1
|
Cao X, Wen H, Tian D, Shi H, Xie K, Qiu J, Kou Y. UvCYP503 is required for stress response and pathogenicity in Ustilaginoidea virens. Virulence 2025; 16:2472877. [PMID: 40033930 PMCID: PMC11901397 DOI: 10.1080/21505594.2025.2472877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/27/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
The fungus Ustilaginoidea virens, which impacts rice spikes, causes rice false smut (RFS), a significant prevalent disease in rice cultivation regions globally. Cytochrome P450 genes are known to be involved in secondary metabolism and pathogenesis in various species, but studies on CYP450 genes in U. virens are limited. In this research, a P450 family gene, CYP503, was found up-regulated during invasion stage of U. virens. Observation of fluorescence indicated that UvCYP503-GFP is situated within cytoplasm of hyphae. Disruption of CYP503 led to decreased hyphal development, conidiation, and pathogenicity. Additional RNA-seq assay revealed that UvCYP503 affects the transcript of genes associated with pathogenicity, various stress responses, and other CYP450 genes. In alignment with RNA-seq results, compared with wild-type, ΔUvcyp503 mutants showed increased sensitivity to cell wall stresses, but reduced sensitivity to osmotic and hyperosmotic stressors. Moreover, ΔUvcyp503 mutants exhibited decreased sensitivity to the fungicides difenoconazole and tebuconazole. This study represents a phenome-based functional analysis of a CYP503 gene in U. virens and provides valuable genetic resources for further research in filamentous fungi and other plant pathogens.
Collapse
Affiliation(s)
- Xiuxiu Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
2
|
Jin X, Lu Y, Fan Z. Exploring NamiRNA networks and time-series gene expression in osteogenic differentiation of adipose-derived stem cells. Ann Med 2025; 57:2478323. [PMID: 40100054 PMCID: PMC11921168 DOI: 10.1080/07853890.2025.2478323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) are a type of stem cell found in adipose tissue with the capacity to differentiate into multiple lineages, including osteoblasts. The differentiation of ADSCs into osteoblasts underlies osteogenic and pathological cellular basis in osteoporosis, bone damage and repair. METHODS Focused on ADSCs osteogenic differentiation, we conducted mRNA, microRNA expression and bioinformatics analysis, including gene differential expression, time series-based trend analysis, functional enrichment, and generates potential nuclear activating miRNAs (NamiRNA) regulatory network. The screened mRNAs in NamiRNA regulatory network were validated with correlation analysis. RESULTS The NamiRNA Regulatory Network reveals 4 mRNAs (C12orf61, MIR31HG, NFE2L1, and PCYOX1L) significantly downregulated in differentiated group and may be associated with ADSCs stemness. Furthermore, the significantly upregulated 10 genes (ACTA2, TAGLN, LY6E, IFITM3, NGFRAP1, TCEAL4, ATP5C1, CAV1, RPSA, and KDELR3) were significantly enriched in osteogenic-related pathways, and negatively correlated with ADSCs cell stemness in vitro. CONCLUSION These findings uncover potential genes related to ADSCs osteogenic differentiation, and provide theoretical basis for underlying ADSCs osteogenic differentiation and related diseases.
Collapse
Affiliation(s)
- Xin Jin
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihong Fan
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Cimini C, Taraschi A, Ramal-Sanchez M, Colosimo A, Di Carlo C, Belda-Perez R, Valbonetti L, Capacchietti G, Bernabò N, Barboni B. Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach. Syst Biol Reprod Med 2025; 71:2-12. [PMID: 39862104 DOI: 10.1080/19396368.2024.2434268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 01/27/2025]
Abstract
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions. 365 hubs were identified within the network, representing potential key regulators, and 210 nodes that act as both hubs and bottlenecks (H&BN nodes), suggesting that they may control the information flow within the network. GO enrichment analysis of the 210 H&BN nodes revealed their involvement in fundamental cellular processes relevant to ovarian function. In particular, the cluster analysis identified several shared pathways between cluster 1 and cluster 2 involved in the RAS/MAPK pathway, which plays a critical role in cell proliferation, differentiation and survival. These findings suggest that miRNAs play a significant role in DOR and highlight the potential of the RAS/MAPK pathway as a target for further investigation. Additionally, the genes identified as both hubs and bottlenecks revealed interesting connections to reproductive health in KO mice models. This in silico approach provides valuable insights into potential biomarkers and therapeutic targets for age-related reproductive disorders.
Collapse
Affiliation(s)
- Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Angela Taraschi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Marina Ramal-Sanchez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carlo Di Carlo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Physiology, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Hu K, Zhu Q, Zou J, Li X, Ye M, Yang J, Chen S, Li F, Ding B, Yang S, Song C, Liang M. Proteomic analysis for busulfan-induced spermatogenesis disorder. Ann Med 2025; 57:2442534. [PMID: 39697060 DOI: 10.1080/07853890.2024.2442534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Busulfan is the most commonly used drug for the treatment of chronic myelogenous leukemia and pretreatment for hematopoietic stem cell transplantation, which can damage the reproductive and immune system. However, little is known about the protein expression profiling in busulfan treated testis. METHODS This research studies the proteomics for busulfan-induced spermatogenesis disorder. The model of busulfan-induced mouse spermatogenesis disorder was subjected to label-free quantification proteomics analysis. Clustering heatmap, gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein interaction analyses were performed and validated by molecular experiments. RESULTS The busulfan-treated mouse model showed abnormal testis morphology and reduced sperm number and testis weight. Testicular and sperm damage was most severe at 30 days after busulfan treatment. The busulfan-treated mouse testes were subjected to label-free quantification proteomics, which revealed 190 significantly downregulated proteins including lactate dehydrogenase A like 6B (LDHAL6B) and ubiquitin-specific protease 7 (USP7). In addition, the testis and spermatozoa in the epididymis progressively improved from 70 to 80 days after busulfan treatment, and that the testis weight and spermatozoa number gradually increased from 40 to 80 days after busulfan treatment. Western blotting revealed that LDHAL6B protein significantly increased at 10 days, decreased from 20 to 60 days, and then gradually elevated from 70 to 80 days after busulfan treatment. CONCLUSION We revealed 190 significantly downregulated proteins in busulfan-treated mouse testes at 30 days and indicated that 70 days is the cut-off point of spermatogenic recovery for busulfan-treated mouse testis, increasing our understanding of this reproductive disorder model. An increased understanding of busulfan's toxic effect will help to prevent and treat reproductive diseases.
Collapse
Affiliation(s)
- Ke Hu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Qinran Zhu
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Jiaqi Zou
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Xin Li
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Min Ye
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Jing Yang
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Sixieyang Chen
- School of Life Science, Bengbu Medical University, Bengbu, China
| | - Fan Li
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Biao Ding
- First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Shuai Yang
- First Affiliated Hospital, Bengbu Medical University, Bengbu, China
| | - Chuanwang Song
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical University, Bengbu, China
| |
Collapse
|
5
|
Xie L, Qiu X, Jia J, Yan T, Xu P. Unveiling the role of oxidative stress in ANCA-associated glomerulonephritis through integrated machine learning and bioinformatics analyses. Ren Fail 2025; 47:2499905. [PMID: 40369957 DOI: 10.1080/0886022x.2025.2499905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease often leading to rapidly progressive glomerulonephritis. Oxidative stress plays a critical role in the development and progression of ANCA-associated glomerulonephritis (AAGN), but the underlying mechanisms remain poorly understood. Targeting genes related to oxidative stress may provide novel insights and supplementary therapeutic benefits for AAGN. In the current study, we obtained differentially expressed genes from AAGN-related microarray datasets in the Gene Expression Omnibus database, and oxidative stress-related genes (OSRGs) from the GeneCards and Gene Ontology databases to identify differentially expressed OSRGs. Then, by integrating weighted gene co-expression network analysis, and machine learning algorithms, we identified four upregulated hub OSRGs (all p < 0.01) with strong diagnostic potential (all AUC > 0.9)-CD44, ITGB2, MICB, and RAC2 - in the AAGN glomerular training dataset GSE104948 and validation dataset GSE108109, along with two hub OSRGs (all p < 0.05) with better diagnostic potential (all AUC > 0.7) - upregulated gene VCAM1 and downregulated gene VEGFA-in the AAGN tubulointerstitial training dataset GSE104954 and validation dataset GSE108112. The GSEA analysis suggested that these hub genes may play a role in inflammatory and immune response processes. Moreover, we constructed regulatory networks and identified drugs that potentially target these hub genes. It's to be noted that RAC2 and ITGB2 were associated with cyclophosphamide in the AAGN glomerular compartment, while VCAM1 and VEGFA were associated with dexamethasone in the tubulointerstitial compartment. This study offers novel insights into immune-associated OSRGs within the glomerular and tubulointerstitial compartments of AAGN which may serve as innovative targets for diagnosing and treating AAGN.
Collapse
Affiliation(s)
- Liyuan Xie
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xianying Qiu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Tiekun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Pengcheng Xu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
6
|
Hatamipour M, Saremi H, Kesharwani P, Sahebkar A. Identification of potential therapeutic targets for stroke using data mining, network analysis, enrichment, and docking analysis. Comput Biol Chem 2025; 117:108431. [PMID: 40127530 DOI: 10.1016/j.compbiolchem.2025.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Stroke is a leading cause of disability and death worldwide. In this study, we identified potential therapeutic targets for stroke using a data mining, network analysis, enrichment, and docking analysis approach. We first identified 1991 genes associated with stroke from two publicly available databases: GeneCards and DisGeNET. We then constructed a protein-protein interaction (PPI) network using the STRING database and identified 1301 nodes and 5413 edges. We used Metascape to perform GO enrichment analysis and KEGG pathway enrichment analysis. The results of these analyses identified ten hub genes (TNF, IL6, ACTB, AKT1, IL1B, TP53, VEGFA, STAT3, CASP3, and CTNNB1) and five KEGG pathways (cancer, lipid and atherosclerosis, cytokine-cytokine receptor interaction, AGE RAGE signaling pathway in complications, and TNF signaling pathway) that are enriched in stroke genes. We then performed molecular docking analysis to screen potential drug candidates for these targets. The results of this analysis identified several promising drug candidates that could be used to develop new therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Saremi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Contreras P, Fica-León V, Navarrete J, Oviedo C. De novo transcriptome assembly and functional annotation supports potential biotechnological applications for the non-model thraustochytrid Ulkenia visurgensis Lng2. Gene 2025; 958:149492. [PMID: 40228758 DOI: 10.1016/j.gene.2025.149492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/19/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Thraustochytrids are heterotrophic marine protists known for their ability to produce valuable lipids such as docosahexaenoic acid (DHA). However, like many non-model organisms, they present challenges for transcriptomic studies due to the limited reliable reference genomes and compatibility with curated protein databases, complicating the respective assembly and annotation. This study presents a de novo transcriptome assembly and functional annotation for the recently isolated thraustochytrid strain Ulkenia visurgensis Lng2 using solely free access software and code available in public domain repositories. The assembled transcriptome presented 45,867 unique gene models, with a total of 66,623 transcripts and a contig N50 of 3162. Functional annotations highlighted high amounts of transcripts related to the biosynthesis of relevant lipidic molecules, as well as stress-adaptive features including catalytic and xenobiotic degrading activity. Likewise, 2381 transcripts were linked to enzymes with potential biotechnological applications. Notably, several transcripts corresponding to uncommon enzymatic activities in thraustochytrids, including laccases, cellulases, and chitinases, were identified. Additionally, evidence for a potential lactamase activity was found, marking the first report of such activity in thraustochytrids. Overall, this study offers a simple free-access procedural strategy for a de novo transcriptome assembly and functional annotation in non-model organisms. These results provide valuable insights into the biotechnological potential of thraustochytrids, while also expanding the limited transcriptomic data available for these protists. Notably, it represents the first transcriptomic analysis of the Ulkenia genus.
Collapse
Affiliation(s)
- Pedro Contreras
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile.
| | - Víctor Fica-León
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile.
| | - José Navarrete
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bio-Bio, Concepción, Chile.
| | - Claudia Oviedo
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile.
| |
Collapse
|
8
|
Frolov A, Huang H, Schütz D, Köhne M, Blank-Stein N, Osei-Sarpong C, Büttner M, Elmzzahi T, Khundadze M, Zahid M, Reuter M, Becker M, De Domenico E, Bonaguro L, Kallies A, Morrison H, Hübner CA, Händler K, Stumm R, Mass E, Beyer MD. Microglia and CD8+ T cell activation precede neuronal loss in a murine model of spastic paraplegia 15. J Exp Med 2025; 222:e20232357. [PMID: 40266307 PMCID: PMC12017274 DOI: 10.1084/jem.20232357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
In central nervous system (CNS) diseases characterized by late-onset neurodegeneration, the interplay between innate and adaptive immune responses remains poorly understood. This knowledge gap is exacerbated by the prolonged protracted disease course as it complicates the delineation of brain-resident and infiltrating cells. Here, we conducted comprehensive profiling of innate and adaptive immune cells in a murine model of spastic paraplegia 15 (SPG15), a complicated form of hereditary spastic paraplegia. Using fate-mapping of bone marrow-derived cells, we identified microgliosis accompanied by infiltration and local expansion of T cells in the CNS of Spg15-/- mice. Single-cell analysis revealed an expansion of disease-associated microglia (DAM) and effector CD8+ T cells prior to neuronal loss. Analysis of potential cell-cell communication pathways suggested bidirectional interactions between DAM and effector CD8+ T cells, potentially contributing to disease progression in Spg15-/- mice. In summary, we identified a shift in microglial phenotypes associated with the recruitment and expansion of T cells as a new characteristic of Spg15-driven neuropathology.
