1
|
Li J, Wang S. Integrative analysis of epigenetic subtypes in acute myeloid Leukemia: A multi-center study combining machine learning for prognostic and therapeutic insights. PLoS One 2025; 20:e0324380. [PMID: 40435135 PMCID: PMC12118855 DOI: 10.1371/journal.pone.0324380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) exhibits significant heterogeneity in clinical outcomes, yet current prognostic stratification systems based on genetic alterations alone cannot fully capture this complexity. This study aimed to develop an integrated epigenetic-based classification system and evaluate its prognostic value. METHODS We performed multi-omics analysis on five independent cohorts totaling 1,103 AML patients. The Cancer Genome Atlas-Acute Myeloid Leukemia (TCGA-LAML) cohort (n = 83) provided comprehensive multi-omics data including DNA methylation profiles (Illumina 450K platform), RNA sequencing (mRNA, lncRNA, and miRNA), and somatic mutation profiles. The BEAT (n = 649), TARGET (n = 156), GSE12417 (n = 79), and GSE37642 (n = 136) cohorts contributed transcriptome data. Molecular subtypes were identified using empirical Bayes-based clustering on the TCGA cohort. LSC17 scores were calculated using a validated 17-gene expression signature. A random survival forest model was developed integrating molecular features with LSC17 scores, validated across all cohorts. Immune microenvironment analysis employed multiple deconvolution methods (ESTIMATE, CIBERSORT, xCell) and pathway analysis (GSVA, GSEA). Drug sensitivity was predicted using the pRRophetic algorithm with GDSC database reference. RESULTS Multi-omics integration revealed two molecularly distinct AML subtypes with significant survival differences (CS2 vs CS1, P < 0.001). The random survival forest model, incorporating 20 key epigenetic features (including CPNE8, CD109, and CHRDL1) and LSC17 scores, achieved superior prognostic accuracy (C-index: 0.72-0.78) across validation cohorts. Both epigenetic risk score (HR = 2.45, 95%CI: 1.86-3.24) and LSC17 score (HR = 1.89, 95%CI: 1.42-2.51) maintained independent prognostic value in multivariate analysis. Integration of both scores in a nomogram improved 1-, 3-, and 5-year survival predictions (C-index: 0.81). High-risk patients exhibited distinct immune profiles with elevated M2 macrophages (1.8-fold) and Tregs (2.3-fold), while low-risk patients showed enhanced NK cell activity (2.1-fold). Drug sensitivity analysis identified differential responses to epigenetic regulators (LAQ824, P = 0.000139; MS-275, P = 0.00104) and proteasome inhibitors (Bortezomib, P = 0.00747; MG-132, P = 0.0106) between risk groups. CONCLUSIONS This integrated classification system combining epigenetic features and stem cell signatures provides new insights into AML heterogeneity and therapeutic targeting. The complementary nature of epigenetic and stem cell-related prognostic factors suggests potential for improved risk stratification in clinical practice. Future prospective validation studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Jincan Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Mercier FE, Gife V, Aloyz R, Hulea L. Translational control of leukemic metabolism and disease progression. Trends Cell Biol 2025:S0962-8924(25)00108-4. [PMID: 40410003 DOI: 10.1016/j.tcb.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological cancer with a 70% five-year mortality rate. Relapse occurs in approximately half of adults treated with intensive chemotherapy, while responses to targeted therapies are short-lasting. Frequent mutations in signaling pathways, such as FLT3 tyrosine kinase and RAS, lead to dysregulated mammalian target of rapamycin complex 1 (mTORC1)and mitogen-activated protein kinase (MAPK) signaling, increased protein synthesis, enhanced mitochondrial fitness, and metabolic adaptations that drive leukemic cell proliferation and survival. Here, emerging evidence supporting the unique role of eukaryotic initiation factor 4F as a key driver of the expression of proteins regulating leukemic cell metabolism and survival and the potential therapeutic benefit of targeting this pathway pharmacologically in AML are discussed.
Collapse
Affiliation(s)
- François E Mercier
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, QC, Canada; Department of Medicine, Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada.
| | - Victor Gife
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada
| | - Raquel Aloyz
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, QC, Canada; Department of Medicine, Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Wang M, Xian H, Xia X, Zhang W, Huang Z, Lu C, Zheng Y, Wang Y, Xie S, Pan R, Yu Y, Wang R, Zheng H, Huang G, Liu H. Establishment of a prognostic model based on ER stress-related cell death genes and proposing a novel combination therapy in acute myeloid leukemia. J Transl Med 2025; 23:566. [PMID: 40399990 PMCID: PMC12093623 DOI: 10.1186/s12967-025-06615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly heterogeneous malignancy, presenting significant challenges in accurately predicting patient prognosis. Dysregulation of endoplasmic reticulum (ER) stress and resistance to programmed cell death (PCD) are hallmarks of AML cells. However, the prognostic significance of the interplay between ER stress and cell death pathways in AML remains largely unexplored. METHODS We analyzed RNA sequencing and clinical data from 887 AML patients across 4 cohorts to develop an ER stress-related cell death index (ERCDI) using 10 machine-learning algorithms with 117 unique combinations. Survival and time-dependent Receiver Operating Characteristic Curve (ROC) analyses were performed to assess the model's efficacy. Clinical characteristics, the tumor immune microenvironment, and drug sensitivity differences between the high- and low-risk groups were also analyzed. The CMap database was used to identify potential therapeutic drugs. In vitro and in vivo experiments, including CCK-8, colony formation, flow cytometry, Transwell assays, and xenograft mouse models, were conducted to evaluate the effects of the target genes and candidate drugs. RESULTS The ERCDI demonstrated strong prognostic and predictive performance for prognosis in AML patients. Furthermore, the ERCDI effectively predicted immunotherapy and chemotherapy outcomes and was associated with the immune features of the different risk groups. DNA damage-inducible transcript 4 protein (DDIT4), a key gene associated with ERCDI, is related to poor prognosis in AML patients with high expression. Additionally, the knockdown of DDIT4 significantly inhibited AML cell proliferation, induced cell apoptosis, and promoted cell cycle arrest. Chaetocin was subsequently identified as a candidate compound for AML treatment. Subsequent experiments suggested that combining chaetocin and venetoclax is a potentially promising therapeutic strategy for AML. CONCLUSION The ERCDI provides personalized risk assessment and treatment recommendations for individual AML patients. The combined use of chaetocin and venetoclax can potentially be repurposed for AML therapy.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/drug effects
- Prognosis
- Animals
- Cell Line, Tumor
- Cell Death/genetics
- Cell Death/drug effects
- Female
- Mice
- Male
- Xenograft Model Antitumor Assays
- Apoptosis/genetics
- Apoptosis/drug effects
- Tumor Microenvironment
- Models, Biological
- Middle Aged
Collapse
Affiliation(s)
- Minghui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajian Xian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Renyao Pan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YaoYifu Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huijian Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorui Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Sirenko M, Lee S, Sun Z, Chaligne R, Loghavi S, Asimomitis G, Brierley CK, Bernard E, Cai SF, Myers RM, Nadorp B, Sango J, Lallo M, Levine MF, Domenico D, Arango Ossa JE, Medina-Martinez JS, Menghrajani K, Lasry A, Mims AS, Desai H, Laganson A, Famulare C, Patel M, Lozanski G, Bolton KL, Viny AD, Roshal M, Levine RL, Papapetrou EP, Stein EM, Landau DA, Eisfeld AK, Aifantis I, Papaemmanuil E. Deconvoluting clonal and cellular architecture in IDH-mutant acute myeloid leukemia. Cell Stem Cell 2025:S1934-5909(25)00179-1. [PMID: 40409258 DOI: 10.1016/j.stem.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
Isocitrate dehydrogenase 1/2 (IDH) mutations are early initiating events in acute myeloid leukemia (AML). The complex clonal architecture and cellular heterogeneity in IDH-mutant AML underlies the heterogeneous clinical presentation and outcomes. Integrating single-cell genotyping and transcriptomics, we demonstrate a stem-like and inflammatory phenotype of IDH-mutant AML and identify clone-specific programs associated with NPM1, NRAS, and SRSF2 co-mutations. Furthermore, these clones had distinct responses to treatment with combination IDH inhibitors and chemotherapy, including elimination, reconstitution of myeloid differentiation, or retention within progenitor populations. At relapse after IDH inhibitor monotherapy, we identify upregulated stemness, inflammation, mitochondrial metabolism, and anti-apoptotic factors, as well as downregulated major histocompatibility complex (MHC) class II antigen presentation. At the pre-leukemic stage, we observe upregulation of IDH2-associated pathways, including inflammation. We deliver a detailed phenotyping of IDH-mutant AML and a framework for dissecting contributions of recurrently mutated genes in AML at diagnosis and following therapy, with implications for precision medicine.
Collapse
Affiliation(s)
- Maria Sirenko
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soobeom Lee
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ronan Chaligne
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Georgios Asimomitis
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biomedical Systems Laboratory, Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Charlotte K Brierley
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sheng F Cai
- Leukemia Service, Department of Medicine, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert M Myers
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bettina Nadorp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Division of Precision Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Junya Sango
- Department of Oncological Sciences, Tisch Cancer Institute, Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan Lallo
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Max F Levine
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dylan Domenico
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan E Arango Ossa
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan S Medina-Martinez
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kamal Menghrajani
- Leukemia Service, Department of Medicine, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Audrey Lasry
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Alice S Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Helee Desai
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrea Laganson
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Chris Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kelly L Bolton
- Department of Medicine, Washington University, St. Louis, MO, USA
| | - Aaron D Viny
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Mikhail Roshal
- Hematopathology Diagnostic Service, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eytan M Stein
- Leukemia Service, Department of Medicine, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, OSUCCC - James, The Ohio State University, Columbus, OH 43210, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Sakamoto T, Leca J, Zhang X, Meydan C, Foox J, Ramachandran P, Hendrikse LD, Zhou W, Berger T, Fortin J, Chan SM, Chiang MF, Inoue S, Li WY, Chu MF, Duncan GS, Wakeham A, Lemonnier F, Tobin C, Mcwilliam R, Colonna I, Bontoux C, Jafari SM, Bowman RL, Nicolay B, Ronseaux S, Narayanaswamy R, Levine RL, Melnick AM, Mason CE, Minden MD, Mak TW. Mutant IDH1 cooperates with NPM1c or FLT3ITD to drive distinct myeloid diseases and molecular outcomes. Proc Natl Acad Sci U S A 2025; 122:e2415779122. [PMID: 40377995 PMCID: PMC12107087 DOI: 10.1073/pnas.2415779122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/06/2025] [Indexed: 05/18/2025] Open
Abstract
In human acute myeloid leukemia (AML), mutations of isocitrate dehydrogenase-1 (IDH1) often co-occur with NPM1 mutations, and less frequently with FLT3 mutations. To investigate whether the effects of IDH1 mutation differ according to the specific co-occurring mutation, we generated two strains of double knock-in mutant mice. Idh1R132H combined with Npm1c induced overt AML, whereas Idh1R132H plus Flt3ITD resulted in Flt3ITD-driven myelo- or lymphoproliferation that was minimally affected by Idh1R132H and rarely generated AML. Gene expression profiling revealed differences between Idh1R132H;Npm1c cells and Idh1R132H;Flt3ITD cells and suggested altered heme metabolism and immune responses in the former. The profile of Idh1R132H;Npm1c cells corresponded to that of human IDH-mutated AML cells, particularly those resistant to inhibitors of mutant IDH. Compared to treatment with a menin inhibitor, IDH1-targeted therapy of Idh1R132H;Npm1c AML-bearing mice was less efficacious in improving cell differentiation and extending survival. The differential cooperation of Idh1R132H with Npm1c vs. Flt3ITD may have implications for the devising of subtype-specific treatments for human AML.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto606-8507, Japan
| | - Julie Leca
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- BMP, Ecosystem, stemness and dynamic in cancer Laboratory, Centre de Recherche en Cancerologie de Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon69008, France
| | - Xin Zhang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY10021
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
| | | | - Liam D. Hendrikse
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Wenjing Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QCH3A 1A1, Canada
| | - Steven M. Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Ming-Feng Chiang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Satoshi Inoue
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo104-0045, Japan
| | - Wanda Y. Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Mandy F. Chu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Gordon S. Duncan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Andrew Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - François Lemonnier
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil94010, France
| | - Chantal Tobin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Ryan Mcwilliam
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Isabelle Colonna
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Christophe Bontoux
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Department of Pathology, Cancer University Institute of Toulouse-Oncopole, University Hospital of Toulouse, INSERM U1037, Cancer Research Center in Toulouse, Toulouse31059, France
| | - Soode Moghadas Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | | | | | | | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ari M. Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY10021
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10065
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY10065
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
| | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C1, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Alikarami F, Xie HM, Riedel SS, Goodrow HT, Barrett DR, Mahdavi L, Lenard A, Chen C, Yamauchi T, Danis E, Cao Z, Tran VL, Jung MM, Li Y, Huang H, Shi J, Tan K, Teachey DT, Bresnick EH, Neff TA, Bernt KM. GATA2 links stemness to chemotherapy resistance in acute myeloid leukemia. Blood 2025; 145:2179-2195. [PMID: 39841459 DOI: 10.1182/blood.2024025761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Stemness-associated cell states are linked to chemotherapy resistance in acute myeloid leukemia (AML). We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance. We find substantial intrapatient and interpatient variability in GATA2 expression across samples from patients with AML. GATA2 expression varies by molecular subtype and has been linked to outcome. In a murine model, KMT2A-MLL3-driven AML originating from a stem cell or immature progenitor cell population has higher Gata2 expression and is more resistant to the standard AML chemotherapy agent doxorubicin. Deletion of Gata2 resulted in a more robust induction of p53 after exposure to doxorubicin. Chromatin immunoprecipitation sequencing, RNA sequencing, and functional studies revealed that GATA2 regulates the expression of RASSF4, a modulator of the p53 inhibitor MDM2 (mouse double minute 2). GATA2 and RASSF4 are anticorrelated in human cell lines and in bulk and single-cell expression data sets from patients with AML. Knockdown of Rassf4 in Gata2-low cells resulted in doxorubicin or nutlin-3 resistance. Conversely, overexpression of Rassf4 results in sensitization of cells expressing high levels of Gata2. Finally, doxorubicin and nutlin-3 are synergistic in Gata2-high murine AML and in samples from patients with AML. We discovered a previously unappreciated role for GATA2 in dampening p53-mediated apoptosis via transcriptional regulation of RASSF4, a modulator of MDM2. This role for GATA2 directly links the expression of a stemness-associated transcription factor to chemotherapy resistance.
