1
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
2
|
Pekmez M, Mete ŞB, Aksüt Y, Öğütcü İ, Baştürk FN, Gerçek YC, Şengelen A. Fatty acid synthase inhibitor cerulenin attenuates glioblastoma progression by reducing EMT and stemness phenotypes, inducing oxidative and ER stress response, and targeting PI3K/AKT/NF-κB axis. Med Oncol 2025; 42:136. [PMID: 40133683 PMCID: PMC11937156 DOI: 10.1007/s12032-025-02697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Targeting cellular metabolism is becoming a critical approach for stopping cancer progression. Limited information is available regarding the effects of inhibiting the lipogenic enzyme fatty acid synthase (FASN) in glioblastoma (GB) cells (grade-IV-astrocytoma), which have high invasion and low response to standard treatments. Herein, we used cerulenin (CER) to inhibit FASN. CER treatments (3.6 μg/mL/48 h and 5.55 μg/mL/48 h indicate IC20 and IC50 values, respectively) led to a dose- and time-dependent decrease in the viability of the U-87MG human GB cells. A significant decrease was detected in the levels of fatty acids, including palmitic acid, determined by GS-MS analysis. FASN inhibition attenuated cell motility, 2D and 3D-clonogenic survival, and cell differentiation characteristics (related markers of epithelial-mesenchymal transition/EMT and stemness). Moreover, treatments caused mitochondrial membrane potential (MMP) collapse and increased intracellular reactive oxygen species (ROS) levels. Protein aggregates and ER stress in the cells also increased. Remarkably, despite increased Hsp70 and p-HSF1 levels against induced cellular stress, CER promoted markedly autophagy and apoptosis. The network pharmacology approach revealed that protein and lipid kinases are crucial targets in cell signaling, and PI3K, AKT, and NF-κB levels were confirmed by immunoblotting. The results demonstrated for the first time that inhibiting FA production and FASN function induces cell death through ROS generation and ER stress while simultaneously reducing the motility and aggressiveness of U-87MG human glioblastoma cells by attenuating EMT and stemness phenotypes. Therefore, blocking lipid metabolism using CER may be considered as a good candidate for GB therapeutic option.
Collapse
Affiliation(s)
- Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Balabanağa, Şehzadebaşı RoadVezneciler-Fatih, 34134, Istanbul, Türkiye.
| | - Şefika Beyza Mete
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Türkiye
| | - Yunus Aksüt
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Balabanağa, Şehzadebaşı RoadVezneciler-Fatih, 34134, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Basic Medical Sciences, School of Medicine, Koç University, Istanbul, Türkiye
| | - İrem Öğütcü
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Türkiye
| | - Fatma Nur Baştürk
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Türkiye
| | - Yusuf Can Gerçek
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
- Centre for Plant and Herbal Products Research-Development, Istanbul, Türkiye
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Balabanağa, Şehzadebaşı RoadVezneciler-Fatih, 34134, Istanbul, Türkiye.
| |
Collapse
|
3
|
Afshari AR, Sanati M, Aminyavari S, Keshavarzi Z, Ahmadi SS, Oroojalian F, Karav S, Sahebkar A. A novel approach to glioblastoma multiforme treatment using modulation of key pathways by naturally occurring small molecules. Inflammopharmacology 2025; 33:1237-1254. [PMID: 39955698 DOI: 10.1007/s10787-025-01666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Glioblastoma multiforme (GBM), the fatal primary brain malignancy in adults, represents significant health challenges, and its eradication has been the ultimate goal of numerous medical investigations. GBM therapy encompasses various interventions, e.g., chemotherapy by synthetic cytotoxic agents like temozolomide (TMZ), radiotherapy, and, more recently, immunotherapy. A notable focus has been on incorporating naturally occurring substances in treating malignancies. Polyphenols and terpenoids, widely present in fruits and vegetables, constitute primary categories of agents employed for this purpose. They pose direct and indirect impacts on tumor growth and chemoresistance, mainly through impacting the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling, crucial in cellular processes, metabolism, and programmed death. This paper thoroughly discusses the biologic effects and practical application of polyphenols and terpenoids on GBM through the PI3K/Akt/mTOR signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Keshavarzi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Almazan J, Turapov T, Kircher DA, Stanley KA, Culver K, Medellin AP, Field MN, Parkman GL, Colman H, Coma S, Pachter JA, Holmen SL. Combined inhibition of focal adhesion kinase and RAF/MEK elicits synergistic inhibition of melanoma growth and reduces metastases. Cell Rep Med 2025; 6:101943. [PMID: 39922199 PMCID: PMC11866499 DOI: 10.1016/j.xcrm.2025.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
This study addresses the urgent need for effective therapies for patients with brain metastases from cutaneous melanoma, a major cause of treatment failure despite recent therapeutic advances. Utilizing mouse models that mimic human melanoma brain metastases, this study investigates the necessity of focal adhesion kinase (FAK) in the development of distant metastases and its potential as a therapeutic target. Pharmacological inhibition of FAK demonstrates significant efficacy in reducing the development of brain metastases in preclinical mouse models. Importantly, the study provides insight into the crosstalk between FAK and mitogen-activated protein kinase (MAPK) pathway signaling and highlights the synergistic effects of combined inhibition of FAK, rapidly accelerated fibrosarcoma (RAF), and mitogen-activated protein kinase kinase (MEK) in cutaneous melanoma. These findings provide the rationale for clinical evaluation of the efficacy of the FAK inhibitor defactinib and the RAF/MEK inhibitor avutometinib in patients with brain metastases from cutaneous melanoma.
Collapse
Affiliation(s)
- Jared Almazan
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Karly A Stanley
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Katie Culver
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - A Paulina Medellin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - MiKaela N Field
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Zoology, Weber State University, Ogden, UT 84408, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Neurosurgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
6
|
Hamed AA, Hua K, Trinh QM, Simons BD, Marioni JC, Stein LD, Dirks PB. Gliomagenesis mimics an injury response orchestrated by neural crest-like cells. Nature 2025; 638:499-509. [PMID: 39743595 PMCID: PMC11821533 DOI: 10.1038/s41586-024-08356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis1,2. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation. We isolated labelled and unlabelled cells at multiple stages-before the first visible abnormality, at the time of the first visible lesion, and then through the stages of tumour growth-and subjected cells of each stage to single-cell profiling. We identify a malignant cell state with a neural crest-like gene expression signature that is highly abundant in the early stages, but relatively diminished in the late stage of tumour growth. Genomic analysis based on the presence of copy number alterations suggests that these neural crest-like states exist as part of a heterogeneous clonal hierarchy that evolves with tumour growth. By exploring the injury response in wounded normal mouse brains, we identify cells with a similar signature that emerge following injury and then disappear over time, suggesting that activation of an injury response program occurs during tumorigenesis. Indeed, our experiments reveal a non-malignant injury-like microenvironment that is initiated in the brain following oncogene activation in cerebral precursor cells. Collectively, our findings provide insight into the early stages of glioblastoma, identifying a unique cell state and an injury response program tied to early tumour formation. These findings have implications for glioblastoma therapies and raise new possibilities for early diagnosis and prevention of disease.
Collapse
Affiliation(s)
- Akram A Hamed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kui Hua
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Benjamin D Simons
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge, UK.