Collapse
Affiliation(s)
- Aleksej Frolov
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Hao Huang
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maren Köhne
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nelli Blank-Stein
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Maren Büttner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Tarek Elmzzahi
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Zahid
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Michael Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Modular High-Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Marc D. Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| |
Collapse
|
9
|
García-Cruz G, Esparza-Perusquía M, Cruz-Cárdenas A, Cruz-Vilchis D, Flores-Herrera O. Kinetic characterization of respirasomes and free complex I from Yarrowia lipolytica. Mitochondrion 2025; 83:102035. [PMID: 40180170 DOI: 10.1016/j.mito.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The mitochondrion is a highly dynamic organelle capable of adapting to external stimuli and the energetic demands of the cell. As the primary source of cellular ATP, generating approximately 90 % of the total, mitochondrion facilitates the association of respiratory complexes I, III2, and IV into supramolecular structures called respirasomes. This supramolecular organization enhances protein density within the mitochondrial inner membrane, enabling homogenous energy production. In this study, we investigate the subunits composition and the kinetic characterization of digitonin-solubilized respirasomes and the free complex I from Yarrowia lipolytica as well as their role in reactive oxygen species (ROS) production. The NADH:DBQ oxido reductase activity of respirasome and free complex I was similar. Respiration by respirasome was inhibited with rotenone, antimycin A, or cyanide, simultaneously to an increase in the ROS production. A value of 1.6 ± 0.2 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity. The role of interaction between complexes in the function of the respirasome is discussed.
Collapse
Affiliation(s)
- Giovanni García-Cruz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Alejandro Cruz-Cárdenas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Diana Cruz-Vilchis
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
10
|
Cui X, Liu Y, Sun M, Zhao Q, Huang Y, Zhang J, Yao Q, Yin H, Zhang H, Mo F, Zhong H, Liu Y, Chen X, Zhang Y, Liu J, Qiu Y, Feng M, Chen X, Ghanizadeh H, Zhou Y, Wang A. The nature of complex structural variations in tomatoes. HORTICULTURE RESEARCH 2025; 12:uhaf107. [PMID: 40406505 PMCID: PMC12096311 DOI: 10.1093/hr/uhaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/06/2025] [Indexed: 05/26/2025]
Abstract
Structural variations (SVs) in repetitive sequences could only be detected within a broad region due to imprecise breakpoints, leading to classification errors and inaccurate trait analysis. Through manual inspection at 4532 variant regions identified by integrating 14 detection pipelines between two tomato genomes, we generated an SV benchmark at base-pair resolution. Evaluation of all pipelines yielded F1-scores below 53.77% with this benchmark, underscoring the urgent need for advanced detection algorithms in plant genomics. Analyzing the alignment features of the repetitive sequences in each region, we summarized four patterns of SV breakpoints and revealed that deviations in breakpoint identification were primarily due to copy misalignment. According to the similarities among copies, we identified 1635 bona fide SVs with precise breakpoints, including substitutions (223), which should be taken as a fundamental SV type, alongside insertions (780), deletions (619), and inversions (13), all showing preferences for SV occurrence within AT-repeat regions of regulatory loci. This precise resolution of complex SVs will foster genome analysis and crop improvement.
Collapse
Affiliation(s)
- Xue Cui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Miao Sun
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiyue Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yicheng Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiulin Yao
- Wuhan Jianbing Technology Co., Ltd., Wuhan, China
| | - Hang Yin
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huixin Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fulei Mo
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Zhong
- Shenzhen CEM Biomedical Technology Ltd., Shenzhen, China
| | - Yang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Youwen Qiu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Mingfang Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hossein Ghanizadeh
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhou
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Zheng Y, Young ND, Wang T, Chang BCH, Song J, Gasser RB. Systems biology of Haemonchus contortus - Advancing biotechnology for parasitic nematode control. Biotechnol Adv 2025; 81:108567. [PMID: 40127743 DOI: 10.1016/j.biotechadv.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Parasitic nematodes represent a substantial global burden, impacting animal health, agriculture and economies worldwide. Of these worms, Haemonchus contortus - a blood-feeding nematode of ruminants - is a major pathogen and a model for molecular and applied parasitology research. This review synthesises some key advances in understanding the molecular biology, genetic diversity and host-parasite interactions of H. contortus, highlighting its value for comparative studies with the free-living nematode Caenorhabditis elegans. Key themes include recent developments in genomic, transcriptomic and proteomic technologies and resources, which are illuminating critical molecular pathways, including the ubiquitination pathway, protease/protease inhibitor systems and the secretome of H. contortus. Some of these insights are providing a foundation for identifying essential genes and exploring their potential as targets for novel anthelmintics or vaccines, particularly in the face of widespread anthelmintic resistance. Advanced bioinformatic tools, such as machine learning (ML) algorithms and artificial intelligence (AI)-driven protein structure prediction, are enhancing annotation capabilities, facilitating and accelerating analyses of gene functions, and biological pathways and processes. This review also discusses the integration of these tools with cutting-edge single-cell sequencing and spatial transcriptomics to dissect host-parasite interactions at the cellular level. The discussion emphasises the importance of curated databases, improved culture systems and functional genomics platforms to translate molecular discoveries into practical outcomes, such as novel interventions. New research findings and resources not only advance research on H. contortus and related nematodes but may also pave the way for innovative solutions to the global challenges with anthelmintic resistance.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Wang R, Li X, Wang C, Shi Y, Xiong D, Huang D, Wang Z, Ye L. Tight orchestration of wound healing phase through metal-organic compounds. Biomaterials 2025; 318:123160. [PMID: 39914195 DOI: 10.1016/j.biomaterials.2025.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Cutaneous wound healing remains a common health problem. Metal-organic frameworks (MOFs) have emerged as an advanced therapeutic platform for promoted wound healing. However, there is a lack of MOF particles possessing excellent stability, biocompatibility, and reactive oxygen species (ROS) scavenging ability for tight orchestration of wound healing. Herein, we synthetize therapeutic MOF particles named PgC3Zn and employ them as skin sprays for wound repair. At the inflammatory stage, the pH- and ROS-responsive Zn2+ release of PgC3Zn alleviates oxidative stress and exerts antibacterial and anti-inflammatory efficacy. During the proliferation stage, PgC3Zn promote the migration and proliferation of fibroblasts, the re-epithelialization of keratinocytes, and the angiogenesis of endothelial cells. During the remodeling stage, PgC3Zn effectively facilitate the wound closure and collagen deposition. Moreover, multiple endogenous growth factors have been identified to contribute to the wound healing process. Importantly, PgC3Zn exhibit excellent biocompatibility and remarkably accelerate the healing process in both acute and infected rat full-thickness skin wound models in vivo. Consistently, transcriptomic data illustrate the multi-stage and multi-functional regulation effects of PgC3Zn in promoting wound healing. This study proposes versatile and biocompatible PgC3Zn MOF particles with potentials for enhancing the management of acute and infected skin wounds.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Zhang Z, Liu Y, Yang X, Luo Q, Huang W, Zhao Z. Impacts of hydraulic retention time on organic removal in treating liquor wastewater via algal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2025; 427:132394. [PMID: 40089034 DOI: 10.1016/j.biortech.2025.132394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
This study optimized hydraulic retention time (HRT) to improve p-cresol and chemical oxygen demand (COD) removal and promote algal-bacterial granular sludge (ABGS) formation in Chinese fermented liquor wastewater treatment. At an HRT of 4 h, no granules formed in the sequential batch reactor, and after 30 days, the removal efficiencies were low for both COD (58.5 %) and p-cresol (21.6 %). In contrast, compact granules developed at HRT 8 and 12 h. The HRT of 8 h achieved the highest removal efficiencies (COD: 96.0 %, p-cresol: 91.3 %), outperforming the HRT of 12 h (COD: 95.1 %, p-cresol: 82.7 %). Microbial analysis identified Rhodobacteraceae and Pseudomonas as key p-cresol degraders. Metagenomic analysis revealed a higher abundance of benzoate degradation genes at an HRT of 8 h compared to 12 h, with Acidovorax predominantly contributing at 8 h and Hydrogenophaga at 12 h. These findings provide insights into the optimization of liquor wastewater treatment.
Collapse
Affiliation(s)
- Ziyang Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Yuqi Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China; Hubei Provincial Key Laboratory of Regional Development and Environmental Response, Department of Environmental Engineering, Hubei University, Wuhan 430062, China
| | - Xiaojing Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qijin Luo
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Ziwen Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China.
| |
Collapse
|
14
|
Zhao M, Liu Z, Hu Y, Yi S, Zhang Y, Hu B, Shi X, Rennenberg H. Carbon metabolism and partitioning in citrus leaves is determined by hybrid, cultivar and leaf type. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109978. [PMID: 40327900 DOI: 10.1016/j.plaphy.2025.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
The partitioning and metabolism of carbohydrates and lignin in leaves are essential for numerous physiological functions, growth and development of plants. This study was aimed to characterize these processes in four leaf types (i.e., autumn-, summer-, spring- and current-year spring shoots) of two citrus hybrids (loose-skin mandarin cultivars OP (i.e., cultivars 'Orah' (OR) Citrus reticulata Blanco and 'Ponkan' (PO) Citrus reticulata Blanco and the sweet orange cultivars NT 'Newhall navel orange' (NO) Citrus sinensis (L.) Osbeck and 'Tarocco' (TA) Citrus sinensis (L.) Osbeck) differing in fruit maturation under field conditions. For this purpose, we analyzed the levels of foliar structural, non-structural carbohydrates and lignin and the expression of related genes. Our results showed that the contents of structural, non-structural carbohydrates and lignin measured in the two hybrids and its partitioning were mostly determined by differences in gene expression recorded in hybrids, cultivars and leaf type. Particularly, differences between leaf types were largely attributed to up- and down-regulation of the expression of genes of cellulose synthesis, lignin precursor synthesis, the Calvin cycle, glycolysis, the tricarbonic acid and starch synthesis and degradation pathways. These differences between leaf types required more complex transcriptional regulation than differences between hybrids and cultivars. The present results indicated that the two citrus hybrids studied differed in the expression of structural, non-structural carbohydrates and lignin-related genes. Future studies have to show if the differences observed in foliar partitioning and metabolism of carbohydrates and lignin are translated into partitioning and metabolism of carbohydrates and lignin in the roots.
Collapse
Affiliation(s)
- Mingjiong Zhao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Zhenshan Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Yanping Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Shilai Yi
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China.
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| |
Collapse
|
15
|
Aciole Barbosa D, Branco GS, Dal'Olio Gomes A, Tolussi CE, Muñoz-Peñuela M, Araújo BC, da Silva IB, Moreira RG, Nunes LR, Menegidio FB. De novo assembly and annotation of the pantranscriptome of Astyanax lacustris on the liver and pituitary-gonadal axis. Mar Genomics 2025; 81:101190. [PMID: 40383619 DOI: 10.1016/j.margen.2025.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025]
Abstract
Astyanax lacustris is a model of laboratory native fish species. Reproductive studies of this species have already been performed. Nevertheless, there is a relative shortcoming of gene sequence information available in public databases, which hinder their use in more comprehensive investigations that employ sensitivity molecular biology techniques to assess gene expression profile for biomarker identification. In this data article, we report the first de novo transcriptome assembly of A. lacustris testicles, ovaries and male / female pituitary gland improving gene sequence data available for this fish species and transcriptome of male liver. Illumina sequencing generated 808,023,356 raw reads, filtered in 752,739,866 high-quality reads. Initially, a de novo assembly was filtered to include protein coding elements only in each tissue sample, which were merged in a final pantranscriptome (PAN) containing 109,232 contigs. The PAN was functionally annotated against a custom Actinopterygii proteins dataset and EggNOG terms with the aid of EnTAP, retrieving homology queries for about 90 % of all transcripts. Therefore, in this study we provide a PAN and a custom blast tool that can help discovery genomic information on metabolism pathways and their related genes in A. lacustris, enabling future research and molecular studies using this fish species as a model.
