1
|
Hoffmann S, Seeger T. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| | | |
Collapse
|
2
|
Davidson SM, Andreadou I, Antoniades C, Bartunek J, Basso C, Brundel BJJM, Byrne RA, Chiva-Blanch G, da Costa Martins P, Evans PC, Girão H, Giricz Z, Gollmann-Tepeköylü C, Guzik T, Gyöngyösi M, Hübner N, Joner M, Kleinbongard P, Krieg T, Liehn E, Madonna R, Maguy A, Paillard M, Pesce M, Petersen SE, Schiattarella GG, Sluijter JPG, Steffens S, Streckfuss-Bömeke K, Thielmann M, Tucker A, Van Linthout S, Wijns W, Wojta J, Wu JC, Perrino C. Opportunities and challenges for the use of human samples in translational cardiovascular research: a scientific statement of the ESC Working Group on Cellular Biology of the Heart, the ESC Working Group on Cardiovascular Surgery, the ESC Council on Basic Cardiovascular Science, the ESC Scientists of Tomorrow, the European Association of Percutaneous Cardiovascular Interventions of the ESC, and the Heart Failure Association of the ESC. Cardiovasc Res 2025; 121:702-729. [PMID: 40084813 PMCID: PMC12101359 DOI: 10.1093/cvr/cvaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 03/16/2025] Open
Abstract
Animal models offer invaluable insights into disease mechanisms but cannot entirely mimic the variability and heterogeneity of human populations, nor the increasing prevalence of multi-morbidity. Consequently, employing human samples-such as whole blood or fractions, valvular and vascular tissues, myocardium, pericardium, or human-derived cells-is essential for enhancing the translational relevance of cardiovascular research. For instance, myocardial tissue slices, which preserve crucial structural and functional characteristics of the human heart, can be used in vitro to examine drug responses. Human blood serves as a rich source of biomarkers, including extracellular vesicles, various types of RNA (miRNA, lncRNA, and circRNAs), circulating inflammatory cells, and endothelial colony-forming cells, facilitating detailed studies of cardiovascular diseases. Primary cardiomyocytes and vascular cells isolated from human tissues are invaluable for mechanistic investigations in vitro. In cases where these are unavailable, human induced pluripotent stem cells serve as effective substitutes, albeit with specific limitations. However, the use of human samples presents challenges such as ethical approvals, tissue procurement and storage, variability in patient genetics and treatment regimens, and the selection of appropriate control samples. Biobanks are central to the efficient use of these scarce and valuable resources. This scientific statement discusses opportunities to implement the use of human samples for cardiovascular research within specific clinical contexts, offers a practical framework for acquiring and utilizing different human materials, and presents examples of human sample applications for specific cardiovascular diseases, providing a valuable resource for clinicians, translational and basic scientists engaged in cardiovascular research.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Ioanna Andreadou
- School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Acute Multidisciplinary Imaging and Interventional Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Cardiovascular Pathology, University of Padua, Padua, Italy
| | - Bianca J J M Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Robert A Byrne
- Cardiovascular Research Institute Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Chiva-Blanch
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Obesity and Nutrition Physiopathology, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula da Costa Martins
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paul C Evans
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Henrique Girão
- Center for Innovative Biomedicine and Biotechnology, Clinical Academic Centre of Coimbra, Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Coimbra, Portugal
| | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Can Gollmann-Tepeköylü
- Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Anichstraße 35 A, 6020 Innsbruck, Austria
| | - Tomasz Guzik
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Norbert Hübner
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Center Munich, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Petra Kleinbongard
- Faculty of Medicine University of Duisburg-Essen, Institute of Pathophysiology, Duisburg-Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Liehn
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Pisa, Italy
| | - Ange Maguy
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Melanie Paillard
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Aerospace and Mechanical Engineering, Politecnico di Torino, Italy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| | - Gabriele G Schiattarella
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Matthias Thielmann
- West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Art Tucker
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité, BIH Center for Regenerative Therapies, Universitätmedizin Berlin, Berlin, Germany
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
| | - William Wijns
- The Lambe Institute for Translational Research and Curam, University of Galway, Galway, Ireland
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
3
|
Park YG, Kim S, Min S, Kim E, Kim D, Cho YH, Kim S, Joo H, Jeong I, Lim JA, Lee S, Cho SW, Park JU. Soft 3D Bioelectrodes for Intraorganoid Signal Monitoring in Cardiac Models. NANO LETTERS 2025; 25:6481-6490. [PMID: 40200576 DOI: 10.1021/acs.nanolett.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Continuous monitoring of physiological activities within the internal regions of three-dimensional (3D) organoids holds significant promise for advancing organoid-based research. However, conventional methods are constrained to capturing signals from the peripheral surfaces of organoids, limiting insights into internal dynamics. Here, we present a soft 3D bioelectrode platform for continuous intraorganoid signal monitoring. These bioelectrodes, formed via 3D printing of liquid metal, are designed with customizable geometric parameters, including height and diameter, to adapt to various organoid structures. The tissue-comparable softness of the electrodes minimizes damage to cardiac organoids, ensuring a stable interface for reliable signal recording even under dynamic deformations caused by rhythmic contractions or displacements in aqueous environments. The array configuration enables simultaneous electrocardiogram (ECG) recordings from 32 organoids. Demonstrating real-time monitoring of drug-induced ECG responses, this scalable platform highlights its potential for high-throughput drug screening.
Collapse
Affiliation(s)
- Young-Geun Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Enji Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dayeon Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
- Soft Hybrid Materials Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Inhea Jeong
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Ah Lim
- Soft Hybrid Materials Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Sangmin Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Mun D, Kang JY, Park M, Yoo G, Yun N, Hwang Y, Joung B. Pathogenic KCNH2-G53S variant in the PAS domain influences the electrophysiological phenotype in long QT syndrome type 2. Front Cardiovasc Med 2025; 12:1524909. [PMID: 40271129 PMCID: PMC12014601 DOI: 10.3389/fcvm.2025.1524909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Background Long QT syndrome type 2 (LQT2) is an arrythmia caused by loss-of-function mutations in KCNH2, leading to impaired Kv11.1 channel function. Objective To better understand LQT2, we examined the electrophysiological differences related to the G53S variant, which is located within the PAS domain of KCNH2, using patient-specific human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs). Methods We generated hiPSC-CMs from a patient harboring the KCNH2G53S variant and a healthy control using non-integrative Sendai virus-mediated reprogramming. Their electrophysiological properties were assessed using microelectrode arrays (MEA), and Ca2+ dynamics were characterized using Fluo-4 dye. Results The patient harboring KCNH2G53S experienced aborted sudden cardiac death at 22 years of age, was diagnosed with LQT, and had an implantable cardioverter-defibrillator (ICD) implanted. KCNH2G53S hiPSC-CMs expressed less KCNH2 than normal CMs. Transcriptomic analysis of KCNH2G53S hiPSC-CMs revealed 3,857 differentially expressed genes, highlighting significant changes in pathways related to LQT2 development. Action potential duration was significantly longer in KCNH2G53S hiPSC-CMs than in control (545.3 ± 176.3 ms vs. 339.9 ± 44.5 ms; P = 0.019). Corrected field potential duration was significantly longer in KCNH2G53S hiPSC-CMs than in control (318.0 ± 66.3 ms vs. 234.5 ± 21.0 ms; P = 0.015), indicating altered electrophysiology. KCNH2G53S hiPSC-CMs exhibited significantly increased calcium transient amplitude and prolonged calcium wave duration under isoproterenol stimulation, indicating exacerbated abnormal calcium handling. Conclusion Our analysis of hiPSC-CMs carrying a heterozygous KCNH2G53S mutation, which showed abnormal electrophysiology and impaired calcium handling, provides a basis for developing improved management strategies for patients with LQT2.