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Guerrieri RA, Fischer GM, Kircher DA, Joon AY, Cortez JR, Grossman AH, Hudgens CW, Ledesma DA, Lazcano R, Onana CY, Knighton BG, Kumar S, Hu Q, Gopal YNV, McQuade JL, Deng W, Haydu LE, Gershenwald JE, Lazar AJ, Tetzlaff MT, Holmen SL, Davies MA. Oxidative Phosphorylation (OXPHOS) Promotes the Formation and Growth of Melanoma Lung and Brain Metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.633049. [PMID: 39896644 PMCID: PMC11785201 DOI: 10.1101/2025.01.23.633049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Melanoma mortality is driven by the formation and growth of distant metastases. Here, we interrogated the role of tumor oxidative phosphorylation (OXPHOS) in the formation of distant metastases in melanoma. OXPHOS was the most upregulated metabolic pathway in primary tumors that formed distant metastases in the RCAS-TVA mouse model of spontaneous lung and brain metastases, and in melanoma patients that developed brain or other distant metastases. Knockout of PGC1α in melanocytes in the RCAS-TVA melanoma mouse model had no impact on primary tumor formation, but markedly reduced the incidence of lung and brain metastases. Genetic knockout of a component of electron transport chain complex I, NDUFS4, in B16-F10 and D4M-UV2 murine melanoma cell lines did not impact tumor incidence following subcutaneous, intravenous, or intracranial injection, but decreased tumor burden specifically in the lungs and brain. Together, these data demonstrate that OXPHOS is critical for the formation of metastases in melanoma. STRUCTURED ABSTRACT Purpose: Melanoma mortality is driven by the formation and growth of distant metastases. However, the process and pathogenesis of melanoma metastasis remain poorly understood. Here, we interrogate the role of tumor oxidative phosphorylation (OXPHOS) in the formation of distant metastases in melanoma.Experimental Design: This study includes (1) new RNA-seq analysis of primary melanomas from patients characterized for distant metastasis events; (2) RNA-seq analysis and functional testing of genetic OXPHOS inhibition (PGC1α KO) the RCAS-TVA model, which is the only existing immunocompetent murine model of autochthonous lung and brain metastasis formation from primary melanoma tumors; and (3) functional experiments of genetic OXPHOS inhibition (NDUFS4 KO) in the B16-F10 and D4M-UV2 murine melanoma cell lines, including evaluation of subcutaneous, lung, and brain metastatic site dependencies.Results: OXPHOS was the most upregulated metabolic pathway in primary tumors that formed distant metastases in the RCAS-TVA mouse model of spontaneous lung and brain metastases, and in melanoma patients that developed brain or other distant metastases. Knockout of PGC1a in melanocytes in the RCAS-TVA melanoma mouse model had no impact on primary tumor formation, but markedly reduced the incidence of lung and brain metastases. Genetic knockout of a component of electron transport chain complex I, NDUFS4, in B16-F10 and D4M-UV2 murine melanoma cell lines did not impact tumor incidence following subcutaneous, intravenous, or intracranial injection, but decreased tumor burden specifically in the lungs and brain.Conclusions: Together, these data demonstrate that OXPHOS is critical for the formation of metastases in melanoma. TRANSLATIONAL RELEVANCE Melanoma is the most aggressive form of skin cancer. One hallmark of this disease is a high risk of distant metastasis formation. The process and pathogenesis of metastasis in this disease remain poorly understood and there is controversy regarding the role of oxidative phosphorylation (OXPHOS) in melanoma metastasis. This study incorporates RNAseq analysis of primary melanoma tumors from patients characterized for distant metastasis events, RNAseq analysis of the only existing immunocompetent murine model of autochthonous lung and brain metastasis formation from primary melanoma tumors, and functional testing in multiple syngeneic models of melanoma at different tissue sites. This integrated analysis consistently demonstrates that melanoma OXPHOS promotes distant metastasis to the lungs and brain, two of the most common and clinically relevant sites of melanoma metastasis. This improved understanding of tumor OXPHOS may represent novel vulnerabilities for therapeutics development and surveillance/preventative strategies for melanoma metastasis.
Collapse
|
8
|
ZHU TIANYUN, ZHAO CUNYAN, GONG RUI, QIAN AO, WANG XIAOSHU, LU FANGHUI, HUO GANG, QIAO LIANGJUN, CHEN SONG. Comprehensive analysis reveals PLK3 as a promising immune target and prognostic indicator in glioma. Oncol Res 2025; 33:431-442. [PMID: 39866232 PMCID: PMC11753997 DOI: 10.32604/or.2024.050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 01/30/2025] Open
Abstract
Background PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored. Methods We analyzed PLK3 expression in glioma samples from multiple databases. Both overexpression and knockdown of Plk3 were performed to investigate tumor cell growth in glioma, and the transplanted glioma mouse model demonstrated the role of Plk3 on tumor progression. Immunohistochemistry was conducted to detect PLK3 expression and immune cell infiltration. The trans-well assay for PLK3 on the immune cells recruitment was also determined. Additionally, we further evaluated the correlation between PLK3 and PD-1/PD-L1 as well as other immune checkpoints. Results We found that an increased level of PLK3 was associated with malignancy and poor prognosis of glioma, and further validated that PLK3 promoted glioma progression. PLK3 also played a crucial role in immune response and was involved in Tcell immune suppression. Specifically, we revealed that CD8+ and CD4+ Tcell infiltration was decreased in Plk3 overexpressed xenografts. Furthermore, it was predicted that PLK3 was synergistic with other checkpoint members in glioma. In general, high expression of PLK3 was associated with a malignant process and poor prognosis in glioma patients. Conclusion Our findings indicated that PLK3 expression level was highly correlated to the malignancy of gliomas, and we validated that PLK3 could promote the GBM progress in vitro and in vivo. Furthermore, PLK3 played important roles in Tcell and neutrophil immune response in glioma. Besides, the conspicuous association between PLK3 and other immune checkpoints was also observed. Crucially, high-level PLK3 expression was revealed to be related to poor clinical prognosis. These results demonstrated that PLK3 may serve as a prognostic biomarker and a potential target for glioma.
Collapse
Affiliation(s)
- TIANYUN ZHU
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - CUNYAN ZHAO
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - RUI GONG
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - AO QIAN
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - XIAOSHU WANG
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - FANGHUI LU
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - GANG HUO
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - LIANGJUN QIAO
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - SONG CHEN
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
10
|
Shen X, Tan J, Liu R, Zhu G, Rooper L, Xing M. The genetic duet of concurrent RASAL1 and PTEN alterations promotes cancer aggressiveness by cooperatively activating the PI3K-AKT pathway. Mol Oncol 2025; 19:248-259. [PMID: 39032134 PMCID: PMC11705815 DOI: 10.1002/1878-0261.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The significance of the prominent tumor suppressor gene for RAS protein activator-like 1 (RASAL1) could be better understood by combined genetic, clinical, and functional studies. Here, we investigated the oncogenic and clinical impacts of genetic alterations of RASAL1, particularly when coexisting with genetic alterations of the gene for phosphatase and tensin homolog (PTEN), in 9924 cancers of 33 types in the TCGA database. We found common concurrent genetic alterations of the two genes, which were cooperatively associated with activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, with cancer progression and mortality rates being 46.36% and 31.72% with concurrent gene alterations, versus 29.80% and 16.93% with neither gene alteration (HR 1.64, 95% CI 1.46-1.84 and 1.77, 95% CI 1.53-2.05), respectively. This was enhanced by additional tumor protein p53 (TP53) gene alterations, with cancer progression and mortality rates being 47.65% and 34.46% with coexisting RASAL1, PTEN, and TP53 alterations versus 25.30% and 13.11% with no alteration (HR 2.21, 95% CI 1.92-2.56 and 2.76, 95% CI 2.31-3.30), respectively. In the case of breast cancer, this genetic trio was associated with a triple-negative risk of 68.75% versus 3.83% with no genetic alteration (RR 17.94, 95% CI 9.60-33.51), consistent with the aggressive nature of triple-negative breast cancer. Mice with double knockouts of Rasal1 and Pten displayed robust Pi3k pathway activation, with the development of metastasizing malignancies, while single gene knockout resulted in only benign neoplasma. These results suggest that RASAL1, like PTEN, is a critical player in negatively regulating the PI3K-AKT pathway; defect in RASAL1 causes RAS activation, thus initiating the PI3K-AKT pathway signaling, which cannot terminate with concurrent PTEN defects. Thus, the unique concurrent RASAL1 and PTEN defects drive oncogenesis and cancer aggressiveness by cooperatively activating the PI3K-AKT pathway. This represents a robust genetic mechanism to promote human cancer.