Collapse
Affiliation(s)
- David Aciole Barbosa
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Brazil.
| | - Giovana Souza Branco
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Aline Dal'Olio Gomes
- Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil.
| | - Carlos Eduardo Tolussi
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici, Centro de Ciências, Bloco 909, 60440-900 Fortaleza, Ceará, Brazil
| | - Marcela Muñoz-Peñuela
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Bruno C Araújo
- Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes (UMC), Brazil.
| | - Iuri Batista da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Luiz R Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, SP, Brazil.
| | - Fabiano B Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC), Brazil.
| |
Collapse
|
16
|
Olazagoitia-Garmendia A, Rojas-Márquez H, Trobisch T, Moreno-Castro C, Rodriguez Etxebarria A, Mentxaka J, Tripathi A, Yang B, Martin Ruiz I, Anguita J, Meana JJ, Ding Y, Dutta R, Schirmer L, Igoillo-Esteve M, Santin I, Castellanos-Rubio A. An inflammation-associated lncRNA induces neuronal damage via mitochondrial dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102533. [PMID: 40291376 PMCID: PMC12023888 DOI: 10.1016/j.omtn.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Immune disease-associated non-coding SNPs, which often locate in tissue-specific regulatory elements, are emerging as key factors in gene regulation. Among these elements, long non-coding RNAs (lncRNAs) participate in many cellular processes, and their characteristics make these molecules appealing therapeutic targets. In this study, we have studied lncRNA LOC339803 in the context of neuronal cells, which is located in autoimmunity-associated region 2p15 and recently described to have a proinflammatory role in intestinal disorders. Using human brain samples and a wide variety of in vitro techniques, we have showed a differential function of this lncRNA in neuronal cells. We have further demonstrated the role of LOC339803 in maintaining hexokinase 2 (HK2) levels and thus mitochondrial integrity, partially explaining the implication of the lncRNA in multiple sclerosis (MS) pathogenesis. Our results show the importance of cell-type-specific studies in the case of regulatory lncRNAs. We present LOC339803 as a candidate for further studies as a mitochondrial dysfunction marker or possible therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
| | - Henar Rojas-Márquez
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Tim Trobisch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Cristina Moreno-Castro
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | | | - Jon Mentxaka
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
| | - Ajai Tripathi
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44106, US
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Juan Anguita
- CIC bioGUNE-BRTA, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J Javier Meana
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ranjan Dutta
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44106, US
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Izortze Santin
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- CIBERDEM, 28029 Madrid, Spain
| | - Ainara Castellanos-Rubio
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBERDEM, 28029 Madrid, Spain
| |
Collapse
|
17
|
Hou X, Chen D, Li Y, Zhang X, Ge S, Jiang X, Shen J. Self-assembly of algal-bacterial granules induced by bacterial N-acyl-homoserine lactone variation in response to high-strength pyridine. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137593. [PMID: 39954438 DOI: 10.1016/j.jhazmat.2025.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Algal-bacterial granules (ABGs) system represents a promising technology for organic wastewater treatment due to its high settleability, efficient oxygen transfer, and low-energy consumption. However, the secretion of extracellular polymeric substances (EPS) in algae, which played a key role in self-assembly of ABGs, would be inhibited by concentrated organic wastewater. This study proposed a novel strategy for developing ABGs by inducing bacterial N-acyl-homoserine lactone (AHL) variation through high-strength pyridine application. Results showed that bacterial long-chain AHL concentrations significantly increased in response to high-strength pyridine at 550 mg L-1, inducing the secretion of algal extracellular aromatic proteins and facilitating ABGs construction. The ABGs system achieved over 99 % pyridine removal efficiency and 82 % settleability. Moreover, the proportions of β-sheet and α-helix structures in the extracellular aromatic proteins of ABGs increased, while the random coil structures decreased. This shift in protein structure lowered the surface free energy and energy barriers, which in turn enhanced the surface hydrophobicity and promoted cell adhesion. Furthermore, based on metatranscriptomic analysis, the mechanism for AHL-regulated physiological and behavioral responses between algae and bacteria in ABGs was proposed. This study provides an economically feasible approach to develop efficient and sustainable ABGs systems for industrial wastewater treatment.
Collapse
Affiliation(s)
- Xinying Hou
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shijian Ge
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
18
|
Bano N, Ahmad S, Gupta D, Raza K. FDA-approved Levophed as an alternative multitargeted therapeutic against cervical cancer transferase, cell cycle, and regulatory proteins. Comput Biol Med 2025; 191:110163. [PMID: 40209578 DOI: 10.1016/j.compbiomed.2025.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/16/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Despite the availability of Pap tests and HPV vaccines, Cervical Cancer continues to be a significant factor contributing to women's deaths. It poses severe consequences to women's health. The disease's severity lies in its potential to progress silently in its early stages, mainly detected in its advanced stage, and clinical treatment is challenging due to drug resistance. This study aims to identify multitargeted lead molecules based on the interactome of Cervical Cancer-related crucial genes, which can help develop drug-resistant therapies. We have considered 9 crucial Cervical Cancer genes, namely BUBR1, CCNB1, FEN1, MAD2, MCM10, MCM6, ITGB8, POLE, and TPX2, to perform gene network analysis and Gene Ontology enrichment studies to identify the potential hub genes and their role. Further, we performed multitarget screening using multisampling algorithms HTVS, SP, and XP to screen the protein products of the 9 genes for their binding affinity for the FDA-approved drugs library. The binding affinities of the compounds were evaluated using MM\GBSA that identified multitargeted potential inhibitor as a Levophed for Cervical Cancer, and the docking results showed a range of MM/GBSA scores, varying from -8.35 to -5.38 kcal/mol for docking, and -43.41 to -19.37 kcal/mol for MM/GBSA scoring. The protein residues that interact the most with Levophed are ALA, THR, ILE, ASN, GLY, ASP, LEU, LYS, VAL, GLN, PRO, CYS, GLU, and TYR. The pharmacokinetic properties and WaterMap computations also support the idea that the compound can potentially become a drug candidate. Furthermore, all 9 complexes were simulated for 100ns, resulting in cumulative deviation and fluctuation of <2 Å, with many intermolecular interactions and binding free energy computations supporting the studies. The study shows that Levophed could treat Cervical Cancer without encountering drug resistance- however, experimental studies are needed to confirm the accuracy.
Collapse
Affiliation(s)
- Nagmi Bano
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India; Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Shaban Ahmad
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Khalid Raza
- Computational Intelligence and Bioinformatics Lab, Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
19
|
Gu X, Yang L, Zhang D, Zhang S, Zhou S, Dong N, Li H, Zhang F, Wan J, Chu L, Dong C, Feng W. Manipulation of artificial light environment improves tropane alkaloids content in Atropa belladonna L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109828. [PMID: 40158482 DOI: 10.1016/j.plaphy.2025.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Light quality exerts a vital influence on the accumulation of secondary metabolites in medicinal plants. Atropa belladonna L. serves as a primary source plant of tropane alkaloids (TAs). Nevertheless, in agricultural production, its application is restricted due to the relatively low content of alkaloids. This study explored the impacts of red, yellow, blue, and white light on the growth of A. belladonna and the biosynthesis of TAs. Through phenotypic and physiological analyses, it was found that red-light had the most significant effect on A. belladonna. Red-light remarkably increased the content of TAs, enlarged the leaf area, extended the stomatal length, and elevated the ammonium nitrogen level. It also enhanced the activities of ornithine decarboxylase, nitrate reductase, and glutamine synthetase, which are essential for nitrogen assimilation. Transcriptomic analysis identified GDHA, At2g42690, and PAO5 as key genes with upregulated expression in the putrescine biosynthesis pathway, where putrescine is an important precursor of TAs. Metabolomic data confirmed that the levels of scopolamine, hyoscyamine, and their precursors increased under red-light. Subsequent qPCR verification under red/white light treatments consistently showed the upregulation of these genes, further confirming their roles in the synthesis of TAs. Moreover, red-light activated photosynthesis-related genes and transcription factors, indicating a coordinated regulatory relationship between light signal transduction and metabolic pathways. This study has preliminarily elucidated the potential mechanism by which red-light promotes the accumulation of TAs through enhancing nitrogen metabolism and precursor synthesis, providing a theoretical basis for improving the quality of A. belladonna and optimizing agricultural production.
Collapse
Affiliation(s)
- Xupeng Gu
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China
| | - Linlin Yang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China.
| | - Di Zhang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China
| | - Shaoke Zhang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China
| | - Shengwei Zhou
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China
| | - Ning Dong
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China
| | - Hanwei Li
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China
| | - Feiyu Zhang
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China
| | - Jie Wan
- The First Affiliated Hospital of Henan University of Chinese Medicine, 450000, Zhengzhou, Henan, PR China
| | - Leixia Chu
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China
| | - Chengming Dong
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China.
| | - Weisheng Feng
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi Herbs, School of Pharmacy, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, 450046, Zhengzhou, Henan, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 450046, Zhengzhou, Henan, PR China
| |
Collapse
|
20
|
Jeon Y, Kwon Y, Kim YJ, Jeon S, Ryu H, An K, Kim BC, Kim W, Lee SY, Bae JW, Hwang JY, Kang MG, Kang Y, Bhak J, Shin ES. Epigenetic Modulation of Vascular Smooth Muscle Cell Phenotype Switching in Early-Onset Acute Myocardial Infarction. Arterioscler Thromb Vasc Biol 2025; 45:e217-e230. [PMID: 40242870 DOI: 10.1161/atvbaha.125.322503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The epigenetic mechanisms underlying early-onset acute myocardial infarction (AMI) remain insufficiently characterized. The present study aims to elucidate the pathophysiology of early-onset AMI by investigating its epigenetic features as molecular indicators. METHODS A comparative differential methylation analysis was performed on whole blood samples from 298 patients with early-onset AMI with clinical follow-up and 247 controls using targeted bisulfite sequencing. Clusters of differentially methylated sites (CDMSs) were defined to highlight regions of concentrated methylation changes in patients with early-onset AMI. Cox proportional hazards regression was conducted to evaluate the prognostic significance of the methylation biomarkers. RESULTS A total of 692 differentially methylated sites (DMSs) were identified as biomarkers associated with early-onset AMI. Among these, 396 DMSs were grouped into 147 CDMSs. Notably, the UHRF1 and STIMATE genes, which regulate synthetic and osteoblast-like vascular smooth muscle cell phenotypes, respectively, contained CDMSs with the highest number of significant DMSs. UHRF1 demonstrated a CDMS with 10 significant DMSs within a 117-bp region, while STIMATE included a 264-bp CDMS with 10 significant DMSs. Both regions also exhibited consistent methylation patterns in coronary tissues, comparing human coronary plaque to normal coronary artery samples. Additionally, the HIPK3 gene, which modulates STAT3 (signal transducer and activator of transcription 3) expression, thereby promoting osteoblast-like transformation in vascular smooth muscle cells, showed a CDMS with 5 significant DMSs within a 123-bp region, with further validation in the corresponding tissues. Furthermore, over 66% biomarkers demonstrated significant associations with mortality in patients with early-onset AMI, providing evidence of the impact of these biomarkers on the pathophysiology of the disease. CONCLUSIONS This innovative epigenomic study into early-onset AMI not only identifies biomarkers associated with the disease and its mortality but also highlights the critical role of vascular smooth muscle cell phenotype regulation in early-onset AMI pathogenesis. Our findings suggest that changes in vascular smooth muscle cell phenotypes toward synthetic and osteoblast-like states play a crucial role in early-onset AMI.
Collapse
Affiliation(s)
- Yeonsu Jeon
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Yoonsung Kwon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
| | - Yeo Jin Kim
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Sungwon Jeon
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Hyojung Ryu
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Kyungwhan An
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
| | - Byoung-Chul Kim
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea (W.K.)
| | - Sang Yeub Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Chung-Ang University Gwangmyeong Hospital, Republic of Korea (S.Y.L.)
| | - Jang-Whan Bae
- Department of Internal Medicine, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea (J.-W.B.)
| | - Jin-Yong Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea (J.-Y.H., M.G.K.)
| | - Min Gyu Kang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea (J.-Y.H., M.G.K.)
| | - Younghui Kang
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
| | - Jong Bhak
- Clinomics Inc., Osong, Republic of Korea (Y.J., Y.J.K., S.J., H.R., B.-C.K., Y. Kang, J.B.)
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea (Y. Kwon, K.A., J.B.)
- Personal Genomics Institute, Genome Research Foundation, Osong, Republic of Korea (J.B.)
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea (E.-S.S.)
| |
Collapse
|
21
|
Ren C, Liu Y, Ding Z, Yang Z, Wan T, Zhang N, Chen J, Feng H, Liu Q. EXPLORING THE POTENTIAL OF BEND7 AS AN IMMUNOMODULATORY BIOMARKER IN SEPSIS THROUGH INTEGRATIVE GENOMIC AND TRANSCRIPTOMIC ANALYSIS. Shock 2025; 63:826-835. [PMID: 39617402 DOI: 10.1097/shk.0000000000002529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
ABSTRACT Background: Sepsis is a life-threatening condition driven by a dysregulated immune response to infection. Identifying the genetic factors underlying sepsis pathogenesis remains a major challenge in developing effective treatments. Methods: The Summary data-based Mendelian Randomization method was used to integrate Genome-Wide Association Studies and expression quantitative trait loci data to identify sepsis-related genes. These genes were intersected with prognostic gene sets from Gene Expression Omnibus transcriptomic datasets and validated using an independent dataset. Comprehensive single-cell RNA sequencing analysis, including cell clustering, differential expression analysis, cell-cell communication mapping, and pseudotime trajectory analysis, was performed to explore the roles of the identified genes within the sepsis microenvironment. Results: Intersection of Summary data-based Mendelian Randomization and Gene Expression Omnibus gene sets, followed by validation, identified two risk genes and five protective genes as significantly differentially expressed. The risk gene BEND7, predominantly expressed in platelets, was further analyzed using single-cell RNA sequencing, revealing strong interactions with immune cells, particularly monocytes and neutrophils, via the intercellular adhesion molecule signaling pathway. Functional enrichment analysis suggested that BEND7-positive platelets play a role in immune modulation and platelet activation. Conclusion: BEND7 was identified as a platelet-specific gene involved in immune regulation during sepsis. Targeting BEND7-positive platelets may present new therapeutic opportunities in sepsis management.
Collapse
Affiliation(s)
- Chao Ren
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Zhangna Ding
- Department of Intensive Care Unit, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | - Junyi Chen
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Hui Feng
- Department of Zhantansi Outpatient, Jingzhong Medical District of Chinese People's Liberation Army General Hospital, Beijing, China
| | | |
Collapse
|
22
|
Ai H, Nie R, Wang X. Pathway Enrichment-Based Unsupervised Learning Identifies Novel Subtypes of Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma. Interdiscip Sci 2025; 17:477-495. [PMID: 40272703 DOI: 10.1007/s12539-025-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 05/28/2025]
Abstract
Existing single-cell clustering methods are based on gene expressions that are susceptible to dropout events in single-cell RNA sequencing (scRNA-seq) data. To overcome this limitation, we proposed a pathway-based clustering method for single cells (scPathClus). scPathClus first transforms the single-cell gene expression matrix into a pathway enrichment matrix and generates its latent feature matrix. Based on the latent feature matrix, scPathClus clusters single cells using the method of community detection. Applying scPathClus to pancreatic ductal adenocarcinoma (PDAC) scRNA-seq datasets, we identified two types of cancer-associated fibroblasts (CAFs), termed csCAFs and gapCAFs, which highly expressed complement system and gap junction-related pathways, respectively. Spatial transcriptome analysis revealed that gapCAFs and csCAFs are located at cancer and non-cancer regions, respectively. Pseudotime analysis suggested a potential differentiation trajectory from csCAFs to gapCAFs. Bulk transcriptome analysis showed that gapCAFs-enriched tumors are more endowed with tumor-promoting characteristics and worse clinical outcomes, while csCAFs-enriched tumors confront stronger antitumor immune responses. Compared to established CAF subtyping methods, this method displays better prognostic relevance.
