matrix adhesion, as well as inhibited cell migration and invasion. Further mechanistic studies revealed that C1632 inhibited the OC cell proliferation and migration by concurrently inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Furthermore, C1632 exhibited an obvious inhibitory effect on OC cell xenograft tumors in mice. Altogether, these findings identified that LIN28 B/let-7/FAK is a valuable target in OC and C1632 is a promising onco-therapeutic agent for OC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengyun Shi
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ruiling Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haoyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Gynecology, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
29
|
Dong X, Wang H, Zhan L, Li Q, Li Y, Wu G, Wei H, Li Y. miR-153-3p suppresses the differentiation and proliferation of neural stem cells via targeting GPR55. Aging (Albany NY) 2023; 15:8518-8527. [PMID: 37642951 PMCID: PMC10497013 DOI: 10.18632/aging.204002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/29/2021] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease is the most frequent neurodegenerative disease and is characterized by progressive cognitive impairment and decline. NSCs (neural stem cells) serve as beneficial and promising adjuncts to treat Alzheimer's disease. This study aimed to determine the role of miR-153-3p expression in NSC differentiation and proliferation. We illustrated that miR-153-3p was decreased and GPR55 was upregulated during NSC differentiation. IL-1β can induce miR-153-3p expression. Luciferase reporter analysis noted that elevated expression of miR-153-3p significantly inhibited the luciferase value of the WT reporter plasmid but did not change the luciferase value of the mut reporter plasmid. Ectopic miR-153-3p expression suppressed GPR55 expression in NSCs and identified GPR55 as a direct target gene of miR-153-3p. Ectopic expression of miR-153-3p inhibited NSC growth and differentiation into astrocytes and neurons. Elevated expression of miR-153-3p induced the release of proinflammatory cytokines, such as TNF-α, IL-1β and IL-6, in NSCs. Furthermore, miR-153-3p inhibited NSC differentiation and proliferation by targeting GPR55 expression. These data suggested that miR-153-3p may act as a clinical target for the therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yang Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Huan Wei
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| | - Yanping Li
- Department of Neurology, The Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan, China
| |
Collapse
|
30
|
Bandyopadhyay D, Basu S, Mukherjee I, Chakrabarti S, Chakrabarti P, Mukherjee K, Bhattacharyya SN. Accelerated export of Dicer1 from lipid-challenged hepatocytes buffers cellular miRNA-122 levels and prevents cell death. J Biol Chem 2023; 299:104999. [PMID: 37394005 PMCID: PMC10413358 DOI: 10.1016/j.jbc.2023.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocytes on exposure to high levels of lipids reorganize the metabolic program while fighting against the toxicity associated with elevated cellular lipids. The mechanism of this metabolic reorientation and stress management in lipid-challenged hepatocytes has not been well explored. We have noted the lowering of miR-122, a liver-specific miRNA, in the liver of mice fed with either a high-fat diet or a methionine-choline-deficient diet that is associated with increased fat accumulation in mice liver. Interestingly, low miR-122 levels are attributed to the enhanced extracellular export of miRNA processor enzyme Dicer1 from hepatocytes in the presence of high lipids. Export of Dicer1 can also account for the increased cellular levels of pre-miR-122-the substrate of Dicer1. Interestingly, restoration of Dicer1 levels in the mouse liver resulted in a strong inflammatory response and cell death in the presence of high lipids. Increasing death of hepatocytes was found to be caused by increased miR-122 levels in hepatocytes restored for Dicer1. Thus, the Dicer1 export by hepatocytes seems to be a key mechanism to combat lipotoxic stress by shunting out miR-122 from stressed hepatocytes. Finally, as part of this stress management, we determined that the Ago2-interacting pool of Dicer1, responsible for mature microribonucleoprotein formation in mammalian cells, gets depleted. miRNA-binder and exporter protein HuR is found to accelerate Ago2-Dicer1 uncoupling to ensure export of Dicer1 via extracellular vesicles in lipid-loaded hepatocytes.