Collapse
MESH Headings
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Animals
- Mice
- Doxorubicin/pharmacology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2/metabolism
Collapse
Affiliation(s)
- Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hongbo M Xie
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Simone S Riedel
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Haley T Goodrow
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Declan R Barrett
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Mahdavi
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexandra Lenard
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Experimental Hematology, State Key Laboratory, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Taylor Yamauchi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhendong Cao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Junwei Shi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T Teachey
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tobias A Neff
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathrin M Bernt
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Niu L, Guo H, Zhao Y. Large-scale screens identify a 19-Gene MitoScore for improved risk assessment in acute myeloid leukemia. Mitochondrion 2025; 82:102011. [PMID: 39983884 DOI: 10.1016/j.mito.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/07/2024] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND AML exhibits substantial molecular and genetic heterogeneity. Therefore, identifying key biological processes and related genes involved in the pathogenesis, as well as contributing to therapeutic resistance, is imperative for enhancing clinical outcomes. However, the assessment of mitochondrial function in AML has gradually been acknowledged but has not been widely emphasized. Hence, prioritizing the identification of mitochondrial-related biomarkers is crucial to enhance existing stratification methodologies and guide decisions on risk-adapted therapies. METHODS We systematically integrated and analyzed data from nine online AML transcriptomics sequencing databases, screening the Human.MitoCarta3.0 mitochondrial gene database to identify AML-specific mitochondrial genes. A prognostic mitochondrial score was developed using LASSO regression analysis in the HOVON database as training cohort (n = 618) and validated in another eight publicly available independent cohorts (n = 1,697). RESULTS A 19-mitochondrial function gene AML score was further generated and exhibited high prognostic power in 2,315 AML patients, named as MitoScore. MitoScore was an independent survival prognosis biomarker (p < 0.001). The MitoScore effectively distinguishes several genetic abnormalities and significantly improves the ELN (European Leukemia Net) classification. Patients with a high MitoScore demonstrated a notably poor response to induction chemotherapy and related refractory AML (p < 0.001). In the favorable risk gene variant and cytogenetic abnormality group, MitoScore was significantly lower compared to patients without those variants. Conversely, in the adverse group, MitoScore was significantly higher compared to patients with favorable genetic abnormalities. CONCLUSIONS Our findings underscore the utility of the MitoScore as a powerful tool for refined risk stratification and predicting chemotherapy resistance.
Collapse
Affiliation(s)
- Liting Niu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Hanfei Guo
- The First Hospital of Jilin University, Cancer Center, Changchun, Jilin 133021, China
| | - Yijing Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China.
| |
Collapse
|
8
|
Gabellier L, Bosetta E, Heiblig M, Sarry JE. Metabolism and therapeutic response in acute myeloid leukemia with IDH1/2 mutations. Trends Cancer 2025; 11:475-490. [PMID: 39955197 DOI: 10.1016/j.trecan.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Pathogenic variants of isocitrate dehydrogenase 1 and 2 (IDH1/2) genes are present in approximately 20% of acute myeloid leukemia (AML) cases, resulting in the oncometabolite R-2-hydroxyglutarate (R-2-HG). The accumulation of R-2-HG in leukemic cells and in their niche induces epigenetic modifications, profound rewiring of the cellular metabolism, and microenvironmental remodeling. These changes promote cellular differentiation bias, enhancing the survival and proliferation of leukemic cells, and thus playing a pivotal role in leukemogenesis and resistance to standard AML therapy. This review focuses on the different perspectives offered by studying metabolism and resistance to standard treatments in AML with IDH1 or IDH2 pathogenic variants, for the development of new biomarkers and therapeutic solutions.
Collapse
MESH Headings
- Humans
- Isocitrate Dehydrogenase/genetics
- Isocitrate Dehydrogenase/metabolism
- Isocitrate Dehydrogenase/antagonists & inhibitors
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Glutarates/metabolism
- Drug Resistance, Neoplasm/genetics
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Epigenesis, Genetic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
Collapse
Affiliation(s)
- Ludovic Gabellier
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; Team «Ubiquitin family in hematological malignancies», Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Université de Montpellier, Montpellier, France
| | - Enzo Bosetta
- Centre de Recherches en Cancérologie de Toulouse, U1037, Inserm, Université de Toulouse, Toulouse, France
| | - Maël Heiblig
- Service d'Hématologie Clinique, Hôpital Lyon Sud Pierre-Bénite, Lyon, France; Team «Lymphoma Immuno-Biology», Inserm U1111, CNRS UMR5308, Université Claude Bernard, Lyon I - ENS de Lyon, Faculté de Médecine Lyon-Sud, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, U1037, Inserm, Université de Toulouse, Toulouse, France.
| |
Collapse
|
9
|
Cao S, Wang Q, Zhu G. From Chemotherapy to Targeted Therapy: Unraveling Resistance in Acute Myeloid Leukemia Through Genetic and Non-Genetic Insights. Int J Mol Sci 2025; 26:4005. [PMID: 40362245 PMCID: PMC12071668 DOI: 10.3390/ijms26094005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease characterized by extensive inter-patient and intra-patient heterogeneity. Despite the introduction of intensive chemotherapy in the 1970s as the standard treatment, the development of mechanism-based targeted therapies since 2017 has been broadening the therapeutic landscape. However, both chemotherapy and targeted therapies continue to face the challenges of primary and secondary resistance. This review summarizes the mechanisms underlying resistance to chemotherapy and targeted therapies in AML and discusses the opportunities and challenges brought by the transition from chemotherapy to precision medicine.
Collapse
Affiliation(s)
| | | | - Ganqian Zhu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China; (S.C.); (Q.W.)
| |
Collapse
|
10
|
Kołodziejczak-Guglas I, Simões RLS, de Souza Santos E, Demicco EG, Lazcano Segura RN, Ma W, Wang P, Geffen Y, Storrs E, Petralia F, Colaprico A, da Veiga Leprevost F, Pugliese P, Ceccarelli M, Noushmehr H, Nesvizhskii AI, Kamińska B, Priebe W, Lubiński J, Zhang B, Lazar AJ, Kurzawa P, Mesri M, Robles AI, Ding L, Malta TM, Wiznerowicz M. Proteomic-based stemness score measures oncogenic dedifferentiation and enables the identification of druggable targets. CELL GENOMICS 2025:100851. [PMID: 40250426 DOI: 10.1016/j.xgen.2025.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/13/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Cancer progression and therapeutic resistance are closely linked to a stemness phenotype. Here, we introduce a protein-expression-based stemness index (PROTsi) to evaluate oncogenic dedifferentiation in relation to histopathology, molecular features, and clinical outcomes. Utilizing datasets from the Clinical Proteomic Tumor Analysis Consortium across 11 tumor types, we validate PROTsi's effectiveness in accurately quantifying stem-like features. Through integration of PROTsi with multi-omics, including protein post-translational modifications, we identify molecular features associated with stemness and proteins that act as active nodes within transcriptional networks, driving tumor aggressiveness. Proteins highly correlated with stemness were identified as potential drug targets, both shared and tumor specific. These stemness-associated proteins demonstrate predictive value for clinical outcomes, as confirmed by immunohistochemistry in multiple samples. The findings emphasize PROTsi's efficacy as a valuable tool for selecting predictive protein targets, a crucial step in customizing anti-cancer therapy and advancing the clinical development of cures for cancer patients.
Collapse
Affiliation(s)
- Iga Kołodziejczak-Guglas
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Renan L S Simões
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Emerson de Souza Santos
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5G 1X5, Canada
| | - Rossana N Lazcano Segura
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Pietro Pugliese
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Houtan Noushmehr
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI 48202, USA
| | - Alexey I Nesvizhskii
- Departments of Pathology and Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Waldemar Priebe
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paweł Kurzawa
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, 60-514 Poznań, Poland
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20850, USA
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tathiane M Malta
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil.
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Department of Oncology, Institute of Oncology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, 60-659 Poznań, Poland.
| |
Collapse
|
11
|
Gong H, Zhang Y, Wu X, Pan Y, Wang M, He X, Liu J, Liu Z, Li L. Development and validation of a disulfidptosis-related genes signature for predicting outcomes and immunotherapy in acute myeloid leukemia. Front Immunol 2025; 16:1513040. [PMID: 40255396 PMCID: PMC12006076 DOI: 10.3389/fimmu.2025.1513040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor outcomes and high recurrence. Disulfidptosis, a novel form of programmed cell death driven by aberrant disulfide bonds and F-actin collapse, provides insights into cancer progression and treatment. Methods We investigated the correlation network and prognostic values of disulfidptosis-related genes (DRGs) in AML. Unsupervised clustering was performed to reveal distinct disulfidptosis-related AML subtypes. We implemented the differential analysis and enrichment analysis to explore the difference of the distinct subtypes in biological processes. Least absolute shrinkage and selection operator (LASSO) Cox model was used to generate a disulfidptosis-related signature. We employed the ESTIMATE, CIBERSORT, and scRNA analyses to assess the tumor microenvironment of AML. Moreover, experiments validated the functions of PTPN6 and CSK in OCI-AML2 cells. Results We identified 10 prognostic DRGs and revealed two disulfidptosis subtypes. DRGs significantly affected immune processes like interferon-gamma response and MHC class II antigen presentation. LASSO algorithm was implemented to established a 6-gene signature (HLA-DRB5, CCDC124, PTPN6, HLA-DMA, CSK, ISG15) that predicted prognosis in two validation cohorts more robustly than other signatures. Disulfidptosis was correlated with tumor microenvironment immune cells, especially monocytes. The two risk subgroups differed significantly in susceptibilities of multiple chemotherapy drugs, indicating disulfidptosis as a potential therapeutic target. Knockdown of PTPN6 and CSK inhibited the proliferation of AML cells and increased apoptosis. Conclusions Our study provides insights into DRG prognoses and immunomodulation, establishing a robust 6-gene risk model for predicting AML outcomes that may enhance precision medicine and treatment strategies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Immunotherapy/methods
- Prognosis
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Transcriptome
- Gene Expression Profiling
- Apoptosis/genetics
- Cell Line, Tumor
- Disulfidptosis
Collapse
Affiliation(s)
- Han Gong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Ying Zhang
- The Institute of Medical Information (IMI) & Library, Chinese Academy of Medical Sciences and Peking Union Medical, Beijing, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Mingwei Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Li
- Department of Blood Transfusion, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Saleh RO, Hjazi A, Rab SO, Uthirapathy S, Ganesan S, Shankhyan A, Ravi Kumar M, Sharma GC, Kariem M, Ahmed JK. Single-cell RNA Sequencing Contributes to the Treatment of Acute Myeloid Leukaemia With Hematopoietic Stem Cell Transplantation, Chemotherapy, and Immunotherapy. J Biochem Mol Toxicol 2025; 39:e70218. [PMID: 40233268 DOI: 10.1002/jbt.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/31/2025] [Accepted: 03/02/2025] [Indexed: 04/17/2025]
Abstract
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations and impaired apoptosis, all of which lead to excessive proliferation of malignant blood cells in the bone marrow. It is these mutations that cause tumor heterogeneity, which is linked to a higher risk of relapse and death and makes anti-AML treatments like HSCT, chemotherapy, and immunotherapy (ICI, CAR T-cell-based therapies, and cancer vaccines) less effective. Single-cell RNA sequencing (scRNA-seq) also makes it possible to find cellular subclones and profile tumors, which opens up new diagnostic and therapeutic targets for better AML management. The HSCT process works better when genetic and transcriptional information about the patient and donor stem cells is collected. This saves time and lowers the risk of harmful side effects happening in the body.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and medical technology, University of Al Maarif, Anbar, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, Abha, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
13
|
Minami M, Sakoda T, Kawano G, Kochi Y, Sasaki K, Sugio T, Jinnouchi F, Miyawaki K, Kunisaki Y, Kato K, Miyamoto T, Akashi K, Kikushige Y. Distinct leukemogenic mechanism of acute promyelocytic leukemia based on genomic structure of PML::RARα. Leukemia 2025; 39:844-853. [PMID: 39979604 DOI: 10.1038/s41375-025-02530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Leukemic stem cells (LSCs) of acute myeloid leukemia (AML) can be enriched in the CD34+CD38- fraction and reconstitute human AML in vivo. However, in acute promyelocytic leukemia (APL), which constitutes 10% of all AML cases and is driven by promyelocytic leukemia-retinoic acid receptor alpha (PML::RARα) fusion genes, the presence of LSCs has long been unidentified because of the difficulty in efficient reconstitution of human APL in vivo. Herein, we show that LSCs of the short-type isoform APL, a subtype of APL defined by different breakpoints of the PML gene, concentrate in the CD34+CD38- fraction and express T cell immunoglobulin mucin-3 (TIM-3). Short-type APL cells exhibited distinct gene expression signatures, including LSC-related genes, compared to the other types of APL. Moreover, CD34+CD38-TIM-3+ short-type APL cells efficiently reconstituted human APL in xenograft models with high penetration, whereas CD34- differentiated APL cells did not. Furthermore, CD34+CD38-TIM-3+ short-type APL cells reconstituted leukemia cells after serial transplantation. Thus, short-type APL was hierarchically organized by self-renewing APL-LSCs. The identification of LSCs in a subset of APL and establishment of an efficient patient-derived xenograft model may contribute to further understanding the APL leukemogenesis and devise individual treatments for the eradication of APL LSCs.