Collapse
Affiliation(s)
- Hongjing Ai
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongfang Nie
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Spector BL, Koseva BS, Sante D, Cheung WA, Alisch RS, Kats A, Bergmann P, Grundberg E, Wyckoff GJ, Willig LK. Total plasma cfDNA methylation in pediatric kidney transplant recipients provides insight into acute allograft rejection pathophysiology. Clin Immunol 2025; 275:110475. [PMID: 40107586 DOI: 10.1016/j.clim.2025.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Cell-free DNA (cfDNA) is a marker of organ injury and immune response. DNA methylation is an epigenetic regulator of gene expression. Here, we elucidate total plasma cfDNA methylation from kidney transplant recipients in presence versus absence of rejection. In doing so, we exploit cfDNA as a real-time biomarker to define molecular pathways of rejection. Twenty plasma cfDNA samples from pediatric kidney transplant recipients were collected at allograft biopsy. Differentially methylated cytosine residues (>20 % methylation difference, q-value <0.05) were identified in presence (N = 7) versus absence (N = 9) of acute rejection. Separate analyses were performed comparing borderline rejection (N = 4) to rejection and non-rejection. In rejection versus non-rejection, there were 1269 differentially methylated genes corresponding to 533 pathways. These numbers were 4-13× greater than comparisons against borderline samples. Enriched pathways between rejection and non-rejection samples were related to immune cell/inflammatory response, lipid metabolism, and tryptophan-kynurenine metabolism, suggesting differential methylation of these pathways contributes to rejection.
Collapse
Affiliation(s)
- Benjamin L Spector
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, United States.
| | - Boryana S Koseva
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, United States
| | - Drinnan Sante
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, United States
| | - Warren A Cheung
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, United States
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alexander Kats
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, United States
| | - Phillip Bergmann
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elin Grundberg
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, United States
| | - Gerald J Wyckoff
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, United States
| | - Laurel K Willig
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, United States
| |
Collapse
|
24
|
Wang F, Liu Y, Wen J, Tan A, Deng Y, Wang L, Gong H, Lai Y, Huang Z, Zhao F. Autophagy enhances the antibacterial response in Macrobrachium rosenbergii by modulating cellular metabolism and immune pathways. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110258. [PMID: 40058674 DOI: 10.1016/j.fsi.2025.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Autophagy plays a crucial role in innate and adaptive immunity against invading microorganisms. However, the mechanism underlying autophagy in Macrobrachium rosenbergii remains largely unknown. Here, we demonstrate that Aeromonas hydrophila activates autophagy in M. rosenbergii, according to Western blot, qRT-PCR, and transmission electron microscopy observations. Rapamycin treatment to activate autophagy in M. rosenbergii followed by stimulation with A. hydrophila significantly decreased the A. hydrophila OmpA copy number in the gills of M. rosenbergii. Furthermore, high-throughput RNA-seq analysis of M. rosenbergii gills treated with rapamycin revealed 1684 upregulated and 1500 downregulated differentially expressed genes (DEGs), most of which regulate metabolic pathways. A comprehensive joint analysis of the two transcriptomic databases for A. hydrophila infection and rapamycin treatment identified 15 upregulated and 25 downregulated DEGs, respectively. These genes enhance the immune defense of M. rosenbergii by negatively regulating metabolic pathways and promoting immune pathways. Our results provide a theoretical basis for further exploration of the antibacterial mechanism of M. rosenbergii.
Collapse
Affiliation(s)
- Feifei Wang
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yang Liu
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jing Wen
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Ling Wang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China
| | - Hua Gong
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yingtiao Lai
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhibin Huang
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
25
|
Zhou C, Lian X, Wang R, Wu X, Lin F, Ouyang S, Jian S, Hua Q. Gonadal transcriptome analysis of Opsariichthys bidens reveals sex-associated genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101379. [PMID: 39667087 DOI: 10.1016/j.cbd.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Opsariichthys bidens is a unique economically important freshwater fish in China. Male O. bidens grow faster than females, and male fish have attractive blue-green stripes on the body surface during the breeding period. The breeding of all-male stocks can significantly improve the efficiency of breeding. To accelerate the breeding of all-male stocks, additional studies of the mechanism regulating sex differentiation and gonad development are needed. In this study, transcriptome sequencing of the ovaries and testes of O. bidens was performed using Illumina high-throughput sequencing. The results revealed a total of 21,703 differentially expressed genes, including 8645 up-regulated genes and 5880 down-regulated genes expressed in the ovary compared with the testis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed multiple differentially expressed genes involved in sex differentiation and gonad development. Eight differentially expressed genes (zp3, cyp19a, hsd17b1, msh4, dmrt1, rspo2, kif23, and gdf9) that play a key role in sex differentiation and gonadal development were selected for RT-qPCR validation. The expression levels of selected genes in the testes and ovaries were significantly different (P < 0.05). zp3, cyp19a, hsd17b1, and gdf9 were female-biased genes, and msh4, dmrt1, rspo2, and kif23 were male-biased genes. zp3, cyp19a, hsd17b, and msh4 were only slightly expressed in the kidney and liver, and dmrt1, rspo2, kif23, and gdf9 were all expressed in gill, kidney, and liver tissue. None of the genes were expressed in the heart or muscle. In this study, differentially expressed genes related to the sex determination and differentiation of O. bidens were identified. Overall, our findings provide important data for future studies of the molecular mechanisms of sex differentiation and gonad development of O. bidens and will aid the breeding of all-male species.
Collapse
Affiliation(s)
- Chunhua Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xinyang Lian
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Rongrong Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiaoping Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Feng Lin
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Qi Hua
- Department of Agriculture and Rural Affairs of Jiangxi Province, Nanchang, Jiangxi 330000, People's Republic of China.
| |
Collapse
|
26
|
Menshikh K, Gobbo VA, Nascimben M, Hannula M, Cochis A, Serra T, Massera J, Pandit A, Rimondini L. 3D-printed β-TCP scaffold as a bone-mimicking environment for an engineered model of osteosarcoma: In vitro properties and transcriptomic insights. Mater Today Bio 2025; 32:101766. [PMID: 40290888 PMCID: PMC12022696 DOI: 10.1016/j.mtbio.2025.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
In the face of advancements in osteosarcoma research, existing preclinical models - including in vitro (i.e., two- and three-dimensional cell cultures, organoids) and in vivo approaches (i.e., xenografts, animal models) - are often characterised by low translatability, limiting their predictive power for clinical outcomes. This study investigated the potential use of a 3D-printed β-tricalcium phosphate (β-TCP) scaffold as a bone-mimicking environment in an advanced in vitro osteosarcoma preclinical model. The compatibility of the scaffold with osteosarcoma cell spheroids, endothelial cells, and primary bone marrow-derived mesenchymal stem cells (pBMSCs) was evaluated along with its physicochemical characteristics. Transcriptomic analysis of pBMSCs on the scaffolds revealed gene expression profiles indicating pronounced extracellular matrix organisation and minor osteogenic activity. The model effectively replicated significant aspects of the tumour microenvironment in a tri-culture system, with dynamic perfusion enhancing metabolic activity. The developed scaffold-based model was employed in the doxorubicin cytotoxicity test. The physiological significance of the tri-culture was demonstrated by its distinct doxorubicin accumulation, in contrast to spheroid monocultures. Despite the limitations of the proposed approach regarding efficient vascularisation of the model, this study highlights the potential of 3D-printed β-TCP scaffolds in tumour modelling to support physiologically relevant preclinical models.
Collapse
Affiliation(s)
- Ksenia Menshikh
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | | | - Mauro Nascimben
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Markus Hannula
- Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Tiziano Serra
- AO Research Institute Davos, 7270, Davos, Switzerland
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Abhay Pandit
- CÚRAM Research Ireland Centre for Medical Devices, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
27
|
Nybo J, Vesth T, Theobald S, Frisvad J, Larsen T, Kjaerboelling I, Rothschild-Mancinelli K, Lyhne E, Barry K, Clum A, Yoshinaga Y, Ledsgaard L, Daum C, Lipzen A, Kuo A, Riley R, Mondo S, LaButti K, Haridas S, Pangalinan J, Salamov A, Simmons B, Magnuson J, Chen J, Drula E, Henrissat B, Wiebenga A, Lubbers R, Müller A, dos Santos Gomes A, Mäkelä M, Stajich J, Grigoriev I, Mortensen U, de Vries R, Baker S, Andersen M. Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti. Stud Mycol 2025; 111:101-114. [PMID: 40371420 PMCID: PMC12070157 DOI: 10.3114/sim.2025.111.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 05/16/2025] Open
Abstract
The genus Aspergillus is diverse, including species of industrial importance, human pathogens, plant pests, and model organisms. Aspergillus includes species from sections Usti and Cavernicolus, which until recently were joined in section Usti, but have now been proposed to be non-monophyletic and were split by section Nidulantes, Aenei and Raperi. To learn more about these sections, we have sequenced the genomes of 13 Aspergillus species from section Cavernicolus (A. cavernicola, A. californicus, and A. egyptiacus), section Usti (A. carlsbadensis, A. germanicus, A. granulosus, A. heterothallicus, A. insuetus, A. keveii, A. lucknowensis, A. pseudodeflectus and A. pseudoustus), and section Nidulantes (A. quadrilineatus, previously A. tetrazonus). We compared these genomes with 16 additional species from Aspergillus to explore their genetic diversity, based on their genome content, repeat-induced point mutations (RIPs), transposable elements, carbohydrate-active enzyme (CAZyme) profile, growth on plant polysaccharides, and secondary metabolite gene clusters (SMGCs). All analyses support the split of section Usti and provide additional insights: Analyses of genes found only in single species show that these constitute genes which appear to be involved in adaptation to new carbon sources, regulation to fit new niches, and bioactive compounds for competitive advantages, suggesting that these support species differentiation in Aspergillus species. Sections Usti and Cavernicolus have mainly unique SMGCs. Section Usti contains very large and information-rich genomes, an expansion partially driven by CAZymes, as section Usti contains the most CAZyme-rich species seen in genus Aspergillus. Section Usti is clearly an underutilized source of plant biomass degraders and shows great potential as industrial enzyme producers. Citation: Nybo JL, Vesth TC, Theobald S, Frisvad JC, Larsen TO, Kjaerboelling I, Rothschild-Mancinelli K, Lyhne EK, Barry K, Clum A, Yoshinaga Y, Ledsgaard L, Daum C, Lipzen A, Kuo A, Riley R, Mondo S, LaButti K, Haridas S, Pangalinan J, Salamov AA, Simmons BA, Magnuson JK, Chen J, Drula E, Henrissat B, Wiebenga A, Lubbers RJM, Müller A, dos Santos Gomes AC, Mäkelä MR, Stajich JE, Grigoriev IV, Mortensen UH, de Vries RP, Baker SE, Andersen MR (2025). Section-level genome sequencing and comparative genomics of Aspergillus sections Cavernicolus and Usti. Studies in Mycology 111: 101-114. doi: 10.3114/sim.2025.111.03.
Collapse
Affiliation(s)
- J.L. Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Current address: Novonesis A/S, Bagsværd, Denmark
| | - T.C. Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Current address: Novonesis A/S, Bagsværd, Denmark
| | - S. Theobald
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Current address: LifeMine Therapeutics, Cambridge MA, USA
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - I. Kjaerboelling
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Current address: Novonesis A/S, Bagsværd, Denmark
| | - K. Rothschild-Mancinelli
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Current address: Novonesis A/S, Bagsværd, Denmark
| | - E.K. Lyhne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - K. Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A. Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Y. Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - L. Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - C. Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A. Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A. Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R. Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S. Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - K. LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S. Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J. Pangalinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A.A. Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - B.A. Simmons
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J.K. Magnuson
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
| | - J. Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - E. Drula
- AFMB, UMR 7257 CNRS Aix-Marseille Univ., USC 1408 INRAE, Marseille, France
- Biodiversitéet Biotechnologie Fongiques, UMR 1163, INRAE, Marseille, France
| | - B. Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - A. Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.J.M. Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A. Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - A.C. dos Santos Gomes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - M.R. Mäkelä
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - J.E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - I.V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - U.H. Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - R.P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S.E. Baker
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
- Microbial Molecular Phenotyping Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - M.R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Current address: Novonesis A/S, Bagsværd, Denmark
| |
Collapse
|
28
|
Withers CA, Rufai AM, Venkatesan A, Tirunagari S, Lobentanzer S, Harrison M, Zdrazil B. Natural language processing in drug discovery: bridging the gap between text and therapeutics with artificial intelligence. Expert Opin Drug Discov 2025; 20:765-783. [PMID: 40298230 DOI: 10.1080/17460441.2025.2490835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION The field of Natural Language Processing (NLP) within the life sciences has exploded in its capacity to aid the extraction and analysis of data from scientific texts in recent years through the advancement of Artificial Intelligence (AI). Drug discovery pipelines have been innovated and accelerated by the uptake of AI/Machine Learning (ML) techniques. AREAS COVERED The authors provide background on Named Entity Recognition (NER) in text - from tagging terms in text using ontologies to entity identification via ML models. They also explore the use of Knowledge Graphs (KGs) in biological data ingestion, manipulation, and extraction, leading into the modern age of Large Language Models (LLMs) and their ability to maneuver complex and abundant data. The authors also cover the main strengths and weaknesses of the many methods available when undertaking NLP tasks in drug discovery. Literature was derived from searches utilizing Europe PMC, ResearchRabbit and SciSpace. EXPERT OPINION The mass of scientific data that is now produced each year is both a huge positive for potential innovation in drug discovery and a new hurdle for researchers to overcome. Notably, methods should be selected to fit a use case and the data available, as each method performs optimally under different conditions.