Collapse
Affiliation(s)
- Diptankar Bandyopadhyay
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sudarshana Basu
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute (NCRI) Kolkata, India
| | - Ishita Mukherjee
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Partha Chakrabarti
- Metabolic Disease Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA.
| |
Collapse
|
31
|
Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ, Seebacher J, Schmidt I, Estoppey D, Nigsch F, Reece-Hoyes J, Hoepfner D, Großhans H. Convergence of multiple RNA-silencing pathways on GW182/TNRC6. Mol Cell 2023:S1097-2765(23)00423-9. [PMID: 37369201 DOI: 10.1016/j.molcel.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.
Collapse
Affiliation(s)
- Thomas Welte
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Alison Goulois
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Chiara Azzi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marlena J Wisser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Isabel Schmidt
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - John Reece-Hoyes
- Department of Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
32
|
Sun H, Hobert O. Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: Recent insights and open questions. Semin Cell Dev Biol 2023; 142:67-80. [PMID: 35688774 DOI: 10.1016/j.semcdb.2022.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
After the generation, differentiation and integration into functional circuitry, post-mitotic neurons continue to change certain phenotypic properties throughout postnatal juvenile stages until an animal has reached a fully mature state in adulthood. We will discuss such changes in the context of the nervous system of the nematode C. elegans, focusing on recent descriptions of anatomical and molecular changes that accompany postembryonic maturation of neurons. We summarize the characterization of genetic timer mechanisms that control these temporal transitions or maturational changes, and discuss that many but not all of these transitions relate to sexual maturation of the animal. We describe how temporal, spatial and sex-determination pathways are intertwined to sculpt the emergence of cell-type specific maturation events. Finally, we lay out several unresolved questions that should be addressed to move the field forward, both in C. elegans and in vertebrates.
Collapse
Affiliation(s)
- Haosheng Sun
- Department of Cell, Developmental, and Integrative Biology. University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, USA
| |
Collapse
|
33
|
Lee DW, Shin S, Kim JH, Lee C, Kim IY, Oh IH. Antisense Oligonucleotides against Let-7 Enhance the Therapeutic Potential of Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108639. [PMID: 37239986 DOI: 10.3390/ijms24108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Let-7 miRNAs have pleiotropic cellular functions in cell proliferation, migration, and regenerative processes. Here, we investigate whether the inhibition of let-7 miRNAs with antisense oligonucleotides (ASOs) can be a transient and safe strategy enhancing the therapeutic potential of mesenchymal stromal cells (MSCs) to overcome their limitations in cell therapeutic trials. We first identified major subfamilies of let-7 miRNAs preferentially expressed in MSCs, and efficient ASO combinations against these selected subfamilies that mimic the effects of LIN28 activation. When let-7 miRNAs were inhibited with an ASO combination (anti-let7-ASOs), MSCs exhibited higher proliferation with delayed senescence during the passaging into a culture. They also exhibited increased migration and enhanced osteogenic differentiation potential. However, these changes in MSCs were not accompanied by cell-fate changes into pericytes or the additional acquisition of stemness, but instead occurred as functional changes accompanied by changes in proteomics. Interestingly, MSCs with let-7 inhibition exhibited metabolic reprogramming characterized by an enhanced glycolytic pathway, decreased reactive oxygen species, and lower transmembrane potential in mitochondria. Moreover, let-7-inhibited MSCs promoted the self-renewal of neighboring hematopoietic progenitor cells, and enhanced capillary formation in endothelial cells. These findings together show that our optimized ASO combination efficiently reprograms the MSC functional state, allowing for more efficient MSC cell therapy.
