1
|
Qin J, Sun N, Wang Y, An J, Zhao D, Li J, Zhang H, Du R. Induction of feline fetal fibroblasts into pluripotent stem cells using cat-derived reprogramming factors. Theriogenology 2025; 244:117481. [PMID: 40381593 DOI: 10.1016/j.theriogenology.2025.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/11/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
There are few studies on the establishment of induced pluripotent stem cells (iPSCs) in cats. Although induction using heterologous reprogramming factors delivered via viral vectors has been reported, its safety and reprogramming efficiency still require improvement. In addition, the reprogramming mechanism needs further elucidation. In this study, we constructed a series of expression vectors for cat-derived reprogramming transcription factors based on the piggyBac transposon system and transfected various factor combinations into cat fetal fibroblasts (CFFs) under different electroporation conditions to generate cat iPSCs (ciPSCs). Additionally, the specific roles of these factors in reprogramming were investigated. The results showed that under the optimized electroporation conditions (DMEM/F12 buffer, 300 V, 10 ms pulse duration, 2 pulses, 25 μg plasmid DNA, and 4 mm cuvette), the survival rate and transfection efficiency of CFFs reached 64 % and 67.8 %, respectively. Based on this condition, a seven-factor combination (cOSKM + pNL + SV40 Large T) was confirmed as a better inducer for establishing ciPSCs. The obtained ciPSCs exhibit good pluripotency and passaging stability. They express stemness-related genes and proteins, and can form embryoid bodies (EBs) capable of differentiating into all three germ layers. OCT4 (O), SOX2 (S), KLF4 (K), and c-MYC (M) play important cooperative and synergistic roles in the mesenchymal-to-epithelial transition (MET) during the initial stages of reprogramming, while the supplement of NANOG (N) and LIN28 (L) can further promote MET and is important for successful reprogramming. It lays a foundation for the further breeding of cloned and genetically modified cats, and provides a tool for studying embryonic developmental diseases, screening drugs, and applying to tissue regeneration.
Collapse
Affiliation(s)
- Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; Center of Experiment Teaching, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Nannan Sun
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yitong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dipeng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China; Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| | - Junling Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
2
|
Chen C, Wang R, Liu Y, Fan L, Ma N, Yan Q, Wang W, Ren Z, Ning X, Ku T. "Iron -free" CdSe/ZnS quantum dots disrupt neural differentiation of embryonic stem cells via the induction of ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126378. [PMID: 40339883 DOI: 10.1016/j.envpol.2025.126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Exposure to Cadmium-based quantum dots (QDs) is becoming a growing threat to human health, necessitating a deeper understanding of their intracellular behavior and the associated toxic effects. Among the various domains of nanosafety assessment, the impact of these QDs on the nervous system is particularly critical; however, the potential effects on neurodevelopment and the underlying mechanisms remain largely unexplored. The current study explores the neural developmental toxicities associated with exposure to QDs made of cadmium selenide (CdSe) and encapsulated within a zinc sulfide (ZnS) shell using mouse embryonic stem cells (mESCs). Exposure to CdSe/ZnS QDs was found to impair the neural differentiation of mESCs via a novel mechanism of programmed cell death known as ferroptosis. Specifically, the CdSe/ZnS QDs were found to be internalized by cells, with a substantial fraction remaining within the cells even after a 24 h clearance period. Furthermore, nanoparticle internalization induced significant ROS/MDA elevation, mitochondrial depolarization and intracellular iron overload, collectively triggering ferroptosis and consequent tricarboxylic acid (TCA) cycle dysfunction. Importantly, the application of ferroptosis inhibitors was found to alleviate the disruption in the TCA cycle induced by CdSe/ZnS QDs and restore neural differentiation. Additionally, ferroptosis was established as a common form of cell death triggered by nanoparticles. These findings underscore the urgent need for further investigations into the safety profiles of CdSe/ZnS QDs in a neurological context, as an understanding of the underlying mechanisms can facilitate informed risk assessments and guide the development of safer nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Chen Chen
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yutong Liu
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Lifan Fan
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Nanxin Ma
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Qiqi Yan
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wenhao Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Zhihua Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
3
|
Sant C, Mucke L, Corces MR. CHOIR improves significance-based detection of cell types and states from single-cell data. Nat Genet 2025; 57:1309-1319. [PMID: 40195561 DOI: 10.1038/s41588-025-02148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Clustering is a critical step in the analysis of single-cell data, enabling the discovery and characterization of cell types and states. However, most popular clustering tools do not subject results to statistical inference testing, leading to risks of overclustering or underclustering data and often resulting in ineffective identification of cell types with widely differing prevalence. To address these challenges, we present CHOIR (cluster hierarchy optimization by iterative random forests), which applies a framework of random forest classifiers and permutation tests across a hierarchical clustering tree to statistically determine clusters representing distinct populations. We demonstrate the performance of CHOIR through extensive benchmarking against 15 existing clustering methods across 230 simulated and five real single-cell RNA sequencing, assay for transposase-accessible chromatin sequencing, spatial transcriptomic and multi-omic datasets. CHOIR can be applied to any single-cell data type and provides a flexible, scalable and robust solution to the challenge of identifying biologically relevant cell groupings within heterogeneous single-cell data.
Collapse
Affiliation(s)
- Cathrine Sant
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
4
|
Xue M, Kang L, Zhang Y, Yuan X, Li J, Zhang R, Wong J. AKT1 as a therapeutic target for platinum-resistant SOX2 positive ovarian cancer cells. Sci Rep 2025; 15:15096. [PMID: 40301365 PMCID: PMC12041294 DOI: 10.1038/s41598-025-92036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/25/2025] [Indexed: 05/01/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy, largely owing to its chemotherapy resistance and high recurrence rate. Emerging evidence has linked the aberrant expression of SOX2, a transcription factor that is important in the development and maintenance of stem cell state, with chemoresistance and poor prognosis of ovarian cancer patients. In this study, we aimed to elucidate the mechanisms that drive aberrant SOX2 expression in ovarian cancer cells. By examining multiple ovarian cancer cell lines and a panel of clinical tumor samples, we observed a broad overexpression of SOX2 in ovarian cancer cell lines and tumors. To identify signaling pathway(s) that drives SOX2 overexpression in ovarian cancer cells, we screened a set of small-molecule kinase inhibitors that target 30 major cellular kinases. Among the top hits identified are AKT inhibitors. We demonstrated that inhibition or knockdown of AKT1 can drastically downregulate SOX2 protein level, impairs the growth and stemness of SOX2-positive ovarian cancer cells, and markedly sensitize SOX2-positive ovarian cancer cells to platinum drugs. Mechanically, we found that AKT1 drives SOX2 overexpression primarily by enhancing its protein stability and does so by phosphorylating SOX2 at threonine 116. Altogether, our study reveals an underlying mechanism that drives SOX2 overexpression in ovarian cancer and underscores pharmacological inhibition of AKT1 as a potential therapeutic strategy to sensitize SOX2-positive ovarian cancer to platinum drugs.
Collapse
Affiliation(s)
- Mengyang Xue
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics and Gynecology, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, 201499, China
| | - Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yunfeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xixia Yuan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Rong Zhang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Department of Obstetrics and Gynecology, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, 201499, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
5
|
Placzek S, Vanzan L, Deluz C, Suter DM. Orchestration of pluripotent stem cell genome reactivation during mitotic exit. Cell Rep 2025; 44:115486. [PMID: 40153434 DOI: 10.1016/j.celrep.2025.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 03/30/2025] Open
Abstract
Cell identity maintenance faces many challenges during mitosis, as most DNA-binding proteins are evicted from DNA and transcription is virtually abolished. How cells maintain their identity through division and faithfully re-initiate gene expression during mitotic exit is unclear. Here, we develop a novel reporter system enabling cell cycle synchronization-free separation of pluripotent stem cells in temporal bins of <30 min during mitotic exit. This allows us to quantify genome-wide reactivation of transcription, sequential changes in chromatin accessibility and transcription factor footprints, and re-binding of the pluripotency transcription factors OCT4, SOX2, and NANOG (OSN). We find that transcriptional activity progressively ramps up after mitosis and that OSN rapidly reoccupy the genome during the anaphase-telophase transition. We also demonstrate transcription factor-specific, dynamic relocation patterns and a hierarchical reorganization of the OSN binding landscape governed by OCT4 and SOX2. Our study sheds light on the dynamic orchestration of transcriptional reactivation after mitosis.