Collapse
Affiliation(s)
- Xiaopei Shen
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jie Tan
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rengyun Liu
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Guangwu Zhu
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Lisa Rooper
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mingzhao Xing
- Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
11
|
Şengelen A, Önay-Uçar E. Rosmarinic acid attenuates glioblastoma cells and spheroids' growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156060. [PMID: 39341126 DOI: 10.1016/j.phymed.2024.156060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a highly malignant type of brain cancer with a poor prognosis. Therapeutic strategies for GB are still limited. Rosmarinic acid (RA), a polyphenolic compound, is a promising experimental anticancer agent, but its specific protein targets for GB remain unclear. PURPOSE This study aimed to elucidate the anticancer effects of RA in 2D- and 3D-GB cells and the underlying mechanisms. METHODS 3D-tumor spheroids (mimics in vivo tumors) were obtained by the hanging-drop/agarose method. RA's anti-glioma activity on U-87MG (p53-wt/PTEN-mt) and LN229 (p53-mt/PTEN-wt) cells was evaluated through cell viability, colony-formation, migration/invasion/angiogenesis assays, fluorescence imaging, and spheroid growth analysis. The underlying mechanism of the anticancer effects of RA was investigated by Western blot and immunofluorescence analysis. The MEK inhibitor U0126 was used to block ERK phosphorylation. RESULTS RA treatments exerted anti-proliferative and pro-apoptotic effects on human GB cells. RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth, and migration/invasion in 2D-culture and cancer stem cell (CSC)-like 3D-spheroid culture (SPC). Repeated therapy in SPC was more effective by leading to disrupted structure than a single treatment. Treatments in SPC also suppressed epithelial-mesenchymal transition (EMT) and CSC-like properties. Strikingly, RA downregulated the SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function in both gliomas. Immunofluorescence labeling revealed decreased SIRT1 and NF-κB-p65 and increased FOXO1 and GAPDH proteins in nuclear location (associated with apoptosis). Surprisingly, RA increased p-ERK1/2 levels, but priming with U0126 abolished RA-mediated p-ERK upregulation; thus, autophagy and apoptosis induction in GB cells were prevented, and the growth of GB spheroids accelerated. Specifically, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells. Due to genetic differences in cells, U-87MG cells were more sensitive to RA treatments than LN229 cells. Meanwhile, our positive control drug trial results with FDA-approved temozolomide (TMZ) used in GB treatment showed that our test compound rosmarinic acid exhibited higher therapeutic effects than TMZ at lower doses. CONCLUSION Suppression of EMT, downregulation of SIRT1/FOXO1/NF-κB axis, inhibition of PTEN/PI3K/AKT signaling pathway, and ERK-induced apoptosis and autophagy were determined to be involved in stopping glioma progression. Our findings for the first time, revealed that RA may have potential therapeutic use by having multiple targets in human brain cancer with further clinical studies.
Collapse
Affiliation(s)
- Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
12
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024; 18:2871-2889. [PMID: 39148319 PMCID: PMC11619803 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Brain Tumour Centre, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Health NHS TrustLondonUK
| |
Collapse
|
13
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
14
|
Liu J, Luo Q, Zhao H, Yang M, Yang J, Wang Y, Zhao M, Mao J, Chen J, Guo B, Zhang L. Comprehensive gene set enrichment and variation analyses identify SUV39H1 as a potential prognostic biomarker for glioblastoma immunorelevance. Comput Struct Biotechnol J 2024; 23:4161-4176. [PMID: 39640533 PMCID: PMC11617780 DOI: 10.1016/j.csbj.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most common intracranial malignancy. SUV39H1 encodes a histone H3 lysine 9 methyltransferase that acts as an oncogene in several cancers; however, its role in GBM remains unknown. We obtained GBM transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database on the UCSC Xena platform to perform differential and enrichment analyses of genes in the SUV39H1 high- and low-expression groups to construct a prognostic risk model. Analysis of SUV39H1 related biological processes in GBM was performed by gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). High- and low-risk subgroup mutation signatures were analyzed using maftools. Immune infiltration was evaluated using IOBR and CIBERSORT algorithms. We analyzed the cell types and intercellular communication networks in glioma stem cells (GSCs) using scRNA-seq. The effects on GBM cells and GSCs after inhibition of SUV39H1 were investigated in vitro. SUV39H1 was significantly overexpressed in GBM and associated with poor prognosis. SUV39H1-related differentially expressed genes were enriched in immune and inflammation related pathways, and GSEA revealed that these genes were significantly enriched in signaling pathways such as IL-18, oxidative phosphorylation, and regulation of TP53 activity. Mutational analysis revealed frequent alterations in TP53 and PTEN expression. In addition, the infiltration abundances of the five immune cell types were significantly different between the high- and low-expression groups. Analysis of cellular communication networks by scRNA-seq revealed a strong interaction between CRYAB-GSC and PTPRZ1-GSC in GSCs. In vitro experiments verified that knockdown of SUV39H1 inhibited the viability and proliferation of U87 and U251 glioblastoma cells and downregulated the expression of stemness markers Nestin and SOX2 in CSC1589 and TS576 GSC lines. Increased SUV39H1 expression is associated with immune cell infiltration and poor prognosis in patients with GBM. Inhibition of SUV39H1 restrains GBM growth and reduces the stem cell properties of GSC. Thus, SUV39H1 might be a prognostic predictor and immunotherapeutic target in patients with GBM.
Collapse
Affiliation(s)
- Jixuan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qian Luo
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haoran Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Mengxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Juanjuan Mao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiasi Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Yao M, Su Y, Xiong R, Zhang X, Zhu X, Chen YC, Ao P. Deciphering the topological landscape of glioma using a network theory framework. Sci Rep 2024; 14:26724. [PMID: 39496747 PMCID: PMC11535471 DOI: 10.1038/s41598-024-77856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Glioma stem cells have been recognized as key players in glioma recurrence and therapeutic resistance, presenting a promising target for novel treatments. However, the limited understanding of the role glioma stem cells play in the glioma hierarchy has drawn controversy and hindered research translation into therapies. Despite significant advances in our understanding of gene regulatory networks, the dynamics of these networks and their implications for glioma remain elusive. This study employs a systemic theoretical perspective to integrate experimental knowledge into a core endogenous network model for glioma, thereby elucidating its energy landscape through network dynamics computation. The model identifies two stable states corresponding to astrocytic-like and oligodendrocytic-like tumor cells, connected by a transition state with the feature of high stemness, which serves as one of the energy barriers between astrocytic-like and oligodendrocytic-like states, indicating the instability of glioma stem cells in vivo. We also obtained various stable states further supporting glioma's multicellular origins and uncovered a group of transition states that could potentially induce tumor heterogeneity and therapeutic resistance. This research proposes that the transition states linking both glioma stable states are central to glioma heterogeneity and therapy resistance. Our approach may contribute to the advancement of glioma therapy by offering a novel perspective on the complex landscape of glioma biology.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Yang Su
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ruiqi Xiong
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Xile Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
- Shanghai Shibei High School, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
16
|
Figg J, Chen D, Falceto Font L, Flores C, Jin D. In vivo mouse models for adult brain tumors: Exploring tumorigenesis and advancing immunotherapy development. Neuro Oncol 2024; 26:1964-1980. [PMID: 38990913 PMCID: PMC11534310 DOI: 10.1093/neuonc/noae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 07/13/2024] Open
Abstract
Brain tumors, particularly glioblastoma (GBM), are devastating and challenging to treat, with a low 5-year survival rate of only 6.6%. Mouse models are established to understand tumorigenesis and develop new therapeutic strategies. Large-scale genomic studies have facilitated the identification of genetic alterations driving human brain tumor development and progression. Genetically engineered mouse models (GEMMs) with clinically relevant genetic alterations are widely used to investigate tumor origin. Additionally, syngeneic implantation models, utilizing cell lines derived from GEMMs or other sources, are popular for their consistent and relatively short latency period, addressing various brain cancer research questions. In recent years, the success of immunotherapy in specific cancer types has led to a surge in cancer immunology-related research which specifically necessitates the utilization of immunocompetent mouse models. In this review, we provide a comprehensive summary of GEMMs and syngeneic mouse models for adult brain tumors, emphasizing key features such as model origin, genetic alteration background, oncogenic mechanisms, and immune-related characteristics. Our review serves as a valuable resource for the brain tumor research community, aiding in the selection of appropriate models to study cancer immunology.
Collapse
Affiliation(s)
- John Figg
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Dongjiang Chen
- Division of Neuro-Oncology, Department of Neurological Surgery and Neurology, USC Keck Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Laura Falceto Font
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Catherine Flores
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Dan Jin
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Deforzh E, Kharel P, Zhang Y, Karelin A, El Khayari A, Ivanov P, Krichevsky AM. HOXDeRNA activates a cancerous transcription program and super enhancers via genome-wide binding. Mol Cell 2024; 84:3950-3966.e6. [PMID: 39383879 PMCID: PMC11490371 DOI: 10.1016/j.molcel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), in situ mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA's central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.
Collapse
Affiliation(s)
- Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Prakash Kharel
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yanhong Zhang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anton Karelin
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Abdellatif El Khayari
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben-Guerir 43150, Morocco
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Guo Z, Liu B, Wei Y, Wang H, Zhang Q, Hong X. The multifaceted role of quaking protein in neuropsychiatric disorders and tumor progression. Front Neurosci 2024; 18:1341114. [PMID: 39479357 PMCID: PMC11521838 DOI: 10.3389/fnins.2024.1341114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
The Quaking protein (QKI) belongs to the STAR protein family and plays a significant role in the development of the nervous system. It serves as a crucial regulator in the processes of tumor progression and cardiovascular system development. Within the central nervous system, QKI has been associated with the onset and progression of numerous neuropsychiatric disorders, including schizophrenia, depression, ataxia, and Alzheimer's disease. In malignant tumors, the methylation of the QKI promoter inhibits its expression. QKI primarily involves in the generation, stability, and selective splicing of non-coding RNA, as well as in mRNA translation. The role of QKI in the tumor microenvironment should not be overlooked. Especially in Glioblastoma Multiforme (GBM), although QKI is not the primary mutation, it still plays a vital role in maintaining the stemness of GBM. However, the mechanisms and further studies on this topic demand extensive basic and clinical trials.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - HeFei Wang
- Cancer Center, First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qingquan Zhang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Vélez Gómez S, Martínez Garro JM, Ortiz Gómez LD, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma. Biomedicines 2024; 12:2287. [PMID: 39457600 PMCID: PMC11505048 DOI: 10.3390/biomedicines12102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches.