Collapse
Affiliation(s)
- Dae-Won Lee
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 06591, Republic of Korea
| | - Sungho Shin
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Ho Kim
- Regen Innopharm Inc., Seoul 06591, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 06591, Republic of Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University, Seoul 06591, Republic of Korea
- Regen Innopharm Inc., Seoul 06591, Republic of Korea
| |
Collapse
|
34
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Hernandez JC, Chen CL, Machida T, Uthaya Kumar DB, Tahara SM, Montana J, Sher L, Liang J, Jung JU, Tsukamoto H, Machida K. LIN28 and histone H3K4 methylase induce TLR4 to generate tumor-initiating stem-like cells. iScience 2023; 26:106254. [PMID: 36949755 PMCID: PMC10025994 DOI: 10.1016/j.isci.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/09/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Chemoresistance and plasticity of tumor-initiating stem-like cells (TICs) promote tumor recurrence and metastasis. The gut-originating endotoxin-TLR4-NANOG oncogenic axis is responsible for the genesis of TICs. This study investigated mechanisms as to how TICs arise through transcriptional, epigenetic, and post-transcriptional activation of oncogenic TLR4 pathways. Here, we expressed constitutively active TLR4 (caTLR4) in mice carrying pLAP-tTA or pAlb-tTA, under a tetracycline withdrawal-inducible system. Liver progenitor cell induction accelerated liver tumor development in caTLR4-expressing mice. Lentiviral shRNA library screening identified histone H3K4 methylase SETD7 as central to activation of TLR4. SETD7 combined with hypoxia induced TLR4 through HIF2 and NOTCH. LIN28 post-transcriptionally stabilized TLR4 mRNA via de-repression of let-7 microRNA. These results supported a LIN28-TLR4 pathway for the development of HCCs in a hypoxic microenvironment. These findings not only advance our understanding of molecular mechanisms responsible for TIC generation in HCC, but also represent new therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- MS Biotechnology Program, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Chia-Lin Chen
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 110, Taiwan
| | - Tatsuya Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jared Montana
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Sher
- Department of Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Jae U. Jung
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| |
Collapse
|
36
|
Cao L, Wang R, Liu G, Zhang Y, Thorne RF, Zhang XD, Li J, Xia Y, Guo L, Shao F, Gu H, Wu M. Glycolytic Pfkp acts as a Lin41 protein kinase to promote endodermal differentiation of embryonic stem cells. EMBO Rep 2023; 24:e55683. [PMID: 36660859 PMCID: PMC9986826 DOI: 10.15252/embr.202255683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Unveiling the principles governing embryonic stem cell (ESC) differentiation into specific lineages is critical for understanding embryonic development and for stem cell applications in regenerative medicine. Here, we establish an intersection between LIF-Stat3 signaling that is essential for maintaining murine (m) ESCs pluripotency, and the glycolytic enzyme, the platelet isoform of phosphofructokinase (Pfkp). In the pluripotent state, Stat3 transcriptionally suppresses Pfkp in mESCs while manipulating the cells to lift this repression results in differentiation towards the ectodermal lineage. Pfkp exhibits substrate specificity changes to act as a protein kinase, catalyzing serine phosphorylation of the developmental regulator Lin41. Such phosphorylation stabilizes Lin41 by impeding its autoubiquitination and proteasomal degradation, permitting Lin41-mediated binding and destabilization of mRNAs encoding ectodermal specification markers to favor the expression of endodermal specification genes. This provides new insights into the wiring of pluripotency-differentiation circuitry where Pfkp plays a role in germ layer specification during mESC differentiation.
Collapse
Affiliation(s)
- Leixi Cao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Ruijie Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNSWAustralia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Environmental & Life SciencesUniversity of NewcastleNewcastleNSWAustralia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yang Xia
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Lili Guo
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Hao Gu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Clinical MedicineHenan UniversityZhengzhouChina
- CAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
37
|
Lee S, Jee D, Srivastava S, Yang A, Ramidi A, Shang R, Bortolamiol-Becet D, Pfeffer S, Gu S, Wen J, Lai EC. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals. Cell Rep 2023; 42:112111. [PMID: 36800291 PMCID: PMC10508058 DOI: 10.1016/j.celrep.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Canonical microRNA (miRNA) hairpins are processed by the RNase III enzymes Drosha and Dicer into ∼22 nt RNAs loaded into an Argonaute (Ago) effector. In addition, splicing generates numerous intronic hairpins that bypass Drosha (mirtrons) to yield mature miRNAs. Here, we identify hundreds of previously unannotated, splicing-derived hairpins in intermediate-length (∼50-100 nt) but not small (20-30 nt) RNA data. Since we originally defined mirtrons from small RNA duplexes, we term this larger set as structured splicing-derived RNAs (ssdRNAs). These associate with Dicer and/or Ago complexes, but generally accumulate modestly and are poorly conserved. We propose they contaminate the canonical miRNA pathway, which consequently requires defense against the siege of splicing-derived substrates. Accordingly, ssdRNAs/mirtrons comprise dominant hairpin substrates for 3' tailing by multiple terminal nucleotidyltransferases, notably TUT4/7 and TENT2. Overall, the rampant proliferation of young mammalian mirtrons/ssdRNAs, coupled with an inhibitory molecular defense, comprises a Red Queen's race of intragenomic conflict.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA
| | - David Jee
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sid Srivastava
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; High Technology High School, Lincroft, NJ 07738, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, 8 National Cancer Institute, Frederick, MD 21702, USA
| | - Abhinav Ramidi
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; High Technology High School, Lincroft, NJ 07738, USA
| | - Renfu Shang
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA
| | - Diane Bortolamiol-Becet
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, 8 National Cancer Institute, Frederick, MD 21702, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, NY 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
38
|
Gao Y, Cao H, Huang D, Zheng L, Nie Z, Zhang S. RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041150. [PMID: 36831493 PMCID: PMC9953953 DOI: 10.3390/cancers15041150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
Collapse
|
39
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
40
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Yang J, Xu J, Zhang L, Li Y, Chen M. Identifying key m 6A-methylated lncRNAs and genes associated with neural tube defects via integrative MeRIP and RNA sequencing analyses. Front Genet 2022; 13:974357. [PMID: 36482889 PMCID: PMC9722945 DOI: 10.3389/fgene.2022.974357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/04/2022] [Indexed: 07/23/2023] Open
Abstract
Objective: N6-methyladenosine (m6A) is a common post-transcriptional modification of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). However, m6A-modified lncRNAs are still largely unexplored. This study aimed to investigate differentially m6A-modified lncRNAs and genes involved in neural tube defect (NTD) development. Methods: Pregnant Kunming mice (9-10 weeks of age) were treated with retinoic acid to construct NTD models. m6A levels and methyltransferase-like 3 (METTL3) expression were evaluated in brain tissues of the NTD models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed on the NovaSeq platform and Illumina HiSeq 2,500 platform, respectively. Differentially m6A-methylated differentially expressed lncRNAs (DElncRNAs) and differentially expressed genes (DEGs) were identified, followed by GO biological process and KEGG pathway functional enrichment analyses. Expression levels of several DElncRNAs and DEGs were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for validation. Results: m6A levels and METTL3 expression levels were significantly lower in the brain tissues of the NTD mouse model than in controls. By integrating MeRIP-seq and RNA-seq data, 13 differentially m6A-methylated DElncRNAs and 170 differentially m6A-methylated DEGs were identified. They were significantly enriched in the Hippo signaling pathway and mannose-type O-glycan biosynthesis. The qRT-PCR results confirmed the decreased expression levels of lncRNAs, such as Mir100hg, Gm19265, Gm10544, and Malat1, and genes, such as Zfp236, Erc2, and Hmg20a, in the NTD group. Conclusion: METTL3-mediated m6A modifications may be involved in NTD development. In particular, decreased expression levels of Mir100hg, Gm19265, Gm10544, Malat1, Zfp236, Erc2, and Hmg20a may contribute to the development of NTD.
Collapse
Affiliation(s)
- Jing Yang
- Department of Obstetrics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Luting Zhang
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingting Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Gu X, Wang J, Jiang X. miR-124- and let-7-Mediated Reprogram of Human Fibroblasts into SST Interneurons. ACS Chem Neurosci 2022; 13:2755-2765. [PMID: 36074953 DOI: 10.1021/acschemneuro.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Dysfunction of γ-aminobutyric acid (GABA)ergic interneurons may cause a variety of neurological and psychiatric disorders such as epilepsy, autism, Alzheimer's disease, and depression. Unlike other types of neurons, which can be generated relatively easily by direct reprogramming, it is difficult to generate GABAergic neurons by traditional methods. Neuronal transdifferentiation of fibroblasts mediated by nongenomic-integrated adenovirus has many advantages, but the efficiency is low, and there is a lack of studies using human cells as the initial materials. In this study, we explored the feasibility of the conversion of human fibroblasts into neurons through adenovirus-mediated gene expression and found that by introducing two microRNAs, miR-124 and let-7, together with several small chemical compounds, they can effectively generate GABAergic neuron-like cells from human neonatal fibroblasts without reverting to a progenitor cell stage. Most of these cells expressed neuronal markers and were all somatostatin (SST)-positive cells. Therefore, our study provides a relatively safe and efficient method to generate SST interneurons.