Collapse
Affiliation(s)
- Silja Placzek
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ludovica Vanzan
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Cédric Deluz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - David M Suter
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Tobias IC, Moorthy SD, Shchuka VM, Langroudi L, Cherednychenko M, Gillespie ZE, Duncan AG, Tian R, Gajewska NA, Di Roberto RB, Mitchell JA. A Sox2 enhancer cluster regulates region-specific neural fates from mouse embryonic stem cells. G3 (BETHESDA, MD.) 2025; 15:jkaf012. [PMID: 39849901 PMCID: PMC12005160 DOI: 10.1093/g3journal/jkaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Sex-determining region Y box 2 (Sox2) is a critical transcription factor for embryogenesis and neural stem and progenitor cell (NSPC) maintenance. While distal enhancers control Sox2 in embryonic stem cells (ESCs), enhancers closer to the gene are implicated in Sox2 transcriptional regulation in neural development. We hypothesize that a downstream enhancer cluster, termed Sox2 regulatory regions 2-18 (SRR2-18), regulates Sox2 transcription in neural stem cells and we investigate this in NSPCs derived from mouse ESCs. Using functional genomics and CRISPR-Cas9-mediated deletion analyses, we investigate the role of SRR2-18 in Sox2 regulation during neural differentiation. Transcriptome analyses demonstrate that the loss of even 1 copy of SRR2-18 disrupts the region-specific identity of NSPCs, reducing the expression of genes associated with more anterior regions of the embryonic nervous system. Homozygous deletion of this Sox2 neural enhancer cluster causes reduced SOX2 protein, less frequent interaction with transcriptional machinery, and leads to perturbed chromatin accessibility genome-wide further affecting the expression of neurodevelopmental and anterior-posterior regionalization genes. Furthermore, homozygous NSPC deletants exhibit self-renewal defects and impaired differentiation into cell types found in the brain. Altogether, our data define a cis-regulatory enhancer cluster controlling Sox2 transcription in NSPCs and highlight the sensitivity of neural differentiation processes to decreased Sox2 transcription, which causes differentiation into posterior neural fates, specifically the caudal neural tube. This study highlights the importance of precise Sox2 regulation by SRR2-18 in neural differentiation.
Collapse
Affiliation(s)
- Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Lida Langroudi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Mariia Cherednychenko
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Zoe E Gillespie
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Andrew G Duncan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Ruxiao Tian
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Natalia A Gajewska
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Raphaël B Di Roberto
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
7
|
Qi M, Wang B, Liao H, Xu Y, Dong L, Xu L, Xia Y, Jiang X, Ling S, Qin J. Loss of sex-determining region Y-box 2 (Sox2) captures embryonic stem cells in a primed pluripotent state. J Biol Chem 2025; 301:108501. [PMID: 40216251 DOI: 10.1016/j.jbc.2025.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Two main pluripotent cell lines can be established from the preimplantation and postimplantation mouse embryo as naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. Although the two pluripotent states are interconvertible, the molecular mechanism controlling the transition between naïve and primed pluripotency remains to be fully elucidated. Here, by performing a CRISPR-based loss-of-function screen in ESCs, we identify Sox2 involved in the repression of lineage-specification marker brachyury (T). Upon Sox2 ablation in ESCs, two populations of cells mutually exclusive for CDX2 (trophectoderm marker) and T expression can be observed. T-positive cells display features resembling the salient characteristics of EpiSCs including molecular and functional properties. By using genetic ablation approach, we show that acquisition and maintenance of primed pluripotency in Sox2 null T-positive cells heavily depend on fibroblast growth factor (Fgf) and Nodal, which is produced in an autocrine manner in these cells. We further demonstrate that Sox3 compensates for the absence of Sox2 in maintaining the primed state of Sox2-null pluripotent cells. Establishment of Sox2-deficient pluripotent cells will enable the elucidation of the mechanisms controlling the transition of cells between different states of pluripotency.
Collapse
Affiliation(s)
- Min Qi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Bowen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Huaqi Liao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yuzhuo Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lixia Dong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lijun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Jinzhong Qin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Zhe X, Ma H, Zhang W, Ding R, Hao F, Gao Y, Uri G, Jiri G, Jiri G, Liu D. Scriptaid Improves Cashmere Goat Embryo Reprogramming by Affecting Donor Cell Pluripotency Molecule NANOG Expression. Animals (Basel) 2025; 15:1022. [PMID: 40218415 PMCID: PMC11988105 DOI: 10.3390/ani15071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Currently, the efficiency of somatic cell nuclear transfer (SCNT) technology is relatively low, primarily owing to reprogramming abnormalities in donor cells or reconstructed embryos. Using histone deacetylase inhibitor (HDACi) to artificially alter the epigenetic modifications of donor cells and improve the reprogramming ability of reconstructed embryos is effective in improving nuclear transfer efficiency. In this study, we used Albas cashmere goat cells as donor cells, treated them with Scriptaid, and constructed embryos using SCNT. The results suggest that donor cell treatment with Scriptaid significantly increased the cellular histone acetylation modification level, perturbed the expression of the pluripotency molecule NANOG, altered the reprogramming ability of embryos, and increased the developmental rate of SCNT-reconstructed embryos. Scriptaid inhibited donor cell proliferation, induced apoptosis, and blocked the G0/G1 phase of the cell cycle. These results provide a new research direction for improving SCNT efficiency and a new perspective in the fields of regenerative medicine, agriculture, and animal husbandry.
Collapse
Affiliation(s)
- Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Hairui Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Wenqi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Rui Ding
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
- Alxa League Animal Quarantine Technology Service Center, Inner Mongolia, Alxa 750300, China
| | - Gumara Uri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Gellegen Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Garangtu Jiri
- Etoqqi Agricultural and Animal Husbandry Technology Extension Center, Inner Mongolia, Ordos 016100, China; (G.U.); (G.J.); (G.J.)
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (H.M.); (W.Z.); (R.D.); (F.H.); (Y.G.)
| |
Collapse
|
9
|
Battaglia R, Caponnetto A, Ferrara C, Fazzio A, Barbagallo C, Stella M, Barbagallo D, Ragusa M, Vento ME, Borzì P, Scollo P, Carli L, Feichtinger M, Kasapi E, Tsakos E, Palini S, Sierka W, Pecorino B, Campitiello MR, Ronsini C, Purrello M, Valerio D, Longobardi S, D'Hooghe T, Di Pietro C. Up-regulated microRNAs in blastocoel fluid of human implanted embryos could control circuits of pluripotency and be related to embryo competence. J Assist Reprod Genet 2025:10.1007/s10815-025-03457-x. [PMID: 40140178 DOI: 10.1007/s10815-025-03457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
PURPOSE The paper aims to investigate the biological role of microRNAs secreted by preimplantation embryo into the blastocoel fluid and to detect a distinctive molecular signature for identifying embryos with the highest implantation potential. METHODS We carried on a multicenter retrospective study involving five European IVF centers. We collected 112 blastocoel fluid samples from embryos on day 5 post-fertilization, cultured individually, along with data on blastocyst grade and embryo transfer outcomes. Using a custom TLDA Array, we compared the expression levels of 89 miRNAs between 33 fluids from high-quality implanted embryos and 30 fluids from high-quality not-implanted embryos. Expression differences were assessed using SAM and t-test. Additionally, correlation and function enrichment analysis and network construction were conducted to identify the biological roles of deregulated microRNAs. RESULTS We identified six up-regulated microRNAs in the blastocoel fluid from implanted embryos, significantly and positively correlated across all samples (r ≥ 0.7; P ≤ 0.05). They could take part in pluripotency circuits, regulating and being regulated by transcription factors associated with stemness, cell growth, and embryo development. The ROC curve analysis confirmed the potential of these miRNAs as implantation classifiers. CONCLUSION The six miRNAs up-regulated in blastocoel fluid from implanted embryos may represent a functional molecular signature for evaluating blastocyst quality and identifying the most competent embryos. Their evaluation associated with non-invasive preimplantation genetic testing, integrating epigenetic and genomic analyses, could enhance implantation grade and allow for identification of the euploid embryo not able to implant.