Collapse
Affiliation(s)
- Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Malgeum Park
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyeongseo Yoo
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nuri Yun
- GNTPharma Science and Technology Center for Health, Incheon, Republic of Korea
| | - YouMi Hwang
- Division of Cardiology, Department of Internal Medicine, St. Vincent’s Hospital, The Catholic University College of Medicine, Suwon, Republic of Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Li Q, Wang YF, Wang B, Lv TT, Zhang P. Induced Pluripotent Stem Cells in Congenital Long QT Syndrome: Research Progress and Clinical Applications. Rev Cardiovasc Med 2025; 26:28251. [PMID: 40351699 PMCID: PMC12059747 DOI: 10.31083/rcm28251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 05/14/2025] Open
Abstract
Congenital long QT syndrome (LQTS) is a potentially life-threatening hereditary arrhythmia characterized by a prolonged QT interval on electrocardiogram (ECG) due to delayed ventricular repolarization. This condition predisposes individuals to severe arrhythmic events, including ventricular tachycardia and sudden cardiac death. Traditional approaches to LQTS research and treatment are limited by an incomplete understanding of its gene-specific pathophysiology, variable clinical presentation, and the challenges associated with developing effective, personalized therapies. Recent advances in human induced pluripotent stem cell (iPSC) technology have opened new avenues for elucidating LQTS mechanisms and testing therapeutic strategies. By generating cardiomyocytes from patient-specific iPSCs (iPSC-CMs), it is now possible to recreate the patient's genetic context and study LQTS in a controlled environment. This comprehensive review describes how iPSC technology deepens our understanding of LQTS and accelerates the development of tailored treatments, as well as ongoing challenges such as incomplete cell maturation and cellular heterogeneity.
Collapse
Affiliation(s)
- Qing Li
- School of Clinical Medicine, Tsinghua University, 100084 Beijing, China
| | - Yi-Fei Wang
- School of Clinical Medicine, Tsinghua University, 100084 Beijing, China
| | - Bin Wang
- School of Clinical Medicine, Tsinghua University, 100084 Beijing, China
| | - Ting-Ting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| | - Ping Zhang
- School of Clinical Medicine, Tsinghua University, 100084 Beijing, China
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218 Beijing, China
| |
Collapse
|
6
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Haim IR, Gruber A, Kazma N, Bashai C, Lichtig Kinsbruner H, Caspi O. Modeling Heart Failure With Preserved Ejection Fraction Using Human Induced Pluripotent Stem Cell-Derived Cardiac Organoids. Circ Heart Fail 2025; 18:e011690. [PMID: 39873109 DOI: 10.1161/circheartfailure.124.011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF. METHODS Human induced pluripotent stem cells-derived cardiomyocytes were used to produce cardiac organoids. The generated organoids were then subjected to HFpEF-associated, comorbidity-inspired conditions, such as hypertension, diabetes, and obesity-related inflammation. To assess the development of HFpEF pathophysiological features, organoids were thoroughly evaluated for their structural, functional, electrophysiological, and metabolic properties. RESULTS Exposure to the combination of all comorbidity-mimicking conditions resulted in the largest cellular volume of 1692±52 versus 1346±84 µm3 in RPMI (Roswell Park Memorial Institute medium) control group (P=0.003), while lower in obesity, hypertension, and diabetes groups: 1059±40 µm3 (P=0.014), 1276±35 µm3 (P=0.940), and 1575±70 µm3 (P=0.146), respectively. Similarly, ultrastructural fibrosis was most significantly observed after exposure to the combination of all HFpEF-inducing conditions 14.6±1.2% compared with single condition exposure 5.2±1.3% (obesity), 6.7±3.5% (hypertension), and 9.0±1.1% (diabetes; P<0.001). Moreover, HFpEF-related conditions led to an increase in passive force compared with control (7.52±1.08 versus 2.33±0.46 mN/mm, P<0.001), whereas no significant alterations were noted in active contractile forces. Relaxation constant τ was significantly prolonged after exposure to HFpEF conditions showing a prolongation of 95.9 ms (36.4-106.4; P=0.028) compared with a shortening of 35.6 ms (43.3-67.3; P=0.80) in the control. Finally, organoid exposure to HFpEF conditions led to a significant increase in oxidative stress levels and a significant decline in oxygen consumption rate. CONCLUSIONS We established a novel, human, in vitro model for HFpEF, based on comorbidity-inspired conditions. The model faithfully recapitulated the structural, functional, and mechanistic features of HFpEF. This model holds the potential to provide mechanistic insights and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Idan Refael Haim
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Amit Gruber
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Noam Kazma
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Caroline Bashai
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Hava Lichtig Kinsbruner
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Oren Caspi
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| |
Collapse
|
8
|
Wu H, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2025; 603:1865-1885. [PMID: 39235952 PMCID: PMC11955871 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh‐Fu Wu
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Harrison Porritt
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Department of Chemical and Materials Engineering, Faculty of EngineeringThe University of AucklandAucklandNew Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
| | - Annika Winbo
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Manaaki Manawa Centre for Heart ResearchUniversity of AucklandAucklandNew Zealand
| | - Nadja Zeltner
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
9
|
Paredes-Espinosa MB, Paluh JL. Synthetic embryology of the human heart. Front Cell Dev Biol 2025; 12:1478549. [PMID: 39935786 PMCID: PMC11810959 DOI: 10.3389/fcell.2024.1478549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
The evolution of stem cell-based heart models from cells and tissues to organoids and assembloids and recently synthetic embryology gastruloids, is poised to revolutionize our understanding of cardiac development, congenital to adult diseases, and patient customized therapies. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have already been integrated into transplantable patches and are in preclinical efforts to reverse fibrotic scarring from myocardial infarctions. To inform on the complexity of heart diseases, multi-tissue morphogenic heart models are needed that replicate fundamental components of heart function to heart organogenesis in vitro and which require a deep understanding of heart development. Organoid and assembloid models capture selected multicellular cardiac processes, such as chamber formation and priming events for vascularization. Gastruloid heart models offer deeper insights as synthetic embryology to mimic multi-staged developmental events of in vivo heart organogenesis including established heart fields, crescent formation and heart tube development along with vascular systemic foundation and even further steps. The human Elongating Multi-Lineage Organized Cardiac (EMLOC) gastruloid model captures these stages and additional events including chamber genesis, patterned vascularization, and extrinsic central and intrinsic cardiac nervous system (CNS-ICNS) integration guided by spatiotemporal and morphogenic processes with neural crest cells. Gastruloid synthetic embryology heart models offer new insights into previously hidden processes of development and provide powerful platforms for addressing heart disease that extends beyond cardiomyocytes, such as arrhythmogenic diseases, congenital defects, and systemic injury interactions, as in spinal cord injuries. The holistic view that is emerging will reveal heart development and disease in unprecedented detail to drive transformative state-of-the-art innovative applications for heart health.
Collapse
Affiliation(s)
| | - Janet L. Paluh
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science and Engineering, University at Albany, Albany, NY, United States
| |
Collapse
|
10
|
Ireland J, Kilian KA. The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity. Matrix Biol Plus 2024; 24:100160. [PMID: 39291079 PMCID: PMC11403269 DOI: 10.1016/j.mbplus.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are a promising source of cardiac cells for disease modelling and regenerative medicine. However, current protocols invariably lead to mixed population of cardiac cell types and often generate cells that resemble embryonic phenotypes. Here we developed a combinatorial approach to assess the importance of extracellular matrix proteins (ECMP) in directing the differentiation of cardiomyocytes from human embryonic stem cells (hESC). We did this by focusing on combinations of ECMP commonly found in the developing heart with a broad goal of identifying combinations that promote maturation and influence chamber specific differentiation. We formulated 63 unique ECMP combinations fabricated from collagen 1, collagen 3, collagen 4, fibronectin, laminin, and vitronectin, presented alone and in combinations, leading to the identification of specific ECMP combinations that promote hESC proliferation, pluripotency, and germ layer specification. When hESC were subjected to a differentiation protocol on the ECMP combinations, it revealed precise protein combinations that enhance differentiation as determined by the expression of cardiac progenitor markers kinase insert domain receptor (KDR) and mesoderm posterior transcription factor 1 (MESP1). High expression of cardiac troponin (cTnT) and the relative expression of myosin light chain isoforms (MLC2a and MLC2v) led to the identification of three surfaces that promote a mature cardiomyocyte phenotype. Action potential morphology was used to assess chamber specificity, which led to the identification of matrices that promote chamber-specific cardiomyocytes. This study provides a matrix-based approach to improve control over cardiomyocyte phenotypes during differentiation, with the scope for translation to cardiac laboratory models and for the generation of functional chamber specific cardiomyocytes for regenerative therapies.