Collapse
Affiliation(s)
- Mariko Minami
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Teppei Sakoda
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Gentaro Kawano
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Yu Kochi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Kensuke Sasaki
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Fumiaki Jinnouchi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Yuya Kunisaki
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-8641, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan.
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| |
Collapse
|
14
|
Miranda JF, Rogerson A, Guthrie M, Kaur K, Apperley E, Dunne MC, Shridokar N, Khan A, Grey W. Ex vivo modelling reveals low levels of CKS1 inhibition boost haematopoiesis via AKT/Foxo1 signalling. Exp Hematol 2025:104768. [PMID: 40164326 DOI: 10.1016/j.exphem.2025.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Hematopoietic stem cells (HSCs) are rare cells residing at the top of the haematopoietic hierarchy capable of reconstituting all blood cell populations through their ability of self-renewal and differentiation. Their ability to maintain haematopoiesis can be majorly depleted by chemotherapeutic agents, leading to a long-term bone marrow injury. However, pre-clinical studies have focused on the acute effects of chemotherapy, leaving the lasting impact on healthy cells poorly understood. To study this, we combined rapid ex vivo models to study the long-term/late-stage effects of a cyclin-dependent kinase subunit 1 (CKS1) inhibitor. Inhibition of CKS1 has been shown to protect healthy HSCs from chemotherapy during acute myeloid leukaemia, and here we show a dose-dependent role of long-term CKS1 inhibition on haematopoiesis, either boosting B lymphopoiesis or ablating HSC proliferation capacity, dependent on the context. Mechanistically, low doses of the CKS1 inhibitor (CKS1i) affects AKT-Foxo1 signalling potentiating B-cell differentiation, but impairing HSC proliferation. These results reveal a novel role for CKS1 in boosting B lymphopoiesis and propose the use of rapid ex vivo models to investigate the long-term effects of chemotherapeutic treatments targeting HSCs with the potential of reducing late adverse effects.
Collapse
Affiliation(s)
- Juliana Fabiani Miranda
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Adam Rogerson
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Megan Guthrie
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Kimrun Kaur
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Emma Apperley
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Mary Catherine Dunne
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Navin Shridokar
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K
| | - Anjum Khan
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K.; Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, U.K
| | - William Grey
- ProteoStem lab, Centre for Blood Research, York Biomedical Research Institute, University of York, York, U.K..
| |
Collapse
|
15
|
Vanhooren J, Deneweth L, Pagliaro L, Ren Z, Giaimo M, Zamponi R, Roti G, Depreter B, Hofmans M, De Moerloose B, Lammens T. Nidogen-1, a Player in KMT2A-Rearranged Pediatric Acute Myeloid Leukemia. Int J Mol Sci 2025; 26:3011. [PMID: 40243655 PMCID: PMC11988693 DOI: 10.3390/ijms26073011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in outcome, one third of children with acute myeloid leukemia (AML) relapse, and less than half will achieve long-term survival. Relapse in AML has been shown to be driven in part by leukemic stem cells (LSCs), highlighting the unmet medical need to better characterize and target this therapy-resistant cell population. Micro-array profiling of pediatric AML subpopulations (LSCs and leukemic myeloblasts) and their healthy counterparts revealed nidogen-1 (NID1) as expressed in both leukemic subpopulations while absent in the hematopoietic stem cell. Using the TARGET dataset including pediatric AML patients (n = 1025), NID1 expression showed a correlation with worse event-free survival and KMT2A rearrangements. Drug response profiling of a NID1 knockdown model demonstrated differential sensitivity to HSP90 inhibition. RNA sequencing and gene set enrichment analysis between NID1high and NID1low phenotypes showed involvement of NID1 in mitochondrial metabolic pathways known to be enriched in LSCs. Altogether, this study highlights NID1 as a novel oncogene associated with worse EFS and metabolic LSC phenotype in AML. NID1 could serve as a biomarker and aid in further mapping LSCs to establish therapeutic strategies tackling the high relapse rates in pediatric AML.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Larissa Deneweth
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Luca Pagliaro
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Mariateresa Giaimo
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Rafaella Zamponi
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Giovanni Roti
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Barbara Depreter
- Department of Laboratory Medicine, AZ Delta General Hospital, 8800 Roeselare, Belgium
- Department of Haematology, Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium
| | - Mattias Hofmans
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
16
|
Shi X, Li M, Liu Z, Tiessen J, Li Y, Zhou J, Zhu Y, Mahesula S, Ding Q, Tan L, Feng M, Kageyama Y, Hara Y, Tao JJ, Luo X, Patras KA, Lorenzi PL, Huang S, Stevens AM, Takahashi K, Issa GC, Samee MAH, Agathocleous M, Nakada D. Guanine nucleotide biosynthesis blockade impairs MLL complex formation and sensitizes leukemias to menin inhibition. Nat Commun 2025; 16:2641. [PMID: 40102405 PMCID: PMC11920272 DOI: 10.1038/s41467-025-57544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
Targeting the dependency of MLL-rearranged (MLLr) leukemias on menin with small molecule inhibitors has opened new therapeutic strategies for these poor-prognosis diseases. However, the rapid development of menin inhibitor resistance calls for combinatory strategies to improve responses and prevent resistance. Here we show that leukemia stem cells (LSCs) of MLLr acute myeloid leukemia (AML) exhibit enhanced guanine nucleotide biosynthesis, the inhibition of which leads to myeloid differentiation and sensitization to menin inhibitors. Mechanistically, targeting inosine monophosphate dehydrogenase 2 (IMPDH2) reduces guanine nucleotides and rRNA transcription, leading to reduced protein expression of LEDGF and menin. Consequently, the formation and chromatin binding of the MLL-fusion complex is impaired, reducing the expression of MLL target genes. Inhibition of guanine nucleotide biosynthesis or rRNA transcription further suppresses MLLr AML when combined with a menin inhibitor. Our findings underscore the requirement of guanine nucleotide biosynthesis in maintaining the function of the LEDGF/menin/MLL-fusion complex and provide a rationale to target guanine nucleotide biosynthesis to sensitize MLLr leukemias to menin inhibitors.
Collapse
MESH Headings
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Humans
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Animals
- Mice
- Cell Line, Tumor
- IMP Dehydrogenase/metabolism
- IMP Dehydrogenase/antagonists & inhibitors
- IMP Dehydrogenase/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Xiangguo Shi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Molecular and Precision Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Minhua Li
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zian Liu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jonathan Tiessen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jing Zhou
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yudan Zhu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Swetha Mahesula
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qing Ding
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Kageyama
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yusuke Hara
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob J Tao
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuan Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Alexandra M Stevens
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Strzałka P, Krawiec K, Wiśnik A, Jarych D, Czemerska M, Zawlik I, Pluta A, Wierzbowska A. The Role of the Sirtuin Family Histone Deacetylases in Acute Myeloid Leukemia-A Promising Road Ahead. Cancers (Basel) 2025; 17:1009. [PMID: 40149343 PMCID: PMC11940623 DOI: 10.3390/cancers17061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Acute myeloid leukemia (AML) corresponds to a heterogeneous group of clonal hematopoietic diseases, which are characterized by uncontrolled proliferation of malignant transformed myeloid precursors and their inability to differentiate into mature blood cells. The prognosis of AML depends on many variables, including the genetic features of the disease. Treatment outcomes, despite the introduction of new targeted therapies, are still unsatisfactory. Recently, there have been an increasing number of reports on enzymatic proteins of the sirtuin family and their potential importance in cancer in general. Sirtuins are a group of 7 (SIRT1-7) NAD+-dependent histone deacetylases with pleiotropic effects on metabolism, aging processes, and cell survival. They are not only responsible for post-translational modification of histones but also play various biochemical functions and interact with other proteins regulating cell survival, such as p53. Thus, their role in key mechanisms of tumorigenesis makes them a worthwhile topic in AML. Different sirtuins have been shown to act oppositely depending on the biological context, the mechanism of which requires further exploration. This review provides a comprehensive description of the significance and role of sirtuins in AML in light of the current state of knowledge. It focuses in particular on molecular mechanisms regulated by sirtuins and signaling pathways involved in leukemogenesis, as well as clinical aspects and potential therapeutic targets in AML.
Collapse
Affiliation(s)
- Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Aneta Wiśnik
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| |
Collapse
|
18
|
Komic H, Schmachtel T, Simoes C, Külp M, Yu W, Jolly A, Nilsson MS, Gonzalez C, Prosper F, Bonig H, Paiva B, Thorén FB, Rieger MA. Continuous map of early hematopoietic stem cell differentiation across human lifetime. Nat Commun 2025; 16:2287. [PMID: 40055319 PMCID: PMC11889232 DOI: 10.1038/s41467-025-57096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025] Open
Abstract
Uncovering early gene network changes of human hematopoietic stem cells (HSCs) leading to differentiation induction is of utmost importance for therapeutic manipulation. We employed single cell proteo-transcriptomic sequencing to FACS-enriched bone marrow hematopoietic stem and progenitor cells (HSPCs) from 15 healthy donors. Pseudotime analysis reveals four major differentiation trajectories, which remain consistent upon aging, with an early branching point into megakaryocyte-erythroid progenitors. However, young donors suggest a more productive differentiation from HSPCs to committed progenitors of all lineages. tradeSeq analysis depicts continuous changes in gene expression of HSPC-related genes (DLK1, ADGRG6), and provides a roadmap of gene expression at the earliest branching points. We identify CD273/PD-L2 to be highly expressed in a subfraction of immature multipotent HSPCs with enhanced quiescence. Functional experiments confirm the immune-modulatory function of CD273/PD-L2 on HSPCs in regulating T-cell activation and cytokine release. Here, we present a molecular map of early HSPC differentiation across human life.
Collapse
Affiliation(s)
- Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tessa Schmachtel
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Catia Simoes
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Marius Külp
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Weijia Yu
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adrien Jolly
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Malin S Nilsson
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Gonzalez
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Felipe Prosper
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bruno Paiva
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Fredrik B Thorén
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Sturgeon CM, Wagenblast E, Izzo F, Papapetrou EP. The Crossroads of Clonal Evolution, Differentiation Hierarchy, and Ontogeny in Leukemia Development. Blood Cancer Discov 2025; 6:94-109. [PMID: 39652739 PMCID: PMC11876951 DOI: 10.1158/2643-3230.bcd-24-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE In recent years, remarkable technological advances have illuminated aspects of the pathogenesis of myeloid malignancies-yet outcomes for patients with these devastating diseases have not significantly improved. We posit that a synthesized view of the three dimensions through which hematopoietic cells transit during their healthy and diseased life-clonal evolution, stem cell hierarchy, and ontogeny-promises high yields in new insights into disease pathogenesis and new therapeutic avenues.