Collapse
Affiliation(s)
- Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | - Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | | | | | - Paolo Scollo
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
- IVF Unit, Cannizzaro Hospital, Catania, Italy
| | - Luca Carli
- Wunschbaby Institut Feichtinger, Vienna, Austria
| | | | | | - Elias Tsakos
- EmbryoClinic IVF, Kalamaria, Thessaloniki, Greece
| | | | | | - Basilio Pecorino
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy
| | | | | | - Thomas D'Hooghe
- Merck KGaA, Darmstadt, Germany
- Department of Development and Regeneration, Biomedical Sciences Group, KU Leuven (University of Leuven), Leuven, Belgium
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123, Catania, Italy.
| |
Collapse
|
10
|
Jin G, Porello EAL, Zhang J, Lim B. Heterogeneous Sox2 transcriptional dynamics mediate pluripotency maintenance in mESCs in response to LIF signaling perturbations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643751. [PMID: 40166162 PMCID: PMC11957043 DOI: 10.1101/2025.03.17.643751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The LIF signaling pathway and its regulation of internal factors like Sox2 is crucial for maintaining self-renewal and pluripotency in mESCs. However, the direct impact of LIF signaling on Sox2 transcriptional dynamics at the single-cell level remains elusive. Here, we employ PP7/PCP-mediated live imaging to analyze the transcriptional dynamics of Sox2 under perturbation of the LIF signaling pathway at single-cell resolution. Removal of the LIF ligand or addition of a JAK inhibitor heterogeneously affects the cell population, reducing the number of Sox2-active cells, rather than completely abolishing Sox2 expression. Moreover, Sox2-active cells under LIF perturbation exhibit significant reductions in mRNA production per cell. This reduction is characterized by decreased size and frequency of transcriptional bursting, resulting in shorter duration of Sox2 activity. Notably, cells with reduced or absent Sox2 expression demonstrate a significant loss in pluripotency, indicating that a reduction in Sox2 transcription (rather than a complete loss) is sufficient to trigger the transition from embryonic to an early differentiated state. In LIF-perturbed cells with Sox2 expression reduced to about 50% of non-perturbed levels, we observe a binary behavior, with cells either retaining or losing pluripotency-associated traits. Lastly, we find Sox2 expression is transcriptionally inherited across cell cycles, with Sox2-active mother cells more likely to reactivate Sox2 after mitosis compared to Sox2-inactive cells. This robust transcriptional memory is observed independent of LIF signaling perturbation. Our findings provide new insights into the transcriptional regulation of Sox2, advancing our understanding of the quantitative thresholds of gene expression required for pluripotency maintenance and highlighting the power of single-cell approaches to unravel dynamic regulatory mechanisms.
Collapse
|
11
|
Ho SY, Hu H, Ho DHH, Renom APS, Yeung SW, Boerner F, Weng M, Hutchins AP, Jauch R. An acidic residue within the OCT4 dimerization interface of SOX17 is necessary and sufficient to overcome its pluripotency-inducing activity. Stem Cell Reports 2025; 20:102398. [PMID: 39919754 PMCID: PMC11960519 DOI: 10.1016/j.stemcr.2025.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
SOX17 directs the differentiation toward endoderm and acts as a human germline specifier. We previously found that the replacement of glutamate at position 57 of the high-mobility group (HMG) box with the basic lysine residue in SOX2 alters interactions with OCT4 and turns SOX17 into a pluripotency factor. Here, we systematically interrogated how mutations at this critical position affect the cellular reprogramming activity of SOX17 in mouse and human. We found that most mutations turn SOX17 into a pluripotency factor regardless of their biophysical properties except for acidic residues and proline. The conservative mutation to an aspartate allows the SOX17E57D protein to maintain a self-renewing endodermal state. We showed that only the glutamate in the wild-type protein blocks the formation of an SOX17/OCT4 dimer at composite DNA elements in pluripotency enhancers. Insights into how modifications of an ultra-conserved residue affect functions of developmental transcription factors provide avenues to advance cell fate engineering.
Collapse
Affiliation(s)
- Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory for Primate Embryogenesis, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Derek Hoi Hang Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Allan Patrick Stephane Renom
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shi Wing Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Freya Boerner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China; Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Altos Labs, San Diego, CA 92122, USA
| | - Andrew Paul Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
12
|
Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I, Wu G, Adachi K, Scholer HR. Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos. eLife 2025; 13:RP100735. [PMID: 40014376 PMCID: PMC11867617 DOI: 10.7554/elife.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Yanlin Hou
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Zhengwen Nie
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Qi Jiang
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sandra Heising
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou International Bio IslandGuangzhouChina
| | - Kenjiro Adachi
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Hans R Scholer
- Cell and Developmental Biology Group, Max Planck Institute for Molecular BiomedicineMünsterGermany
| |
Collapse
|
13
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, Jaeger MDC, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. Cells 2025; 14:72. [PMID: 39851500 PMCID: PMC11763699 DOI: 10.3390/cells14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX 77030, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
14
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, da Cunha Jaeger M, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.614476. [PMID: 39386542 PMCID: PMC11463451 DOI: 10.1101/2024.09.23.614476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Zhou C, Wang M, Zhang C, Zhang Y. The transcription factor GABPA is a master regulator of naive pluripotency. Nat Cell Biol 2025; 27:48-58. [PMID: 39747581 PMCID: PMC11735382 DOI: 10.1038/s41556-024-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/04/2024] [Indexed: 01/04/2025]
Abstract
The establishment of naive pluripotency is a continuous process starting with the generation of inner cell mass (ICM) that then differentiates into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naive pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naive pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TF regulatory network.
Collapse
Affiliation(s)
- Chengjie Zhou
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Zhou C, Wang M, Zhang C, Zhang Y. The transcription factor GABPA is a master regulator of naïve pluripotency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623003. [PMID: 39605507 PMCID: PMC11601318 DOI: 10.1101/2024.11.11.623003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The establishment of naïve pluripotency is a continuous process starting with the generation of inner cell mass (ICM) which then differentiating into epiblast (EPI). Recent studies have revealed key transcription factors (TFs) for ICM formation, but which TFs initiate EPI specification remains unknown. Here, using a targeted rapid protein degradation system, we show that GABPA is not only a regulator of major ZGA, but also a master EPI specifier required for naïve pluripotency establishment by regulating 47% of EPI genes during E3.5 to E4.5 transition. Chromatin binding dynamics analysis suggests that GABPA controls EPI formation at least partly by binding to the ICM gene promoters occupied by the pluripotency regulators TFAP2C and SOX2 at E3.5 to establish naïve pluripotency at E4.5. Our study not only uncovers GABPA as a master pluripotency regulator, but also supports the notion that mammalian pluripotency establishment requires a dynamic and stepwise multi-TFs regulatory network.