Collapse
Affiliation(s)
- Jake Ireland
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW Sydney, Sydney, New South Wales, Australia
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Clark AP, Krogh-Madsen T, Christini DJ. Stem cell-derived cardiomyocyte heterogeneity confounds electrophysiological insights. J Physiol 2024; 602:5155-5162. [PMID: 38723234 PMCID: PMC11493526 DOI: 10.1113/jp284618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 08/21/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer potential as an in vitro model for studying drug cardiotoxicity and patient-specific cardiovascular disease. The inherent electrophysiological heterogeneity of these cells limits the depth of insights that can be drawn from well-designed experiments. In this review, we provide our perspective on some sources and the consequences of iPSC-CM heterogeneity. We demonstrate the extent of heterogeneity in the literature and explain how such heterogeneity is exacerbated by patch-clamp experimental artifacts in the manual and automated set-up. Finally, we discuss how this heterogeneity, caused by both intrinsic and extrinsic factors, limits our ability to build digital twins of patient-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
12
|
Tatekoshi Y, Chen C, Shapiro JS, Chang HC, Blancard M, Lyra-Leite DM, Burridge PW, Feinstein M, D'Aquila R, Hsue P, Ardehali H. Human induced pluripotent stem cell-derived cardiomyocytes to study inflammation-induced aberrant calcium transient. eLife 2024; 13:RP95867. [PMID: 39331464 PMCID: PMC11434618 DOI: 10.7554/elife.95867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is commonly found in persons living with HIV (PLWH) even when antiretroviral therapy suppresses HIV viremia. However, studying this condition has been challenging because an appropriate animal model is not available. In this article, we studied calcium transient in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in culture to simulate the cardiomyocyte relaxation defect noted in PLWH and HFpEF and assess whether various drugs have an effect. We show that treatment of hiPSC-CMs with inflammatory cytokines (such as interferon-γ or TNF-α) impairs their Ca2+ uptake into sarcoplasmic reticulum and that SGLT2 inhibitors, clinically proven as effective for HFpEF, reverse this effect. Additionally, treatment with mitochondrial antioxidants (like mito-Tempo) and certain antiretrovirals resulted in the reversal of the effects of these cytokines on calcium transient. Finally, incubation of hiPSC-CMs with serum from HIV patients with and without diastolic dysfunction did not alter their Ca2+-decay time, indicating that the exposure to the serum of these patients is not sufficient to induce the decrease in Ca2+ uptake in vitro. Together, our results indicate that hiPSC-CMs can be used as a model to study molecular mechanisms of inflammation-mediated abnormal cardiomyocyte relaxation and screen for potential new interventions.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Chunlei Chen
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University, Chicago, United States
| | - Matthew Feinstein
- Department of Medicine, Northwestern University, Chicago, United States
| | - Richard D'Aquila
- Department of Medicine, Northwestern University, Chicago, United States
| | - Priscilla Hsue
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, United States
- Department of Pharmacology, Northwestern University, Chicago, United States
- Department of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
13
|
Lu X, Perr E, Naqvi T, Galitz D, Andersen M, Grabowski D, Person A, Kalyuzhny A, Flynn KC. A Novel Recombinant Vitronectin Variant Supports the Expansion and Differentiation of Pluripotent Stem Cells in Defined Animal-Free Workflows. Cells 2024; 13:1566. [PMID: 39329750 PMCID: PMC11429963 DOI: 10.3390/cells13181566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
An essential aspect of harnessing the potential of pluripotent stem cells (PSCs) and their derivatives for regenerative medicine is the development of animal-free and chemically defined conditions for ex vivo cultivation. PSCs, including embryonic and induced PSCs (iPSCs), are in the early stages of clinical trials for various indications, including degenerative diseases and traumatic injury. A key step in the workflows generating these cells for more widespread clinical use is their safe and robust ex vivo cultivation. This entails optimization of cell culture media and substrates that are safe and consistent while maintaining robust functionality. Here, we describe the design of a human vitronectin (hVTN) variant with improved manufacturability in a bacterial expression system along with improved function in comparison to wild-type VTN and other previously characterized polypeptide fragments. In conjunction with an animal component-free media formulation, our hVTN fragment provides animal-free conditions for the enhanced expansion of iPSCs. This hVTN variant also supports the reprogramming of PBMCs into iPSCs. Furthermore, we show that these iPSCs can be efficiently differentiated into the three major germ layers and cortical neurons, thereby closing the loop on a completely defined animal-free workflow for cell types relevant for regenerative medicine.
Collapse
Affiliation(s)
- Xi Lu
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - Eli Perr
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - Tahmina Naqvi
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - David Galitz
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - Marnelle Andersen
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
| | - David Grabowski
- Protein Development, Bio-Techne, Minneapolis, MN 55413, USA; (D.G.); (A.P.)
| | - Anthony Person
- Protein Development, Bio-Techne, Minneapolis, MN 55413, USA; (D.G.); (A.P.)
| | - Alex Kalyuzhny
- Antibody Applications, Bio-Techne, Minneapolis, MN 55413, USA;
| | - Kevin C. Flynn
- Stem Cell & Gene Therapy, Bio-Techne, Minneapolis, MN 55413, USA; (X.L.); (E.P.); (T.N.); (D.G.); (M.A.)
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Zhong L, Yan Z, Jiang D, Weng KC, Ouyang Y, Zhang H, Lin X, Xiao C, Yang H, Yao J, Kang X, Wang C, Huang C, Shen B, Chung SK, Jiang ZH, Zhu W, Neher E, Silva JR, Hou P. Targeting the I Ks Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants. Circ Res 2024; 135:722-738. [PMID: 39166328 PMCID: PMC11392204 DOI: 10.1161/circresaha.124.325009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which β-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
Collapse
Affiliation(s)
- Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Dexiang Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Kuo-Chan Weng
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Yue Ouyang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Hangyu Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Xiaoqing Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Chenxin Xiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University (H.Y.)
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, China (J.Y.)
| | - Xinjiang Kang
- Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease and the Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (X.K.)
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, China (X.K.)
- College of Life Sciences, Liaocheng University, China (X.K.)
| | - Changhe Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Department of Neurology, First Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, China (C.W.)
| | - Chen Huang
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Zhi-Hong Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (W.Z.)
| | - Erwin Neher
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO (K.-C.W., J.R.S.)
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China (L.Z., Z.Y., D.J., Y.O., H.Z., X.L., C.X., C.H., B.S., S.K.C., Z.-H.J., E.N., P.H.)
| |
Collapse
|
15
|
Sleiman Y, Reisqs JB, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. Int J Mol Sci 2024; 25:9155. [PMID: 39273104 PMCID: PMC11394733 DOI: 10.3390/ijms25179155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Collapse
Affiliation(s)
- Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Teles D, Fine BM. Using induced pluripotent stem cells for drug discovery in arrhythmias. Expert Opin Drug Discov 2024; 19:827-840. [PMID: 38825838 PMCID: PMC11227103 DOI: 10.1080/17460441.2024.2360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new in vitro models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery. AREAS COVERED The authors describe the latest two-dimensional in vitro models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies. EXPERT OPINION Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.
Collapse
Affiliation(s)
- Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Barry M. Fine
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
18
|
Wali R, Xu H, Cheruiyot C, Saleem HN, Janshoff A, Habeck M, Ebert A. Integrated machine learning and multimodal data fusion for patho-phenotypic feature recognition in iPSC models of dilated cardiomyopathy. Biol Chem 2024; 405:427-439. [PMID: 38651266 DOI: 10.1515/hsz-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Integration of multiple data sources presents a challenge for accurate prediction of molecular patho-phenotypic features in automated analysis of data from human model systems. Here, we applied a machine learning-based data integration to distinguish patho-phenotypic features at the subcellular level for dilated cardiomyopathy (DCM). We employed a human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model of a DCM mutation in the sarcomere protein troponin T (TnT), TnT-R141W, compared to isogenic healthy (WT) control iPSC-CMs. We established a multimodal data fusion (MDF)-based analysis to integrate source datasets for Ca2+ transients, force measurements, and contractility recordings. Data were acquired for three additional layer types, single cells, cell monolayers, and 3D spheroid iPSC-CM models. For data analysis, numerical conversion as well as fusion of data from Ca2+ transients, force measurements, and contractility recordings, a non-negative blind deconvolution (NNBD)-based method was applied. Using an XGBoost algorithm, we found a high prediction accuracy for fused single cell, monolayer, and 3D spheroid iPSC-CM models (≥92 ± 0.08 %), as well as for fused Ca2+ transient, beating force, and contractility models (>96 ± 0.04 %). Integrating MDF and XGBoost provides a highly effective analysis tool for prediction of patho-phenotypic features in complex human disease models such as DCM iPSC-CMs.