Collapse
Affiliation(s)
- Christine Ann Withers
- Chemical Biology Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Amina Mardiyyah Rufai
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Aravind Venkatesan
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Santosh Tirunagari
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Sebastian Lobentanzer
- Institute of Computational Biology, Helmholtz Centre, Munich, Germany
- Faculty of Medicine and Heidelberg University Hospital, Heidelberg University, Institute for Computational Biomedicine, Heidelberg, Germany
- Open Targets, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Melissa Harrison
- Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Barbara Zdrazil
- Chemical Biology Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Open Targets, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| |
Collapse
|
29
|
Liu Y, Wang Z, Collins SP, Testani J, Safdar B. Sex differences in proteomics of cardiovascular disease - Results from the Yale-CMD registry. IJC HEART & VASCULATURE 2025; 58:101667. [PMID: 40224648 PMCID: PMC11987697 DOI: 10.1016/j.ijcha.2025.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Aims This study assessed sex-specific proteomic profiles by cardiovascular disease (CVD) phenotype (coronary artery disease [CAD] vs coronary microvascular dysfunction [CMD]) and describe their role in sex-specific pathways. METHODS In a secondary biobank analysis of the Yale-CMD registry, adults with ischemic symptoms who underwent cardiac positron emission test/computed tomography were categorized as a) controls (normal coronary flow reserve (CFR) > 2 without perfusion defect or coronary calcification), b) having CMD (CFR < 2 without defect or calcification), or c) having CAD (known CAD or new perfusion defect). Using proximity extension assays (Olink® Explore 3072), we examined 2944 proteins. Differential protein expression was assessed using linear regression models, adjusting for age, race, body mass index, diabetes, dyslipidemia, hypertension, or smoking. RESULTS Of 190 patients, 91 provided blood samples (mean age, 56 years; 66 %, females; 48 %, controls; 24 %, CAD; 27 %, CMD). Among controls, 15 proteins showed sex differences (5 proteins upregulated in females, 10 in males; false discovery rate [FDR < 0.05]). Upregulated in CAD patients were FSHB in females and INSL3 and EDDM3B in males (FDR < 0.05). Among CMD patients, SCGB3A1 and HGFAC were higher in females; INSL3, SPINT3, EDDM3B, and KLK3 were higher in males (FDR < 0.05). Per pathway analysis, females showed upregulation of immune pathways in CAD and lipid and glucose metabolism pathways in CMD. Males showed upregulated endothelial regulation of blood flow in CAD and increased angiogenesis in CMD. CONCLUSIONS Sex differences exist in the proteomic profiles of CAD and CMD patients, highlighting a need for precision medicine.
Collapse
Affiliation(s)
- Yihan Liu
- Program in Computational Biology & Biomedical informatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Zuoheng Wang
- Program in Computational Biology & Biomedical informatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Sean P. Collins
- Department of Emergency Medicine, Vanderbilt University Medical Center, and Veterans Affairs Tennessee Valley Healthcare System, Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Jeffery Testani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Basmah Safdar
- Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Vyas HKN, Hoque MM, Xia B, Alam D, Cullen PJ, Rice SA, Mai-Prochnow A. Transcriptional signatures associated with the survival of Escherichia coli biofilm during treatment with plasma-activated water. Biofilm 2025; 9:100266. [PMID: 40161322 PMCID: PMC11952861 DOI: 10.1016/j.bioflm.2025.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Biofilm formation on surfaces, tools and equipment can damage their quality and lead to high repair or replacement costs. Plasma-activated water (PAW), a new technology, has shown promise in killing biofilm and non-biofilm bacteria due to reactive oxygen and nitrogen species (RONS), particularly superoxide. However, the exact genetic mechanisms behind PAW's effectiveness against biofilms remain unclear. Here, we examined the stress responses of Escherichia coli biofilms exposed to sub-lethal PAW treatment using bulk RNA sequencing and transcriptomics. We compared gene expression in PAW-treated E. coli biofilms with and without superoxide removal, achieved by adding the scavenger Tiron. Biofilms treated with PAW exhibited a 40 % variation in gene expression compared to those treated with PAW-Tiron and controls. Specifically, PAW treatment resulted in 478 upregulated genes (>1.5 log2FC) and 186 downregulated genes (<-1.5 log2FC) compared to the control. Pathway and biological process enrichment analysis revealed significant upregulation of genes involved in sulfur metabolism, ATP-binding transporter, amino acid metabolism, hypochlorite response systems and oxidative phosphorylation in PAW-treated biofilms compared to control. Biofilm viability and intracellular RONS accumulation were tested for E. coli mutants lacking key genes from these pathways. Knockout mutants of thioredoxin (trxC), thiosulfate-binding proteins (cysP), and NADH dehydrogenase subunit (nuoM) showed significantly reduced biofilm viability after PAW treatment. Notably, ΔtrxC biofilms had the highest intracellular ROS accumulation, as revealed by 2',7'-dichlorofluorescin diacetate staining after PAW treatment. This confirms the importance of these genes in managing oxidative stress caused by PAW and highlights the significance of superoxide in PAW's bactericidal effects. Overall, our findings shed light on the specific genes and pathways that help E. coli biofilms survive and respond to PAW treatment, offering a new understanding of plasma technology and its anti-biofilm mechanisms.
Collapse
Affiliation(s)
- Heema Kumari Nilesh Vyas
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
- The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - M. Mozammel Hoque
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Binbin Xia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - David Alam
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Patrick J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Scott A. Rice
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Agriculture and Food, Microbiomes for One Systems Health, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales, Australia
| | - Anne Mai-Prochnow
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Gonzalez LA, Zhang W, Bai H, Taniguchi R, Ramachandra AB, Jovin DG, Ohashi Y, Nguyen M, Thaxton C, Yatsula B, Vazquez-Padron RI, Humphrey JD, Martin KA, Kyriakides TR, Dardik A. Sustained tenascin-C expression drives neointimal hyperplasia and promotes aortocaval fistula failure. Am J Physiol Heart Circ Physiol 2025; 328:H1147-H1167. [PMID: 40247455 DOI: 10.1152/ajpheart.00661.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 03/08/2025] [Indexed: 04/19/2025]
Abstract
End-stage kidney disease (ESKD) impacts over 740,000 individuals in the United States, with many patients relying on arteriovenous fistulae (AVF) for hemodialysis due to superior patency and reduced infections. However, AVF patency is reduced by thrombosis and neointimal hyperplasia, yielding a 1-yr patency of only 40%-50%. We hypothesized that tenascin-C (TNC), a regulator of inflammation and immune responses after injury, also regulates venous remodeling during AVF maturation. AVF were created in wild-type (WT) and Tnc knockout (Tnc-/-) mice, and proteomic analyses were conducted to identify protein changes between sham and AVF WT tissue. Immunofluorescence and Western blot assays compared venous tissue from WT and Tnc-/- mice. In vitro studies using human umbilical vein endothelial cells and human umbilical vein smooth muscle cells examined TNC-siRNA effects on thrombomodulin (THBD) and NF-κB. Macrophages from WT and Tnc-/- mice were assessed for anti-inflammatory phenotype polarization and tissue factor expression. TNC expression was spatially and temporally regulated in WT mice with AVF, and TNC colocalized with matrix remodeling but not with THBD expression; TNC expression was downregulated in patent AVF but sustained in occluded AVF, both in WT mice and human AVF specimens. Tnc-/- mice had reduced AVF patency, less wall thickening, and increased thrombosis, with increased THBD expression. In vitro, TNC-siRNA increased THBD and reduced NF-κB activation. Macrophages from Tnc-/- mice showed increased anti-inflammatory macrophage polarization and tissue factor expression, facilitating thrombosis. Sustained TNC expression drives neointimal hyperplasia and AVF failure by promoting a prothrombotic, inflammatory microenvironment. Targeting TNC pathways may enhance AVF patency and improve dialysis outcomes.NEW & NOTEWORTHY This study identifies Tenascin-C (TNC) as a key regulator of arteriovenous fistula (AVF) patency. TNC is spatially and temporally regulated, driving neointimal hyperplasia and thrombosis by promoting a prothrombotic, inflammatory microenvironment. In Tnc-/- mice, reduced TNC expression increased thrombomodulin and anti-inflammatory macrophage polarization but impaired wall thickening and AVF patency. These findings link sustained TNC expression to AVF failure and suggest that targeting TNC pathways could enhance AVF outcomes in patients requiring hemodialysis.
Collapse
MESH Headings
- Animals
- Tenascin/genetics
- Tenascin/metabolism
- Hyperplasia
- Neointima/metabolism
- Neointima/pathology
- Humans
- Mice, Knockout
- Thrombomodulin/metabolism
- Thrombomodulin/genetics
- Macrophages/metabolism
- Macrophages/pathology
- Arteriovenous Shunt, Surgical/adverse effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Male
- Vascular Remodeling
- Mice
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Vascular Patency
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Graft Occlusion, Vascular/metabolism
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/physiopathology
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/etiology
- Vena Cava, Inferior/metabolism
- Vena Cava, Inferior/surgery
- Vena Cava, Inferior/pathology
- Vena Cava, Inferior/physiopathology
Collapse
Affiliation(s)
- Luis A Gonzalez
- Yale School of Medicine, New Haven, Connecticut, United States
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Tokyo, Japan
- Department of Cardiovascular Surgery, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Daniel G Jovin
- Yale School of Medicine, New Haven, Connecticut, United States
| | - Yuichi Ohashi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Mytien Nguyen
- Yale School of Medicine, New Haven, Connecticut, United States
| | - Carly Thaxton
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Kathleen A Martin
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Pathology, Yale University, New Haven, Connecticut, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
32
|
Bronstone GJ, Harton M, Muldowney M, Reigle J, Funk AJ, O'Donovan SM, McCullumsmith RE, Bauer DE. The C. elegans glutamate transporters GLT-4 and GLT-5 regulate protein expression, behavior, and lifespan. Neurochem Int 2025; 186:105966. [PMID: 40147734 PMCID: PMC12053503 DOI: 10.1016/j.neuint.2025.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Glutamate transporters are important for regulating extracellular glutamate levels, impacting neural function and metabolic homeostasis. This study explores the behavioral, lifespan, and proteomic profiles in Caenorhabditis elegans strains with either glt-4 or glt-5 null mutations, highlighting contrasting phenotypes. Δglt-4 mutants displayed impaired mechanosensory and chemotactic responses, reduced lifespans, and decreased expression levels of ribosomal proteins and chaperonins involved in protein synthesis and folding. In contrast, Δglt-5 mutants displayed heightened chemorepulsion, extended lifespans, and upregulation of mitochondrial pyruvate carriers and cytoskeletal proteins. Proteomic profiling via mass spectrometry identified 53 differentially expressed proteins in Δglt-4 mutants and 45 in Δglt-5 mutants. Δglt-4 mutants showed disruptions in ribonucleoprotein complex organization and translational processes, including downregulation of glycogen phosphorylase and V-type ATPase subunits, while Δglt-5 mutants revealed altered metabolic protein expression, such as increased levels of mitochondrial pyruvate carriers and decreased levels of fibrillarin and ribosomal proteins. Gene ontology enrichment analysis highlighted differential regulation of protein biosynthesis and metabolic pathways between the strains. Overall, these findings underscore the distinct, tissue-specific roles of GLT-4 and GLT-5 in C. elegans, with broader implications for glutamate regulation and systemic physiology. The results also reinforce the utility of C. elegans as a model for studying glutamate transporters' impact on behavior, longevity, and proteostasis.
Collapse
Affiliation(s)
- Grace J Bronstone
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| | - Moriah Harton
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - Maya Muldowney
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Medical Sciences Building 231 Albert Sabin Way, PO Box 670769, Cincinnati, OH, 45267, USA
| | - Adam J Funk
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Sinead M O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA; Neurosciences Institute, ProMedica, 2130 West Central Avenue, Toledo, OH, 43606, USA
| | - Deborah E Bauer
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| |
Collapse
|
33
|
Liu Y, Chen H, Liu C, Li Q, Niu C. Prediction, biochemical characterization and application of key proteolytic enzymes from aspergillus oryzae BL18 in soy sauce fermentation. Food Res Int 2025; 211:116382. [PMID: 40356105 DOI: 10.1016/j.foodres.2025.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Aspergillus oryzae is the most widely used starter in koji-making of bean-based fermented foods due to its strong ability to produce proteolytic enzymes. However, the information of the key proteolytic enzymes in A. oryzae is still lacking. This study aimed to mine the key proteolytic enzymes from A. oryzae BL18 through genomic and transcriptomics analysis, to characterize their biochemical properties and to evaluate their application effect in soy sauce fermentation. Thirty-eight proteolytic enzyme genes with secretory ability were predicted while GME1689_g, GME238_g, GME3470_g and GME6033_g genes were found to have high expression levels among these genes during the koji-making process. After that, these four genes were heterologously expressed in Komagataella phaffii GS115 and their biochemical properties were characterized. The results showed that GME1689_g and GME238_g were optimal in neutral condition while GME3470_g and GME6033_g were acidic enzymes. Among these four enzymes, GME1689_g and GME238_g were more salt tolerant and had higher degradation degree towards globulin and albumin. Therefore, these two enzymes were applied in the initial stage of soy sauce fermentation individually or together. Compared to control group, the concentration of free amino acids in soy sauce fermented with addition of proteolytic enzymes were 20-25 % higher while more volatile flavor compounds (such as linolool and octen-3-ol) were enriched in both quantity and concentration. Through sensory evaluation, the addition of proteolytic enzymes, especially GME1689_g, could enhance the flavor of soy sauce with the average sensory score increasing from 7.5 to 8.0-8.5. The results obtained in this study could not only enhance our understanding of the proteolytic enzymes in A. oryzae but also provide possible solution for quality enhancement of soy sauce.