Collapse
Affiliation(s)
- Christopher M. Sturgeon
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elvin Wagenblast
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Franco Izzo
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Zhu B, Yang C, Hua S, Li K, Shang P, Li Z, Qian W, Xue S, Zhi Q, Hua Z. Decoding the Implications of Zinc in the Development and Therapy of Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412225. [PMID: 39887881 PMCID: PMC11884550 DOI: 10.1002/advs.202412225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Indexed: 02/01/2025]
Abstract
Zinc plays a central role in the hematological development. Therapeutic interventions with zinc are shown to improve the health status of patients with malignancies by stimulating the immune system and reducing side effects. Despite the abnormal zinc homeostasis in leukemia, the role and mechanisms of zinc signaling in leukemia development remain poorly understood. Recently, some important breakthroughs are made in laboratory and clinical studies of zinc in leukemia, such as the role of zinc in regulating ferroptosis and the effects of zinc in immunotherapy. Zinc-based strategies are urgently needed to refine the current zinc intervention regimen for side-effect free therapy in chemotherapy-intolerant patients. This review provides a comprehensive overview of the role of zinc homeostasis in leukemia patients and focuses on the therapeutic potential of zinc signaling modulation in leukemia.
Collapse
Affiliation(s)
- Bo Zhu
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Chunhao Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Kaiqiang Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Pengyou Shang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Zhonghua Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Wei Qian
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Shunkang Xue
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Qi Zhi
- Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Zichun Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
- Faculty of Pharmaceutical SciencesXinxiang Medical UniversityXinxiang453003China
| |
Collapse
|
21
|
Chao C, Martinez IG, Wagenblast E. Models to study myelodysplastic syndrome and acute myeloid leukaemia. Curr Opin Hematol 2025; 32:87-92. [PMID: 39602343 DOI: 10.1097/moh.0000000000000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematological malignancies characterized by complex genetic alterations, leading to poor clinical outcomes. Despite advances in treatment, there is an urgent need for novel therapeutic approaches. This review outlines recent progress in humanized models of MDS and AML and highlight their role in advancing our understanding of these diseases. RECENT FINDINGS Patient derived xenografts (PDXs) were among the first humanized models for studying MDS and AML, allowing researchers to analyze patient-specific cancer properties in vivo . However, they face challenges related to sample availability and consistent engraftment in mice. New methods, including specialized mouse strains and human tissue scaffolds, have been developed to address these issues. Induced pluripotent stem cells (iPSCs) offer the advantage of indefinite expansion and genetic modification, making them valuable for in vitro research, though protocols to enhance their engraftment in vivo are still being refined. Genetically engineered human primary hematopoietic stem and progenitor cells (HSPCs) provide reliable in vivo models with good engraftment in mice, and recent advancements in culture systems and gene-editing techniques are helping to overcome challenges related to ex vivo expansion and genetic modification. SUMMARY PDXs, iPSCs, and genetically engineered HSPCs are crucial models for the study of MDS and AML. This review discusses strengths, limitations, and recent advancements of these humanized models, which provide insights into human-specific disease biology and therapeutic development.
Collapse
Affiliation(s)
- Clifford Chao
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
- Mount Sinai Kravis Children's Hospital, New York, New York, USA
| | - Isabella G Martinez
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| | - Elvin Wagenblast
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mindich Child Health and Development Institute and Department of Pediatrics, Division of Pediatric Hematology-Oncology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
22
|
Sakoda T, Kikushige Y, Irifune H, Kawano G, Harada T, Semba Y, Hayashi M, Shima T, Mori Y, Eto T, Kamimura T, Iwasaki H, Ogawa R, Yoshimoto G, Kato K, Maeda T, Miyamoto T, Akashi K. TIM-3 marks measurable residual leukemic stem cells responsible for relapse after allogeneic stem cell transplantation. Cancer Sci 2025; 116:698-709. [PMID: 39726280 PMCID: PMC11875787 DOI: 10.1111/cas.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
In this study, we investigated the measurable residual leukemic stem cell (MR-LSC) population after allogeneic stem cell transplantation (allo-SCT) for high-risk acute myeloid leukemia (AML), utilizing T-cell immunoglobulin mucin-3 (TIM-3) expression as a functional marker of AML leukemic stem cells (LSCs). Analysis of the CD34+CD38- fraction of bone marrow cells immediately after achievement of engraftment revealed the presence of both TIM-3+LSCs and TIM-3- donor hematopoietic stem cells (HSCs) at varying ratios. Genetic analysis confirmed that TIM-3+ cells harbored patient-specific mutations identical to those found in AML clones, whereas TIM-3- cells did not, indicating that TIM-3+CD34+CD38- cells represent residual AML LSCs. In 92 allo-SCT occasions involving 83 AML patients, we enumerated the frequencies of TIM-3+LSCs immediately after achieving hematologic complete remission with complete donor cell chimerism. Notably, only 22.2% of patients who achieved a TIM-3+MR-LSClow status (<60%) experienced relapse, with a median event-free survival (EFS) of 1581 days (median follow-up duration was 2177 days among event-free survivors). Conversely, 87.5% of patients with TIM-3+MR-LSCint/high (≥60%) relapsed, with a median EFS of 140.5 days. Furthermore, MR-LSC status emerged as a significant independent risk factor for relapse (hazard ratio, 8.56; p < 0.0001), surpassing the impact of patient disease status prior to allo-SCT, including failure to achieve complete remission (hazard ratio, 1.98; p = 0.048). These findings suggest that evaluating TIM-3+ MR-LSCs immediately after engraftment, which reflects the competitive reconstitution of residual TIM-3+ LSCs and donor HSCs, may be valuable for predicting outcomes in AML patients undergoing allo-SCT.
Collapse
MESH Headings
- Humans
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Female
- Adult
- Hematopoietic Stem Cell Transplantation
- Transplantation, Homologous
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplasm, Residual
- Young Adult
- Aged
- Adolescent
- Recurrence
- Disease-Free Survival
- Mutation
Collapse
Affiliation(s)
- Teppei Sakoda
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
- Center for Cellular and Molecular MedicineKyushu University HospitalFukuokaJapan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
- Center for Cellular and Molecular MedicineKyushu University HospitalFukuokaJapan
| | - Hidetoshi Irifune
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Gentaro Kawano
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Takuya Harada
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | | | - Takahiro Shima
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Yasuo Mori
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Tetsuya Eto
- Department of HematologyHamanomachi HospitalFukuokaJapan
| | | | - Hiromi Iwasaki
- Department of HematologyNational Hospital Organisation Kyushu Medical CenterFukuokaJapan
| | - Ryosuke Ogawa
- Department of Hematology/OncologyJapan Community Health Care Organisation Kyushu HospitalKitakyushuJapan
| | - Goichi Yoshimoto
- Department of HematologySaga Prefecture Medical Center KoseikanSagaJapan
| | - Koji Kato
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Takahiro Maeda
- Division of Precision MedicineKyushu University Faculty of Medicine Graduate School of Medical ScienceFukuokaJapan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
- Center for Cellular and Molecular MedicineKyushu University HospitalFukuokaJapan
| |
Collapse
|
23
|
Able M, Kasper MA, Vick B, Schwach J, Gao X, Schmitt S, Tizazu B, Fischer A, Künzl S, Leilich M, Mai I, Ochtrop P, Stengl A, de Geus MAR, von Bergwelt-Baildon M, Schumacher D, Helma J, Hackenberger CPR, Götze KS, Jeremias I, Leonhardt H, Feuring M, Spiekermann K. Effective eradication of acute myeloid leukemia stem cells with FLT3-directed antibody-drug conjugates. Leukemia 2025; 39:632-642. [PMID: 39870768 PMCID: PMC11879846 DOI: 10.1038/s41375-024-02510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025]
Abstract
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs. We show here that DUBA more potently kills cell-cycle arrested AML cells compared to microtubule-targeting auristatins. Due to limited stability of 20D9h3-DUBA ADC in vivo, we analyzed both ADCs in advanced in vitro stem cell assays. 20D9h3-DUBA successfully eliminated leukemic progenitors in vitro in colony-forming unit and long-term culture initiating cell assays, both in patient cells and in patient-derived xenograft (PDX) cells. Further, it completely prevented engraftment of AML PDX leukemia-initiating cells in NSG mice. 20D9h3-MMAF had a similar effect in engraftment assays, but a less prominent effect in colony assays. Both ADCs did not affect healthy stem and progenitor cells at comparable doses providing the rationale for FLT3 as therapeutic LSC target. Collectively, we show that FLT3-directed ADCs with DUBA or MMAF have potent activity against AML LSCs and represent promising candidates for further clinical development.
Collapse
Affiliation(s)
- Marina Able
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marc-André Kasper
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
- Tubulis GmbH, Munich, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells (AHS), Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Jonathan Schwach
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Xiang Gao
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Belay Tizazu
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Amrei Fischer
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Künzl
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marit Leilich
- Technical University of Munich School of Medicine and Health, Department of Medicine III, Technical University of Munich (TUM), Munich, Germany
| | | | - Philipp Ochtrop
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Tubulis GmbH, Munich, Germany
| | - Andreas Stengl
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Mark A R de Geus
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
- Tubulis GmbH, Munich, Germany
| | - Jonas Helma
- Tubulis GmbH, Munich, Germany
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Christian P R Hackenberger
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin, Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Technical University of Munich School of Medicine and Health, Department of Medicine III, Technical University of Munich (TUM), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- Research Unit Apoptosis in Hematopoietic Stem Cells (AHS), Helmholtz Munich, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU, Munich, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Human Biology and BioImaging, LMU Munich, Planegg-Martinsried, Germany
| | - Michaela Feuring
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Karsten Spiekermann
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
| |
Collapse
|
24
|
Zhong F, Yao F, Wang Z, Liu J, Huang B, Wang X. Integrated multiomics analysis and machine learning refine neutrophil extracellular trap-related molecular subtypes and prognostic models for acute myeloid leukemia. Front Immunol 2025; 16:1558496. [PMID: 40066454 PMCID: PMC11891243 DOI: 10.3389/fimmu.2025.1558496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
Background Neutrophil extracellular traps (NETs) play pivotal roles in various pathological processes. The formation of NETs is impaired in acute myeloid leukemia (AML), which can result in immunodeficiency and increased susceptibility to infection. Methods The gene set variation analysis (GSVA) algorithm was employed for the calculation of NET score, while the consensus clustering algorithm was utilized to identify molecular subtypes. Weighted gene coexpression network analysis (WGCNA) revealed potential genes and biological pathways associated with NETs, and a total of 10 machine learning algorithms were applied to construct the optimal prognostic model. Results Through the analysis of multiomics data, we identified two molecular subtypes with high and low NET scores. The low-NET score subgroup exhibited increased infiltration of immune effector cells. Conversely, the high-NET score subtype presented an abundance of monocytes and M2 macrophages, accompanied by elevated expression levels of immune checkpoint genes. These findings suggest that a pronounced immunosuppressive effect is associated with a significantly worse prognosis for this subtype. The optimal risk score model was selected by employing the C-index as the criterion on the basis of training 10 machine learning algorithms on 9 multicenter AML cohorts. Survival analysis confirmed that patients with high-risk scores had considerably poorer prognoses than those with lower scores. Receiver operating characteristic (ROC) curve and Cox regression analyses further validated the strong independent prognostic value of the risk score model. The nomogram, which was constructed by integrating the risk score model and clinicopathological factors, demonstrated high accuracy in predicting the overall survival of AML patients. Moreover, patients with refractory or chemotherapy-unresponsive AML had significantly higher risk scores. By analyzing drug therapy data from in vitro AML cells, we identified a subset of drugs that demonstrated increased sensitivity in the high-risk score group. Additionally, patients with a high risk score were also predicted to exhibit a favorable response to anti-PD-1 therapy, suggesting that these individuals may derive greater benefits from immunotherapy. Conclusion The NET-related signature, derived from a combination of diverse machine learning algorithms, has promising potential as a valuable tool for prognostic prediction, preventive measures, and personalized medicine in patients with AML.