Collapse
Affiliation(s)
- Ruheen Wali
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hang Xu
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Cleophas Cheruiyot
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hafiza Nosheen Saleem
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Andreas Janshoff
- Institute for Physical Chemistry, Göttingen University, Tammannstraße 6, D-37077 Göttingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital , Kollegiengasse 10, D-07743 Jena, Germany
| | - Antje Ebert
- Department of Cardiology and Pneumology, Heart Research Center, University Medical Center, 27177 Göttingen University , Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
- Partner Site Göttingen, DZHK (German Center for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
19
|
Wu X, Chen Y, Kreutz A, Silver B, Tokar EJ. Pluripotent stem cells for target organ developmental toxicity testing. Toxicol Sci 2024; 199:163-171. [PMID: 38547390 PMCID: PMC11131012 DOI: 10.1093/toxsci/kfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Prenatal developmental toxicity research focuses on understanding the potential adverse effects of environmental agents, drugs, and chemicals on the development of embryos and fetuses. Traditional methods involve animal testing, but ethical concerns and the need for human-relevant models have prompted the exploration of alternatives. Pluripotent stem cells (PSCs) are versatile cells with the unique ability to differentiate into any cell type, serving as a foundational tool for studying human development. Two-dimensional (2D) PSC models are often chosen for their ease of use and reproducibility for high-throughput screening. However, they lack the complexity of an in vivo environment. Alternatively, three-dimensional (3D) PSC models, such as organoids, offer tissue architecture and intercellular communication more reminiscent of in vivo conditions. However, they are complicated to produce and analyze, usually requiring advanced and expensive techniques. This review discusses recent advances in the use of human PSCs differentiated into brain and heart lineages and emerging tools and methods that can be combined with PSCs to help address important scientific questions in the area of developmental toxicology. These advancements and new approach methods align with the push for more relevant and predictive developmental toxicity assessment, combining innovative techniques with organoid models to advance regulatory decision-making.
Collapse
Affiliation(s)
- Xian Wu
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | - Yichang Chen
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
- Inotiv, Research Triangle Park, North Carolina 27560, USA
| | - Brian Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Erik J Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
20
|
Saleem HN, Ignatyeva N, Stuut C, Jakobs S, Habeck M, Ebert A. 3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models. Cells 2024; 13:923. [PMID: 38891055 PMCID: PMC11171759 DOI: 10.3390/cells13110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.
Collapse
Affiliation(s)
- Hafiza Nosheen Saleem
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| | - Christiaan Stuut
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
- Clinic of Neurology, High Resolution Microscopy, University Medical Center Goettingen, 37075 Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Goettingen, Germany
| | - Michael Habeck
- Microscopic Image Analysis, 39065 Jena University Hospital, Kollegiengasse 10, 07743 Jena, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Department of Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, 37077 Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
21
|
Zhao Z, Zang X, Niu K, Song W, Wang X, Mügge A, Aweimer A, Hamdani N, Zhou X, Zhao Y, Akin I, El-Battrawy I. Impacts of gene variants on drug effects-the foundation of genotype-guided pharmacologic therapy for long QT syndrome and short QT syndrome. EBioMedicine 2024; 103:105108. [PMID: 38653189 PMCID: PMC11041837 DOI: 10.1016/j.ebiom.2024.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.
Collapse
Affiliation(s)
- Zhihan Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaobiao Zang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Kerun Niu
- Department of Orthopaedic, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Weifeng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xianqing Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Andreas Mügge
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
| | - Assem Aweimer
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghui Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Gao C, Shi Q, Pan X, Chen J, Zhang Y, Lang J, Wen S, Liu X, Cheng TL, Lei K. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis. Cell Rep 2024; 43:113892. [PMID: 38431841 DOI: 10.1016/j.celrep.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.
Collapse
Affiliation(s)
- Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qinghua Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Fudan University, Shanghai, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhong Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiali Lang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Wen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, Lee SJ, Kim H, Lee MJ, Jeong I, Cui B, Jo SH, Kim JJ, Hong SB, Choi YJ, Ban K, Kim YG, Park JU, Lee HA, Park HJ, Cho SW. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat Commun 2024; 15:2564. [PMID: 38519491 PMCID: PMC10960018 DOI: 10.1038/s41467-024-46928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Cellartgen, Seoul, 03722, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Cellartgen, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Maizels L, Heller E, Landesberg M, Glatstein S, Huber I, Arbel G, Gepstein A, Aronson D, Sharabi S, Beinart R, Segev A, Maor E, Gepstein L. Utilizing Human-Induced Pluripotent Stem Cells to Study Cardiac Electroporation Pulsed-Field Ablation. Circ Arrhythm Electrophysiol 2024; 17:e012278. [PMID: 38344845 PMCID: PMC10949974 DOI: 10.1161/circep.123.012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Electroporation is a promising nonthermal ablation method for cardiac arrhythmia treatment. Although initial clinical studies found electroporation pulsed-field ablation (PFA) both safe and efficacious, there are significant knowledge gaps concerning the mechanistic nature and electrophysiological consequences of cardiomyocyte electroporation, contributed by the paucity of suitable human in vitro models. Here, we aimed to establish and characterize a functional in vitro model based on human-induced pluripotent stem cells (hiPSCs)-derived cardiac tissue, and to study the fundamentals of cardiac PFA. METHODS hiPSC-derived cardiomyocytes were seeded as circular cell sheets and subjected to different PFA protocols. Detailed optical mapping, cellular, and molecular characterizations were performed to study PFA mechanisms and electrophysiological outcomes. RESULTS PFA generated electrically silenced lesions within the hiPSC-derived cardiac circular cell sheets, resulting in areas of conduction block. Both reversible and irreversible electroporation components were identified. Significant electroporation reversibility was documented within 5 to 15-minutes post-PFA. Irreversibly electroporated regions persisted at 24-hours post-PFA. Per single pulse, high-frequency PFA was less efficacious than standard (monophasic) PFA, whereas increasing pulse-number augmented lesion size and diminished reversible electroporation. PFA augmentation could also be achieved by increasing extracellular Ca2+ levels. Flow-cytometry experiments revealed that regulated cell death played an important role following PFA. Assessing for PFA antiarrhythmic properties, sustainable lines of conduction block could be generated using PFA, which could either terminate or isolate arrhythmic activity in the hiPSC-derived cardiac circular cell sheets. CONCLUSIONS Cardiac electroporation may be studied using hiPSC-derived cardiac tissue, providing novel insights into PFA temporal and electrophysiological characteristics, facilitating electroporation protocol optimization, screening for potential PFA-sensitizers, and investigating the mechanistic nature of PFA antiarrhythmic properties.
Collapse
Affiliation(s)
- Leonid Maizels
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
- Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.)