Collapse
Affiliation(s)
- Chengjie Zhou
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Chunxia Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
17
|
Gao Y, Tan DS, Girbig M, Hu H, Zhou X, Xie Q, Yeung SW, Lee KS, Ho SY, Cojocaru V, Yan J, Hochberg GKA, de Mendoza A, Jauch R. The emergence of Sox and POU transcription factors predates the origins of animal stem cells. Nat Commun 2024; 15:9868. [PMID: 39543096 PMCID: PMC11564870 DOI: 10.1038/s41467-024-54152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Stem cells are a hallmark of animal multicellularity. Sox and POU transcription factors are associated with stemness and were believed to be animal innovations, reported absent in their unicellular relatives. Here we describe unicellular Sox and POU factors. Choanoflagellate and filasterean Sox proteins have DNA-binding specificity similar to mammalian Sox2. Choanoflagellate-but not filasterean-Sox can replace Sox2 to reprogram mouse somatic cells into induced pluripotent stem cells (iPSCs) through interacting with the mouse POU member Oct4. In contrast, choanoflagellate POU has a distinct DNA-binding profile and cannot generate iPSCs. Ancestrally reconstructed Sox proteins indicate that iPSC formation capacity is pervasive among resurrected sequences, thus loss of Sox2-like properties fostered Sox family subfunctionalization. Our findings imply that the evolution of animal stem cells might have involved the exaptation of a pre-existing set of transcription factors, where pre-animal Sox was biochemically similar to extant Sox, whilst POU factors required evolutionary innovations.
Collapse
Affiliation(s)
- Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Mathias Girbig
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Xiaomin Zhou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qianwen Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Shi Wing Yeung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Kin Shing Lee
- Transgenic Core Facility of the Centre for Comparative Medicine Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Primate Embryogenesis, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Vlad Cojocaru
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Computational Structural Biology Group, Utrecht University, Utrecht, The Netherlands
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- School of Medicine, Northwest University, Xi'an, China
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry and Center for Synthetic Microbiology, Philipps University, Marburg, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
- Centre for Epigenetics, Queen Mary University of London, Lodon, UK.
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
18
|
Gordeev MN, Zinovyeva AS, Petrenko EE, Lomert EV, Aksenov ND, Tomilin AN, Bakhmet EI. Embryonic Stem Cell Differentiation to Definitive Endoderm As a Model of Heterogeneity Onset During Germ Layer Specification. Acta Naturae 2024; 16:62-72. [PMID: 39877013 PMCID: PMC11771848 DOI: 10.32607/actanaturae.27510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 01/31/2025] Open
Abstract
Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for in vitro modeling of developmental processes such as gastrulation. The classical model of gastrulation postulates that mesoderm and endoderm specification is made possible through the FGF-, BMP-, Wnt-, and Nodal-signaling gradients. Hence, it can be expected that one of these signals should direct ESC differentiation towards specific germ layers. However, ESC specification appears to be more complicated, and the same signal can be interpreted differently depending on the readout. In this research, using chemically defined culture conditions, homogeneous naïve ESCs as a starting cell population, and the Foxa2 gene-driven EGFP reporter tool, we established a robust model of definitive endoderm (DE) specification. This in vitro model features formative pluripotency as an intermediate state acquired by the epiblast in vivo shortly after implantation. Despite the initially homogeneous state of the cells in the model and high Activin concentration during endodermal specification, there remains a cell subpopulation that does not reach the endodermal state. This simple model developed by us can be used to study the origins of cellular heterogeneity during germ layer specification.
Collapse
Affiliation(s)
- M. N. Gordeev
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - A. S. Zinovyeva
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - E. E. Petrenko
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, 3200003 Israel
| | - E. V. Lomert
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - N. D. Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - A. N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - E. I. Bakhmet
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
19
|
Yu M, Wang F, Gang H, Liu C. Research progress of nanog gene in fish. Mol Genet Genomics 2024; 299:88. [PMID: 39313603 DOI: 10.1007/s00438-024-02182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.
Collapse
Affiliation(s)
- Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Fangyuan Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Huihui Gang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chuanhu Liu
- School of 3D Printing, Xinxiang University, Xinxiang, 453003, China.
| |
Collapse
|
20
|
Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, Lan D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int J Mol Sci 2024; 25:9431. [PMID: 39273379 PMCID: PMC11394755 DOI: 10.3390/ijms25179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yak is an excellent germplasm resource on the Tibetan Plateau and is able to live in high-altitude areas with hypoxic, cold, and harsh environments. Studies on induced pluripotent stem cells (iPSCs) in large ruminants commonly involve a combination strategy involving six transcription factors, Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28 (OSKMNL). This strategy tends to utilize genes from the same species to optimize pluripotency maintenance. In this study, we cloned the six pluripotency genes (OSKMNL) from yak and constructed a multi-cistronic lentiviral vector carrying these genes. This vector efficiently delivered the genes into yak fibroblasts, aiming to promote the reprogramming process. We verified that the treated cells had several pluripotency characteristics, marking the first successful construction of a lentiviral system carrying yak pluripotency genes. This achievement lays the foundation for subsequent establishment of yak iPSCs and holds significant implications for yak-breed improvement and germplasm-resource conservation.
Collapse
Affiliation(s)
- Ruilin Zeng
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianpeng Huang
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenhui Ji
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenyi Cai
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
21
|
Patiyal S, Tiwari P, Ghai M, Dhapola A, Dhall A, Raghava GPS. A hybrid approach for predicting transcription factors. FRONTIERS IN BIOINFORMATICS 2024; 4:1425419. [PMID: 39119181 PMCID: PMC11306938 DOI: 10.3389/fbinf.2024.1425419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Transcription factors are essential DNA-binding proteins that regulate the transcription rate of several genes and control the expression of genes inside a cell. The prediction of transcription factors with high precision is important for understanding biological processes such as cell differentiation, intracellular signaling, and cell-cycle control. In this study, we developed a hybrid method that combines alignment-based and alignment-free methods for predicting transcription factors with higher accuracy. All models have been trained, tested, and evaluated on a large dataset that contains 19,406 transcription factors and 523,560 non-transcription factor protein sequences. To avoid biases in evaluation, the datasets were divided into training and validation/independent datasets, where 80% of the data was used for training, and the remaining 20% was used for external validation. In the case of alignment-free methods, models were developed using machine learning techniques and the composition-based features of a protein. Our best alignment-free model obtained an AUC of 0.97 on an independent dataset. In the case of the alignment-based method, we used BLAST at different cut-offs to predict the transcription factors. Although the alignment-based method demonstrated excellent performance, it was unable to cover all transcription factors due to instances of no hits. To combine the strengths of both methods, we developed a hybrid method that combines alignment-free and alignment-based methods. In the hybrid method, we added the scores of the alignment-free and alignment-based methods and achieved a maximum AUC of 0.99 on the independent dataset. The method proposed in this study performs better than existing methods. We incorporated the best models in the webserver/Python Package Index/standalone package of "TransFacPred" (https://webs.iiitd.edu.in/raghava/transfacpred).
Collapse
Affiliation(s)
| | | | | | | | | | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
22
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
23
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
24
|
Wu SHS, Kim S, Lee H, Lee JH, Park SY, Bakonyi R, Teriyapirom I, Hallay N, Pilat-Carotta S, Theussl HC, Kim J, Lee JH, Simons BD, Kim JK, Colozza G, Koo BK. Red2Flpe-SCON: a versatile, multicolor strategy for generating mosaic conditional knockout mice. Nat Commun 2024; 15:4963. [PMID: 38862535 PMCID: PMC11166929 DOI: 10.1038/s41467-024-49382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heetak Lee
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Ji-Hyun Lee
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - So-Yeon Park
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Réka Bakonyi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Isaree Teriyapirom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Natalia Hallay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Sandra Pilat-Carotta
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | | | - Jihoon Kim
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Bon-Kyoung Koo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
25
|
Tsaytler P, Blaess G, Scholze-Wittler M, Koch F, Herrmann BG. Early neural specification of stem cells is mediated by a set of SOX2-dependent neural-associated enhancers. Stem Cell Reports 2024; 19:618-628. [PMID: 38579708 PMCID: PMC11103784 DOI: 10.1016/j.stemcr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.