Collapse
Affiliation(s)
- Yiyang Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Huating Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
34
|
Suresh M, Sai KV, Mitra K, Ravindran R, Doble M. A network pharmacology-based approach to understand the mechanism of action of anti-mycobacterial activity of Acacia nilotica: a modelling and experimental study. Mol Divers 2025; 29:2227-2242. [PMID: 39292406 DOI: 10.1007/s11030-024-10985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The rapid rise in drug-resistant tuberculosis poses a serious threat to public health and demands the discovery of new anti-mycobacterial agents. Medicinal plants are a proven potential source of bioactive compounds; however, identifying those responsible for the putative anti-mycobacterial action still remains a challenging task. In this study, we undertook a systematic network pharmacology approach to identify and evaluate anti-mycobacterial compounds from a traditional plant, Acacia nilotica, as a model system. The protein-protein interaction network revealed 17 key pathways in M. tuberculosis encompassing 40 unique druggable targets that are necessary for its growth and survival. The phytochemicals of A. nilotica were preferentially found to interfere with the cell division and cell wall biogenesis proteins, especially FtsZ and Mur. Notably, the compounds epigallocatechin, ellagic acid, chlorogenic acid, and D-pinitol were found to exhibit a potential polypharmacological effect against multiple proteins. Further, in vitro studies confirmed that the selected candidates, chlorogenic acid, and ellagic acid exhibited potent anti-mycobacterial activity (against M. smegmatis) with specific inhibition of purified M.tb FtsZ enzyme. Taken together, the present study demonstrates that network pharmacology combined with molecular docking can be utilized as an efficient approach to identify potential bioactive phytochemicals from natural products along with their mechanism of action. Hence, the compounds identified in this study can be potential lead candidates for developing novel anti-mycobacterial drugs, while the key proteins identified here can be potential drug targets.
Collapse
Affiliation(s)
- Madhumitha Suresh
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kadambari Vijay Sai
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kartik Mitra
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Radhika Ravindran
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Theevanam Additives Nutraceuts Pvt Ltd, IITM Bioincubator, IIT Madras, Chennai, 600036, India
- Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| |
Collapse
|
35
|
Mohamed NM, Mohamed RH, Kennedy JF, Elhefnawi MM, Hamdy NM. A comprehensive review and in silico analysis of the role of survivin (BIRC5) in hepatocellular carcinoma hallmarks: A step toward precision. Int J Biol Macromol 2025; 311:143616. [PMID: 40306500 DOI: 10.1016/j.ijbiomac.2025.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Hepatocellular carcinoma (HCC) is a complex malignancy driven by the dysregulation of multiple cellular pathways. Survivin, a key member of the inhibitor of apoptosis (IAP) family, plays a central role in HCC tumorigenesis and progression. Despite significant research, a comprehensive understanding of the contributions of survivin to the hallmarks of cancer, its molecular network, and its potential as a therapeutic target remains incomplete. In this review, we integrated bioinformatics analysis with an extensive literature review to provide deeper insights into the role of survivin in HCC. Using bioinformatics tools such as the Human Protein Atlas, GEPIA, STRING, TIMER, and Metascape, we analyzed survivin expression and its functional associations and identified the top 20 coexpressed genes in HCC. These include TK1, SPC25, SGO2, PTTG1, PRR11, PLK1, NCAPH, KPNA2, KIF2C, KIF11, HJURP, GTSE1, FOXM1, CEP55, CENPA, CDCA3, CDC45, CCNB2, CCNB1 and CTD-2510F5.4. Our findings also revealed significant protein-protein interactions among these genes, which were enriched in pathways associated with the FOXM1 oncogenic signaling cascade, and biological processes such as cell cycle regulation, mitotic checkpoints, and diseases such as liver neoplasms. We also discussed the involvement of survivin in key oncogenic pathways, including the PI3K/AKT, WNT/β-catenin, Hippo, and JAK/STAT3 pathways, and its role in modulating cell cycle checkpoints, apoptosis, and autophagy. Furthermore, we explored its interactions with the tumor microenvironment, particularly its impact on immune modulation through myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, and natural killer cell function in HCC. Additionally, we highlighted its involvement in alkylglycerone phosphate synthase (AGPS)-mediated lipid reprogramming and identified important gaps in the survivin network that warrant further investigation. This review also examined the role of survivin in cancer stemness, inflammation, and virally mediated hepatocarcinogenesis. We evaluated its potential as a diagnostic, prognostic, predictive, and pharmacodynamic biomarker in HCC, emphasizing its relevance in precision medicine. Finally, we summarized emerging survivin-targeted therapeutics and ongoing clinical trials, underscoring the need for novel strategies to effectively target survivin in HCC.
Collapse
Affiliation(s)
- Nermin M Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire, United Kingdom
| | - Mahmoud M Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
36
|
Zhang Y, Chen L, Yang S, Dai R, Sun H, Zhang L. Identification and Validation of Circadian Rhythm-Related Genes Involved in Intervertebral Disc Degeneration and Analysis of Immune Cell Infiltration via Machine Learning. JOR Spine 2025; 8:e70066. [PMID: 40225045 PMCID: PMC11994230 DOI: 10.1002/jsp2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Background Low back pain is a significant burden worldwide, and intervertebral disc degeneration (IVDD) is identified as the primary cause. Recent research has emphasized the significant role of circadian rhythms (CRs) and immunity in affecting intervertebral discs (IVD). However, the influence of circadian rhythms and immunity on the mechanism of IVDD remains unclear. This study aimed to identify and validate key rhythm-related genes in IVDD and analyze their correlation with immune cell infiltration. Methods Two gene expression profiles related to IVDD and rhythm-related genes were obtained from the Gene Expression Omnibus and GeneCards databases to identify differentially expressed rhythm-related genes (DERGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were conducted to explore the biological functions of these genes. LASSO regression and SVM algorithms were employed to identify hub genes. We subsequently investigated the correlation between hub rhythm-related genes and immune cell infiltration. Finally, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated from normal and degenerative human IVD tissues. Hub rhythm-related genes expression in NPMSCs was confirmed by real-time quantitative PCR (RT-qPCR). Results Six hub genes related to CRs (CCND1, FOXO1, FRMD8, NTRK2, PRRT1, and TFPI) were screened out. Immune infiltration analysis revealed that the IVDD group had significantly more M0 macrophages and significantly fewer follicular helper T cells than those of the control group. Specifically, M0 macrophages were significantly associated with FRMD8, PRRT1, and TFPI. T follicular helper cells were significantly associated with FRDM8, FOXO1, and CCND1. We further confirmed that CCND1, FRMD8, NTRK2, and TFPI were dysrhythmic within NPMSCs from degenerated IVD in vitro. Conclusion Six genes (CCND1, FOXO1, FRMD8, NTRK2, PRRT1 and TFPI) linked to circadian rhythms associated with IVDD progression, together with immunity. The identification of these DEGs may provide new insights for the diagnosis and treatment of IVDD.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsThe Yangzhou School of Clinical Medicine of Dalian Medical UniversityYangzhouChina
| | - Liuyang Chen
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Sheng Yang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsThe Yangzhou School of Clinical Medicine of Dalian Medical UniversityYangzhouChina
| | - Rui Dai
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Hua Sun
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Liang Zhang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| |
Collapse
|
37
|
Marchionini DM, De Lombaerde S, van Rijswijk J, Zajicek F, Everix L, Miranda A, Aaltonen MJ, Kluger CM, Wild T, Kakoulidou A, Gundelach J, Fieblinger T, Fentz J, Rosinski J, Obenauer J, Greene JR, Liu L, Munoz-Sanjuan I, Verhoye M, Verhaeghe J, Bard J, Staelens S, Bertoglio D. Pharmacodynamic biomarkers responsive to mutant huntingtin lowering in a Huntington's disease mouse model. Neurobiol Dis 2025; 209:106906. [PMID: 40204170 DOI: 10.1016/j.nbd.2025.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025] Open
Affiliation(s)
- Deanna M Marchionini
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA.
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Joëlle van Rijswijk
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Mari J Aaltonen
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Carleen M Kluger
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Thomas Wild
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Aglaia Kakoulidou
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Jannis Gundelach
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Tim Fieblinger
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Joachim Fentz
- Evotec International GmbH, Anna-Sigmund-Str. 5, 82061, Neuried, Germany
| | - Jim Rosinski
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - John Obenauer
- Rancho Biosciences, 16955 Via Del Campo, Suite 200, San Diego, CA, 92127, USA
| | - Jonathan R Greene
- Rancho Biosciences, 16955 Via Del Campo, Suite 200, San Diego, CA, 92127, USA
| | - Longbin Liu
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - Ignacio Munoz-Sanjuan
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jonathan Bard
- CHDI Management, Inc., The Company That Manages the Scientific Activities of CHDI Foundation, Inc., 350 7(th) Ave, Suite 200, New York, NY, 10001, USA
| | - Steven Staelens
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Campus Drie Eiken, Room D.UC.059, Universiteitsplein 1, B-2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building UC, Room 111, Universiteitsplein 1, B-2610 Wilrijk, Belgium; μNeuro Centre of Excellence, University of Antwerp, Campus Drie Eiken, Building N, D.N. 110, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
38
|
Vastrad SJ, Saraswathy GR, Dasari JB, Nair G, Madarakhandi A, Augustine D, Sowmya S. A comprehensive transcriptome based meta-analysis to unveil the aggression nexus of oral squamous cell carcinoma. Biochem Biophys Rep 2025; 42:102001. [PMID: 40271514 PMCID: PMC12016861 DOI: 10.1016/j.bbrep.2025.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Lymph node metastasis in oral cancer (OC) complicates management due to its aggressive nature and high risk of recurrence, underscoring the need for biomarkers for early detection and targeted therapies. However, the drivers of this aggressive phenotype remain unclear due to the variability in gene expression patterns. To address this, an integrative meta-analysis of six publicly available transcriptomic profiles, categorized by lymph nodal status, is conducted. Key determinants of disease progression are identified through functional characterization and the TopConfects ranking approach of nodal associated differentially expressed genes (DEGs). To explore the critical nexus between lymph node metastasis and OC recurrence, significant metastatic genes were cross-analysed with literature-derived genes exhibiting aberrant methylation patterns in OC recurrence. Their clinical relevance and expression patterns were then validated in an external dataset from the TCGA head and neck cancer cohort. The analysis identified elevated expression of genes involved in extracellular matrix remodelling and immune response, while the expression of genes related to cellular differentiation and barrier functions was reduced, driving the transition to nodal positivity. The highest-ranked gene, MMP1, showed a log-fold change (LFC) of 4.946 (95 % CI: 3.71, 6.18) in nodal-negative samples, which increased to 5.899 (95 % CI: 4.80, 6.99) in nodal-positive samples, indicating consistent elevation across disease stages. In contrast, TMPRSS11B was significantly downregulated, with an LFC of -5.512 (95 % CI: -6.63, -4.38) in nodal-negative samples and -5.898 (95 % CI: -7.15, -4.64) in nodal-positive samples. Furthermore, MEIS1, down-regulated in nodal-positive status, was found to exhibit hypermethylation at CpG sites associated with OC recurrence. This study represents the first transcriptomic meta-analysis to explore the intersection of lymph node metastasis and OC recurrence, identifying MEIS1 as a potential key contributor. These comprehensive insights into disease trajectories offer potential biomarkers and therapeutic targets for future treatment strategies.
Collapse
Affiliation(s)
- Soujanya J. Vastrad
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, New BEL Road, M.S.R. Nagar, Bengaluru, India
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, New BEL Road, M.S.R. Nagar, Bengaluru, India
| | | | - Gouri Nair
- Department of Pharmacology, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ashok Madarakhandi
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, (A Constituent Unit of KAHER-Belagavi), 2nd Block, Rajajinagar, Bangalore, India
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, New BEL Road, M.S.R. Nagar, Bengaluru, India
| | - S.V. Sowmya
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, New BEL Road, M.S.R. Nagar, Bengaluru, India
| |
Collapse
|
39
|
Nabariya DK, Knüpfer LM, Hartwich P, Killian MS, Centler F, Krauß S. Transcriptomic analysis of intracellular RNA granules and small extracellular vesicles: Unmasking their overlap in a cell model of Huntington's disease. Mol Cell Probes 2025; 81:102026. [PMID: 40090627 DOI: 10.1016/j.mcp.2025.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Huntington's disease (HD) arises from the abnormal expansion of a CAG repeat in the HTT gene. The mutant CAG repeat triggers aberrant RNA-protein interactions and translates into toxic aggregate-prone polyglutamine protein. These aberrant RNA-protein ineractions also seed the formation of cytoplasmic liquid-like granules, such as stress granules. Emerging evidence demonstrates that granules formed via liquid-liquid phase separation can mature into gel-like inclusions that persist within the cell and may act as precursor to aggregates that occur in patients' tissue. Thus, deregulation of RNA granules is an important component of neurodegeneration. Interestingly, both the formation of intracellular membrane-less organelles like stress granules and the secretion of small extracellular vesicles (sEVs) increase upon stress and under disease conditions. sEVs are lipid membrane-bound particles that are secreted from all cell types and may participate in the spreading of misfolded proteins and aberrant RNA-protein complexes across the central nervous system in neurodegenerative diseases like HD. In this study, we performed a comparative transcriptomic analysis of sEVs and RNA granules in an HD model. RNA granules and sEVs were isolated from an inducible HD cell model. Both sEVs and RNA granules were isolated from induced (HD) and non-induced (control) cells and analyzed by RNA sequencing. Our comparative analysis between the transcriptomics data of HD RNA granules and sEVs showed that: (I) intracellular RNA granules and extracellular RNA vesicles share content, (II) several non-coding RNAs translocate to RNA granules, and (III) the composition of RNA granules and sEVs is affected in HD cells. Our data showing common transcripts in intracellular RNA granules and extracellular sEVs suggest that formation of RNA granules and sEV loading may be related. Moreover, we found a high abundance of lncRNAs in both control and HD samples, with several transcripts under REST regulation, highlighting their potential role in HD pathogenesis and selective incorporation into sEVs. The transcriptome cargo of RNA granules or sEVs may serve as a source for diagnostic strategies. For example, disease-specific RNA-signatures of sEVs can serve as biomarker of central nervous system diseases. Therefore, we compared our dataset to transcriptomic data from HD patient sEVs in blood. However, our data suggest that the cell-type specific signature of sEV-secreted RNAs as well as their high variability may make it difficult to detect these biomarkers in blood.