- Department of Cardiology, Royal Melbourne Hospital, Australia (L.M.)
| | - Eyal Heller
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
| | - Michal Landesberg
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Shany Glatstein
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Irit Huber
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Gil Arbel
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Amira Gepstein
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Doron Aronson
- Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.)
| | - Shirley Sharabi
- Advanced Technology Center and Department of Radiology, Sheba Medical Center, Ramat Gan, Israel (S.S.)
| | - Roy Beinart
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
| | - Amit Segev
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
| | - Elad Maor
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
- Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.)
| | - Lior Gepstein
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
- Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.)
| |
Collapse
|
26
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
27
|
Wu Y, Kong XJ, Ji YY, Fan J, Chen XM, Ji CC, Cheng YJ, Wu SH. Correction of I to in human induced pluripotent stem Cell-derived cardiomyocyte carrying DPP6 mutation in early repolarization syndrome by CRISPR/Cas9 genome editing. Exp Cell Res 2024; 435:113929. [PMID: 38272106 DOI: 10.1016/j.yexcr.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Early repolarization syndrome (ERS) is defined as occurring in patients with early repolarization pattern who have survived idiopathic ventricular fibrillation with clinical evaluation unrevealing for other explanations. The pathophysiologic basis of the ERS is currently uncertain. The objective of the present study was to examine the electrophysiological mechanism of ERS utilizing induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing. Whole genome sequencing was used to identify the DPP6 (c.2561T > C/p.L854P) variant in four families with sudden cardiac arrest induced by ERS. Cardiomyocytes were generated from iPSCs from a 14-year-old boy in the four families with ERS and an unrelated healthy control subject. Patch clamp recordings revealed more significant prolongation of the action potential duration (APD) and increased transient outward potassium current (Ito) (103.97 ± 18.73 pA/pF vs 44.36 ± 16.54 pA/pF at +70 mV, P < 0.05) in ERS cardiomyocytes compared with control cardiomyocytes. Of note, the selective correction of the causal variant in iPSC-derived cardiomyocytes using CRISPR/Cas9 gene editing normalized the Ito, whereas prolongation of the APD remained unchanged. ERS cardiomyocytes carrying DPP6 mutation increased Ito and lengthen APD, which maybe lay the electrophysiological foundation of ERS.
Collapse
Affiliation(s)
- Yang Wu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.
| | - Xiang-Jun Kong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Ying Ji
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China
| | - Jun Fan
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xu-Miao Chen
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng-Cheng Ji
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.
| | - Yun-Jiu Cheng
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Su-Hua Wu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Mozneb M, Jenkins A, Sances S, Pohlman S, Workman MJ, West D, Ondatje B, El-Ghazawi K, Woodbury A, Garcia VJ, Patel S, Arzt M, Dezem F, Laperle AH, Moser VA, Ho R, Yucer N, Plummer J, Barrett RJ, Svendsen CN, Sharma A. Multi-lineage heart-chip models drug cardiotoxicity and enhances maturation of human stem cell-derived cardiovascular cells. LAB ON A CHIP 2024; 24:869-881. [PMID: 38252454 PMCID: PMC12015978 DOI: 10.1039/d3lc00745f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability. This microfluidic organ-chip harbors hiPSC-CMs and hiPSC-ECs on separate channels that can be subjected to active fluid flow and rhythmic biomechanical stretch. We demonstrate the utility of this cardiovascular organ-chip as a predictive platform for evaluating multi-lineage VPTKI toxicity. This study may lead to the development of new modalities for the evaluation and prevention of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amelia Jenkins
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Stephany Pohlman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Dylan West
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Briana Ondatje
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Kareem El-Ghazawi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Amanda Woodbury
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Veronica J Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Madelyn Arzt
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Dezem
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alex H Laperle
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - V Alexandra Moser
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Nur Yucer
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
| | - Jasmine Plummer
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Pavilion, Room 8405, Los Angeles, CA 90048, USA.
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
29
|
Butler AS, Ascione R, Marrion NV, Harmer SC, Hancox JC. In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition. Sci Rep 2024; 14:3185. [PMID: 38326449 PMCID: PMC10850090 DOI: 10.1038/s41598-024-53571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, > 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p < 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.
Collapse
Affiliation(s)
- Andrew S Butler
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, BS2 8HW, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Stephen C Harmer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
30
|
Lerman BB, Markowitz SM, Cheung JW, Thomas G, Ip JE. Ventricular Tachycardia Due to Triggered Activity: Role of Early and Delayed Afterdepolarizations. JACC Clin Electrophysiol 2024; 10:379-401. [PMID: 38127010 DOI: 10.1016/j.jacep.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023]
Abstract
Most forms of sustained ventricular tachycardia (VT) are caused by re-entry, resulting from altered myocardial conduction and refractoriness secondary to underlying structural heart disease. In contrast, VT caused by triggered activity (TA) is unrelated to an abnormal structural substrate and is often caused by molecular defects affecting ion channel function or regulation of intracellular calcium cycling. This review summarizes the cellular and molecular bases underlying TA and exemplifies their clinical relevance with selective representative scenarios. The underlying basis of TA caused by delayed afterdepolarizations is related to sarcoplasmic reticulum calcium overload, calcium waves, and diastolic sarcoplasmic reticulum calcium leak. Clinical examples of TA caused by delayed afterdepolarizations include sustained right and left ventricular outflow tract tachycardia and catecholaminergic polymorphic VT. The other form of afterpotentials, early afterdepolarizations, are systolic events and inscribe early afterdepolarizations during phase 2 or phase 3 of the action potential. The fundamental defect is a decrease in repolarization reserve with associated increases in late plateau inward currents. Malignant ventricular arrhythmias in the long QT syndromes are initiated by early afterdepolarization-mediated TA. An understanding of the molecular and cellular bases of these arrhythmias has resulted in generally effective pharmacologic-based therapies, but these are nonspecific agents that have off-target effects. Therapeutic efficacy may need to be augmented with an implantable defibrillator. Next-generation therapies will include novel agents that rescue arrhythmogenic abnormalities in cellular signaling pathways and gene therapy approaches that transfer or edit pathogenic gene variants or silence mutant messenger ribonucleic acid.
Collapse
Affiliation(s)
- Bruce B Lerman
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA.
| | - Steven M Markowitz
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - Jim W Cheung
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - George Thomas
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| | - James E Ip
- Department of Medicine, Division of Cardiology and the Greenberg Institute for Cardiac Electrophysiology, Department of Medicine, Cornell University Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Maurissen TL, Kawatou M, López-Dávila V, Minatoya K, Yamashita JK, Woltjen K. Modeling mutation-specific arrhythmogenic phenotypes in isogenic human iPSC-derived cardiac tissues. Sci Rep 2024; 14:2586. [PMID: 38297132 PMCID: PMC10831092 DOI: 10.1038/s41598-024-52871-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
Disease modeling using human induced pluripotent stem cells (hiPSCs) from patients with genetic disease is a powerful approach for dissecting pathophysiology and drug discovery. Nevertheless, isogenic controls are required to precisely compare phenotypic outcomes from presumed causative mutations rather than differences in genetic backgrounds. Moreover, 2D cellular models often fail to exhibit authentic disease phenotypes resulting in poor validation in vitro. Here we show that a combination of precision gene editing and bioengineered 3D tissue models can establish advanced isogenic hiPSC-derived cardiac disease models, overcoming these drawbacks. To model inherited cardiac arrhythmias we selected representative N588D and N588K missense mutations affecting the same codon in the hERG potassium channel gene KCNH2, which are reported to cause long (LQTS) and short (SQTS) QT syndromes, respectively. We generated compound heterozygous variants in normal hiPSCs, and differentiated cardiomyocytes (CMs) and mesenchymal cells (MCs) to form 3D cardiac tissue sheets (CTSs). In hiPSC-derived CM monolayers and 3D CTSs, electrophysiological analysis with multielectrode arrays showed prolonged and shortened repolarization, respectively, compared to the isogenic controls. When pharmacologically inhibiting the hERG channels, mutant 3D CTSs were differentially susceptible to arrhythmic events than the isogenic controls. Thus, this strategy offers advanced disease models that can reproduce clinically relevant phenotypes and provide solid validation of gene mutations in vitro.