Collapse
Affiliation(s)
- Xi Gu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510500, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, China
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, China
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510500, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510500, China
| |
Collapse
|
43
|
Zhao Y, Zhang T, Shen X, Huang A, Li H, Wang L, Liu X, Wang X, Song X, Wang S, Dong J, Shao N. Tumor necrosis factor alpha delivers exogenous inflammation-related microRNAs to recipient cells with functional targeting capabilities. Mol Ther 2022; 30:3052-3065. [PMID: 35791880 PMCID: PMC9481991 DOI: 10.1016/j.ymthe.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a critical pro-inflammatory cytokine in a wide range of tumors and infectious diseases. This study showed for the first time that TNF-α could specifically bind to certain intracellular or circulating inflammation-related microRNAs both in vitro and in vivo. The binding sites of TNF-α to microRNAs are located at the N-terminal of TNF-α and the 3'-GGUU motif of microRNAs. TNF-α could deliver exogenous unmodified single-stranded microRNAs into recipient cells through the TNF-α receptors (TNFRs) and stabilize them from being degraded by RNase in cells. Exogenous miR-146a or let-7c delivered into HCT116 cells by TNF-α could escape from lysosomes and specifically downregulate their target genes and then affect cell proliferation and migration in vitro, as well as tumorigenesis in vivo. Based on the above findings, the concept of "non-conjugated ligand-mediated RNA delivery (ncLMRD)" was proposed, which may serve as a promising strategy for therapeutic microRNA delivery in the future.
Collapse
Affiliation(s)
- Yuechao Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tan Zhang
- Non-commissioned Officer School of Army Medical University, Shijiazhuang 050000, China
| | - Xuelian Shen
- Laibin Maternity and Child Healthcare Hospital, Guangxi 546100, China
| | - Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lin Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuemei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuejun Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Xiang Song
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
44
|
Panoramic view of microRNAs in regulating cancer stem cells. Essays Biochem 2022; 66:345-358. [PMID: 35996948 DOI: 10.1042/ebc20220007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of tumor cells, possessing the abilities of self-renewal and generation of heterogeneous tumor cell lineages. They are believed to be responsible for tumor initiation, metastasis, as well as chemoresistance in human malignancies. MicroRNAs (miRNAs) are small noncoding RNAs that play essential roles in various cellular activities including CSC initiation and CSC-related properties. Mature miRNAs with ∼22 nucleotides in length are generated from primary miRNAs via its precursors by miRNA-processing machinery. Extensive studies have demonstrated that mature miRNAs modulate CSC initiation and stemness features by regulating multiple pathways and targeting stemness-related factors. Meanwhile, both miRNA precursors and miRNA-processing machinery can also affect CSC properties, unveiling a new insight into miRNA function. The present review summarizes the roles of mature miRNAs, miRNA precursors, and miRNA-processing machinery in regulating CSC properties with a specific focus on the related molecular mechanisms, and also outlines the potential application of miRNAs in cancer diagnosis, predicting prognosis, as well as clinical therapy.