Collapse
Affiliation(s)
- Deepti Kailash Nabariya
- Human and Neurobiology, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Lisa Maria Knüpfer
- Human and Neurobiology, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Patrick Hartwich
- Chemistry and Structure of Novel Materials, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Manuela S Killian
- Chemistry and Structure of Novel Materials, Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Florian Centler
- Bioinformatics, School of Life Sciences, University of Siegen, Siegen, Germany
| | - Sybille Krauß
- Human and Neurobiology, Department of Chemistry and Biology, University of Siegen, Siegen, Germany.
| |
Collapse
|
40
|
Madarász K, Mótyán JA, Chang Chien YC, Bedekovics J, Csoma SL, Méhes G, Mokánszki A. BCOR-rearranged sarcomas: In silico insights into altered domains and BCOR interactions. Comput Biol Med 2025; 191:110144. [PMID: 40228447 DOI: 10.1016/j.compbiomed.2025.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
BCOR (BCL-6 corepressor) rearranged small round cell sarcoma (BRS) represents an uncommon soft tissue malignancy, frequently characterized by the BCOR::CCNB3 fusion. Other noteworthy fusions include BCOR::MAML3, BCOR::CLGN, BCOR::MAML1, ZC3H7B::BCOR, KMT2D::BCOR, CIITA::BCOR, RTL9::BCOR, and AHR::BCOR. The BCOR gene plays a pivotal role in the Polycomb Repressive Complex 1 (PRC1), essential for histone modification and gene silencing. It interfaces with the Polycomb group RING finger homolog (PCGF1). This study employed comprehensive in silico methodologies to investigate the structural and functional effects of BCOR fusion events in BRS. The analysis revealed significant alterations in the domain architecture of BCOR, which resulted in the loss of BCL6-regulated transcriptional repression. Furthermore, IUPred3 prediction indicated a significant increase in disorder in the C-terminal regions of the BCOR in the fusion proteins. A detailed analysis of the physicochemical properties by ProtParam revealed a decrease in isoelectric point, stability, and hydrophobicity. The analysis of protein structures predicted by AlphaFold3 using the PRODIGY algorithm revealed statistically significant deviations in binding affinities for BCOR-PCGF1 dimers and a non-canonical PRC1 variant tetramer compared to the wild-type BCOR. The findings provide a comprehensive summary and elucidation of the fusion proteome associated with BRS, suggesting a substantial impact on the stability and functionality of the fusion proteins, thereby contributing to the oncogenic mechanisms underlying BRS. In this study, we provide the first compilation and comparative analysis of the known BCOR fusions of BRS and introduce a new in silico approach to enhance a better understanding of the molecular basis of BRS.
Collapse
Affiliation(s)
- Kristóf Madarász
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Yi-Che Chang Chien
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Szilvia Lilla Csoma
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
| |
Collapse
|
41
|
Li F, Cai C, Wang F, Zhang N, Zhao Q, Chen Y, Cui X, Wang S, Zhang W, Liu D, Cai Y, Jin J. 20(S)-ginsenoside Rg3 suppresses gastric cancer cell proliferation by inhibiting E2F-DP dimerization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156740. [PMID: 40252583 DOI: 10.1016/j.phymed.2025.156740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Gastric cancer (GC) is a common and aggressive malignancy, with treatment options often limited by drug resistance and the adverse effects of targeted therapies and immunotherapy. Ginsenoside Rg3, a bioactive compound derived from ginseng, has shown promise in inhibiting the growth of various tumor types, including GC. However, the molecular mechanisms underlying its therapeutic effects against GC remain insufficiently understood. OBJECTIVE This study aimed to elucidate the molecular mechanisms underlying the anti-cancer effects of ginsenoside Rg3 against GC. METHODS To explore the molecular mechanisms underlying Rg3's anti-GC effects, RNA sequencing (RNA-Seq) was conducted to identify potential Rg3-regulated targets. The interaction between Rg3 and E2F was analyzed using several approaches, including the cellular thermal shift assay (CETSA), Rg3-PEGA pull-down, Rg3 pull-down protein mass spectrometry, and 3D molecular docking. Additionally, quantitative reverse transcription PCR (qRT-PCR), co-transfection followed by immunoprecipitation, Western blotting, flow cytometry, Annexin V-FITC staining, Hoechst staining, and luciferase reporter assays were employed to elucidate the molecular effects of Rg3. The inhibitory effect of Rg3 on GC proliferation was assessed through colony formation assays in vitro and tumor xenograft experiments in C57BL/6 mice in vivo. RESULTS Rg3-mediated gene expression profiling in GC cells revealed several transcription factors, including E2F, and biological processes potentially influenced by Rg3. Consistent with these findings, Rg3 suppressed E2F expression and impeded GC cell proliferation by inducing G1/S cell cycle arrest, reducing cell growth both in vitro and in vivo, enhancing apoptosis, and inhibiting CDC6 transactivation. CETSA and Rg3 pull-down assays confirmed an interaction between Rg3 and E2F. Additionally, 3D molecular docking analysis demonstrated that Rg3 binds with high affinity to E2F at the heterodimeric domain via hydrogen bonding, potentially disrupting E2F-DP heterodimer formation and subsequently inhibiting cell cycle gene expression. In agreement with this, Rg3-treated GC cells exhibited reduced expression of cyclin D1, CDK4, cyclin A, CDK1, and CDK2. Moreover, Rg3 activated the tumor suppressors p53 and p21, further inhibiting RB phosphorylation by suppressing cyclin/CDK activity, thereby blocking transcription of G1/S transition-related genes. CONCLUSION This study provides the first evidence that Rg3 directly binds to E2F proteins, disrupting E2F-DP heterodimer formation and inhibiting the transcription of E2F-DP-regulated target genes. Furthermore, Rg3 activates the p53-p21 pathway while suppressing the cyclin/CDK-RB signaling pathway, effectively inhibiting cancer cell proliferation. These findings highlight a potential therapeutic strategy for developing small molecules structurally similar to Rg3 to target tumors with high E2F expression.
Collapse
Affiliation(s)
- Fuqiang Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China; School of Pharmacy, Changchun University of Chinese Medicine, Boshuo Road, Jingyue Development Zone, Changchun, Jilin 130117, China
| | - Chengyu Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Fei Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Na Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Qingzhi Zhao
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Yuyang Chen
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Xueli Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Siyang Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Wenjie Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Boshuo Road, Jingyue Development Zone, Changchun, Jilin 130117, China.
| | - Yong Cai
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Chaoyang District, Changchun, Jilin 130012, China.
| |
Collapse
|
42
|
Yang Y, Yu K, Gao S, Yu S, Xiong D, Qin C, Chen H, Tang J, Tang N, Zhu H. Alzheimer's disease knowledge graph enhances knowledge discovery and disease prediction. Comput Biol Med 2025; 192:110285. [PMID: 40306017 PMCID: PMC12103266 DOI: 10.1016/j.compbiomed.2025.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVE To construct an Alzheimer's Disease Knowledge Graph (ADKG) by extracting and integrating relationships among Alzheimer's disease (AD), genes, variants, chemicals, drugs, and other diseases from biomedical literature, aiming to identify existing treatments, potential targets, and diagnostic methods for AD. METHODS We annotated 800 PubMed abstracts (ADERC corpus) with 20,886 entities and 4935 relationships, augmented via GPT-4. A SpERT model (SciBERT-based) trained on this data extracted relations from PubMed abstracts, supported by biomedical databases and entity linking refined via abbreviation resolution/string matching. The resulting knowledge graph trained embedding models to predict novel relationships. ADKG's utility was validated by integrating it with UK Biobank data for predictive modeling. RESULTS The ADKG contained 3,199,276 entity mentions and 633,733 triplets, linking >5K unique entities and capturing complex AD-related interactions. Its graph embedding models produced evidence-supported predictions, enabling testable hypotheses. In UK Biobank predictive modeling, ADKG-enhanced models achieved higher AUROC of 0.928 comparing to 0.903 without ADKG enhancement. CONCLUSION By synthesizing literature-derived insights into a computable framework, ADKG bridges molecular mechanisms to clinical phenotypes, advancing precision medicine in Alzheimer's research. Its structured data and predictive utility underscore its potential to accelerate therapeutic discovery and risk stratification.
Collapse
Affiliation(s)
- Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | | | - Shan Gao
- Department of Mathematics and Statistics, Yunnan University, China
| | - Sheng Yu
- Center for Statistics Science, Tsinghua University, China
| | - Di Xiong
- Department of Mathematics, Shanghai University, China
| | - Chuanyang Qin
- Department of Mathematics and Statistics, Yunnan University, China
| | - Huiyuan Chen
- Department of Mathematics and Statistics, Yunnan University, China
| | - Jiarui Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | - Niansheng Tang
- Department of Mathematics and Statistics, Yunnan University, China
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
43
|
Du J, Liu Y, Luo Z, Wang M, Liu Y. Identification of Periodontal Disease Diagnostic Markers Via Data Cross-Validation. Int Dent J 2025; 75:1936-1950. [PMID: 39904707 DOI: 10.1016/j.identj.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/28/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION AND AIMS Periodontitis is a globally prevalent disease that is clinically diagnosed when the periodontal tissues are pathologically affected. Therefore, it is vital to identify novel periodontitis-associated biomarkers that will aid in diagnosing or treating potential patients with periodontitis. METHODS The GSE16134 and GSE10334 datasets were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes between periodontitis and healthy samples. Single-sample gene set enrichment analysis was performed to identify significantly involved signalling pathways. Weighted gene correlation network analysis was used to identify key molecular modules. Hub genes were screened using key genes to construct a diagnosis and prediction model of periodontitis. Microenvironment cell population-counter was used to analyse immune cell infiltration patterns in periodontal diseases. RESULTS Single-sample gene set enrichment analysis revealed that periodontitis involves the PI3K/AKT/mTOR signalling pathway and associated module genes (667 genes). Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the module genes revealed that periodontitis involves the type I interferon, rhythmic process, and response to type I interferon signalling pathways. GSEA identified 21 core genes associated with periodontitis and classified them into two clusters, A and B. Genomics of Drug Sensitivity in Cancer analysis revealed that AKT.inhibitor.VIII had high drug sensitivity in the cluster A subtype. Monocytes and myeloid dendritic cell infiltration were enriched in the cluster A subtype, whereas natural killer T cell infiltration was enriched in the cluster B subtype. CONCLUSION The pathway and gene modules identified in this study may help comprehensively diagnose periodontitis and provide a novel method for evaluating new treatments. CLINICAL RELEVANCE Our results are beneficial for classifying periodontitis subtypes and treatment using targeted medicine.
Collapse
Affiliation(s)
- Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Minfeng Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Gong L, Zhang L, Zhang H, Nie F, Liu Z, Liu X, Fang M, Yang W, Zhang Y, Zhang G, Guo Z, Zhang H. Haplotype-resolved genome assembly and genome-wide association study identifies the candidate gene closely related to sugar content and tuber yield in Solanum tuberosum. HORTICULTURE RESEARCH 2025; 12:uhaf075. [PMID: 40303439 PMCID: PMC12038253 DOI: 10.1093/hr/uhaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
As an important noncereal food crop grown worldwide, the genetic improvement of potato in tuber yield and quality is largely constrained due to the lacking of a high-quality reference genome and understanding of the regulatory mechanism underlying the formation of superior alleles. Here, a chromosome-scale haplotype-resolved genome assembled from an anther-cultured progeny of 'Ningshu 15', a tetraploid variety featured by its high starch content and drought resistance was presented. The assembled genome size was 1.653 Gb, with a contig N50 of approximately 1.4 Mb and a scaffold N50 of 61 Mb. The long terminal repeat assembly index score of the two identified haplotypes of 'Ningshu 15' was 11.62 and 11.94, respectively. Comparative genomic analysis revealed that positive selection occurred in gene families related to starch, sucrose, fructose and mannose metabolism, and carotenoid biosynthesis. Further genome-wide association study in 141 accessions identified a total number of 53 quantitative trait loci related to fructose, glucose, and sucrose content. Among them, a tonoplast sugar transporter encoding gene, StTST2, closely associated with glucose content was identified. Constitutive expression of StTST2 in potato and Arabidopsis increased the photosynthetic rate, chlorophyll and sugar content, biomass tuber and seed production in transgenic plants. In addition, co-immunoprecipitation assays demonstrated that StTST2 directly interacted with SUT2. Our study provides a high-quality genome assembly and new genetic locus of potato for molecular breeding.