Collapse
Affiliation(s)
- Thomas L Maurissen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Masahide Kawatou
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Víctor López-Dávila
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Gourmey, Paris, France
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Jun K Yamashita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
- Department of Cellular and Tissue Communications, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
32
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Seefeldt JM, Libai Y, Berg K, Jespersen NR, Lassen TR, Dalsgaard FF, Ryhammer P, Pedersen M, Ilkjaer LB, Hu MA, Erasmus ME, Nielsen RR, Bøtker HE, Caspi O, Eiskjær H, Moeslund N. Effects of ketone body 3-hydroxybutyrate on cardiac and mitochondrial function during donation after circulatory death heart transplantation. Sci Rep 2024; 14:757. [PMID: 38191915 PMCID: PMC10774377 DOI: 10.1038/s41598-024-51387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Normothermic regional perfusion (NRP) allows assessment of therapeutic interventions prior to donation after circulatory death transplantation. Sodium-3-hydroxybutyrate (3-OHB) increases cardiac output in heart failure patients and diminishes ischemia-reperfusion injury, presumably by improving mitochondrial metabolism. We investigated effects of 3-OHB on cardiac and mitochondrial function in transplanted hearts and in cardiac organoids. Donor pigs (n = 14) underwent circulatory death followed by NRP. Following static cold storage, hearts were transplanted into recipient pigs. 3-OHB or Ringer's acetate infusions were initiated during NRP and after transplantation. We evaluated hemodynamics and mitochondrial function. 3-OHB mediated effects on contractility, relaxation, calcium, and conduction were tested in cardiac organoids from human pluripotent stem cells. Following NRP, 3-OHB increased cardiac output (P < 0.0001) by increasing stroke volume (P = 0.006), dP/dt (P = 0.02) and reducing arterial elastance (P = 0.02). Following transplantation, infusion of 3-OHB maintained mitochondrial respiration (P = 0.009) but caused inotropy-resistant vasoplegia that prevented weaning. In cardiac organoids, 3-OHB increased contraction amplitude (P = 0.002) and shortened contraction duration (P = 0.013) without affecting calcium handling or conduction velocity. 3-OHB had beneficial cardiac effects and may have a potential to secure cardiac function during heart transplantation. Further studies are needed to optimize administration practice in donors and recipients and to validate the effect on mitochondrial function.
Collapse
Affiliation(s)
- Jacob Marthinsen Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Yaara Libai
- The Laboratory for Cardiovascular Precision Medicine, Rapport Faculty of Medicine, Technion and Rambam's Cardiovascular Research and Innovation Center, 2 Efron St, Haifa, Israel
| | - Katrine Berg
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Nichlas Riise Jespersen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Frederik Flyvholm Dalsgaard
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Pia Ryhammer
- Department of Anesthesiology, Regional Hospital Silkeborg, Falkevej 1A, 8600, Silkeborg, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Lars Bo Ilkjaer
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
| | - Michiel A Hu
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Michiel E Erasmus
- Department of Cardiothoracic Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Roni R Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Erik Bøtker
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Oren Caspi
- The Laboratory for Cardiovascular Precision Medicine, Rapport Faculty of Medicine, Technion and Rambam's Cardiovascular Research and Innovation Center, 2 Efron St, Haifa, Israel
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Niels Moeslund
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|
34
|
Dattani A, Singh A, McCann GP, Gulsin GS. Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target. J Cardiovasc Dev Dis 2023; 11:12. [PMID: 38248882 PMCID: PMC10817027 DOI: 10.3390/jcdd11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes (T2D) is a multisystem disease with rapidly increasing global prevalence. Heart failure has emerged as a major complication of T2D. Dysregulated myocardial calcium handling is evident in the failing heart and this may be a key driver of cardiomyopathy in T2D, but until recently this has only been demonstrated in animal models. In this review, we describe the physiological concepts behind calcium handling within the cardiomyocyte and the application of novel imaging techniques for the quantification of myocardial calcium uptake. We take an in-depth look at the evidence for the impairment of calcium handling in T2D using pre-clinical models as well as in vivo studies, following which we discuss potential novel therapeutic approaches targeting dysregulated myocardial calcium handling in T2D.
Collapse
Affiliation(s)
- Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester LE3 9QP, UK; (A.S.); (G.P.M.); (G.S.G.)
| | | | | | | |
Collapse
|
35
|
Liew LC, Poh BM, An O, Ho BX, Lim CYY, Pang JKS, Beh LY, Yang HH, Soh BS. JAK2 as a surface marker for enrichment of human pluripotent stem cells-derived ventricular cardiomyocytes. Stem Cell Res Ther 2023; 14:367. [PMID: 38093391 PMCID: PMC10720068 DOI: 10.1186/s13287-023-03610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for cardiac disease modelling, drug discovery and regenerative medicine. Despite the advancement in various differentiation protocols, the heterogeneity of the generated population composed of diverse cardiac subtypes poses a significant challenge to their practical applications. Mixed populations of cardiac subtypes can compromise disease modelling and drug discovery, while transplanting them may lead to undesired arrhythmias as they may not integrate and synchronize with the host tissue's contractility. It is therefore crucial to identify cell surface markers that could enable high purity of ventricular CMs for subsequent applications. METHODS By exploiting the fact that immature CMs expressing myosin light chain 2A (MLC2A) will gradually express myosin light chain 2 V (MLC2V) protein as they mature towards ventricular fate, we isolated signal regulatory protein alpha (SIRPA)-positive CMs expressing intracellular MLC2A or MLC2V using MARIS (method for analysing RNA following intracellular sorting). Subsequently, RNA sequencing analysis was performed to examine the gene expression profile of MLC2A + and MLC2V + sorted CMs. We identified genes that were significantly up-regulated in MLC2V + samples to be potential surface marker candidates for ventricular specification. To validate these surface markers, we performed immunostaining and western blot analysis to measure MLC2A and MLC2V protein expressions in SIRPA + CMs that were either positive or negative for the putative surface markers, JAK2 (Janus kinase 2) or CD200. We then characterized the electrophysiological properties of surface marker-sorted CMs, using fluo-4 AM, a green-fluorescent calcium indicator, to measure the cellular calcium transient at the single cell level. For functional validation, we investigated the response of the surface marker-sorted CMs to vernakalant, an atrial-selective anti-arrhythmic agent. RESULTS In this study, while JAK2 and CD200 were identified as potential surface markers for the purification of ventricular-like CMs, the SIRPA+/JAK2+ population showed a higher percentage of MLC2V-expressing cells (~ 90%) compared to SIRPA+/CD200+ population (~ 75%). SIRPA+/JAK2+ sorted CMs exhibited ventricular-like electrophysiological properties, including slower beating rate, slower calcium depolarization and longer calcium repolarization duration. Importantly, vernakalant had limited to no significant effect on the calcium repolarization duration of SIRPA+/JAK2+ population, indicating their enrichment for ventricular-like CMs. CONCLUSION Our study lays the groundwork for the identification of cardiac subtype surface markers that allow purification of cardiomyocyte sub-populations. Our findings suggest that JAK2 can be employed as a cell surface marker for enrichment of hPSC-derived ventricular-like CMs.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Boon Min Poh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Beatrice Xuan Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Christina Ying Yan Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Leslie Y Beh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Republic of Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
36
|
Fan X, Yang G, Duru F, Grilli M, Akin I, Zhou X, Saguner AM, Ei-Battrawy I. Arrhythmogenic Cardiomyopathy: from Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem Cell Rev Rep 2023; 19:2683-2708. [PMID: 37731079 PMCID: PMC10661732 DOI: 10.1007/s12015-023-10615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a hereditary myocardial disease characterized by the replacement of the ventricular myocardium with fibrous fatty deposits. ACM is usually inherited in an autosomal dominant pattern with variable penetrance and expressivity, which is mainly related to ventricular tachyarrhythmia and sudden cardiac death (SCD). Importantly, significant progress has been made in determining the genetic background of ACM due to the development of new techniques for genetic analysis. The exact molecular pathomechanism of ACM, however, is not completely clear and the genotype-phenotype correlations have not been fully elucidated, which are useful to predict the prognosis and treatment of ACM patients. Different gene-targeted and transgenic animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models, and heterologous expression systems have been developed. Here, this review aims to summarize preclinical ACM models and platforms promoting our understanding of the pathogenesis of ACM and assess their value in elucidating the ACM genotype-phenotype relationship.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Guoqiang Yang
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Acupuncture and Rehabilitation, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Grilli
- Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Ardan Muammer Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Ei-Battrawy
- European Center for AngioScience (ECAS), German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/ Mannheim, and Centre for Cardiovascular Acute Medicine Mannheim (ZKAM), Medical Centre Mannheim, Heidelberg University, Partner Site, Heidelberg-Mannheim, Germany.