Collapse
Affiliation(s)
- Sara Vélez Gómez
- Faculty of Sciences and Biotechnology, CES University, Medellín 050021, Colombia;
| | | | | | - Jorge Emilio Salazar Flórez
- GEINCRO Research Group, Medicine Program, School of Health Sciences, San Martín University Foundation, Sabaneta 055457, Colombia;
| | - Fernando P. Monroy
- Department of Biological Sciences, Northerm Arizona University, Flagstaff, AZ 85721, USA;
| | | |
Collapse
|
20
|
Li F, Yang K, Gao X, Zhang M, Gu D, Wu X, Lu C, Wu Q, Dixit D, Gimple RC, You Y, Mack SC, Shi Y, Kang T, Agnihotri SA, Taylor MD, Rich JN, Zhang N, Wang X. A peptide encoded by upstream open reading frame of MYC binds to tropomyosin receptor kinase B and promotes glioblastoma growth in mice. Sci Transl Med 2024; 16:eadk9524. [PMID: 39356747 DOI: 10.1126/scitranslmed.adk9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Fanying Li
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinya Gao
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xujia Wu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Chenfei Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Gimple
- Physician Scientist Training Program, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing 400038, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China
| | - Sameer A Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Institute for Brain Tumors, Jiangsu Provincial Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
21
|
Vandecandelaere G, Ramapriyan R, Gaffey M, Richardson LG, Steuart SJ, Tazhibi M, Kalaw A, Grewal EP, Sun J, Curry WT, Choi BD. Pre-Clinical Models for CAR T-Cell Therapy for Glioma. Cells 2024; 13:1480. [PMID: 39273050 PMCID: PMC11394304 DOI: 10.3390/cells13171480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Immunotherapy represents a transformative shift in cancer treatment. Among myriad immune-based approaches, chimeric antigen receptor (CAR) T-cell therapy has shown promising results in treating hematological malignancies. Despite aggressive treatment options, the prognosis for patients with malignant brain tumors remains poor. Research leveraging CAR T-cell therapy for brain tumors has surged in recent years. Pre-clinical models are crucial in evaluating the safety and efficacy of these therapies before they advance to clinical trials. However, current models recapitulate the human tumor environment to varying degrees. Novel in vitro and in vivo techniques offer the opportunity to validate CAR T-cell therapies but also have limitations. By evaluating the strengths and weaknesses of various pre-clinical glioma models, this review aims to provide a roadmap for the development and pre-clinical testing of CAR T-cell therapies for brain tumors.
Collapse
Affiliation(s)
- Gust Vandecandelaere
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
- Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Rishab Ramapriyan
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Matthew Gaffey
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Leland Geoffrey Richardson
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Samuel Jeffrey Steuart
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Masih Tazhibi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Adrian Kalaw
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Eric P. Grewal
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Jing Sun
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - William T. Curry
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Bryan D. Choi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| |
Collapse
|
22
|
Daks A, Parfenyev S, Shuvalov O, Fedorova O, Nazarov A, Melino G, Barlev NA. Lysine-specific methyltransferase Set7/9 in stemness, differentiation, and development. Biol Direct 2024; 19:41. [PMID: 38812048 PMCID: PMC11137904 DOI: 10.1186/s13062-024-00484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The enzymes performing protein post-translational modifications (PTMs) form a critical post-translational regulatory circuitry that orchestrates literally all cellular processes in the organism. In particular, the balance between cellular stemness and differentiation is crucial for the development of multicellular organisms. Importantly, the fine-tuning of this balance on the genetic level is largely mediated by specific PTMs of histones including lysine methylation. Lysine methylation is carried out by special enzymes (lysine methyltransferases) that transfer the methyl group from S-adenosyl-L-methionine to the lysine residues of protein substrates. Set7/9 is one of the exemplary protein methyltransferases that however, has not been fully studied yet. It was originally discovered as histone H3 lysine 4-specific methyltransferase, which later was shown to methylate a number of non-histone proteins that are crucial regulators of stemness and differentiation, including p53, pRb, YAP, DNMT1, SOX2, FOXO3, and others. In this review we summarize the information available to date on the role of Set7/9 in cellular differentiation and tissue development during embryogenesis and in adult organisms. Finally, we highlight and discuss the role of Set7/9 in pathological processes associated with aberrant cellular differentiation and self-renewal, including the formation of cancer stem cells.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Alexander Nazarov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russian Federation, 194064.
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, 001000, Astana, Kazakhstan.
| |
Collapse
|
23
|
Knol MJ, Poot RA, Evans TE, Satizabal CL, Mishra A, Sargurupremraj M, van der Auwera S, Duperron MG, Jian X, Hostettler IC, van Dam-Nolen DHK, Lamballais S, Pawlak MA, Lewis CE, Carrion-Castillo A, van Erp TGM, Reinbold CS, Shin J, Scholz M, Håberg AK, Kämpe A, Li GHY, Avinun R, Atkins JR, Hsu FC, Amod AR, Lam M, Tsuchida A, Teunissen MWA, Aygün N, Patel Y, Liang D, Beiser AS, Beyer F, Bis JC, Bos D, Bryan RN, Bülow R, Caspers S, Catheline G, Cecil CAM, Dalvie S, Dartigues JF, DeCarli C, Enlund-Cerullo M, Ford JM, Franke B, Freedman BI, Friedrich N, Green MJ, Haworth S, Helmer C, Hoffmann P, Homuth G, Ikram MK, Jack CR, Jahanshad N, Jockwitz C, Kamatani Y, Knodt AR, Li S, Lim K, Longstreth WT, Macciardi F, Mäkitie O, Mazoyer B, Medland SE, Miyamoto S, Moebus S, Mosley TH, Muetzel R, Mühleisen TW, Nagata M, Nakahara S, Palmer ND, Pausova Z, Preda A, Quidé Y, Reay WR, Roshchupkin GV, Schmidt R, Schreiner PJ, Setoh K, Shapland CY, Sidney S, St Pourcain B, Stein JL, Tabara Y, Teumer A, Uhlmann A, van der Lugt A, Vernooij MW, Werring DJ, Windham BG, Witte AV, Wittfeld K, Yang Q, Yoshida K, Brunner HG, Le Grand Q, et alKnol MJ, Poot RA, Evans TE, Satizabal CL, Mishra A, Sargurupremraj M, van der Auwera S, Duperron MG, Jian X, Hostettler IC, van Dam-Nolen DHK, Lamballais S, Pawlak MA, Lewis CE, Carrion-Castillo A, van Erp TGM, Reinbold CS, Shin J, Scholz M, Håberg AK, Kämpe A, Li GHY, Avinun R, Atkins JR, Hsu FC, Amod AR, Lam M, Tsuchida A, Teunissen MWA, Aygün N, Patel Y, Liang D, Beiser AS, Beyer F, Bis JC, Bos D, Bryan RN, Bülow R, Caspers S, Catheline G, Cecil CAM, Dalvie S, Dartigues JF, DeCarli C, Enlund-Cerullo M, Ford JM, Franke B, Freedman BI, Friedrich N, Green MJ, Haworth S, Helmer C, Hoffmann P, Homuth G, Ikram MK, Jack CR, Jahanshad N, Jockwitz C, Kamatani Y, Knodt AR, Li S, Lim K, Longstreth WT, Macciardi F, Mäkitie O, Mazoyer B, Medland SE, Miyamoto S, Moebus S, Mosley TH, Muetzel R, Mühleisen TW, Nagata M, Nakahara S, Palmer ND, Pausova Z, Preda A, Quidé Y, Reay WR, Roshchupkin GV, Schmidt R, Schreiner PJ, Setoh K, Shapland CY, Sidney S, St Pourcain B, Stein JL, Tabara Y, Teumer A, Uhlmann A, van der Lugt A, Vernooij MW, Werring DJ, Windham BG, Witte AV, Wittfeld K, Yang Q, Yoshida K, Brunner HG, Le Grand Q, Sim K, Stein DJ, Bowden DW, Cairns MJ, Hariri AR, Cheung CL, Andersson S, Villringer A, Paus T, Cichon S, Calhoun VD, Crivello F, Launer LJ, White T, Koudstaal PJ, Houlden H, Fornage M, Matsuda F, Grabe HJ, Ikram MA, Debette S, Thompson PM, Seshadri S, Adams HHH. Genetic variants for head size share genes and pathways with cancer. Cell Rep Med 2024; 5:101529. [PMID: 38703765 PMCID: PMC11148644 DOI: 10.1016/j.xcrm.2024.101529] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/18/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.