Collapse
Affiliation(s)
- Lei Gong
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Li Zhang
- Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Haiwen Zhang
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan District, Weifang, 261325 Shandong Province, China
| | - Fengjie Nie
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Zhenning Liu
- College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, 276000 Shandong Province, China
| | - Xuan Liu
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Miaoquan Fang
- Huazhi Biotechnology Co. Ltd, 618 Heping Road, Furong District, Changsha, 410016 Hunan, China
| | - Wenjing Yang
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Yu Zhang
- Ningxia Key Laboratory for Agro-biotechnology, Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Science, 590 Huanghe East Road, Yinchuan, 750002 Ningxia Hui Nationality Autonomous Region, China
| | - Guohui Zhang
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Zhiqian Guo
- Guyuan Branch Academy of Ningxia Academy of Agriculture and Forestry Science, 200 Yiwu Road, Guyuan, 756000 Ningxia Hui Nationality Autonomous Region, China
| | - Hongxia Zhang
- College of Agriculture and Forestry Science, Linyi University, Middle Section of Shuangling Road, Linyi, 276000 Shandong Province, China
| |
Collapse
|
45
|
Wang Q, Aye L, Schumacher JG, Swan A, Cai W, Su C, Chen X, Yang K. Dysregulated angiogenin and related pathways in the ventral midbrain of "redhead" mice with MC1R disruption. J Neurophysiol 2025; 133:1740-1748. [PMID: 40214139 DOI: 10.1152/jn.00627.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/06/2025] [Accepted: 04/04/2025] [Indexed: 05/23/2025] Open
Abstract
A relationship between the melanoma-related pigmentation gene melanocortin 1 receptor (MC1R) and Parkinson's disease (PD) has been previously suggested. The present study aims to investigate the gene expression pattern in the ventral midbrain (VMB) of MC1R extension (MC1Re/e) mice to provide insights into the underlying mechanism of dopaminergic neuron loss in these mice. RNA sequencing (RNA-seq) was conducted on VMB tissues from MC1Re/e mice and their wild-type (WT) C57BL/6J littermates. Gene expression levels and pathway activity were assessed using differential gene expression analysis, Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). To validate the RNA-seq results, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting (WB), and ELISA were performed. Our analyses found significant transcriptomic differences in the VMB between MC1Re/e mice and WT controls. Several immune response-related pathways were identified to be downregulated in the MC1Re/e group. Angiogenin (ANG) was implicated in several of the enriched pathways in MC1Re/e mice. Furthermore, Ang was found to be significantly downregulated in the VMB of MC1Re/e mice, which was confirmed at both mRNA and protein levels. There was no significant difference in Ang protein levels in the serum of MC1Re/e and WT mice. Our results suggest a differential gene expression pattern in the VMB as a result of MC1R mutation. Notably, lower Ang expression may be involved in the neuronal loss observed in the VMB of the MC1Re/e mice.NEW & NOTEWORTHY Our study identifies reduced angiogenin (Ang) expression in the ventral midbrain (VMB) of MC1Re/e mice, validated through RNA-seq, RT-qPCR, and Western blot. This CNS-specific downregulation suggests localized regulatory mechanisms linked to neuroprotection and Parkinson's disease (PD) pathogenesis. Ang's role in neurodegeneration, angiogenesis, and oxidative stress responses highlights its therapeutic potential in PD. These findings provide critical insights into Ang's CNS-specific function and underscore the importance of further research into its mechanistic role in PD.
Collapse
Affiliation(s)
- Qing Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ling Aye
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jackson G Schumacher
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychology and Neuroscience, Morrissey College of Arts and Sciences, Boston College, Boston, Massachusetts, United States
| | - Aidan Swan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Behavioral Neuroscience, College of Science, Northeastern University, Boston, Massachusetts, United States
| | - Waijiao Cai
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chienwen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Xiqun Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Kai Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Škorjanc A, Smrkolj V, Umek N. GOReverseLookup: A gene ontology reverse lookup tool. Comput Biol Med 2025; 191:110185. [PMID: 40239235 DOI: 10.1016/j.compbiomed.2025.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND AND OBJECTIVE The Gene Ontology (GO) project has been pivotal in providing a structured framework for characterizing genes and annotating them to specific biological concepts. While traditional gene annotation primarily focuses on mapping genes to GO terms, descriptors of biological concepts, there is a growing need for tools facilitating reverse querying. This paper introduces GOReverseLookup, a novel tool designed to identify over- or underrepresented genes in researcher-defined states of interest (phenotypes), described by sets of GO terms. GOReverseLookup supplements the existing power of Gene Ontology by the possibility of orthologous gene querying across several databases, such as Ensembl and UniProtKB. This combination allows for a more nuanced identification of significant genes across a range of cross-species research contexts. METHODS GOReverseLookup queries genes associated with input GO terms. Bundles of GO terms encapsulate user-defined states of interest, e.g., angiogenesis. In the second stage of the analysis, all GO terms associated with each gene are fetched, and finally, the statistical relevance of the genes being involved in one (or all) of the defined states of interests is computed. RESULTS The two presented use cases illustrate its utility in discovering genes related to rheumatoid arthritis and genes linked with chronic inflammation and tumorigenesis. In both cases, GOReverseLookup discovered a substantial number of genes significantly associated with the aforementioned states of interest. CONCLUSIONS GOReverseLookup proves to be a valuable resource for unraveling the genetic basis of phenotypes, with diverse practical potentials in functional genomics, systems biology, and drug discovery. We anticipate that GOReverseLookup will significantly aid in identifying potential gene targets during the initial research phases.
Collapse
Affiliation(s)
- Aljoša Škorjanc
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia
| | - Vladimir Smrkolj
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia; National Institute of Chemistry, Hajdrihova ulica 19, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Hu E, Kuang X, Zhaohui S, Wang S, Gan T, Zhou W, Ming Z, Cheng Y, Ye C, Yan K, Gong X, Wang T, Peng X. Data independent acquisition proteomics and machine learning reveals that proteins associated with immunity are potential molecular markers for early diagnosis of autism. Clin Chim Acta 2025; 573:120238. [PMID: 40185380 DOI: 10.1016/j.cca.2025.120238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Early diagnosis of autism is critical to its treatment, but so far, there is no clear molecular marker for early diagnosis in children. METHODS We used data independent acquisition (DIA) mass spectrometry to compare protein expression in serum from 99 Chinese children with autism spectrum disorders with 70 healthy children. RESULTS We identified 347 downregulated and 394 upregulated proteins. Based on bioinformatics analysis, differential proteins were enriched in the immune system, immune disease, cell motility, and focal adhesion. Machine learning revealed a model with eight proteins (IGH c1898_heavy_IGHV3-33_IGHD3-9_IGHJ4, LYZ, IGL c1860_light_IGLV8-61_IGLJ2, SERPINA10, IG c1421_light_IGKV1-27_IGKJ4, rheumatoid factor RF-ET1, IGL c600_light_IGKV4-1_IGKJ4, and SELL) that were mostly associated with immunity, and accurate for diagnosis of autism. The protein family was verified by a logic-regression leave-one cross-validation method with bidirectional feature screening. The accuracy of this model was 0.9527, and the kappa coefficient was 0.9025. CONCLUSIONS Our study showed that immunity is closely related to the onset of autism and can be used for early screening of patients. A model with eight proteins (IGH c1898_heavy_IGHV3-33_IGHD3-9_IGHJ4, LYZ, IGL c1860_light_IGLV8-61_IGLJ2, SERPINA10, IG c1421_light_IGKV1-27_IGKJ4, rheumatoid factor RF-ET1, IGL c600_light_IGKV4-1_IGKJ4, and SELL), which are mostly associated with immunity, is accurate for diagnosis of autism.
Collapse
Affiliation(s)
- Erlin Hu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China; Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University. Changsha, Hunan Province, China
| | - Xiaoni Kuang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Sun Zhaohui
- Hunan Want Want Hospital, Changsha, Hunan Province, China
| | - Sifeng Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Tuoyu Gan
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Wenjuan Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Zhu Ming
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Yuxia Cheng
- Hunan Want Want Hospital, Changsha, Hunan Province, China
| | - Chunhua Ye
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Kang Yan
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China
| | - Xiaohui Gong
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China; Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University. Changsha, Hunan Province, China.
| | - Tuanmei Wang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China.
| | - Xiangwen Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan Province, China; Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University. Changsha, Hunan Province, China.
| |
Collapse
|
48
|
Lv G, Xia Y, Jing S, Zhang B, Zhang Z, Qin Y, Hu G, Zhao J. Molecular mechanism of differences in anthocyanin components between pericarp and red hairy root of early maturing litchi cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109895. [PMID: 40220670 DOI: 10.1016/j.plaphy.2025.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Glycosylation of anthocyanin plays an important role in increasing its stability and diversity in plants. Here, we identified a glucosyltransferase gene responsible for the anthocyanin components in Litchi chinensis Sonn. Cyanidin-3-rutinoside is the main anthocyanins of pericarps and red hairy roots overexpressing MYB transcription factor LcMYB1 in the late maturing cultivars. However, in the early maturing cultivars, the anthocyanins in the pericarps is dominated by cyanidin-3-glucoside, and the anthocyanins in the red hairy roots overexpressing LcMYB1 is dominated by cyanidin-3-rutinoside. Enzyme assays highlighted notable differences in flavonoid 3-O-rhamnosyltransferase (F3RT) activity between the pericarps and red hairy roots overexpressing LcMYB1 in the early maturing cultivars. Two differentially expressed genes (DEGs), LcF3RT1 and LcF3RT2, were significantly up-regulated in the red hairy roots overexpressing LcMYB1. Yeast one-hybrid and dual luciferase reporter assays revealed that LcMYB1 could bind to the promoter of LcF3RT2 and significantly activate its expression. Functional validation showed that LcF3RT2 could catalyze the conversion of cyanidin-3-glucoside into cyanidin-3-rutinoside, leading to the differences on anthocyanin components in pericarps and red hairy roots of early maturing litchi cultivars. Our results will provide insights into the regulation and glycosylation modification of anthocyanins in litchi as well as in other plants.
Collapse
Affiliation(s)
- Guohao Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yingsheng Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiqi Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
49
|
Li J, Li J, Chen S, Liu Z, Dai J, Wang Y, Cui M, Suo C, Xu K, Jin L, Chen X, Jiang Y. Prospective Investigation Unravels Plasma Proteomic Links to Dementia. Mol Neurobiol 2025; 62:7345-7360. [PMID: 39885106 DOI: 10.1007/s12035-025-04716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes. Mendelian randomization analysis was employed to identify causal associations, and machine learning algorithms were applied to develop protein-based models for dementia prediction. We identified 74 proteins significantly associated with the risk of various types of dementia and cognitive functions after Bonferroni correction. Among these, strong associations were observed for growth/differentiation factor 15 (GDF15), glial fibrillary acidic protein (GFAP), and neurofilament light polypeptide (NEFL), across all types of dementia. Additionally, 15 proteins demonstrated significant associations with neuroimaging-defined dementia endophenotypes. Two-sample Mendelian randomization analyses further substantiated causal relationships between dementia-associated proteins and Alzheimer's disease, particularly involving GDF15, proto-oncogene tyrosine-protein kinase receptor Ret (RET), and GFAP. Moreover, we identified three protein modules associated with dementia, primarily linked to immune system processes, angiogenesis, and energy metabolism, providing insights into potential biological pathways underlying the disease. Furthermore, we proposed a ten-protein panel capable of forecasting dementia over a median follow-up period of 8.6 years, achieving an area under the curve (AUC) of 0.857 (95% confidence interval (CI), 0.837-0.876). Our results revealed dementia-associated plasma proteomic signatures, and their causal relationships, notably GDF15-RET signaling with Alzheimer's disease, and proposed a promising protein panel for high-risk dementia screening.
Collapse
Affiliation(s)
- Jincheng Li
- Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
| | - Jialin Li
- Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
| | - Shuaizhou Chen
- Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
| | - Zhenqiu Liu
- Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
| | - Jiacheng Dai
- Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
- Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
- Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China.
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, China.
| | - Yanfeng Jiang
- Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, 225300, Jiangsu, China.
- International Human Phenome Institute (Shanghai), Shanghai, 201210, China.
| |
Collapse
|
50
|
Sur I, Zhao W, Zhang J, Kling Pilström M, Webb AT, Cheng H, Ristimäki A, Katajisto P, Enge M, Rannikmae H, de la Roche M, Taipale J. Shared requirement for MYC upstream super-enhancer region in tissue regeneration and cancer. Life Sci Alliance 2025; 8:e202403090. [PMID: 40180576 PMCID: PMC11969384 DOI: 10.26508/lsa.202403090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer has been characterized as a wound that does not heal. Malignant cells are morphologically distinct from normal proliferating cells but have extensive similarities to tissues undergoing wound healing and/or regeneration. The mechanistic basis of this similarity has, however, remained enigmatic. Here, we show that the genomic region upstream of Myc, which carries more cancer susceptibility in humans than any other genomic region, is required for intestinal regeneration after radiation damage. Failure to regenerate is associated with inefficient Ly6a/Sca1+ stem/progenitor cell mobilization, and almost complete failure to re-establish Lgr5+ cell compartment in the intestinal crypts. The Myc upstream region is also critical for growth of adult intestinal cells in 3D organoid culture. We show that culture conditions recapitulating most aspects of adult normal tissue architecture still reprogram normal cells to proliferate using a mechanism similar to that employed by cancer cells. Our results establish a function for the Myc 2-540 super-enhancer region as the genetic link between tissue regeneration and tumorigenesis, and demonstrates that normal tissue renewal and regeneration of tissues after severe damage are mechanistically distinct.
Collapse
Affiliation(s)
- Inderpreet Sur
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wenshuo Zhao
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna T Webb
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Huaitao Cheng
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ari Ristimäki
- Applied Tumor Genomics Program, Biomedicum, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Martin Enge
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Rannikmae
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Applied Tumor Genomics Program, Biomedicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|