Collapse
Affiliation(s)
| | | | | | | | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Jiao C, Ma X, Cui J, Su B, Xu F, Chen E, Zhou J, Dai J, Pan M, Long Z, Ge J. Potential value of immunogenic cell death related-genes in refining European leukemiaNet guidelines classification and predicting the immune infiltration landscape in acute myeloid leukemia. Cancer Cell Int 2025; 25:52. [PMID: 39966805 PMCID: PMC11837611 DOI: 10.1186/s12935-025-03670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Immunogenic cell death (ICD) is the kind of cell death that triggers the immune system. It affects several tumors, whereas its significance for prognosis in acute myeloid leukemia (AML) remains uncertain. AML categorization by cytogenetic variables is inaccurate. In addition, risk stratification of AML based on cytogenetics is imprecise. The data of AML patients were extracted from 4 databases, a total of 1,537 patients. Univariate and LASSO Cox regression analyses were conducted to construct an ICD risk signature (ICDRS). The ICDRS showed strong prognostic value for AML through Kaplan-Meier, Cox, ROC analyses and nomogram. Combining the ICDRS with the European LeukemiaNet (ELN) classification to redefine the risk stratification can better predict the prognosis of AML. Moreover, the ICDRS was examined to identify gene functional enrichment, immunological characteristics, drug susceptibility, and somatic mutation, which revealed considerable variations among different risk categories. We further validated the expression of ICDRS in the AML bone marrow microenvironment by single-cell RNA (scRNA) analysis. Ultimately, the functional role of CASP1 was proven in AML by a series of in-vitro experiments. Our study highlights the significant impact of ICDRS on AML, which may improve ELN risk classification, predict immune landscapes, and guide personalized therapy.
Collapse
Affiliation(s)
- Changqing Jiao
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Ma
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Jianling Cui
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Bobin Su
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Fei Xu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Enbo Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Junjie Zhou
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jifei Dai
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
- National Clinical Medical Research Centre for Blood System Diseases, Anhui Branch Centre, Hefei, 230032, China
| | - Mengya Pan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Medical University, Hefei, 230032, China
- National Clinical Medical Research Centre for Blood System Diseases, Anhui Branch Centre, Hefei, 230032, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Anhui Medical University, Hefei, 230032, China.
- National Clinical Medical Research Centre for Blood System Diseases, Anhui Branch Centre, Hefei, 230032, China.
| |
Collapse
|
26
|
Wen XM, Xu ZJ, Ma JC, Zhang MJ, Jin Y, Lin J, Qian J, Fang YY, Luo SY, Mao ZW. Bioinformatic characterization of STING expression in hematological malignancies reveals association with prognosis and anti-tumor immunity. Front Immunol 2025; 16:1477100. [PMID: 39975558 PMCID: PMC11835856 DOI: 10.3389/fimmu.2025.1477100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Stimulator of interferon response cGAMP interactor (STING) is essential for both innate and adaptive immunity. However, a comprehensive molecular characterization of STING expression across hematological malignancies is lacking. Methods In this study, the pan-blood-cancer landscape related to STING expression was identified using the GTEx, CCLE, Hemap, and TCGA databases, and the potential value for predicting prognosis was investigated. The relationship between STING expression and immune cell enrichment was assessed in the Hemap database. Moreover, the value of STING in predicting the efficacy of immunotherapy was validated using tumor immune dysfunction and exclusion (TIDE) biomarkers and real-world immunotherapy datasets. Results and Discussion STING was found to be relatively highly expressed in acute myeloid leukemia (AML) and chronic myeloid leukemia, with higher STING expression correlated with poorer prognosis in AML. STING expression was positively correlated with immune-related pathways such as IFN-gamma response, IFN-alpha response, and inflammatory response. Cytolytic score and STING expression were positively correlated in some hematological tumors, especially chronic lymphocytic leukemia and mantle cell lymphoma. Interestingly, STING expression was negatively correlated with TIDE biomarkers in AML, suggesting that AML patients with a high STING expression level may benefit from immunologic treatment. Our findings contribute a molecular characterization of STING across hematological malignancies, facilitating the development of individualized prognosis and treatment strategies.
Collapse
Affiliation(s)
- Xiang-mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-jun Xu
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ji-chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min-jie Zhang
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuan-yuan Fang
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shu-yu Luo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen-wei Mao
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
27
|
Calvo J, Naguibneva I, Kypraios A, Gilain F, Uzan B, Gaillard B, Bellenger L, Renou L, Antoniewski C, Lapillonne H, Petit A, Ballerini P, Mancini SJ, Marchand T, Peyron JF, Pflumio F. High CD44 expression and enhanced E-selectin binding identified as biomarkers of chemoresistant leukemic cells in human T-ALL. Leukemia 2025; 39:323-336. [PMID: 39580584 PMCID: PMC11794132 DOI: 10.1038/s41375-024-02473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy characterized by increased proliferation and incomplete maturation of T-cell progenitors, for which relapse is often of poor prognosis. To improve patient outcomes, it is critical to understand the chemoresistance mechanisms arising from cell plasticity induced by the bone marrow (BM) microenvironment. Single-cell RNA sequencing of human T-ALL cells from adipocyte-rich and adipocyte-poor BM revealed a distinct leukemic cell population defined by quiescence and high CD44 expression (Ki67neg/lowCD44high). During in vivo treatment, these cells evaded chemotherapy, and were further called Chemotherapy-resistant Leukemic Cells (CLCs). Patient sample analysis revealed Ki67neg/lowCD44high CLCs at diagnosis and during relapse, with each displaying a specific transcriptomic signature. Interestingly, CD44high expression in T-ALL Ki67neg/low CLCs was associated with E-selectin binding. Analysis of 39 human T-ALL samples revealed significantly enhanced E-selectin binding activity in relapse/refractory samples compared with drug-sensitive samples. These characteristics of chemoresistant T-ALL CLCs provide key insights for prognostic stratification and novel therapeutic options.
Collapse
Affiliation(s)
- Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France.
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| | - Irina Naguibneva
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Anthony Kypraios
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 06204, Nice, France
| | - Florian Gilain
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Benjamin Uzan
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Baptiste Gaillard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Lea Bellenger
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005, Paris, France
| | - Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005, Paris, France
| | - Helene Lapillonne
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | - Arnaud Petit
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | - Paola Ballerini
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | | | - Tony Marchand
- Université Rennes, EFS, Inserm, MOBIDIC-UMR_S 1236, F-35000, Rennes, France
- Service d'hématologie Clinique, Centre Hospitalier Universitaire de Rennes, 35003, Rennes, France
| | - Jean-François Peyron
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 06204, Nice, France
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| |
Collapse
|
28
|
Khosroabadi Z, Azaryar S, Dianat-Moghadam H, Amoozgar Z, Sharifi M. Single cell RNA sequencing improves the next generation of approaches to AML treatment: challenges and perspectives. Mol Med 2025; 31:33. [PMID: 39885388 PMCID: PMC11783831 DOI: 10.1186/s10020-025-01085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment. ScRNA-seq allows the identification of quiescent stem-like cells, and leukemia stem cells responsible for resistance to therapeutic approaches and relapse after treatment. This method also introduces the factors and mechanisms that enhance the efficacy of the HSCT process. Generated data of the transcriptional profile of the AML could even allow the development of cancer vaccines and CAR T-cell therapies while saving valuable time and alleviating dangerous side effects of chemotherapy and HSCT in vivo. However, scRNA-seq applications face various challenges such as a large amount of data for high-dimensional analysis, technical noise, batch effects, and finding small biological patterns, which could be improved in combination with artificial intelligence models.
Collapse
Affiliation(s)
- Zahra Khosroabadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Samaneh Azaryar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
29
|
Van Camp L, Depreter B, De Wilde J, Hofmans M, Van der Linden M, Terras E, Chantrain C, Dedeken L, Van Damme A, Uyttebroeck A, Lammens T, De Moerloose B. Acute myeloid leukemia stem cell signature gene EMP1 is not an eligible therapeutic target. Pediatr Res 2025; 97:160-168. [PMID: 38879624 DOI: 10.1038/s41390-024-03341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Relapse in pediatric acute myeloid leukemia (pedAML) patients is known to be associated with residual leukemic stem cells (LSC). We have previously shown that epithelial membrane protein 1 (EMP1) is significantly overexpressed in LSC compared to hematological stem cell fractions. EMP1 was also documented as part of the 17-gene stemness score and a 6-membrane protein gene score, both correlating high EMP1 expression with worse overall survival. However, its potential as a therapeutic target in pedAML is still unexplored. METHODS Association analyses of EMP1 expression with clinical and molecular AML characteristics were performed. Expression of EMP1 was evaluated in pedAML and cord blood samples. Expression in normal blood cells and tissues was evaluated by flow cytometry and immunohistochemistry, respectively. RESULTS In silico analyses showed variable mRNA expression of EMP1 in multiple pedAML datasets, and a significant correlation between high EMP1 transcript levels and the presence of inv(16). Flow cytometry showed overexpression of EMP1 in pedAML samples, as well as expression in normal blood subsets. Importantly, immunohistochemistry revealed EMP1 expression in multiple normal tissues. CONCLUSION Although EMP1 presents as an interesting membrane-associated target in pedAML, its abundant expression in normal blood cells and tissues will impede it from further exploration as a therapeutic target. IMPACT EMP1 is highly expressed in multiple cancer types, but expression in acute myeloid leukemia (AML) and normal tissues is unexplored. As EMP1 is investigated in other cancer types, expression in normal tissues and blood cells is relevant in predicting the success of EMP1-targeted therapies. In this study, we showed expression of EMP1 in multiple tissues, predicting high on-target off-tumor toxicity, which will warn other researchers of possible toxicities when generating EMP1-targeted therapy. Finally, we showed that high EMP1 expression is associated with better overall survival of pediatric AML patients, reducing the need for EMP1-targeted therapy.
Collapse
Affiliation(s)
- Laurens Van Camp
- Ghent University, Department of Internal Medicine and Pediatrics, Ghent, Belgium
- Ghent University Hospital, Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent, Belgium
| | - Barbara Depreter
- AZ Delta General Hospital, Department of Laboratory Medicine, Roeselare, Belgium
- Vrije Universiteit Brussel (VUB), Department Pharmaceutical Sciences (FARM), Brussels, Belgium
| | - Jilke De Wilde
- Ghent University Hospital, Department of Pathology, Ghent, Belgium
- Ghent University, Department of Biomolecular Medicine, Ghent, Belgium
| | - Mattias Hofmans
- Ghent University Hospital, Laboratory of Hematology, Ghent, Belgium
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Malaïka Van der Linden
- Ghent University Hospital, Department of Pathology, Ghent, Belgium
- Ghent University, Department of Biomolecular Medicine, Ghent, Belgium
| | - Eva Terras
- Ghent University Hospital, Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent, Belgium
| | - Christophe Chantrain
- Centre Hospitalier Chrétien (CHC), MontLégia, Division of Pediatric Hematology-Oncology, Liège, Belgium
| | - Laurence Dedeken
- Queen Fabiola Children's University Hospital, Department of Pediatric Hematology-Oncology, Brussels, Belgium
| | - An Van Damme
- University Hospital Saint-Luc, Department of Pediatric Hematology Oncology, Brussels, Belgium
| | - Anne Uyttebroeck
- University Hospital Gasthuisberg, Department of Pediatrics, Leuven, Belgium
| | - Tim Lammens
- Ghent University, Department of Internal Medicine and Pediatrics, Ghent, Belgium.
- Ghent University Hospital, Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent, Belgium.
| | - Barbara De Moerloose
- Ghent University, Department of Internal Medicine and Pediatrics, Ghent, Belgium
- Ghent University Hospital, Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent, Belgium
| |
Collapse
|
30
|
Li Z, Fierstein S, Tanaka-Yano M, Frenis K, Chen CC, Wang D, Falchetti M, Côté P, Curran C, Lu K, Liu T, Orkin S, Li H, Lummertz da Rocha E, Hu S, Zhu Q, Rowe RG. The epigenetic state of the cell of origin defines mechanisms of leukemogenesis. Leukemia 2025; 39:87-97. [PMID: 39354203 DOI: 10.1038/s41375-024-02428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.
Collapse
Affiliation(s)
- Zhiheng Li
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sara Fierstein
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Mayuri Tanaka-Yano
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Parker Côté
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Curran
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Kate Lu
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Stuart Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hojun Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qian Zhu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | - R Grant Rowe
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Sawai S, Oda Y, Saito Y, Kuwabara T, Wang L, Tanei ZI, Hirabayashi S, Tsuda M, Gong JP, Manabe A, Tanaka S. Analysis of synthetic polymer hydrogel-based generation of leukemia stem cells. Biochem Biophys Res Commun 2025; 744:151149. [PMID: 39700762 DOI: 10.1016/j.bbrc.2024.151149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Leukemia stem cells (LSCs), capable of simultaneous self-renewal and differentiation, are resistant to chemotherapy and the cause of relapse in refractory cases of leukemia. As a method to rapidly generate LSCs has not been established, research on LSCs as therapeutic targets has been hampered. Here, we demonstrate that K562 leukemia cells acquired LSC properties with increase in stemness markers such as CD34, Oct3/4, and Nanog and metabolic alterations towards OXPHOS by culturing cells on synthetic polymer hydrogels. In this hydrogel-generated LSCs, single-cell RNA sequencing identified the increase in expression levels of AKR1B1 and TSPYL5, which play an essential role for stemness generation. Decrease in expression of CD34, Oct3/4, and Nanog were observed in K562 cells with knockdown of AKR1B1 and TSPYL5. These results indicate that cell culturing on synthetic polymer hydrogels can be a useful system to generate LSCs and AKR1B1 and TSPYL5 may become therapeutic targets for LSCs.