Collapse
Affiliation(s)
- Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Sandra van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Marie-Gabrielle Duperron
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK; Department of Neurosurgery, Klinikum rechts der Isar, University of Munich, Munich, Germany; Neurosurgical Department, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Dianne H K van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mikolaj A Pawlak
- Department of Neurology, Poznań University of Medical Sciences, Poznań, Poland; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cora E Lewis
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Disease, Leipzig, Germany
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gloria H Y Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alyssa R Amod
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Max Lam
- North Region, Institute of Mental Health, Singapore, Singapore; Population and Global Health, LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ami Tsuchida
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France; Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Mariël W A Teunissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nil Aygün
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yash Patel
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Dan Liang
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gwenaëlle Catheline
- University of Bordeaux, CNRS, INCIA, UMR 5287, team NeuroImagerie et Cognition Humaine, Bordeaux, France; EPHE-PSL University, Bordeaux, France
| | - Charlotte A M Cecil
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shareefa Dalvie
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Jean-François Dartigues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team SEPIA, UMR 1219, Bordeaux, France
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Maria Enlund-Cerullo
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Judith M Ford
- San Francisco Veterans Administration Medical Center, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melissa J Green
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, Bordeaux, France
| | - Per Hoffmann
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Keane Lim
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Fabio Macciardi
- Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Bernard Mazoyer
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France; Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Psychology, University of Queensland, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susanne Moebus
- Institute for Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - Ryan Muetzel
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Thomas W Mühleisen
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soichiro Nakahara
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Unit 2, Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adrian Preda
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Yann Quidé
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chin Yang Shapland
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, University of Bristol, Bristol, UK
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jason L Stein
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - David J Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - B Gwen Windham
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics MUMC+, GROW School of Oncology and Developmental Biology, and MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Quentin Le Grand
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dan J Stein
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany; SAMRC Unit on Risk and Resilience, University of Cape Town, Cape Town, South Africa
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sture Andersson
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) {Georgia State, Georgia Tech, Emory}, Atlanta, GA, USA
| | - Fabrice Crivello
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute of Aging, The National Institutes of Health, Bethesda, MD, USA
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France; Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Hieab H H Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| |
Collapse
|
24
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
25
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
26
|
Liu H, Pan Z, Lin X, Chen L, Yang Q, Zhang W, Dai L, Zhang Y, Li W, Chen Y, Peng K, Wanggou S, Zeng F, Li X. A potassium-chloride co-transporter with altered genome architecture functions as a suppressor in glioma. J Cell Mol Med 2024; 28:e18352. [PMID: 38685685 PMCID: PMC11058328 DOI: 10.1111/jcmm.18352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhouyang Pan
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuelei Lin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Long Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qi Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wang Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yinhua Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kang Peng
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| | - Feiyue Zeng
- Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xuejun Li
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
27
|
Zhou HY, Wang YC, Wang T, Wu W, Cao YY, Zhang BC, Wang MD, Mao P. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle. Oncol Lett 2024; 27:206. [PMID: 38516683 PMCID: PMC10956385 DOI: 10.3892/ol.2024.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Glioblastoma (GBM) is characterized by significant heterogeneity, leading to poor survival outcomes for patients, despite the implementation of comprehensive treatment strategies. The roles of cyclin A2 (CCNA2) and NIMA related kinase 2 (NEK2) have been extensively studied in numerous cancers, but their specific functions in GBM remain to be elucidated. The present study aimed to investigate the potential molecular mechanisms of CCNA2 and NEK2 in GBM. CCNA2 and NEK2 expression and prognosis in glioma were evaluated by bioinformatics methods. In addition, the distribution of CCNA2 and NEK2 expression in GBM subsets was determined using pseudo-time analysis and tricycle position of single-cell sequencing. Gene Expression Omnibus and Kyoto Encyclopedia of Genes and Genome databases were employed and enrichment analyses were conducted to investigate potential signaling pathways in GBM subsets and a nomogram was established to predict 1-, 2- and 3-year overall survival probability in GBM. CCNA2 and NEK2 expression levels were further validated by western blot analysis and immunohistochemical staining in GBM samples. High expression of CCNA2 and NEK2 in glioma indicates poor clinical outcomes. Single-cell sequencing of GBM revealed that these genes were upregulated in a subset of positive neural progenitor cells (P-NPCs), which showed significant proliferation and progression properties and may activate G2M checkpoint pathways. A comprehensive nomogram predicts 1-, 2- and 3-year overall survival probability in GBM by considering P-NPCs, age, chemotherapy and radiotherapy scores. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle, thus indicating the potential of novel therapy directed to CCNA2 and NEK2 in GBM.
Collapse
Affiliation(s)
- Hao-Yu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Yang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bei-Chen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
28
|
Lozinski M, Lumbers ER, Bowden NA, Martin JH, Fay MF, Pringle KG, Tooney PA. Upregulation of the Renin-Angiotensin System Is Associated with Patient Survival and the Tumour Microenvironment in Glioblastoma. Cells 2024; 13:634. [PMID: 38607073 PMCID: PMC11012120 DOI: 10.3390/cells13070634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nikola A. Bowden
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer H. Martin
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael F. Fay
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Paul A. Tooney
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
| |
Collapse
|
29
|
Zhang Y, Tan YT, Wang MJ, Li L, Huang JF, Wang SC. Bibliometric analysis of PTEN in neurodevelopment and neurodegeneration. Front Aging Neurosci 2024; 16:1390324. [PMID: 38586827 PMCID: PMC10995293 DOI: 10.3389/fnagi.2024.1390324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) was initially recognized as a significant regulator of cancer suppression and could impede cancer cell survival, proliferation, and energy metabolism. PTEN is highly expressed in neurons and performs crucial functions in neurogenesis, synaptogenesis, and neuronal survival. Disruption of PTEN activity may also result in abnormal neuronal function and is associated with various neurological disorders, including stroke, seizures, and autism. Although several studies have shown that PTEN is involved in the development and degenerative processes of the nervous system, there is still a lack of in-depth studies that summarize and analyse patterns of cooperation between authors, institutions, countries, and journals, as well as research hotspots and trends in this important field. To identify and further visualize the cooperation and comprehend the development and trends of PTEN in the nervous system, especially in neural development and neurological diseases, we used a bibliometric analysis to identify relevant publications on this topic. We first found that the number of publications displayed a growing trend with time, but this was not stable. Universities, institutions, and authors from the United States are leading in this area of research. In addition, many cutting-edge research results have been discovered, such as key regulatory molecules and cellular mechanisms of PTEN in the nervous system, which may provide novel intervention targets and precise therapeutic strategies for related pathological injuries and diseases. Finally, the literature published within the last 5 years is discussed to identify future research trends regarding PTEN in the nervous system. Taken together, our findings, analysed using bibliometrics, may reflect research hotspots and trends, providing a reference for studying PTEN in the nervous system, especially in neural development and neurological diseases. These findings can assist new researchers in developing their research interests and gaining basic information. Moreover, our findings also may provide precise clinical guidelines and strategies for treating nervous system injuries and diseases caused by PTEN dysfunction.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ya-ting Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Fang KT, Su CS, Layos JJ, Lau NYS, Cheng KH. Haploinsufficiency of Adenomatous Polyposis Coli Coupled with Kirsten Rat Sarcoma Viral Oncogene Homologue Activation and P53 Loss Provokes High-Grade Glioblastoma Formation in Mice. Cancers (Basel) 2024; 16:1046. [PMID: 38473403 DOI: 10.3390/cancers16051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.
Collapse
Affiliation(s)
- Kuan-Te Fang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chuan-Shiang Su
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jhoanna Jane Layos
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Nga Yin Sadonna Lau
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
31
|
Deng J, Lai G, Zhang C, Li K, Zhu W, Xie B, Zhong X. A robust primary liver cancer subtype related to prognosis and drug response based on a multiple combined classifying strategy. Heliyon 2024; 10:e25570. [PMID: 38352751 PMCID: PMC10861988 DOI: 10.1016/j.heliyon.2024.e25570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The recurrence or resistance to treatment of primary liver cancer (PLL) is significantly related to the heterogeneity present within the tumor. In this study, we integrated prognosis risk score, mRNAsi index, and immune characteristics clustering to classify patients. The four subtypes obtained from the combined classification are associated with PLC's prognosis and drug response. In these subtypes, we observed mRNAsiH_ICCA subtype, the intersection between high mRNAsi and immune characteristics clustering A, had the worst prognosis. Specifically, immune characteristics clustering B (ICC_B) had high drug sensitivity in most drugs regardless of the value of mRNAsi. On the other hand, patients with low mRNAsi responded better to ten drugs including KU-55933 and NU7441, while patients with high mRNAsi might benefit from drugs like Leflunomide. By matching the specific characteristics of each combined subtype with the drug-induced cell line expression profile, we identified a group of potential therapeutic drugs that might regulate the expression of disease signature genes. We developed a feasible multiple combined typing strategy, hoping to guide therapeutic selection and promote the development of precision medicine.