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr- University Bochum, Bochum, Germany.
| |
Collapse
|
37
|
Shiti A, Arbil G, Shaheen N, Huber I, Setter N, Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J Mol Cell Cardiol 2023; 183:42-53. [PMID: 37579942 PMCID: PMC10589759 DOI: 10.1016/j.yjmcc.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Among the monogenic inherited causes of atrial fibrillation is the short QT syndrome (SQTS), a rare channelopathy causing atrial and ventricular arrhythmias. One of the limitations in studying the mechanisms and optimizing treatment of SQTS-related atrial arrhythmias has been the lack of relevant human atrial tissues models. OBJECTIVE To generate a unique model to study SQTS-related atrial arrhythmias by combining the use of patient-specific human induced pluripotent stem cells (hiPSCs), atrial-specific differentiation schemes, two-dimensional tissue modeling, optical mapping, and drug testing. METHODS AND RESULTS SQTS (N588K KCNH2 mutation), isogenic-control, and healthy-control hiPSCs were coaxed to differentiate into atrial cardiomyocytes using a retinoic-acid based differentiation protocol. The atrial identity of the cells was confirmed by a distinctive pattern of MLC2v downregulation, connexin 40 upregulation, shorter and triangular-shaped action potentials (APs), and expression of the atrial-specific acetylcholine-sensitive potassium current. In comparison to the healthy- and isogenic control cells, the SQTS-hiPSC atrial cardiomyocytes displayed abbreviated APs and refractory periods along with an augmented rapidly activating delayed-rectifier potassium current (IKr). Optical mapping of a hiPSC-based atrial tissue model of the SQTS displayed shortened APD and altered biophysical properties of spiral waves induced in this model, manifested by accelerated spiral-wave frequency and increased rotor curvature. Both AP shortening and arrhythmia irregularities were reversed by quinidine and vernakalant treatment, but not by sotalol. CONCLUSIONS Patient-specific hiPSC-based atrial cellular and tissue models of the SQTS were established, which provide examples on how this type of modeling can shed light on the pathogenesis and pharmacological treatment of inherited atrial arrhythmias.
Collapse
Affiliation(s)
- Assad Shiti
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Arbil
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Naim Shaheen
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irit Huber
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Setter
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel; Cardiolology Department, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
38
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
39
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Rebs S, Streckfuss-Bömeke K. How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1222986. [PMID: 39086669 PMCID: PMC11285589 DOI: 10.3389/fmmed.2023.1222986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 08/02/2024]
Abstract
Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%-40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Sabine Rebs
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen and DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
El-Battrawy I, Hamdani N, Zhou X, Akin I. Variable Brugada syndrome phenotype severity in a dish: dreams meet reality. EBioMedicine 2023; 95:104757. [PMID: 37572643 PMCID: PMC10433006 DOI: 10.1016/j.ebiom.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Affiliation(s)
- Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Ruhr University, Bochum, Germany; Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany.
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr-University Bochum, Bochum, Germany
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
42
|
Clark AP, Wei S, Fullerton K, Krogh-Madsen T, Christini DJ. Rapid ionic current phenotyping (RICP) identifies mechanistic underpinnings of iPSC-CM AP heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553521. [PMID: 37645815 PMCID: PMC10461967 DOI: 10.1101/2023.08.16.553521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
As a renewable, easily accessible, human-derived in vitro model, human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) are a promising tool for studying arrhythmia-related factors, including cardiotoxicity and congenital proarrhythmia risks. An oft-mentioned limitation of iPSC-CMs is the abundant cell-to-cell variability in recordings of their electrical activity. Here, we develop a new method, rapid ionic current phenotyping (RICP), that utilizes a short (10 s) voltage clamp protocol to quantify cell-to-cell heterogeneity in key ionic currents. We correlate these ionic current dynamics to action potential recordings from the same cells and produce mechanistic insights into cellular heterogeneity. We present evidence that the L-type calcium current is the main determinant of upstroke velocity, rapid delayed rectifier K+ current is the main determinant of the maximal diastolic potential, and an outward current in the excitable range of slow delayed rectifier K+ is the main determinant of action potential duration. We measure an unidentified outward current in several cells at 6 mV that is not recapitulated by iPSC-CM mathematical models but contributes to determining action potential duration. In this way, our study both quantifies cell-to-cell variability in membrane potential and ionic currents, and demonstrates how the ionic current variability gives rise to action potential heterogeneity. Based on these results, we argue that iPSC-CM heterogeneity should not be viewed simply as a problem to be solved but as a model system to understand the mechanistic underpinnings of cellular variability.
Collapse
Affiliation(s)
- Alexander P Clark
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Siyu Wei
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Kristin Fullerton
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - David J Christini
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
43
|
Escribá R, Larrañaga-Moreira JM, Richaud-Patin Y, Pourchet L, Lazis I, Jiménez-Delgado S, Morillas-García A, Ortiz-Genga M, Ochoa JP, Carreras D, Pérez GJ, de la Pompa JL, Brugada R, Monserrat L, Barriales-Villa R, Raya A. iPSC-Based Modeling of Variable Clinical Presentation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:108-119. [PMID: 37317833 DOI: 10.1161/circresaha.122.321951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - José M Larrañaga-Moreira
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Yvonne Richaud-Patin
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Léa Pourchet
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
| | - Ioannis Lazis
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Senda Jiménez-Delgado
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Alba Morillas-García
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
| | - Martín Ortiz-Genga
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
| | - Juan Pablo Ochoa
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
| | - Guillermo Javier Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.L.d.l.P.)
| | - Ramón Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, Spain (D.C., G.J.P., R.B.)
- Department of Medical Sciences, Universitat de Girona, Spain (D.C., G.J.P., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
- Hospital Josep Trueta, Girona, Spain (R.B.)
| | - Lorenzo Monserrat
- Health in Code S.L., Scientific Department, A Coruña, Spain (J.P.O., L.M.)
| | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS) (J.M.L.-M., R.B.-V.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, A Coruña, Spain (J.M.L.-M., M.O.-G., J.P.O., R.B.-V.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (G.J.P., J.L.d.l.P., R.B., R.B.-V.)
| | - Angel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain (R.E., Y.R.-P., L.P., I.L., S.J.-D., A.M.-G., A.R.)
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain (R.E., Y.R.-P., L.P., A.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (A.R.)