Collapse
Affiliation(s)
- Saori Sawai
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Saito
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Takeru Kuwabara
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Zen-Ichi Tanei
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Shinsuke Hirabayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
32
|
Pacchiardi K, de Marcellus V, Huynh T, Fodil S, Kim R, Bello RD, Fontaine M, Lonchamp C, Chat L, Aguinaga L, Lengliné E, Sébert M, Raffoux E, Adès L, Dombret H, Clappier E, Puissant A, Mathis S, Chauvel C, Itzykson R. Prospective feasibility of a minimal BH3 profiling assay in acute myeloid leukemia. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2025; 108:86-94. [PMID: 39600238 DOI: 10.1002/cyto.b.22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
BH3 profiling can assess global mitochondrial priming and dependence of leukemic cells on specific BH3 anti-apoptotic proteins such as BCL-2. In acute myeloid leukemia (AML), proof-of-concept prognostic studies have been performed on archived samples variably accounting for molecular genetics. We undertook a single-center feasibility study of a simplified flow-based assay to determine the absolute mitochondrial priming and BCL-2 dependence in consecutive AML patients. When possible, results on the leukemic fraction were normalized to the cognate lymphocyte population (relative priming and BCL-2 dependence). Samples from 97 (89.8%) of the 108 referred patients were successfully processed. Relative priming and BCL-2 dependence could be determined in 62 (67.4%) and 67 (62.0%) samples, respectively. Absolute mitochondrial priming was lower in patients having previously failed intensive chemotherapy compared to chemotherapy-naïve patients (p = 0.01), but its prognostic impact was limited. Conversely, relative BCL-2 independence tended to predict worse EFS (HR = 2.51, p = 0.07) and OS (HR = 2.79, p = 0.10) independently of adverse genetic risk. Our results show that simplified BH3 profiling can be prospectively assessed in AML patients but that its prognostic use may require internal normalization. Future studies should compare its relevance with other functional assays such as ex vivo drug testing or BH3 protein expression.
Collapse
Affiliation(s)
- Kim Pacchiardi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Victoire de Marcellus
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Tony Huynh
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sofiane Fodil
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Reinaldo Dal Bello
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Morgane Fontaine
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Catherine Lonchamp
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Laureen Chat
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lorea Aguinaga
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Etienne Lengliné
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Sébert
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Raffoux
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Adès
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hervé Dombret
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Puissant
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Stéphanie Mathis
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Clémentine Chauvel
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
33
|
Ghosh G, Shannon AE, Searle BC. Data acquisition approaches for single cell proteomics. Proteomics 2025; 25:e2400022. [PMID: 39088833 PMCID: PMC11735665 DOI: 10.1002/pmic.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Single-cell proteomics (SCP) aims to characterize the proteome of individual cells, providing insights into complex biological systems. It reveals subtle differences in distinct cellular populations that bulk proteome analysis may overlook, which is essential for understanding disease mechanisms and developing targeted therapies. Mass spectrometry (MS) methods in SCP allow the identification and quantification of thousands of proteins from individual cells. Two major challenges in SCP are the limited material in single-cell samples necessitating highly sensitive analytical techniques and the efficient processing of samples, as each biological sample requires thousands of single cell measurements. This review discusses MS advancements to mitigate these challenges using data-dependent acquisition (DDA) and data-independent acquisition (DIA). Additionally, we examine the use of short liquid chromatography gradients and sample multiplexing methods that increase the sample throughput and scalability of SCP experiments. We believe these methods will pave the way for improving our understanding of cellular heterogeneity and its implications for systems biology.
Collapse
Affiliation(s)
- Gautam Ghosh
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Ariana E. Shannon
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| | - Brian C. Searle
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| |
Collapse
|
34
|
Fleming TJ, Antoszewski M, Lambo S, Gundry MC, Piussi R, Wahlster L, Shah S, Reed FE, Dong KD, Paulo JA, Gygi SP, Mimoso C, Goldman SR, Adelman K, Perry JA, Pikman Y, Stegmaier K, Barrachina MN, Machlus KR, Hovestadt V, Arruda A, Minden MD, Voit RA, Sankaran VG. CEBPA repression by MECOM blocks differentiation to drive aggressive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630680. [PMID: 39803492 PMCID: PMC11722404 DOI: 10.1101/2024.12.30.630680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Acute myeloid leukemias (AMLs) have an overall poor prognosis with many high-risk cases co-opting stem cell gene regulatory programs, yet the mechanisms through which this occurs remain poorly understood. Increased expression of the stem cell transcription factor, MECOM, underlies one key driver mechanism in largely incurable AMLs. How MECOM results in such aggressive AML phenotypes remains unknown. To address existing experimental limitations, we engineered and applied targeted protein degradation with functional genomic readouts to demonstrate that MECOM promotes malignant stem cell-like states by directly repressing pro-differentiation gene regulatory programs. Remarkably and unexpectedly, a single node in this network, a MECOM-bound cis-regulatory element located 42 kb downstream of the myeloid differentiation regulator CEBPA, is both necessary and sufficient for maintaining MECOM-driven leukemias. Importantly, targeted activation of this regulatory element promotes differentiation of these aggressive AMLs and reduces leukemia burden in vivo, suggesting a broadly applicable differentiation-based approach for improving therapy.
Collapse
Affiliation(s)
- Travis J. Fleming
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Sander Lambo
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- These authors contributed equally to this work
| | - Michael C. Gundry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Riccardo Piussi
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sanjana Shah
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona E. Reed
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin D. Dong
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer A. Perry
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yana Pikman
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria N. Barrachina
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Volker Hovestadt
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Richard A. Voit
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Present Address: UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02142, USA
- Lead contact
| |
Collapse
|
35
|
Wang Z, Ma L, Xu J, Jiang C. Editorial: Genetic and cellular heterogeneity in tumors. Front Cell Dev Biol 2024; 12:1519539. [PMID: 39717843 PMCID: PMC11663938 DOI: 10.3389/fcell.2024.1519539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Zishan Wang
- Department of Genetics and Genomic Sciences, Department of Artificial Intelligence and Human Health, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Ma
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunjie Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Sango J, Carcamo S, Sirenko M, Maiti A, Mansour H, Ulukaya G, Tomalin LE, Cruz-Rodriguez N, Wang T, Olszewska M, Olivier E, Jaud M, Nadorp B, Kroger B, Hu F, Silverman L, Chung SS, Wagenblast E, Chaligne R, Eisfeld AK, Demircioglu D, Landau DA, Lito P, Papaemmanuil E, DiNardo CD, Hasson D, Konopleva M, Papapetrou EP. RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax. Nature 2024; 636:241-250. [PMID: 39478230 PMCID: PMC11618090 DOI: 10.1038/s41586-024-08137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1-6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Cell Lineage/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Monocytes/metabolism
- Monocytes/drug effects
- Mutation
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- ras Proteins/metabolism
- ras Proteins/genetics
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Granulocytes
- Clone Cells/metabolism
- Clone Cells/pathology
- Stem Cells/metabolism
- Stem Cells/pathology
- Recurrence
Collapse
Affiliation(s)
- Junya Sango
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Sirenko
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hager Mansour
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gulay Ulukaya
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis E Tomalin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nataly Cruz-Rodriguez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manon Jaud
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bettina Nadorp
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Benjamin Kroger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Hu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lewis Silverman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen S Chung
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligne
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan A Landau
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Shared Resource Facility, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Konopleva
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
Zhang S, Huang F, Wang Y, Long Y, Li Y, Kang Y, Gao W, Zhang X, Wen Y, Wang Y, Pan L, Xia Y, Yang Z, Yang Y, Mo H, Li B, Hu J, Song Y, Zhang S, Dong S, Du X, Li Y, Liu Y, Liao W, Gao Y, Zhang Y, Chen H, Liang Y, Chen J, Weng H, Huang H. NAT10-mediated mRNA N 4-acetylcytidine reprograms serine metabolism to drive leukaemogenesis and stemness in acute myeloid leukaemia. Nat Cell Biol 2024; 26:2168-2182. [PMID: 39506072 PMCID: PMC11628400 DOI: 10.1038/s41556-024-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
RNA modification has emerged as an important epigenetic mechanism that controls abnormal metabolism and growth in acute myeloid leukaemia (AML). However, the roles of RNA N4-acetylcytidine (ac4C) modification in AML remain elusive. Here, we report that ac4C and its catalytic enzyme NAT10 drive leukaemogenesis and sustain self-renewal of leukaemic stem cells/leukaemia-initiating cells through reprogramming serine metabolism. Mechanistically, NAT10 facilitates exogenous serine uptake and de novo biosynthesis through ac4C-mediated translation enhancement of the serine transporter SLC1A4 and the transcription regulators HOXA9 and MENIN that activate transcription of serine synthesis pathway genes. We further characterize fludarabine as an inhibitor of NAT10 and demonstrate that pharmacological inhibition of NAT10 targets serine metabolic vulnerability, triggering substantial anti-leukaemia effects both in vitro and in vivo. Collectively, our study demonstrates the functional importance of ac4C and NAT10 in metabolism control and leukaemogenesis, providing insights into the potential of targeting NAT10 for AML therapy.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Mice
- Serine/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- N-Terminal Acetyltransferases/metabolism
- N-Terminal Acetyltransferases/genetics
- Cell Line, Tumor
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Cytidine/analogs & derivatives
- Cytidine/pharmacology
- Cytidine/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Mice, Inbred NOD
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
Collapse
Affiliation(s)
- Subo Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Huang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yushuai Wang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yifei Long
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yalin Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiwei Gao
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuxin Zhang
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yueting Wen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lili Pan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Youmei Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhoutian Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Yang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Hongjie Mo
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Baiqing Li
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Jiacheng Hu
- Bioland Laboratory, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yunda Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shilin Zhang
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shenghua Dong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingmin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yadi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongming Chen
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory, Guangzhou, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianjun Chen
- Department of Systems Biology & Center for RNA Biology and Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Hengyou Weng
- Guangzhou National Laboratory, The First Affiliated Hospital, The Fifth Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou, China.
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
38
|
Leppä AM, Grimes K, Jeong H, Huang FY, Andrades A, Waclawiczek A, Boch T, Jauch A, Renders S, Stelmach P, Müller-Tidow C, Karpova D, Sohn M, Grünschläger F, Hasenfeld P, Benito Garagorri E, Thiel V, Dolnik A, Rodriguez-Martin B, Bullinger L, Mrózek K, Eisfeld AK, Krämer A, Sanders AD, Korbel JO, Trumpp A. Single-cell multiomics analysis reveals dynamic clonal evolution and targetable phenotypes in acute myeloid leukemia with complex karyotype. Nat Genet 2024; 56:2790-2803. [PMID: 39587361 PMCID: PMC11631769 DOI: 10.1038/s41588-024-01999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
Chromosomal instability is a major driver of intratumoral heterogeneity (ITH), promoting tumor progression. In the present study, we combined structural variant discovery and nucleosome occupancy profiling with transcriptomic and immunophenotypic changes in single cells to study ITH in complex karyotype acute myeloid leukemia (CK-AML). We observed complex structural variant landscapes within individual cells of patients with CK-AML characterized by linear and circular breakage-fusion-bridge cycles and chromothripsis. We identified three clonal evolution patterns in diagnosis or salvage CK-AML (monoclonal, linear and branched polyclonal), with 75% harboring multiple subclones that frequently displayed ongoing karyotype remodeling. Using patient-derived xenografts, we demonstrated varied clonal evolution of leukemic stem cells (LSCs) and further dissected subclone-specific drug-response profiles to identify LSC-targeting therapies, including BCL-xL inhibition. In paired longitudinal patient samples, we further revealed genetic evolution and cell-type plasticity as mechanisms of disease progression. By dissecting dynamic genomic, phenotypic and functional complexity of CK-AML, our findings offer clinically relevant avenues for characterizing and targeting disease-driving LSCs.
Collapse
Affiliation(s)
- Aino-Maija Leppä
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Karen Grimes
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Hyobin Jeong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Frank Y Huang
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alvaro Andrades
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alexander Waclawiczek
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Tobias Boch
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Stelmach
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Darja Karpova
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Florian Grünschläger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | - Vera Thiel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anna Dolnik
- Charité Medical Department, Division of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | | | - Lars Bullinger
- Charité Medical Department, Division of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - Krzysztof Mrózek
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Ashley D Sanders
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, German Cancer Research Center, Heidelberg, Germany.