Collapse
Affiliation(s)
- Pavel Tsaytler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Gaby Blaess
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
26
|
Lo Conte M, Lucchino V, Scalise S, Zannino C, Valente D, Rossignoli G, Murfuni MS, Cicconetti C, Scaramuzzino L, Matassa DS, Procopio A, Martello G, Cuda G, Parrotta EI. Unraveling the impact of ZZZ3 on the mTOR/ribosome pathway in human embryonic stem cells homeostasis. Stem Cell Reports 2024; 19:729-743. [PMID: 38701777 PMCID: PMC11103890 DOI: 10.1016/j.stemcr.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.
Collapse
Affiliation(s)
- Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Desirèe Valente
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giada Rossignoli
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Maria Stella Murfuni
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Chiara Cicconetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Nizza 52, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo Torino, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Danilo Swann Matassa
- Department of Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy.
| | | |
Collapse
|
27
|
Abbas G, Vyas R, Noble JC, Lin B, Lane RP. Transformation of an olfactory placode-derived cell into one with stem cell characteristics by disrupting epigenetic barriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592460. [PMID: 38746208 PMCID: PMC11092772 DOI: 10.1101/2024.05.03.592460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The mammalian olfactory neuronal lineage is regenerative, and accordingly, maintains a population of pluripotent cells that replenish olfactory sensory neurons and other olfactory cell types during the life of the animal. Moreover, in response to acute injury, the early transit amplifying cells along the olfactory sensory neuronal lineage are able to de-differentiate to shift resources in support of tissue restoration. In order to further explore plasticity of various cellular stages along the olfactory sensory neuronal lineage, we challenged the epigenetic stability of two olfactory placode-derived cell lines that model immature olfactory sensory neuronal stages. We found that perturbation of the Ehmt2 chromatin modifier transformed the growth properties, morphology, and gene expression profiles towards states with several stem cell characteristics. This transformation was dependent on continued expression of the large T-antigen, and was enhanced by Sox2 over-expression. These findings may provide momentum for exploring inherent cellular plasticity within early cell types of the olfactory lineage, as well as potentially add to our knowledge of cellular reprogramming. SUMMARY STATEMENT Discovering how epigenetic modifications influence olfactory neuronal lineage plasticity offers insights into regenerative potential and cellular reprogramming.
Collapse
|
28
|
Kurtova AI, Finoshin AD, Aparina MS, Gazizova GR, Kozlova OS, Voronova SN, Shagimardanova EI, Ivashkin EG, Voronezhskaya EE. Expanded expression of pro-neurogenic factor SoxB1 during larval development of gastropod Lymnaea stagnalis suggests preadaptation to prolonged neurogenesis in Mollusca. Front Neurosci 2024; 18:1346610. [PMID: 38638695 PMCID: PMC11024475 DOI: 10.3389/fnins.2024.1346610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction The remarkable diversity observed in the structure and development of the molluscan nervous system raises intriguing questions regarding the molecular mechanisms underlying neurogenesis in Mollusca. The expression of SoxB family transcription factors plays a pivotal role in neuronal development, thereby offering valuable insights into the strategies of neurogenesis. Methods In this study, we conducted gene expression analysis focusing on SoxB-family transcription factors during early neurogenesis in the gastropod Lymnaea stagnalis. We employed a combination of hybridization chain reaction in situ hybridization (HCR-ISH), immunocytochemistry, confocal microscopy, and cell proliferation assays to investigate the spatial and temporal expression patterns of LsSoxB1 and LsSoxB2 from the gastrula stage to hatching, with particular attention to the formation of central ring ganglia. Results Our investigation reveals that LsSoxB1 demonstrates expanded ectodermal expression from the gastrula to the hatching stage, whereas expression of LsSoxB2 in the ectoderm ceases by the veliger stage. LsSoxB1 is expressed in the ectoderm of the head, foot, and visceral complex, as well as in forming ganglia and sensory cells. Conversely, LsSoxB2 is mostly restricted to the subepithelial layer and forming ganglia cells during metamorphosis. Proliferation assays indicate a uniform distribution of dividing cells in the ectoderm across all developmental stages, suggesting the absence of distinct neurogenic zones with increased proliferation in gastropods. Discussion Our findings reveal a spatially and temporally extended pattern of SoxB1 expression in a gastropod representative compared to other lophotrochozoan species. This prolonged and widespread expression of SoxB genes may be interpreted as a form of transcriptional neoteny, representing a preadaptation to prolonged neurogenesis. Consequently, it could contribute to the diversification of nervous systems in gastropods and lead to an increase in the complexity of the central nervous system in Mollusca.
Collapse
Affiliation(s)
- Anastasia I. Kurtova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander D. Finoshin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Margarita S. Aparina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Guzel R. Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Olga S. Kozlova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana N. Voronova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies Center “LIFT”, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeny G. Ivashkin
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
29
|
Giri A, Kar S. Interlinked bi-stable switches govern the cell fate commitment of embryonic stem cells. FEBS Lett 2024; 598:915-934. [PMID: 38408774 DOI: 10.1002/1873-3468.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady-state expression patterns of two key transcription factors-Oct4 and Nanog. How dynamically such kind of steady-state expressions are maintained remains elusive. Herein, we demonstrate that steady-state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom-like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self-renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Collapse
Affiliation(s)
- Amitava Giri
- Department of Chemistry, IIT Bombay, Powai, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, India
| |
Collapse
|
30
|
Dehghanian F, Bovio PP, Gather F, Probst S, Naghsh-Nilchi A, Vogel T. ZFP982 confers mouse embryonic stem cell characteristics by regulating expression of Nanog, Zfp42, and Dppa3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119686. [PMID: 38342310 DOI: 10.1016/j.bbamcr.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran; Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Patrick Piero Bovio
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fabian Gather
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amirhosein Naghsh-Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Centre for Basics in Neuromodulation (Neuromodul Basics), Freiburg, Germany.
| |
Collapse
|
31
|
Virdi JK, Pethe P. Human embryonic stem cells maintain their stemness in three-dimensional microenvironment. In Vitro Cell Dev Biol Anim 2024; 60:215-221. [PMID: 38438603 DOI: 10.1007/s11626-024-00868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Jasmeet Kaur Virdi
- NMIMS Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
32
|
Lim ES, Lee SE, Park MJ, Han DH, Lee HB, Ryu B, Kim EY, Park SP. Piperine improves the quality of porcine oocytes by reducing oxidative stress. Free Radic Biol Med 2024; 213:1-10. [PMID: 38159890 DOI: 10.1016/j.freeradbiomed.2023.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Oxidative stress caused by light and high temperature arises during in vitro maturation (IVM), resulting in low-quality embryos compared with those obtained in vivo. To overcome this problem, we investigated the influence of piperine (PIP) treatment during maturation of porcine oocytes on subsequent embryo development in vitro. Porcine oocytes were cultured in IVM medium supplemented with 0, 50, 100, 200, or 400 μM PIP. After parthenogenetic activation, the blastocyst (BL) formation was significantly higher and the apoptosis rate was significantly lower using 200 μM PIP-treated oocytes (200 PIP). In the 200 PIP group, the level of reactive oxygen species at the metaphase II stage was decreased, accompanied by an increased level of glutathione and increased expression of antioxidant processes (Nrf2, CAT, HO-1, SOD1, and SOD2). Consistently, chromosome misalignment and aberrant spindle organization were alleviated and phosphorylated p44/42 mitogen-activated protein kinase activity was increased in the 200 PIP group. Expression of development-related (CDX2, NANOG, POU5F1, and SOX2), anti-apoptotic (BCL2L1 and BIRC5), and pro-apoptotic (BAK, FAS, and CASP3) processes was altered in the 200 PIP group. Ultimately, embryo development was improved in the 200 PIP group following somatic cell nuclear transfer. These findings suggest that PIP improves the quality of porcine oocytes by reducing oxidative stress, which inevitably arises via IVM. In-depth mechanistic studies of porcine oocytes will improve the efficiencies of assisted reproductive technologies.