| |
Collapse
|
44
|
Ahmad FS, Jin Y, Grassam-Rowe A, Zhou Y, Yuan M, Fan X, Zhou R, Mu-u-min R, O'Shea C, Ibrahim AM, Hyder W, Aguib Y, Yacoub M, Pavlovic D, Zhang Y, Tan X, Lei M, Terrar DA. Generation of cardiomyocytes from human-induced pluripotent stem cells resembling atrial cells with ability to respond to adrenoceptor agonists. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220312. [PMID: 37122218 PMCID: PMC10150206 DOI: 10.1098/rstb.2022.0312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/07/2022] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, α-actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs). Isolated myocytes were electrically quiescent until stimulated to fire action potentials with an AM profile and an amplitude of approximately 100 mV, arising from a resting potential of approximately -70 mV. Single-cell RNA sequence analysis showed a high level of expression of several atrial-specific transcripts including NPPA, MYL7, HOXA3, SLN, KCNJ4, KCNJ5 and KCNA5. Amplitudes of calcium transients recorded from spontaneously beating cultures were increased by the stimulation of α-adrenoceptors (activated by phenylephrine and blocked by prazosin) or β-adrenoceptors (activated by isoproterenol and blocked by CGP20712A). Our new approach provides human AMs with mature characteristics from hiPSCs which will facilitate drug discovery by enabling the study of human atrial cell signalling pathways and AF. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Faizzan S. Ahmad
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Cure8bio, Inc, 395 Fulton Street, Westbury, NY 11590, USA
| | - Yongcheng Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | - Yafei Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Meng Yuan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Rui Zhou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Razik Mu-u-min
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan 1242770, Egypt
- Department of Zoology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Wajiha Hyder
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Magdi Yacoub
- Aswan Heart Centre, Aswan 1242770, Egypt
- National Heart and Lung Institute, Heart Science Centre, Imperial College London, Middlesex SW3 6LY, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yanmin Zhang
- Shaanxi Institute for Pediatric Diseases, Department of Cardiology, Xi'an Children's Hospital, Xi'an 710003, People's Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
45
|
Giannetti F, Barbieri M, Shiti A, Casini S, Sager PT, Das S, Pradhananga S, Srinivasan D, Nimani S, Alerni N, Louradour J, Mura M, Gnecchi M, Brink P, Zehender M, Koren G, Zaza A, Crotti L, Wilde AAM, Schwartz PJ, Remme CA, Gepstein L, Sala L, Odening KE. Gene- and variant-specific efficacy of serum/glucocorticoid-regulated kinase 1 inhibition in long QT syndrome types 1 and 2. Europace 2023; 25:euad094. [PMID: 37099628 PMCID: PMC10228615 DOI: 10.1093/europace/euad094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
AIMS Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Federica Giannetti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Miriam Barbieri
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Assad Shiti
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
| | - Simona Casini
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Philip T Sager
- Thryv Therapeutics Inc., Montreal, Canada
- Cardiovascular Research Institute, Stanford University, Palo Alto, CA, USA
| | - Saumya Das
- Thryv Therapeutics Inc., Montreal, Canada
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Nicolò Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Julien Louradour
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Manuela Mura
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences–Translational Cardiology Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy
| | - Paul Brink
- Department of Medicine, University of Stellenbosch, Tygerberg, South Africa
| | - Manfred Zehender
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Brown University, Providence, RI, USA
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Arthur A M Wilde
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Carol Ann Remme
- Amsterdam UMC Location AMC Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam, The Netherlands
| | - Lior Gepstein
- Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
46
|
Li K, Ouyang M, Zhan J, Tian R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. CELL GENOMICS 2023; 3:100300. [PMID: 37228745 PMCID: PMC10203043 DOI: 10.1016/j.xgen.2023.100300] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While our knowledge of gene expression in different human cell types is rapidly expanding with advances in transcriptomic profiling technologies, the next challenge is to understand gene function in each cell type. CRISPR-Cas9-based functional genomics screening offers a powerful approach to determine gene function in a high-throughput manner. With the maturation of stem cell technology, a variety of human cell types can be derived from human pluripotent stem cells (hPSCs). Recently, the integration of CRISPR screening with hPSC differentiation technologies opens up unprecedented opportunities to systematically examine gene function in different human cell types and identify mechanisms and therapeutic targets for human diseases. This review highlights recent progress in the development and applications of CRISPR-Cas9-based functional genomics screening in hPSC-derived cell types, discusses current challenges and limitations, and outlines future directions for this emerging field.
Collapse
Affiliation(s)
- Kun Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Miao Ouyang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Jiangshan Zhan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Ruilin Tian
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
47
|
Clemens DJ, Ye D, Wang L, Kim CSJ, Zhou W, Dotzler SM, Tester DJ, Marty I, Knollmann BC, Ackerman MJ. Cellular and electrophysiological characterization of triadin knockout syndrome using induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 2023; 18:1075-1089. [PMID: 37163978 PMCID: PMC10202692 DOI: 10.1016/j.stemcr.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Triadin knockout syndrome (TKOS) is a malignant arrhythmia disorder caused by recessive null variants in TRDN-encoded cardiac triadin. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from two unrelated TKOS patients and an unrelated control. CRISPR-Cas9 gene editing was used to insert homozygous TRDN-p.D18fs∗13 into a control line to generate a TKOS model (TRDN-/-). Western blot confirmed total knockout of triadin in patient-specific and TRDN-/- iPSC-CMs. iPSC-CMs from both patients revealed a prolonged action potential duration (APD) at 90% repolarization, and this was normalized by protein replacement of triadin. APD prolongation was confirmed in TRDN-/- iPSC-CMs. TRDN-/- iPSC-CMs revealed that loss of triadin underlies decreased expression and co-localization of key calcium handling proteins, slow and decreased calcium release from the sarcoplasmic reticulum, and slow inactivation of the L-type calcium channel leading to frequent cellular arrhythmias, including early and delayed afterdepolarizations and APD alternans.
Collapse
Affiliation(s)
- Daniel J Clemens
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Lili Wang
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, USA
| | - C S John Kim
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Wei Zhou
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Steven M Dotzler
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA
| | - Isabelle Marty
- University Grenoble Alpes, INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, 38000 Grenoble, France
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville, TN, USA; Vanderbilt School of Medicine, Nashville, TN, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
48
|
AlRawashdeh S, Chandrasekaran S, Barakat KH. Structural analysis of hERG channel blockers and the implications for drug design. J Mol Graph Model 2023; 120:108405. [PMID: 36680816 DOI: 10.1016/j.jmgm.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The repolarizing current (Ikr) produced by the hERG potassium channel forms a major component of the cardiac action potential and blocking this current by small molecule drugs can lead to life-threatening cardiotoxicity. Understanding the mechanisms of drug-mediated hERG inhibition is essential to develop a second generation of safe drugs, with minimal cardiotoxic effects. Although various computational tools and drug design guidelines have been developed to avoid binding of drugs to the hERG pore domain, there are many other aspects that are still open for investigation. This includes the use computational modelling to study the implications of hERG mutations on hERG structure and trafficking, the interactions of hERG with hERG chaperone proteins and with membrane-soluble molecules, the mechanisms of drugs that inhibit hERG trafficking and drugs that rescue hERG mutations. The plethora of available experimental data regarding all these aspects can guide the construction of much needed robust computational structural models to study these mechanisms for the rational design of safe drugs.
Collapse
Affiliation(s)
- Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
49
|
Tan Y, Lu T, Chen Y, Witman N, Yan B, Yang L, Liu M, Gong Y, Ai X, Luo R, Wang H, Wang W, Fu W. Engineering a conduction-consistent cardiac patch with graphene oxide modified butterfly wings and human pluripotent stem cell-derived cardiomyocytes. Bioeng Transl Med 2023; 8:e10522. [PMID: 37206241 PMCID: PMC10189447 DOI: 10.1002/btm2.10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Engineering a conduction-consistent cardiac patch has direct implications to biomedical research. However, there is difficulty in obtaining and maintaining a system that allows researchers to study physiologically relevant cardiac development, maturation, and drug screening due to the issues around inconsistent contractions of cardiomyocytes. Butterfly wings have special nanostructures arranged in parallel, which could help generate the alignment of cardiomyocytes to better mimic the natural heart tissue structure. Here, we construct a conduction-consistent human cardiac muscle patch by assembling human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on graphene oxide (GO) modified butterfly wings. We also show this system functions as a versatile model to study human cardiomyogenesis by assembling human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) on the GO modified butterfly wings. The GO modified butterfly wing platform facilitated the parallel orientation of hiPSC-CMs, enhanced relative maturation as well as improved conduction consistency of the cardiomyocytes. In addition, GO modified butterfly wings enhanced the proliferation and maturation characteristics of the hiPSC-CPCs. In accordance with data obtained from RNA-sequencing and gene signatures, assembling hiPSC-CPCs on GO modified butterfly wings stimulated the differentiation of the progenitors into relatively mature hiPSC-CMs. These characteristics and capabilities of GO modified butterfly wings make them an ideal platform for heart research and drug screening.
Collapse
Affiliation(s)
- Yao Tan
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Tingting Lu
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ying Chen
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Nevin Witman
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Bingqian Yan
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Li Yang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Minglu Liu
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Huijing Wang
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Wang
- Department of Pediatric Cardiothoracic SurgeryShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Fu
- Institute of Pediatric Translational MedicineShanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Tissue EngineeringShanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
50
|
Seibertz F, Sutanto H, Dülk R, Pronto JRD, Springer R, Rapedius M, Liutkute A, Ritter M, Jung P, Stelzer L, Hüsgen LM, Klopp M, Rubio T, Fakuade FE, Mason FE, Hartmann N, Pabel S, Streckfuss-Bömeke K, Cyganek L, Sossalla S, Heijman J, Voigt N. Electrophysiological and calcium-handling development during long-term culture of human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:14. [PMID: 37020075 PMCID: PMC10076390 DOI: 10.1007/s00395-022-00973-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 04/07/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Rebekka Dülk
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Robin Springer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | | | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Melanie Ritter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Philipp Jung
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lea Stelzer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Luisa M Hüsgen
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Marie Klopp
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Funsho E Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Fleur E Mason
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|