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
39
|
Chen CH, Chen TC, Wu TS, Hsiao TH, Chen JMM, Huang CYF, Cheng PL, Tsai JR, Teng CLJ. Myeloperoxidase and Thyrotropin-Releasing Hormone Within Leukaemia Stem Cells Increased Chemosensitivity in Acute Myeloid Leukaemia. J Cell Mol Med 2024; 28:e70306. [PMID: 39720891 DOI: 10.1111/jcmm.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Leukaemia stem cells (LSCs) are major contributors to chemoresistance in acute myeloid leukaemia (AML). Identifying potential biomarkers within LSCs that can predict chemosensitivity in AML is key. This prospective study involved 20 consecutive de novo AML patients who underwent '7 + 3' induction therapy. The patients were divided into CR (n = 15) and non-CR (n = 5) groups. Using single-cell RNA sequencing, we examined the cellular states of bone marrow mononuclear cells from AML patients at diagnosis and identified LSC among these cells. Our results showed that in non-CR AML patients, a significant increase in the proportion of immature cells during haematopoiesis within the AML cell populations was observed. Moreover, the expression of myeloperoxidase (MPO) (log2 fold-change = 0.89; adjusted p < 0.0001) and thyrotropin-releasing hormone (TRH) (log2 fold-change = 0.65; adjusted p < 0.0001) was higher within LSCs in the CR group than in the non-CR group. Furthermore, patients with higher expression of MPO and TRH demonstrated improved relapse-free survival (p = 0.002 for MPO; p = 0.009 for TRH) and overall survival (p = 0.002 for MPO; p < 0.001 for TRH). The connection between MPO or TRH and chemosensitivity could be linked with the downregulation of transforming growth factor and the upregulation of interferon-α. In conclusion, MPO and TRH in LSCs could serve as chemosensitivity biomarkers in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Peroxidase/metabolism
- Male
- Female
- Middle Aged
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Adult
- Aged
- Drug Resistance, Neoplasm
- Biomarkers, Tumor/metabolism
- Prospective Studies
- Prognosis
Collapse
Affiliation(s)
- Chung-Hsing Chen
- Department of Mathematics, University of Taipei, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Chih Chen
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ting-Shuan Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Liang Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
40
|
Zhang Z, Tang R, Zhu M, Zhu Z, Zhu J, Li H, Tong M, Li N, Huang J. Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia. Brief Bioinform 2024; 26:bbaf028. [PMID: 39865982 PMCID: PMC11770069 DOI: 10.1093/bib/bbaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/17/2024] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis. By examining the co-existence patterns among these cell states, we highlighted a unique AML cellular ecosystem (ACE) that signifies aberrant tumor milieu and poor survival, which is confirmed by public RNA-seq cohorts. We further developed the ACE signature (ACEsig), comprising 12 genes, which accurately predicts AML prognosis, and outperforms existing signatures. When applied to cytogenetically normal AML or intensively treated patients, the ACEsig continues to demonstrate strong performance. Our results demonstrate that large-scale systematic characterization of cellular heterogeneity has the potential to enhance our understanding of AML heterogeneity and contribute to more precise risk stratification strategy.
Collapse
Affiliation(s)
- Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ronghan Tang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ming Zhu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zhijuan Zhu
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
| | - Jiali Zhu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Hua Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
- Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, No. 566 Shengguang Road, Jimei District, Xiamen 361021, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Nainong Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
- Translational Medicine Center on Hematology, Fujian Medical University, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
41
|
Ho TC, LaMere MW, Kawano H, Byun DK, LaMere EA, Chiu YC, Chen C, Wang J, Dokholyan NV, Calvi LM, Liesveld JL, Jordan CT, Kapur R, Singh RK, Becker MW. Targeting IL-1/IRAK1/4 signaling in Acute Myeloid Leukemia Stem Cells Following Treatment and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622796. [PMID: 39605740 PMCID: PMC11601227 DOI: 10.1101/2024.11.09.622796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Therapies for acute myeloid leukemia (AML) face formidable challenges due to relapse, often driven by leukemia stem cells (LSCs). Strategies targeting LSCs hold promise for enhancing outcomes, yet paired comparisons of functionally defined LSCs at diagnosis and relapse remain underexplored. We present transcriptome analyses of functionally defined LSC populations at diagnosis and relapse, revealing significant alterations in IL-1 signaling. Interleukin-1 receptor type I (IL1R1) and interleukin-1 receptor accessory protein (IL1RAP) were notably upregulated in leukemia stem and progenitor cells at both diagnosis and relapse. Knockdown of IL1R1 and IL1RAP reduced the clonogenicity and/or engraftment of primary human AML cells. In leukemic MLL-AF9 mice, Il1r1 knockout reduced LSC frequency and extended survival. To target IL-1 signaling at both diagnosis and relapse, we developed UR241-2, a novel interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) inhibitor. UR241-2 robustly suppressed IL-1/IRAK1/4 signaling, including NF-κB activation and phosphorylation of p65 and p38, following IL-1 stimulation. UR241-2 selectively inhibited LSC clonogenicity in primary human AML cells at both diagnosis and relapse, while sparing normal hematopoietic stem and progenitor cells. It also reduced AML engraftment in leukemic mice. Our findings highlight the therapeutic potential of UR241-2 in targeting IL-1/IRAK1/4 signaling to eradicate LSCs and improve AML outcomes.
Collapse
|
42
|
Archer KJ, Fu H, Mrózek K, Nicolet D, Mims AS, Uy GL, Stock W, Byrd JC, Hiddemann W, Metzeler KH, Rausch C, Krug U, Sauerland C, Görlich D, Berdel WE, Woermann BJ, Braess J, Spiekermann K, Herold T, Eisfeld AK. Improving risk stratification for 2022 European LeukemiaNet favorable-risk patients with acute myeloid leukemia. Innovation (N Y) 2024; 5:100719. [PMID: 39529956 PMCID: PMC11551470 DOI: 10.1016/j.xinn.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Assignment of patients diagnosed with acute myeloid leukemia (AML) to the 2022 European LeukemiaNet (ELN) favorable genetic risk group has important clinical implications, as allogeneic stem cell transplantation in first complete remission (CR) is not advised due to a relatively good outcome of patients receiving chemotherapy alone and transplant-associated mortality. However, not all favorable genetic risk patients experience long-term relapse-free survival (RFS), making recognition of patients who would most likely be cured of high importance. We analyzed 297 patients aged <60 years with de novo AML classified as 2022 ELN favorable genetic risk who achieved a CR and had RNA sequencing (RNA-seq) and gene mutation data from diagnostic samples available (Alliance trial A152010). To identify prognostically relevant transcripts that can distinguish patients cured from patients susceptible to lower or higher risk of relapse or death, we fit a regularized mixture cure model (MCM) where RNA-seq expression values were our candidate covariates. To validate the identified transcripts, we analyzed 75 patients with de novo AML aged <60 years included in the 2022 ELN favorable genetic risk group who achieved a CR in an independent test set from Gene Expression Omnibus (GSE37642). Our MCM identified 145 transcripts associated with cure or long-term RFS and 149 transcripts associated with latency or shorter-term time to relapse. The area under the curve and C-statistic were, respectively, 0.946 and 0.856 for our training set and 0.877 and 0.857 for our test set. Our results suggest that the favorable risk group includes distinct transcriptionally defined subgroups with different biological properties, which may be useful for refining this genetic risk category.
Collapse
Affiliation(s)
- Kellie J. Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Han Fu
- Google, Inc., Mountain View, CA, USA
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S. Mims
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Geoffrey L. Uy
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wendy Stock
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Klaus H. Metzeler
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Christian Rausch
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Cristina Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | | | | | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Ann-Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
43
|
Xia X, Wang Y, Wang M, Lin J, Wang R, Xie S, Yu Y, Long J, Huang Z, Xian H, Zhang W, Lu C, Wang W, Liu H. The enhancement of immunoactivity induced by immunogenic cell death through serine/threonine kinase 10 inhibition: a potential therapeutic strategy. Front Immunol 2024; 15:1451796. [PMID: 39555062 PMCID: PMC11563836 DOI: 10.3389/fimmu.2024.1451796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Immunogenic cell death (ICD) is capable of activating the anti-tumor immune response of the organism; however, it is concurrently a complex process involving multiple factors. The specific factors that impact the occurrence of ICD remain undefined. Methods Through cluster analysis, patient specimens retrieved from the TARGET, TCGA, and GEO AML databases were categorized into two subtypes based on the expression levels of ICD-related genes: ICD-high and ICD-low. We compared the prognostic survival outcomes, pathway enrichment analysis, and immune cell infiltration between these two subtypes. Additionally, we identified factors related to AML development from multiple databases and verified the role of these factors both in vivo and in vitro in activating the immune response during the occurrence of ICD. Results and discussion In the ICD-high subtype, there was a notable increase in the abundance of immune cell populations, along with the enrichment of pathways pertinent to the activation of various immune cells. Despite these immunological enhancements, this subgroup demonstrated a poorer prognosis. This phenomenon was consistently observed across various additional AML datasets, leading us to hypothesize that elevated expression of ICD genes does not invariably correlate with a favorable prognosis. Notably, STK10 exhibited elevated expression in AML, was associated with a poor prognosis, and showed synchronous expression patterns with ICD genes. Inhibition of STK10 led to the activation of ICD and the induction of an antitumor response. Moreover, when combined with other ICD inducers, it produced a synergistic anti-tumor effect. Our results reveal the impact of STK10 on ICD and underscore its key role in initiating ICD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wenfang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Zeng AG, Iacobucci I, Shah S, Mitchell A, Wong G, Bansal S, Chen D, Gao Q, Kim H, Kennedy JA, Arruda A, Minden MD, Haferlach T, Mullighan CG, Dick JE. Single-cell transcriptional mapping reveals genetic and non-genetic determinants of aberrant differentiation in AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.26.573390. [PMID: 38234771 PMCID: PMC10793439 DOI: 10.1101/2023.12.26.573390] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In acute myeloid leukemia (AML), genetic mutations distort hematopoietic differentiation, resulting in the accumulation of leukemic blasts. Yet, it remains unclear how these mutations intersect with cellular origins and whether they converge upon similar differentiation patterns. Single-cell RNA sequencing (scRNA-seq) has enabled high-resolution mapping of the relationship between leukemia and normal cell states, yet this application is hampered by imprecise reference maps of normal hematopoiesis and small sample sizes among patient cohorts. As a first step we constructed a reference atlas of human bone marrow hematopoiesis from 263,519 single-cell transcriptomes spanning 55 cellular states, that was benchmarked against independent datasets of immunophenotypically pure hematopoietic stem and progenitor cells. Using this reference atlas, we mapped over 1.2 million single-cell transcriptomes spanning 318 AML, mixed phenotype acute leukemia (MPAL), and acute erythroid leukemia (AEL) samples. This large-scale analysis, together with systematic mapping of genotype-to-phenotype associations between driver mutations and differentiation landscapes, revealed convergence of diverse genetic alterations on twelve recurrent patterns of aberrant differentiation in AML. This included unconventional lymphoid and erythroid priming linked to RUNX1 and TP53 mutations, respectively. We also identified non-genetic determinants of AML differentiation such as two subgroups of KMT2A-rearranged AML that differ in the identity of their leukemic stem cells (LSCs), likely reflecting distinct cellular origins. Furthermore, distinct LSC-driven hierarchies can co-exist within individual patients, providing insights into AML evolution. Together, precise mapping of normal and malignant cell states provides a framework for advancing the study and disease classification of hematologic malignancies thereby informing therapy development.