Collapse
Affiliation(s)
- Eun-Seo Lim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Seung-Eun Lee
- Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Cronex Co., 110 Hwangtalli-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28174, South Korea
| | - Min-Jee Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Dong-Hun Han
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Han-Bi Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Bokyeong Ryu
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea.
| |
Collapse
|
33
|
Chervova A, Molliex A, Baymaz HI, Coux RX, Papadopoulou T, Mueller F, Hercul E, Fournier D, Dubois A, Gaiani N, Beli P, Festuccia N, Navarro P. Mitotic bookmarking redundancy by nuclear receptors in pluripotent cells. Nat Struct Mol Biol 2024; 31:513-522. [PMID: 38196033 PMCID: PMC10948359 DOI: 10.1038/s41594-023-01195-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/30/2023] [Indexed: 01/11/2024]
Abstract
Mitotic bookmarking transcription factors (TFs) are thought to mediate rapid and accurate reactivation after mitotic gene silencing. However, the loss of individual bookmarking TFs often leads to the deregulation of only a small proportion of their mitotic targets, raising doubts on the biological significance and importance of their bookmarking function. Here we used targeted proteomics of the mitotic bookmarking TF ESRRB, an orphan nuclear receptor, to discover a large redundancy in mitotic binding among members of the protein super-family of nuclear receptors. Focusing on the nuclear receptor NR5A2, which together with ESRRB is essential in maintaining pluripotency in mouse embryonic stem cells, we demonstrate conjoint bookmarking activity of both factors on promoters and enhancers of a large fraction of active genes, particularly those most efficiently reactivated in G1. Upon fast and simultaneous degradation of both factors during mitotic exit, hundreds of mitotic targets of ESRRB/NR5A2, including key players of the pluripotency network, display attenuated transcriptional reactivation. We propose that redundancy in mitotic bookmarking TFs, especially nuclear receptors, confers robustness to the reestablishment of gene regulatory networks after mitosis.
Collapse
Affiliation(s)
- Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Amandine Molliex
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Thaleia Papadopoulou
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Florian Mueller
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Imaging and Modeling Unit, Paris, France
| | - Eslande Hercul
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - David Fournier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Agnès Dubois
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Nicolas Gaiani
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France
- Equipe Labéllisée Ligue Contre le cancer, Paris, France
| | - Petra Beli
- Institute of Molecular Biology, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, Paris, France.
- Equipe Labéllisée Ligue Contre le cancer, Paris, France.
| |
Collapse
|
34
|
Lee HB, Lee SE, Park MJ, Han DH, Lim ES, Ryu B, Kim EY, Park SP. Ellagic acid treatment during in vitro maturation of porcine oocytes improves development competence after parthenogenetic activation and somatic cell nuclear transfer. Theriogenology 2024; 215:214-223. [PMID: 38100993 DOI: 10.1016/j.theriogenology.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Ellagic acid (EA) is a natural polyphenol and a free radical scavenger with antioxidant properties. This study investigated the protective effects of EA during in vitro maturation (IVM) of porcine oocytes. To determine the optimal concentration, IVM medium was supplemented with various concentrations of EA. Treatment with 10 μM EA (10 EA) resulted in the highest cleavage rate, blastocyst formation rate, and total cell number per blastocyst and the lowest percentage of apoptotic cell in parthenogenetic blastocysts. In the 10 EA group, abnormal spindle and chromosome misalignment were rescued and the ratio of phosphorylated p44/42 to total p44/42 was increased. Furthermore, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, and antioxidant genes (Nrf2, HO-1, CAT, and SOD1) were significantly upregulated in the 10 EA group. mRNA expression of developmental-related (CDX2, POU5F1, and SOX2) and anti-apoptotic (BCL2L1) genes was significantly upregulated in the 10 EA group, while mRNA expression of pro-apoptotic genes (BAK, FAS, and CASP3) was significantly downregulated. Ultimately, following somatic cell nuclear transfer, the blastocyst formation rate was significantly increased and the percentage of apoptotic cell in blastocysts was significantly decreased in the 10 EA group. In conclusion, addition of 10 EA to IVM medium improved oocyte maturation and the subsequent embryo development capacity through antioxidant mechanisms. These findings suggest that EA can enhance the efficiencies of assisted reproductive technologies.
Collapse
Affiliation(s)
- Han-Bi Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Seung-Eun Lee
- Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Cronex Co., 110 Hwangtalli-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28174, South Korea
| | - Min-Jee Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Dong-Hun Han
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Seo Lim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Bokyeong Ryu
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatic, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea.
| |
Collapse
|
35
|
Li J, Weng H, Liu S, Li F, Xu K, Wen S, Chen X, Li C, Nie Y, Liao B, Wu J, Kantawong F, Xie X, Yu F, Li G. Embryonic exposure of polystyrene nanoplastics affects cardiac development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167406. [PMID: 37769743 DOI: 10.1016/j.scitotenv.2023.167406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Micro- and nanoplastics have recently been detected in human blood and placentas, indicating inevitable embryonic exposure to these particles. However, their influence on human embryogenesis and the underlying mechanisms are still unknown. In this study, the effects of polystyrene nanoplastics (PS-NPs) exposure on cardiac differentiation of human embryonic stem cells (hESCs) were evaluated. Uptake of PS-NPs not only caused cellular injury, but also regulated cardiac-related pathways as revealed by RNA-sequencing. Consequently, the efficiency of cardiomyocyte differentiation from hESCs was compromised, leading to immature of cardiomyocytes and smaller cardiac organoids with impaired contractility. Mechanistically, PS-NPs promoted mitochondrial oxidative stress, activated P38/Erk MAPK signaling pathway, blocked autophagy flux, and eventually reduced the pluripotency of hESCs. Consistently, in vivo exposure of PS-NPs from cleavage to gastrula period of zebrafish embryo led to reduced cardiac contraction and blood flow. Collectively, this study suggests that PS-NPs is a risk factor for fetal health, especially for heart development.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Fan Li
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Shan Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xi Chen
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Yongmei Nie
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bin Liao
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Xiang Xie
- Public Center of Experimental Technology & Model Animal and Human Disease Research of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
36
|
Huang L, Zhu X, Li Q, Kong D, Huang Q, Luo J, Kong S, Peng Y, Zhang Y. Distinct enhancer-promoter modes determine Sox2 regulation in mouse pluripotent cells. Genes Dis 2024; 11:26-29. [PMID: 37588210 PMCID: PMC10425743 DOI: 10.1016/j.gendis.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lei Huang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Xiusheng Zhu
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Qing Li
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dashuai Kong
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qitong Huang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6708PB, Netherlands
| | - Jing Luo
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Siyuan Kong
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yanling Peng
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yubo Zhang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MAPA, Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| |
Collapse
|
37
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
38
|
Li L, Lai F, Hu X, Liu B, Lu X, Lin Z, Liu L, Xiang Y, Frum T, Halbisen MA, Chen F, Fan Q, Ralston A, Xie W. Multifaceted SOX2-chromatin interaction underpins pluripotency progression in early embryos. Science 2023; 382:eadi5516. [PMID: 38096290 DOI: 10.1126/science.adi5516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Pioneer transcription factors (TFs), such as OCT4 and SOX2, play crucial roles in pluripotency regulation. However, the master TF-governed pluripotency regulatory circuitry was largely inferred from cultured cells. In this work, we investigated SOX2 binding from embryonic day 3.5 (E3.5) to E7.5 in the mouse. In E3.5 inner cell mass (ICM), SOX2 regulates the ICM-trophectoderm program but is dispensable for opening global enhancers. Instead, SOX2 occupies preaccessible enhancers in part opened by early-stage expressing TFs TFAP2C and NR5A2. SOX2 then widely redistributes when cells adopt naive and formative pluripotency by opening enhancers or poising them for rapid future activation. Hence, multifaceted pioneer TF-enhancer interaction underpins pluripotency progression in embryos, including a distinctive state in E3.5 ICM that bridges totipotency and pluripotency.