Collapse
Affiliation(s)
- Jielian Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
- Medical Department, Yidu Cloud (Beijing) Technology Co., Beijing, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Medical Department, Yidu Cloud (Beijing) Technology Co., Beijing, China
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Boskovic P, Wilke N, Man KH, Lichter P, Francois L, Radlwimmer B. Branched-chain amino acid transaminase 1 regulates glioblastoma cell plasticity and contributes to immunosuppression. Neuro Oncol 2024; 26:251-265. [PMID: 37769206 PMCID: PMC10836774 DOI: 10.1093/neuonc/noad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common malignant brain tumor in adults. Cellular plasticity and the poorly differentiated features result in a fast relapse of the tumors following treatment. Moreover, the immunosuppressive microenvironment proved to be a major obstacle to immunotherapeutic approaches. Branched-chain amino acid transaminase 1 (BCAT1) was shown to drive the growth of glioblastoma and other cancers;however, its oncogenic mechanism remains poorly understood. METHODS Using human tumor data, cell line models and orthotopic immuno-competent and -deficient mouse models, we investigated the phenotypic and mechanistic effects of BCAT1 on glioblastoma cell state and immunomodulation. RESULTS Here, we show that BCAT1 is crucial for maintaining the poorly differentiated state of glioblastoma cells and that its low expression correlates with a more differentiated glioblastoma phenotype. Furthermore, orthotopic tumor injection into immunocompetent mice demonstrated that the brain microenvironment is sufficient to induce differentiation of Bcat1-KO tumors in vivo. We link the transition to a differentiated cell state to the increased activity of ten-eleven translocation demethylases and the hypomethylation and activation of neuronal differentiation genes. In addition, the knockout of Bcat1 attenuated immunosuppression, allowing for an extensive infiltration of CD8+ cytotoxic T-cells and complete abrogation of tumor growth. Further analysis in immunodeficient mice revealed that both tumor cell differentiation and immunomodulation following BCAT1-KO contribute to the long-term suppression of tumor growth. CONCLUSIONS Our study unveils BCAT1's pivotal role in promoting glioblastoma growth by inhibiting tumor cell differentiation and sustaining an immunosuppressive milieu. These findings offer a novel therapeutic avenue for targeting glioblastoma through the inhibition of BCAT1.
Collapse
Affiliation(s)
- Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nathalie Wilke
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Liliana Francois
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Pan M, Zhou MY, Jiang C, Zhang Z, Bui N, Bien J, Siy A, Achacoso N, Solorzano AV, Tse P, Chung E, Hu W, Thomas S, Ganjoo K, Habel LA. PTEN pathogenic variants are associated with poor prognosis in patients with advanced soft tissue sarcoma. BJC REPORTS 2024; 2:9. [PMID: 39516677 PMCID: PMC11524139 DOI: 10.1038/s44276-023-00029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 11/16/2024]
Abstract
BACKGROUND We aimed to examine whether PTEN pathogenic variants (mutPTEN) were associated with overall survival (OS) in patients with advanced soft tissue sarcoma (STS) with the presence of one or more of the most common genomic alterations including p53, CDKN2A, RB1, and ATRX pathogenic variants. METHODS This study included patients from Kaiser Permanente Northern California and Stanford Cancer Center with grade 2 or higher locally advanced and metastatic STS. RESULTS A total of 174 patients had leiomyosarcoma (LMS), 136 had undifferentiated pleomorphic sarcoma (UPS), 78 had Liposarcoma (LPS), and 214 had other histology subtypes (Others). Among all patients with STS, OS was worse for those with mutPTEN versus wild-type PTEN (wtPTEN, adjusted HR [aHR] = 1.58 [95% CI, 1.11-2.23]), mutCDKN2A vs wtCDKN2A (aHR = 1.33 [95% CI .99-1.80]), and mutRB1 vs wtRB1 (aHR = 1.26 [95% CI 0.93-1.70[), while OS was similar for mutp53 vs wtp53 and mutATRX vs wtATRX. MutPTEN versus wtPTEN was consistently associated with worse OS in histologic subtypes including LMS and UPS and molecular subgroups. CONCLUSION MutPTEN vs wtPTEN was associated with worse OS in advanced STS. If confirmed, our findings could be helpful for prognostic stratification in clinical practice and for further understanding the molecular mechanisms of STS.
Collapse
Affiliation(s)
- Minggui Pan
- Division of Research, Kaiser Permanente, Oakland, CA, 94612, USA.
- Sarcoma Program, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Maggie Y Zhou
- Sarcoma Program, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA, 94612, USA
| | - Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Nam Bui
- Sarcoma Program, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jeffrey Bien
- Sarcoma Program, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Amanda Siy
- Sarcoma Program, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente, Oakland, CA, 94612, USA
| | | | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA, 94612, USA
| | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA, 94612, USA
| | - Wenwei Hu
- Rutger's Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA, 94589, USA
| | - Kristen Ganjoo
- Sarcoma Program, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente, Oakland, CA, 94612, USA
| |
Collapse
|
34
|
Xu L, Zhang L, Zhang S, Yang J, Zhu A, Sun J, Kalvakolanu DV, Cong X, Zhang J, Tang J, Guo B. Taxifolin inhibits melanoma proliferation/migration impeding USP18/Rac1/JNK/β-catenin oncogenic signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155199. [PMID: 37995531 DOI: 10.1016/j.phymed.2023.155199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Metastatic melanoma is a fatal cancer. Despite the advances in targeted therapy and immunotherapy for patients with melanoma, drug resistance and low response rates pose a considerable challenge. Taxifolin is a multifunctional natural compound with emerging antitumor potentials. However, its utility in melanoma treatment remains unclear. PURPOSE The study aimed to investigate the effect of purified Taxifolin from Larix olgensis roots (Changbai Mountain, China) on melanoma and explore the underlying mechanism. METHODS Purified Taxifolin from Larix olgensis roots was evaluated for its antimelanoma effects in vitro and in vivo settings. RNA-seq analysis was performed to explore the underlying mechanism. RESULTS Purified Taxifolin (> 99 %) from Larix olgensis roots inhibited the proliferation and migration of B16F10 melanoma cells at 200 and 400 μM, and of A375 cells at 100 and 200 μM. Taxifolin administered at 60 mg/kg suppressed tumor growth and metastasis in mouse models without causing significant toxicity. Taxifolin modulated USP18/Rac1/JNK/β-catenin axis to exert its antitumor effect. CONCLUSION These findings indicate that Taxifolin derived from Larix olgensis roots may be a promising antimelanoma therapy.
Collapse
Affiliation(s)
- Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Ling Zhang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Shengnan Zhang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jiaying Yang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Aonan Zhu
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xianling Cong
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Jun Tang
- Department of Polymer Science, Chemistry College, Jilin University, Changchun, PR China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
35
|
Chao Q, Li X, Huang Y. E3 ubiquitin-ligase RNF138 may regulate p53 protein expression to regulate the self-renewal and tumorigenicity of glioma stem cells. J Cancer Res Ther 2023; 19:1636-1645. [PMID: 38156932 DOI: 10.4103/jcrt.jcrt_733_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most malignant tumor of the central nervous system, is characterized by poor survival and high recurrence. Glioma stem cells (GSCs) are key to treating GBM and are regulated by various signaling pathways. Ubiquitination, a post-translational modification, plays an important regulatory role in many biological processes. Ring finger protein 138 (RNF138) is an E3 ubiquitin-protein ligase that is highly expressed in several tumors; however, its role in GBM is unclear. This study investigated whether RNF138 regulates the self-renewal ability of glioma stem GSCs to treat GBM. MATERIALS AND METHODS The expression of RNF138 in glioma tissues and its correlation with GSCs were analyzed using bioinformatics. Short hairpin ribonucleic acid (RNA) was designed to downregulate the expression of RNF138 in GSCs, and immunofluorescence, secondary pellet formation, and western blotting were used to detect changes in GSC markers and self-renewal ability. The effects of RNF138 on p53 protein expression were determined by immunofluorescence and western blotting. The effects of RNF138 on the self-renewal and tumorigenic abilities of GSCs were evaluated in vivo. RESULTS RNF138 expression was higher in glioma tissues than in normal brain tissues, and was highly expressed in GSCs. RNF138 downregulation significantly decreased the expression of the GSC markers cluster of differentiation 133 (CD133) and nestin. Mechanistically, RNF138 may interfere with the self-renewal ability of GSCs by regulating the expression of p53. RNF138 downregulation in vivo prolonged survival time and regulated the expression of p53 protein in tumor-bearing mice. CONCLUSION RNF138 may regulate the expression of p53 protein through ubiquitination, thereby affecting the self-renewal and tumorigenic ability of GSCs. This study provides a scientific basis for the treatment of glioblastoma by targeting RNF138 to inhibit GSCs.