Collapse
Affiliation(s)
- Andy G.X. Zeng
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - Ilaria Iacobucci
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sayyam Shah
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Gordon Wong
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - David Chen
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Qingsong Gao
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hyerin Kim
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| | - James A. Kennedy
- Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | | | - Charles G. Mullighan
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - John E. Dick
- Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada
| |
Collapse
|
45
|
Stiff A, Fornerod M, Kain BN, Nicolet D, Kelly BJ, Miller KE, Mrózek K, Boateng I, Bollas A, Garfinkle EAR, Momoh O, Fasola FA, Olawumi HO, Mencia-Trinchant N, Kloppers JF, van Marle AC, Hu E, Wijeratne S, Wheeler G, Walker CJ, Buss J, Heyrosa A, Desai H, Laganson A, Hamp E, Abu-Shihab Y, Abaza H, Kronen P, Sen S, Johnstone ME, Quinn K, Wronowski B, Hertlein E, Miles LA, Mims AS, Oakes CC, Blachly JS, Larkin KT, Mundy-Bosse B, Carroll AJ, Powell BL, Kolitz JE, Stone RM, Duarte C, Abbott D, Amaya ML, Jordan CT, Uy GL, Stock W, Archer KJ, Paskett ED, Guzman ML, Levine RL, Menghrajani K, Chakravarty D, Berger MF, Bottomly D, McWeeney SK, Tyner JW, Byrd JC, Salomonis N, Grimes HL, Mardis ER, Eisfeld AK. Multiomic profiling identifies predictors of survival in African American patients with acute myeloid leukemia. Nat Genet 2024; 56:2434-2446. [PMID: 39367245 PMCID: PMC11549055 DOI: 10.1038/s41588-024-01929-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Genomic profiles and prognostic biomarkers in patients with acute myeloid leukemia (AML) from ancestry-diverse populations are underexplored. We analyzed the exomes and transcriptomes of 100 patients with AML with genomically confirmed African ancestry (Black; Alliance) and compared their somatic mutation frequencies with those of 323 self-reported white patients with AML, 55% of whom had genomically confirmed European ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations recurrent in Black patients, including a hitherto unreported PHIP alteration detected in 7% of patients, were found in one white patient or not detected. Black patients with myelodysplasia-related AML were younger than white patients suggesting intrinsic and/or extrinsic dysplasia-causing stressors. On multivariable analyses of Black patients, NPM1 and NRAS mutations were associated with inferior disease-free and IDH1 and IDH2 mutations with reduced overall survival. Inflammatory profiles, cell type distributions and transcriptional profiles differed between Black and white patients with NPM1 mutations. Incorporation of ancestry-specific risk markers into the 2022 European LeukemiaNet genetic risk stratification changed risk group assignment for one-third of Black patients and improved their outcome prediction.
Collapse
Affiliation(s)
- Andrew Stiff
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bailee N Kain
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Isaiah Boateng
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Audrey Bollas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Omolegho Momoh
- Department of Internal Medicine, Montefiore Health System/Albert Einstein College of Medicine, New York, NY, USA
| | - Foluke A Fasola
- Department of Hematology, Faculty of Basic Medical Science, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Hannah O Olawumi
- Department of Haematology, University of Ilorin, Ilorin, Nigeria
| | - Nuria Mencia-Trinchant
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jean F Kloppers
- School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Health Laboratory Service, Universitas Academic Business Unit, Bloemfontein, South Africa
| | - Anne-Cecilia van Marle
- School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Health Laboratory Service, Universitas Academic Business Unit, Bloemfontein, South Africa
| | - Eileen Hu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Jill Buss
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Adrienne Heyrosa
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Helee Desai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrea Laganson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ethan Hamp
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yazan Abu-Shihab
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hasan Abaza
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Parker Kronen
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sidharth Sen
- Divison of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Megan E Johnstone
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kate Quinn
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ben Wronowski
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Erin Hertlein
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Linde A Miles
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Alice S Mims
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Oakes
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - James S Blachly
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Karilyn T Larkin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Bethany Mundy-Bosse
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bayard L Powell
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cassandra Duarte
- University of Colorado, Anschutz Medical Campus, College of Medicine, Denver, CO, USA
| | - Diana Abbott
- University of Colorado, Anschutz Medical Campus, College of Medicine, Denver, CO, USA
| | - Maria L Amaya
- University of Colorado, Anschutz Medical Campus, College of Medicine, Denver, CO, USA
| | - Craig T Jordan
- University of Colorado, Anschutz Medical Campus, College of Medicine, Denver, CO, USA
| | - Geoffrey L Uy
- Washington University School of Medicine, Saint Louis, MO, USA
| | - Wendy Stock
- University of Chicago, College of Medicine, Chicago, IL, USA
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Electra D Paskett
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Monica L Guzman
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Ross L Levine
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Alliance Statistics and Data Management Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
46
|
Dembitz V, Lawson H, Burt R, Natani S, Philippe C, James SC, Atkinson S, Durko J, Wang LM, Campos J, Magee AMS, Woodley K, Austin MJ, Rio-Machin A, Casado P, Bewicke-Copley F, Rodriguez Blanco G, Pereira-Martins D, Oudejans L, Boet E, von Kriegsheim A, Schwaller J, Finch AJ, Patel B, Sarry JE, Tamburini J, Schuringa JJ, Hazlehurst L, Copland Iii JA, Yuneva M, Peck B, Cutillas P, Fitzgibbon J, Rouault-Pierre K, Kranc K, Gallipoli P. Stearoyl-CoA desaturase inhibition is toxic to acute myeloid leukemia displaying high levels of the de novo fatty acid biosynthesis and desaturation. Leukemia 2024; 38:2395-2409. [PMID: 39187579 PMCID: PMC11518998 DOI: 10.1038/s41375-024-02390-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Identification of specific and therapeutically actionable vulnerabilities, ideally present across multiple mutational backgrounds, is needed to improve acute myeloid leukemia (AML) patients' outcomes. We identify stearoyl-CoA desaturase (SCD), the key enzyme in fatty acid (FA) desaturation, as prognostic of patients' outcomes and, using the clinical-grade inhibitor SSI-4, show that SCD inhibition (SCDi) is a therapeutic vulnerability across multiple AML models in vitro and in vivo. Multiomic analysis demonstrates that SCDi causes lipotoxicity, which induces AML cell death via pleiotropic effects. Sensitivity to SCDi correlates with AML dependency on FA desaturation regardless of mutational profile and is modulated by FA biosynthesis activity. Finally, we show that lipotoxicity increases chemotherapy-induced DNA damage and standard chemotherapy further sensitizes AML cells to SCDi. Our work supports developing FA desaturase inhibitors in AML while stressing the importance of identifying predictive biomarkers of response and biologically validated combination therapies to realize their full therapeutic potential.
Collapse
Affiliation(s)
- Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Physiology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hannah Lawson
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Richard Burt
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Francis Crick Institute, London, UK
| | - Sirisha Natani
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Céline Philippe
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- INSERM U1242, University of Rennes, Rennes, France
| | - Sophie C James
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Samantha Atkinson
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Francis Crick Institute, London, UK
| | - Jozef Durko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lydia M Wang
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Joana Campos
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Aoife M S Magee
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Keith Woodley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael J Austin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Experimental Hematology Lab, IIS-Fundación Jimenez Díaz, UAM, Madrid, Spain
| | - Pedro Casado
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giovanny Rodriguez Blanco
- The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Diego Pereira-Martins
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lieve Oudejans
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, LabEx Toucan, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Alex von Kriegsheim
- The University of Edinburgh MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, Basel, Switzerland
| | - Andrew J Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bela Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, LabEx Toucan, Toulouse, France
- Équipe labellisée Ligue Nationale Contre le Cancer 2023, Toulouse, France
| | - Jerome Tamburini
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva and Swiss Cancer Center Leman, Geneva, Switzerland
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Barrie Peck
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Pedro Cutillas
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jude Fitzgibbon
- Centre for Cancer Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kamil Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- The Institute of Cancer Research, London, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
47
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024; 18:995-1005. [PMID: 39469853 PMCID: PMC11633390 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
48
|
Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP, Starczynowski DT. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun 2024; 15:9189. [PMID: 39448591 PMCID: PMC11502881 DOI: 10.1038/s41467-024-53629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematopoietic malignancy. Although many patients achieve complete remission with standard induction therapy, a combination of cytarabine and anthracycline, ~40% of patients have induction failure. These refractory patients pose a treatment challenge, as they do not respond to salvage therapy or allogeneic stem cell transplant. Herein, we show that AML patients who experience induction failure have elevated expression of the NF-κB target gene tumor necrosis factor alpha-induced protein-3 (TNFAIP3/A20) and impaired necroptotic cell death. A20High AML are resistant to anthracyclines, while A20Low AML are sensitive. Loss of A20 in AML restores sensitivity to anthracycline treatment by inducing necroptosis. Moreover, A20 prevents necroptosis in AML by targeting the necroptosis effector RIPK1, and anthracycline-induced necroptosis is abrogated in A20High AML. These findings suggest that NF-κB-driven A20 overexpression plays a role in failed chemotherapy induction and highlights the potential of targeting an alternative cell death pathway in AML.
Collapse
MESH Headings
- Humans
- Necroptosis/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
- Tumor Necrosis Factor alpha-Induced Protein 3/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- NF-kappa B/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Cell Line, Tumor
- Anthracyclines/pharmacology
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Animals
- Female
- Male
- Mice
- Middle Aged
Collapse
Affiliation(s)
- Ashley E Culver-Cochran
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, USA.
- University of Cincinnati Cancer Center, Cincinnati, USA.
| |
Collapse
|
49
|
Feng YD, Du J, Chen HL, Shen Y, Jia YC, Zhang PY, He A, Yang Y. Characterization of stem cell landscape and assessing the stemness degree to aid clinical therapeutics in hematologic malignancies. Sci Rep 2024; 14:23743. [PMID: 39390242 PMCID: PMC11466975 DOI: 10.1038/s41598-024-74806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Hematological malignancies are a group of cancers that affect the blood, bone marrow, and lymphatic system. Cancer stem cells (CSCs) are believed to be responsible for the initiation, progression, and relapse of hematological malignancies. However, identifying and targeting CSCs presents many challenges. We aimed to develop a stemness index (HSCsi) to identify and guide the therapy targeting CSCs in hematological malignancies. We developed a novel one-class logistic regression (OCLR) algorithm to identify transcriptomic feature sets related to stemness in hematologic malignancies. We used the HSCsi to measure the stemness degree of leukemia stem cells (LSCs) and correlate it with clinical outcomes.We analyze the correlation of HSCsi with genes and pathways involved in drug resistance and immune microenvironment of acute myeloid leukemia (AML). HSCsi revealed stemness-related biological mechanisms in hematologic malignancies and effectively identify LSCs. The index also predicted survival and relapse rates of various hematologic malignancies. We also identified potential drugs and interventions targeting cancer stem cells (CSCs) of hematologic malignancies by the index. Moreover, we found a correlation between stemness and bone marrow immune microenvironment in AML. Our study provides a novel method and tool to assess the stemness degree of hematologic malignancies and its implications for clinical outcomes and therapeutic strategies. Our HSC stemness index can facilitate the precise stratification of hematologic malignancies, suggest possible targeted and immunotherapy options, and guide the selection of patients.
Collapse
Affiliation(s)
- Yuan-Dong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Jin Du
- Department of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, 277 West Youyi Road, Xi'an, 710068, China
| | - Hong-Li Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ya-Chun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Peng-Yu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China.
| |
Collapse
|
50
|
Tian Y, Guo J, Mao L, Chen Z, Zhang X, Li Y, Zhang Y, Zha X, Luo OJ. Single-cell dissection reveals promotive role of ENO1 in leukemia stem cell self-renewal and chemoresistance in acute myeloid leukemia. Stem Cell Res Ther 2024; 15:347. [PMID: 39380054 PMCID: PMC11463110 DOI: 10.1186/s13287-024-03969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Quiescent self-renewal of leukemia stem cells (LSCs) and resistance to conventional chemotherapy are the main factors leading to relapse of acute myeloid leukemia (AML). Alpha-enolase (ENO1), a key glycolytic enzyme, has been shown to regulate embryonic stem cell differentiation and promote self-renewal and malignant phenotypes in various cancer stem cells. Here, we sought to test whether and how ENO1 influences LSCs renewal and chemoresistance within the context of AML. METHODS We analyzed single-cell RNA sequencing data from bone marrow samples of 8 relapsed/refractory AML patients and 4 healthy controls using bioinformatics and machine learning algorithms. In addition, we compared ENO1 expression levels in the AML cohort with those in 37 control subjects and conducted survival analyses to correlate ENO1 expression with clinical outcomes. Furthermore, we performed functional studies involving ENO1 knockdown and inhibition in AML cell line. RESULTS We used machine learning to model and infer malignant cells in AML, finding more primitive malignant cells in the non-response (NR) group. The differentiation capacity of LSCs and progenitor malignant cells exhibited an inverse correlation with glycolysis levels. Trajectory analysis indicated delayed myeloid cell differentiation in NR group, with high ENO1-expressing LSCs at the initial stages of differentiation being preserved post-treatment. Simultaneously, ENO1 and stemness-related genes were upregulated and co-expressed in malignant cells during early differentiation. ENO1 level in our AML cohort was significantly higher than the controls, with higher levels in NR compared to those in complete remission. Knockdown of ENO1 in AML cell line resulted in the activation of LSCs, promoting cell differentiation and apoptosis, and inhibited proliferation. ENO1 inhibitor can impede the proliferation of AML cells. Furthermore, survival analyses associated higher ENO1 expression with poorer outcome in AML patients. CONCLUSIONS Our findings underscore the critical role of ENO1 as a plausible driver of LSC self-renewal, a potential target for AML target therapy and a biomarker for AML prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Phosphopyruvate Hydratase/metabolism
- Phosphopyruvate Hydratase/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Female
- Drug Resistance, Neoplasm
- Single-Cell Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Male
- Middle Aged
- Cell Self Renewal
- Adult
- Cell Line, Tumor
- Cell Differentiation
- Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Yun Tian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiafan Guo
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xingwei Zhang
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|