Collapse
Affiliation(s)
- Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yunlong Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael A Halbisen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
39
|
Aguila L, Nociti RP, Sampaio RV, Therrien J, Meirelles FV, Felmer RN, Smith LC. Haploid androgenetic development of bovine embryos reveals imbalanced WNT signaling and impaired cell fate differentiation†. Biol Reprod 2023; 109:821-838. [PMID: 37788061 DOI: 10.1093/biolre/ioad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Haploid embryos have contributed significantly to our understanding of the role of parental genomes in development and can be applied to important biotechnology for human and animal species. However, development to the blastocyst stage is severely hindered in bovine haploid androgenetic embryos (hAE). To further our understanding of such developmental arrest, we performed a comprehensive comparison of the transcriptomic profile of morula-stage embryos, which were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of transcripts associated with differentiation in haploid and biparental embryos. Among numerous disturbances, results showed that pluripotency pathways, especially the wingless-related integration site (WNT) signaling, were particularly unbalanced in hAE. Moreover, transcript levels of KLF4, NANOG, POU5F1, SOX2, CDX2, CTNNBL1, AXIN2, and GSK3B were noticeably altered in hAE, suggesting disturbance of pluripotency and canonical WNT pathways. To evaluate the role of WNT on hAE competence, we exposed early Day-5 morula stage embryos to the GSK3B inhibitor CHIR99021. Although no alterations were observed in pluripotency and WNT-related transcripts, exposure to CHIR99021 improved their ability to reach the blastocysts stage, confirming the importance of the WNT pathway in the developmental outcome of bovine hAE.
Collapse
Affiliation(s)
- Luis Aguila
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Ricardo P Nociti
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Rafael V Sampaio
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Flavio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Ricardo N Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Lawrence C Smith
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
40
|
Yoo W, Song YW, Kim J, Ahn J, Kim J, Shin Y, Ryu JK, Kim KK. Molecular basis for SOX2-dependent regulation of super-enhancer activity. Nucleic Acids Res 2023; 51:11999-12019. [PMID: 37930832 PMCID: PMC10711550 DOI: 10.1093/nar/gkad908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Pioneer transcription factors (TFs) like SOX2 are vital for stemness and cancer through enhancing gene expression within transcriptional condensates formed with coactivators, RNAs and mediators on super-enhancers (SEs). Despite their importance, how these factors work together for transcriptional condensation and activation remains unclear. SOX2, a pioneer TF found in SEs of pluripotent and cancer stem cells, initiates SE-mediated transcription by binding to nucleosomes, though the mechanism isn't fully understood. To address SOX2's role in SEs, we identified mSE078 as a model SOX2-enriched SE and p300 as a coactivator through bioinformatic analysis. In vitro and cell assays showed SOX2 forms condensates with p300 and SOX2-binding motifs in mSE078. We further proved that SOX2 condensation is highly correlated with mSE078's enhancer activity in cells. Moreover, we successfully demonstrated that p300 not only elevated transcriptional activity but also triggered chromatin acetylation via its direct interaction with SOX2 within these transcriptional condensates. Finally, our validation of SOX2-enriched SEs showcased their contribution to target gene expression in both stem cells and cancer cells. In its entirety, this study imparts valuable mechanistic insights into the collaborative interplay of SOX2 and its coactivator p300, shedding light on the regulation of transcriptional condensation and activation within SOX2-enriched SEs.
Collapse
Affiliation(s)
- Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yi Wei Song
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Je-Kyung Ryu
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Lasry R, Maoz N, Cheng AW, Yom Tov N, Kulenkampff E, Azagury M, Yang H, Ople C, Markoulaki S, Faddah DA, Makedonski K, Orzech D, Sabag O, Jaenisch R, Buganim Y. Complex haploinsufficiency in pluripotent cells yields somatic cells with DNA methylation abnormalities and pluripotency induction defects. Stem Cell Reports 2023; 18:2174-2189. [PMID: 37832543 PMCID: PMC10679652 DOI: 10.1016/j.stemcr.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
A complete knockout of a single key pluripotency gene may drastically affect embryonic stem cell function and epigenetic reprogramming. In contrast, elimination of only one allele of a single pluripotency gene is mostly considered harmless to the cell. To understand whether complex haploinsufficiency exists in pluripotent cells, we simultaneously eliminated a single allele in different combinations of two pluripotency genes (i.e., Nanog+/-;Sall4+/-, Nanog+/-;Utf1+/-, Nanog+/-;Esrrb+/- and Sox2+/-;Sall4+/-). Although these double heterozygous mutant lines similarly contribute to chimeras, fibroblasts derived from these systems show a significant decrease in their ability to induce pluripotency. Tracing the stochastic expression of Sall4 and Nanog at early phases of reprogramming could not explain the seen delay or blockage. Further exploration identifies abnormal methylation around pluripotent and developmental genes in the double heterozygous mutant fibroblasts, which could be rescued by hypomethylating agent or high OSKM levels. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction.
Collapse
Affiliation(s)
- Rachel Lasry
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Noam Maoz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nataly Yom Tov
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elisabeth Kulenkampff
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hui Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cora Ople
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Styliani Markoulaki
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina A Faddah
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Dana Orzech
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
42
|
Aich M, Ansari AH, Ding L, Iesmantavicius V, Paul D, Choudhary C, Maiti S, Buchholz F, Chakraborty D. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes. Cell Rep 2023; 42:113177. [PMID: 37751355 DOI: 10.1016/j.celrep.2023.113177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo lineage-specific differentiation, giving rise to different cell types that constitute an organism. Although roles of transcription factors and chromatin modifiers in these cells have been described, how the alternative splicing (AS) machinery regulates their expression has not been sufficiently explored. Here, we show that the long non-coding RNA (lncRNA)-associated protein TOBF1 modulates the AS of transcripts necessary for maintaining stem cell identity in mouse ESCs. Among the genes affected is serine/arginine splicing factor 1 (SRSF1), whose AS leads to global changes in splicing and expression of a large number of downstream genes involved in the maintenance of ESC pluripotency. By overlaying information derived from TOBF1 chromatin occupancy, the distribution of its pluripotency-associated OCT-SOX binding motifs, and transcripts undergoing differential expression and AS upon its knockout, we describe local nuclear territories where these distinct events converge. Collectively, these contribute to the maintenance of mouse ESC identity.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asgar Hussain Ansari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Deepanjan Paul
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Souvik Maiti
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Debojyoti Chakraborty
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
43
|
Clevenger MH, Karami AL, Carlson DA, Kahrilas PJ, Gonsalves N, Pandolfino JE, Winter DR, Whelan KA, Tétreault MP. Suprabasal cells retain progenitor cell identity programs in eosinophilic esophagitis-driven basal cell hyperplasia. JCI Insight 2023; 8:e171765. [PMID: 37672481 PMCID: PMC10619442 DOI: 10.1172/jci.insight.171765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is an esophageal immune-mediated disease characterized by eosinophilic inflammation and epithelial remodeling, including basal cell hyperplasia (BCH). Although BCH is known to correlate with disease severity and with persistent symptoms in patients in histological remission, the molecular processes driving BCH remain poorly defined. Here, we demonstrate that BCH is predominantly characterized by an expansion of nonproliferative suprabasal cells that are still committed to early differentiation. Furthermore, we discovered that suprabasal and superficial esophageal epithelial cells retain progenitor identity programs in EoE, evidenced by increased quiescent cell identity scoring and the enrichment of signaling pathways regulating stem cell pluripotency. Enrichment and trajectory analyses identified SOX2 and KLF5 as potential drivers of the increased quiescent identity and epithelial remodeling observed in EoE. Notably, these alterations were not observed in gastroesophageal reflux disease. These findings provide additional insights into the differentiation process in EoE and highlight the distinct characteristics of suprabasal and superficial esophageal epithelial cells in the disease.