Collapse
Affiliation(s)
- Qing Chao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xuetao Li
- The DuShu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yulun Huang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- The DuShu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Wen J, Liu F, Cheng Q, Weygant N, Liang X, Fan F, Li C, Zhang L, Liu Z. Applications of organoid technology to brain tumors. CNS Neurosci Ther 2023; 29:2725-2743. [PMID: 37248629 PMCID: PMC10493676 DOI: 10.1111/cns.14272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Lacking appropriate model impedes basic and preclinical researches of brain tumors. Organoids technology applying on brain tumors enables great recapitulation of the original tumors. Here, we compared brain tumor organoids (BTOs) with common models including cell lines, tumor spheroids, and patient-derived xenografts. Different BTOs can be customized to research objectives and particular brain tumor features. We systematically introduce the establishments and strengths of four different BTOs. BTOs derived from patient somatic cells are suitable for mimicking brain tumors caused by germline mutations and abnormal neurodevelopment, such as the tuberous sclerosis complex. BTOs derived from human pluripotent stem cells with genetic manipulations endow for identifying and understanding the roles of oncogenes and processes of oncogenesis. Brain tumoroids are the most clinically applicable BTOs, which could be generated within clinically relevant timescale and applied for drug screening, immunotherapy testing, biobanking, and investigating brain tumor mechanisms, such as cancer stem cells and therapy resistance. Brain organoids co-cultured with brain tumors (BO-BTs) own the greatest recapitulation of brain tumors. Tumor invasion and interactions between tumor cells and brain components could be greatly explored in this model. BO-BTs also offer a humanized platform for testing the therapeutic efficacy and side effects on neurons in preclinical trials. We also introduce the BTOs establishment fused with other advanced techniques, such as 3D bioprinting. So far, over 11 brain tumor types of BTOs have been established, especially for glioblastoma. We conclude BTOs could be a reliable model to understand brain tumors and develop targeted therapies.
Collapse
Affiliation(s)
- Jie Wen
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fangkun Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Nathaniel Weygant
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine in GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Xisong Liang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Fan Fan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Chuntao Li
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Liyang Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
- Hypothalamic‐pituitary Research CenterXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
37
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
38
|
Hu Y, Li Z, Zhang Y, Wu Y, Liu Z, Zeng J, Hao Z, Li J, Ren J, Yao M. The Evolution of Tumor Microenvironment in Gliomas and Its Implication for Target Therapy. Int J Biol Sci 2023; 19:4311-4326. [PMID: 37705736 PMCID: PMC10496508 DOI: 10.7150/ijbs.83531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Gliomas develop in unique and complicated environments that nourish tumor cells. The tumor microenvironment (TME) of gliomas comprises heterogeneous cells, including brain-resident cells, immune cells, and vascular cells. Reciprocal interactions among these cells are involved in the evolution of the TME. Moreover, the study of attractive therapeutic strategies that target the TME is transitioning from basic research to the clinic. Mouse models are indispensable tools for dissecting the processes and mechanisms leading to TME evolution. In this review, we overview the paradoxical roles of the TME, as well as the recent progress of mouse models in TME research. Finally, we summarize recent advances in TME-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Yang Hu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Zhixing Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Yichi Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Yuzheng Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Zihao Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Zhexue Hao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| |
Collapse
|
39
|
García-Montaño LA, Licón-Muñoz Y, Martinez FJ, Keddari YR, Ziemke MK, Chohan MO, Piccirillo SG. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling. Mol Cancer Res 2023; 21:755-767. [PMID: 37255362 PMCID: PMC10390891 DOI: 10.1158/1541-7786.mcr-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.
Collapse
Affiliation(s)
- Leopoldo A. García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Frank J. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yasine R. Keddari
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of California, Merced, California
| | - Michael K. Ziemke
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Muhammad O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
40
|
Zhong J, Wu X, Gao Y, Chen J, Zhang M, Zhou H, Yang J, Xiao F, Yang X, Huang N, Qi H, Wang X, Bai F, Shi Y, Zhang N. Circular RNA encoded MET variant promotes glioblastoma tumorigenesis. Nat Commun 2023; 14:4467. [PMID: 37491377 PMCID: PMC10368723 DOI: 10.1038/s41467-023-40212-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Activated by its single ligand, hepatocyte growth factor (HGF), the receptor tyrosine kinase MET is pivotal in promoting glioblastoma (GBM) stem cell self-renewal, invasiveness and tumorigenicity. Nevertheless, HGF/MET-targeted therapy has shown limited clinical benefits in GBM patients, suggesting hidden mechanisms of MET signalling in GBM. Here, we show that circular MET RNA (circMET) encodes a 404-amino-acid MET variant (MET404) facilitated by the N6-methyladenosine (m6A) reader YTHDF2. Genetic ablation of circMET inhibits MET404 expression in mice and attenuates MET signalling. Conversely, MET404 knock-in (KI) plus P53 knock-out (KO) in mouse astrocytes initiates GBM tumorigenesis and shortens the overall survival. MET404 directly interacts with the MET β subunit and forms a constitutively activated MET receptor whose activity does not require HGF stimulation. High MET404 expression predicts poor prognosis in GBM patients, indicating its clinical relevance. Targeting MET404 through a neutralizing antibody or genetic ablation reduces GBM tumorigenicity in vitro and in vivo, and combinatorial benefits are obtained with the addition of a traditional MET inhibitor. Overall, we identify a MET variant that promotes GBM tumorigenicity, offering a potential therapeutic strategy for GBM patients, especially those with MET hyperactivation.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Junju Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Huangkai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Jia Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Haoyue Qi
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Laboratory of Tumour Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University (PKU), Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Laboratory of Tumour Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
41
|
Wang X, Sun Y, Zhang DY, Ming GL, Song H. Glioblastoma modeling with 3D organoids: progress and challenges. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad008. [PMID: 38596241 PMCID: PMC10913843 DOI: 10.1093/oons/kvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Kong JG, Mei Z, Zhang Y, Xu LZ, Zhang J, Wang Y. CDYL knockdown reduces glioma development through an antitumor immune response in the tumor microenvironment. Cancer Lett 2023:216265. [PMID: 37302564 DOI: 10.1016/j.canlet.2023.216265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Gliomas are highly prevalent and aggressive brain tumors. Growing evidence shows that epigenetic changes are closely related to cancer development. Here we report the roles of Chromodomain Y-like (CDYL), an important epigenetic transcriptional corepressor in the central nervous system in glioma progression. We found that CDYL was highly expressed in glioma tissues and cell lines. CDYL knockdown decreased cell mobility in vitro and significantly reduced tumor burden in the xenograft mouse in vivo. RNA sequencing analysis revealed the upregulation of immune pathways after CDYL knockdown, as well as chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 12. The immunohistochemistry staining and macrophage polarization assays showed increased infiltration of M1-like tumor-associated macrophages/microglia (TAMs) while decreased infiltration of M2-like TAMs after CDYL knockdown in vivo and in vitro. Following the in situ TAMs depletion or CCL2 antibody neutralization, the tumor-suppressive role of CDYL knockdown was abolished. Collectively, our results show that CDYL knockdown suppresses glioma progression, which is associated with CCL2-recruited monocytes/macrophages and the polarization of M1-like TAMs in the tumor microenvironment, indicating CDYL as a promising target for glioma treatment.
Collapse
Affiliation(s)
- Jin-Ge Kong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Zhu Mei
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Ying Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Lu-Zheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100083, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100083, China.