Collapse
|
45
|
Chaudhary A, Chaurasia PK, Kushwaha S, Chauhan P, Chawade A, Mani A. Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions. Int J Biol Macromol 2022; 220:743-753. [PMID: 35987358 DOI: 10.1016/j.ijbiomac.2022.08.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Cold shock proteins (CSPs) are an ancient and conserved family of proteins. They are renowned for their role in response to low-temperature stress in bacteria and nucleic acid binding activities. In prokaryotes, cold and non-cold inducible CSPs are involved in various cellular and metabolic processes such as growth and development, osmotic oxidation, starvation, stress tolerance, and host cell invasion. In prokaryotes, cold shock condition reduces cell transcription and translation efficiency. Eukaryotic cold shock domain (CSD) proteins are evolved form of prokaryotic CSPs where CSD is flanked by N- and C-terminal domains. Eukaryotic CSPs are multi-functional proteins. CSPs also act as nucleic acid chaperons by preventing the formation of secondary structures in mRNA at low temperatures. In human, CSD proteins play a crucial role in the progression of breast cancer, colon cancer, lung cancer, and Alzheimer's disease. A well-defined three-dimensional structure of intrinsically disordered regions of CSPs family members is still undetermined. In this article, intrinsic disorder regions of CSPs have been explored systematically to understand the pleiotropic role of the cold shock family of proteins.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay
| | - Pankaj Kumar Chaurasia
- PG Department of Chemistry, L.S. College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India
| | - Sandeep Kushwaha
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
46
|
Shang R, Kretov DA, Adamson SI, Treiber T, Treiber N, Vedanayagam J, Chuang J, Meister G, Cifuentes D, Lai E. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic Acids Res 2022; 50:7637-7654. [PMID: 35801921 PMCID: PMC9303283 DOI: 10.1093/nar/gkac568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.
Collapse
Affiliation(s)
- Renfu Shang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Thomas Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Jeffrey Vedanayagam
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
47
|
Adipose-derived exosomes block muscular stem cell proliferation in aged mouse by delivering miRNA Let-7d-3p that targets transcription factor HMGA2. J Biol Chem 2022; 298:102098. [PMID: 35679898 PMCID: PMC9257422 DOI: 10.1016/j.jbc.2022.102098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Sarcopenia is an aging-associated attenuation of muscular volume and strength and is the major cause of frailty and falls in elderly individuals. The number of individuals with sarcopenia is rapidly increasing worldwide; however, little is known about the underlying mechanisms of the disease. Sarcopenia often copresents with obesity, and some patients with sarcopenia exhibit accumulation of peri-organ or intra-organ adipose tissue as ectopic fat deposition, including atrophied skeletal muscle. In this study, we showed that transplantation of the perimuscular adipose tissue (PMAT) to the hindlimb thigh muscles of young mice decreased the number of integrin α7/CD29-double positive muscular stem/progenitor cells and that the reaction was mediated by PMAT-derived exosomes. We also found that the inhibition of cell proliferation was induced by Let-7d-3p miRNA that targets HMGA2, which is an important transcription factor for stem cell self-renewal, in muscular stem/progenitor cells and the composite molecular reaction in aged adipocytes. Reduction of Let-7 miRNA repressor Lin28 A/B and activation of nuclear factor-kappa B signaling can lead to the accumulation of Let-7d-3p in the exosomes of aged PMAT. These findings suggest a novel crosstalk between adipose tissue and skeletal muscle in the development of aging-associated muscular atrophy and indicate that adipose tissue–derived miRNAs may play a key role in sarcopenia.
Collapse
|
48
|
Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature 2022; 605:539-544. [PMID: 35508655 DOI: 10.1038/s41586-022-04667-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation1,2. A long appreciated, yet undefined relationship exists between the lytic-latent switch and viral non-coding RNAs3,4. Here we identify viral microRNA (miRNA)-mediated inhibition of host miRNA processing as a cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defences and drive the switch from latent to lytic virus infection. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective primary (pri)-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30-p53-DRP1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily druggable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 will provide new therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.
Collapse
|
49
|
Pascale E, Caiazza C, Paladino M, Parisi S, Passaro F, Caiazzo M. MicroRNA Roles in Cell Reprogramming Mechanisms. Cells 2022; 11:940. [PMID: 35326391 PMCID: PMC8946776 DOI: 10.3390/cells11060940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Martina Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
50
|
Ji H, Fan L, Shan A, Wang W, Ning G, Cao Y, Jiang X. Let7b-5p inhibits insulin secretion and decreases pancreatic β-cell mass in mice. Mol Cell Endocrinol 2022; 540:111506. [PMID: 34801668 DOI: 10.1016/j.mce.2021.111506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs are crucial regulators for the development, mass and function of pancreatic β-cells. MiRNA dysregulation is associated with β-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic β-cells. We generated pancreatic β-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, β-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in β-cells. Let7b-5p overexpression impaired the insulin production and secretion of β-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic β-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic β-cells.
Collapse
Affiliation(s)
- He Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Fan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|