Collapse
Affiliation(s)
- Margarette H. Clevenger
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam L. Karami
- Department of Cancer & Cellular Biology, Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dustin A. Carlson
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peter J. Kahrilas
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nirmala Gonsalves
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John E. Pandolfino
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deborah R. Winter
- Department of Medicine, Rheumatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly A. Whelan
- Department of Cancer & Cellular Biology, Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
44
|
Poulet A, Kratkiewicz AJ, Li D, van Wolfswinkel JC. Chromatin analysis of adult pluripotent stem cells reveals a unique stemness maintenance strategy. SCIENCE ADVANCES 2023; 9:eadh4887. [PMID: 37801496 PMCID: PMC10558129 DOI: 10.1126/sciadv.adh4887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Many highly regenerative organisms maintain adult pluripotent stem cells throughout their life, but how the long-term maintenance of pluripotency is accomplished is unclear. To decipher the regulatory logic of adult pluripotent stem cells, we analyzed the chromatin organization of stem cell genes in the planarian Schmidtea mediterranea. We identify a special chromatin state of stem cell genes, which is distinct from that of tissue-specific genes and resembles constitutive genes. Where tissue-specific promoters have detectable transcription factor binding sites, the promoters of stem cell-specific genes instead have sequence features that broadly decrease nucleosome binding affinity. This genic organization makes pluripotency-related gene expression the default state in these cells, which is maintained by the activity of chromatin remodelers ISWI and SNF2 in the stem cells.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Arcadia J. Kratkiewicz
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C. van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
45
|
Hu H, Ho D, Tan DS, MacCarthy C, Yu CH, Weng M, Schöler H, Jauch R. Evaluation of the determinants for improved pluripotency induction and maintenance by engineered SOX17. Nucleic Acids Res 2023; 51:8934-8956. [PMID: 37607832 PMCID: PMC10516664 DOI: 10.1093/nar/gkad597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023] Open
Abstract
An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.
Collapse
Affiliation(s)
- Haoqing Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Derek Hoi Hang Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Cheng-han Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong
| | | | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Translational Stem Cell Biology, Hong Kong
| |
Collapse
|
46
|
Knudsen TE, Hamilton WB, Proks M, Lykkegaard M, Linneberg-Agerholm M, Nielsen AV, Perera M, Malzard LL, Trusina A, Brickman JM. A bipartite function of ESRRB can integrate signaling over time to balance self-renewal and differentiation. Cell Syst 2023; 14:788-805.e8. [PMID: 37633265 DOI: 10.1016/j.cels.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
Cooperative DNA binding of transcription factors (TFs) integrates the cellular context to support cell specification during development. Naive mouse embryonic stem cells are derived from early development and can sustain their pluripotent identity indefinitely. Here, we ask whether TFs associated with pluripotency evolved to directly support this state or if the state emerges from their combinatorial action. NANOG and ESRRB are key pluripotency factors that co-bind DNA. We find that when both factors are expressed, ESRRB supports pluripotency. However, when NANOG is absent, ESRRB supports a bistable culture of cells with an embryo-like primitive endoderm identity ancillary to pluripotency. The stoichiometry between NANOG and ESRRB allows quantitative titration of this differentiation, and in silico modeling of bipartite ESRRB activity suggests it safeguards plasticity in differentiation. Thus, the concerted activity of cooperative TFs can transform their effect to sustain intermediate cell identities and allow ex vivo expansion of immortal stem cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Teresa E Knudsen
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - William B Hamilton
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| | - Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Maria Lykkegaard
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Madeleine Linneberg-Agerholm
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | | | - Marta Perera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | | | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
47
|
Gao J, Lu Y, Luo Y, Duan X, Chen P, Zhang X, Wu X, Qiu M, Shen W. β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Xenopus Thalamus. Int J Mol Sci 2023; 24:13593. [PMID: 37686400 PMCID: PMC10488257 DOI: 10.3390/ijms241713593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In the vertebrate brain, sensory experience plays a crucial role in shaping thalamocortical connections for visual processing. However, it is still not clear how visual experience influences tissue homeostasis and neurogenesis in the developing thalamus. Here, we reported that the majority of SOX2-positive cells in the thalamus are differentiated neurons that receive visual inputs as early as stage 47 Xenopus. Visual deprivation (VD) for 2 days shifts the neurogenic balance toward proliferation at the expense of differentiation, which is accompanied by a reduction in nuclear-accumulated β-catenin in SOX2-positive neurons. The knockdown of β-catenin decreases the expression of SOX2 and increases the number of progenitor cells. Coimmunoprecipitation studies reveal the evolutionary conservation of strong interactions between β-catenin and SOX2. These findings indicate that β-catenin interacts with SOX2 to maintain homeostatic neurogenesis during thalamus development.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
- College of Life and Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yufang Lu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Xinyi Duan
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Peiyao Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Xinyu Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Xiaohua Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
- College of Life and Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China (M.Q.)
| |
Collapse
|
48
|
Peng X, Chen J, Wang Y, Wang X, Zhao X, Zheng X, Wang Z, Yuan D, Du J. Osteogenic microenvironment affects palatal development through glycolysis. Differentiation 2023; 133:1-11. [PMID: 37267667 DOI: 10.1016/j.diff.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Palate development involves various events, including proliferation, osteogenic differentiation, and epithelial-mesenchymal transition. Disruption of these processes can result in the cleft palate (CP). Mouse embryonic palatal mesenchyme (MEPM) cells are commonly used to explore the mechanism of palatal development and CP. However, the role of the microenvironment in the biological properties of MEPM cells, which undergoes dynamic changes during palate development, is rarely reported. In this study, we investigated whether there were differences between the palatal shelf mesenchyme at different developmental stages. Our results found that the palatal shelves facilitate proliferation at the early palate stage at mouse embryonic day (E) 13.5 and the tendency towards osteogenesis at E15.5, the late palate development stage. And the osteogenic microenvironment, which was mimicked by osteogenic differentiation medium (OIM), affected the biological properties of MEPM cells when compared to the routine medium. Specifically, MEPM cells showed slower proliferation, shorter S phase, increased apoptosis, and less migration distance after osteogenesis. E15.5 MEPM cells were more sensitive than E13.5, showing an earlier change. Moreover, E13.5 MEPM cells had weaker osteogenic ability than E15.5, and both MEPM cells exhibited different Lactate dehydrogenase A (LDHA) and Cytochrome c (CytC) expressions in OIM compared to routine medium, suggesting that glycolysis might be associated with the influence of the osteogenic microenvironment on MEPM cells. By comparing the stemness of the two cells, we investigated that the stemness of E13.5 MEPM cells was stronger than that of E15.5 MEPM cells, and E15.5 MEPM cells were more like differentiated cells than stem cells, as their capacity to differentiate into multiple cell fates was reduced. E13.5 MEPM cells might be the precursor cells of E15.5 MEPM cells. Our results enriched the understanding of the effect of the microenvironment on the biological properties of E13.5 and E15.5 MEPM cells, which should be considered when using MEPM cells as a model for palatal studies in the future.
Collapse
Affiliation(s)
- Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Dong Yuan
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China; Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Tiantan Xili No.4, Beijing, 100050, China.
| |
Collapse
|
49
|
Yasuda T, Nakazawa T, Hirakawa K, Matsumoto I, Nagata K, Mori S, Igarashi K, Sagara H, Oda S, Mitani H. Retinal regeneration after injury induced by gamma-ray irradiation during early embryogenesis in medaka, Oryzias latipes. Int J Radiat Biol 2023; 100:131-138. [PMID: 37555698 DOI: 10.1080/09553002.2023.2242932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Takuya Nakazawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kei Hirakawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Ikumi Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shunta Mori
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Applied Pharmacology, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
50
|
Klein DC, Lardo SM, McCannell KN, Hainer SJ. FACT regulates pluripotency through proximal and distal regulation of gene expression in murine embryonic stem cells. BMC Biol 2023; 21:167. [PMID: 37542287 PMCID: PMC10403911 DOI: 10.1186/s12915-023-01669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kurtis N McCannell
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|