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
Trąbska-Kluch B, Braun M, Orzechowska M, Paszek S, Zuchowska A, Sołek J, Kluska A, Fijuth J, Jesionek-Kupnicka D, Zawlik I. Potential Prognostic Value of GATA4 Depends on the p53 Expression in Primary Glioblastoma Patients. Genes (Basel) 2023; 14:1146. [PMID: 37372326 DOI: 10.3390/genes14061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Primary glioblastoma is characterized by an extremely poor prognosis. The promoter methylation of GATA4 leads to the loss of its expression in many cancer types. The formation of high-grade astrocytomas can be promoted by the concurrent loss of TP53 and GATA4 in normal human astrocytes. Nevertheless, the impact of GATA4 alterations with linkage to TP53 changes in gliomagenesis is poorly understood. This study aimed to evaluate GATA4 protein expression, GATA4 promoter methylation, p53 expression, TP53 promoter methylation, and mutation status in patients with primary glioblastoma and to assess the possible prognostic impact of these alterations on overall survival. MATERIALS AND METHODS Thirty-one patients with primary glioblastoma were included. GATA4 and p53 expressions were determined immunohistochemically, and GATA4 and TP53 promoter methylations were analyzed via methylation-specific PCR. TP53 mutations were investigated via Sanger sequencing. RESULTS The prognostic value of GATA4 depends on p53 expression. Patients without GATA4 protein expression were more frequently negative for TP53 mutations and had better prognoses than the GATA4 positive patients. In patients positive for GATA4 protein expression, p53 expression was associated with the worst outcome. However, in patients positive for p53 expression, the loss of GATA4 protein expression seemed to be associated with improved prognosis. GATA4 promoter methylation was not associated with a lack of GATA4 protein expression. CONCLUSIONS Our data indicate that there is a possibility that GATA4 could function as a prognostic factor in glioblastoma patients, but in connection with p53 expression. A lack of GATA4 expression is not dependent on GATA4 promoter methylation. GATA4 alone has no influence on survival time in glioblastoma patients.
Collapse
Affiliation(s)
- Berenika Trąbska-Kluch
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Magdalena Orzechowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 93-513 Lodz, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Alina Zuchowska
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | - Adam Kluska
- Brachytherapy Department, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Copernicus Memorial Hospital, 93-513 Lodz, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Lodz, 93-513 Lodz, Poland
| | | | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of General Genetics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
44
|
Ogunleye AO, Nimmakayala RK, Batra SK, Ponnusamy MP. Metabolic Rewiring and Stemness: A Critical Attribute of Pancreatic Cancer Progression. Stem Cells 2023; 41:417-430. [PMID: 36869789 PMCID: PMC10183971 DOI: 10.1093/stmcls/sxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases with a poor 5-year survival rate. PDAC cells rely on various metabolic pathways to fuel their unlimited proliferation and metastasis. Reprogramming glucose, fatty acid, amino acid, and nucleic acid metabolisms contributes to PDAC cell growth. Cancer stem cells are the primary cell types that play a critical role in the progression and aggressiveness of PDAC. Emerging studies indicate that the cancer stem cells in PDAC tumors are heterogeneous and show specific metabolic dependencies. In addition, understanding specific metabolic signatures and factors that regulate these metabolic alterations in the cancer stem cells of PDAC paves the way for developing novel therapeutic strategies targeting CSCs. In this review, we discuss the current understanding of PDAC metabolism by specifically exploring the metabolic dependencies of cancer stem cells. We also review the current knowledge of targeting these metabolic factors that regulate CSC maintenance and PDAC progression.
Collapse
Affiliation(s)
- Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
45
|
Loras A, Gonzalez-Bonet LG, Gutierrez-Arroyo JL, Martinez-Cadenas C, Marques-Torrejon MA. Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life (Basel) 2023; 13:life13040905. [PMID: 37109434 PMCID: PMC10145968 DOI: 10.3390/life13040905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor in adults and it remains incurable. These tumors are very heterogeneous, resistant to cytotoxic therapies, and they show high rates of invasiveness. Therefore, patients face poor prognosis, and the survival rates remain very low. Previous research states that GBM contains a cell population with stem cell characteristics called glioma stem cells (GSCs). These cells are able to self-renew and regenerate the tumor and, therefore, they are partly responsible for the observed resistance to therapies and tumor recurrence. Recent data indicate that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells of origin of GBM, that is, the cell type acquiring the initial tumorigenic mutation. The involvement of SVZ-NSCs is also associated with GBM progression and recurrence. Identifying the cellular origin of GBM is important for the development of early detection techniques and the discovery of early disease markers. In this review, we analyze the SVZ-NSC population as a potential GBM cell of origin, and its potential role for GBM therapies.
Collapse
Affiliation(s)
- Alba Loras
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | - Julia L. Gutierrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | | | - Maria Angeles Marques-Torrejon
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Correspondence: ; Tel.: +34-964-387-478
| |
Collapse
|
46
|
Lo HW, Tapinos N. Editorial: Epigenetics and cellular plasticity in glioblastoma. Front Oncol 2023; 13:1179214. [PMID: 37020873 PMCID: PMC10068962 DOI: 10.3389/fonc.2023.1179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Hui-Wen Lo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Nikos Tapinos
- Department of Neuroscience, Brown University, Providence, RI, United States
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neuroscience, Brown University, Providence, RI, United States
- *Correspondence: Nikos Tapinos,
| |
Collapse
|
47
|
Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR. Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities. Cancer Res 2023; 83:890-905. [PMID: 36634201 DOI: 10.1158/0008-5472.can-22-1577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations. SIGNIFICANCE Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss-mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses. See related commentary by Zamler and Hu, p. 807.
Collapse
Affiliation(s)
- Ravinder Verma
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiameng Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
48
|
Xiao H, Zhu H, Bögler O, Mónica FZ, Kots AY, Murad F, Bian K. Soluble Guanylate Cyclase β1 Subunit Represses Human Glioblastoma Growth. Cancers (Basel) 2023; 15:1567. [PMID: 36900358 PMCID: PMC10001022 DOI: 10.3390/cancers15051567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCβ1 alone repressed the aggressive course of glioma. The antitumor effect of sGCβ1 was not associated with enzymatic activity of sGC since overexpression of sGCβ1 alone did not influence the level of cyclic GMP. Additionally, sGCβ1-induced inhibition of the growth of glioma cells was not influenced by treatment with sGC stimulators or inhibitors. The present study is the first to reveal that sGCβ1 migrated into the nucleus and interacted with the promoter of the TP53 gene. Transcriptional responses induced by sGCβ1 caused the G0 cell cycle arrest of glioblastoma cells and inhibition of tumor aggressiveness. sGCβ1 overexpression impacted signaling in glioblastoma multiforme, including the promotion of nuclear accumulation of p53, a marked reduction in CDK6, and a significant decrease in integrin α6. These anticancer targets of sGCβ1 may represent clinically important regulatory pathways that contribute to the development of a therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Haijie Xiao
- Department of Biochemistry and Molecular Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Haifeng Zhu
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Oliver Bögler
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Fabiola Zakia Mónica
- Department of Biochemistry and Molecular Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Sao Paolo 13083, Brazil
| | - Alexander Y. Kots
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| | - Ferid Murad
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| | - Ka Bian
- Veteran Affairs Palo Alto Health Care System, Department of Veteran Affairs, Palo Alto, CA 94304, USA
| |
Collapse
|
49
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 336] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
50
|
Frederico SC, Zhang X, Hu B, Kohanbash G. Pre-clinical models for evaluating glioma targeted immunotherapies. Front Immunol 2023; 13:1092399. [PMID: 36700223 PMCID: PMC9870312 DOI: 10.3389/fimmu.2022.1092399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas have an extremely poor prognosis in both adult and pediatric patient populations as these tumors are known to grow aggressively and respond poorly to standard of care treatment. Currently, treatment for gliomas involves surgical resection followed by chemoradiation therapy. However, some gliomas, such as diffuse midline glioma, have more limited treatment options such as radiotherapy alone. Even with these interventions, the prognosis for those diagnosed with a glioma remains poor. Immunotherapy is highly effective for some cancers and there is great interest in the development of effective immunotherapies for the treatment of gliomas. Clinical trials evaluating the efficacy of immunotherapies targeted to gliomas have largely failed to date, and we believe this is partially due to the poor choice in pre-clinical mouse models that are used to evaluate these immunotherapies. A key consideration in evaluating new immunotherapies is the selection of pre-clinical models that mimic the glioma-immune response in humans. Multiple pre-clinical options are currently available, each one with their own benefits and limitations. Informed selection of pre-clinical models for testing can facilitate translation of more promising immunotherapies in the clinical setting. In this review we plan to present glioma cell lines and mouse models, as well as alternatives to mouse models, that are available for pre-clinical glioma immunotherapy studies. We plan to discuss considerations of model selection that should be made for future studies as we hope this review can serve as a guide for investigators as they choose which model is best suited for their study.
Collapse
Affiliation(s)
- Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Gary Kohanbash,
| |
Collapse
|