1
|
Chen F, Chen R, Yang L, Shen B, Wang Y, Gao Y, Tan R, Zhao X. Magnesium-assisted hydrogen improves isoproterenol-induced heart failure. Med Gas Res 2025; 15:459-470. [PMID: 40300881 DOI: 10.4103/mgr.medgasres-d-24-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/19/2025] [Indexed: 05/01/2025] Open
Abstract
Heart failure (HF) is a leading cause of mortality among patients with cardiovascular disease and is often associated with myocardial apoptosis and endoplasmic reticulum stress (ERS). While hydrogen has demonstrated potential in reducing oxidative stress and ERS, recent evidence suggests that magnesium may aid in hydrogen release within the body, further enhancing these protective effects. This study aimed to investigate the cardioprotective effects of magnesium in reducing apoptosis and ERS through hydrogen release in a rat model of isoproterenol (ISO)-induced HF. Magnesium was administered orally to ISO-induced HF rats, which improved cardiac function, reduced myocardial fibrosis and cardiac hypertrophy, and lowered the plasma levels of creatine kinase-MB, cardiac troponin-I, and N-terminal B-type natriuretic peptide precursor in ISO-induced HF rats. It also inhibited cardiomyocyte apoptosis by upregulating B-cell lymphoma-2, downregulating Bcl-2-associated X protein, and suppressing ERS markers (glucose-related protein 78, activating transcription factor 4, and C/EBP-homologous protein). Magnesium also elevated hydrogen levels in blood, plasma, and cardiac tissue, as well as in artificial gastric juice and pure water, where hydrogen release lasted for at least four hours. Additionally, complementary in vitro experiments were conducted using H9C2 cardiomyocyte injury models, with hydrogen-rich culture medium as the intervention. Hydrogen-rich culture medium improved the survival and proliferation of ISO-treated H9C2 cells, reduced the cell surface area, inhibited apoptosis, and downregulated ERS pathway proteins. However, the protective effects of hydrogen were negated by tunicamycin (an inducer of ERS) in H9C2 cells. In conclusion, magnesium exerts significant cardioprotection by mitigating ERS and apoptosis through hydrogen release effects in ISO-induced HF.
Collapse
Affiliation(s)
- Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong Province, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yunting Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
2
|
Yang L, Xue R, Yang C, Lv Y, Li S, Xiang W, Guo X, Zhou J. Endoplasmic reticulum stress on glioblastoma: Tumor growth promotion and immunosuppression. Int Immunopharmacol 2025; 157:114806. [PMID: 40339490 DOI: 10.1016/j.intimp.2025.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/10/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Exogenous or endogenous factors such as hypoxia, nutritional deficiencies, acidic microenvironments and their own high metabolic demands usually lead to tumor endoplasmic reticulum dysfunction and trigger endoplasmic reticulum stress (ERS). ERS sensors intercept such stress signals, which subsequently initiate the unfolded protein response (UPR), enabling tumor cells to adapt robustly in the hostile environment. Many studies have found that the ERS response affects a variety of tumor-infiltrating immune cells and suppresses their anti-tumor responses through different mechanisms. Given that glioblastoma (GBM) are immunosuppressive "cold tumors" with a poor prognosis. This paper not only discusses the promotion of GBM growth by ERS response, but also reviews the mechanisms by which ERS response promotes an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Luxia Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ruifeng Xue
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Yancheng Lv
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China; Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Engelfriet ML, Guo Y, Arnold A, Valen E, Ciosk R. Reprograming gene expression in 'hibernating' C. elegans involves the IRE-1/XBP-1 pathway. eLife 2025; 13:RP101186. [PMID: 40326887 PMCID: PMC12055002 DOI: 10.7554/elife.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
In nature, many animals respond to cold by entering hibernation, while in clinical settings, controlled cooling is used in transplantation and emergency medicine. However, the molecular mechanisms that enable cells to survive severe cold are still not fully understood. One key aspect of cold adaptation is the global downregulation of protein synthesis. Studying it in the nematode Caenorhabditis elegans, we find that the translation of most mRNAs continues in the cold, albeit at a slower rate, and propose that cold-specific gene expression is regulated primarily at the transcription level. Supporting this idea, we found that the transcription of certain cold-induced genes is linked to the activation of unfolded protein response (UPR) through the conserved IRE-1/XBP-1 signaling pathway. Our findings suggest that this pathway is triggered by cold-induced perturbations in proteins and lipids within the endoplasmic reticulum, and that its activation is beneficial for cold survival.
Collapse
Affiliation(s)
- Melanie Lianne Engelfriet
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Yanwu Guo
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Andreas Arnold
- Division of Molecular Neuroscience, Department of Biomedicine, University of BaselBaselSwitzerland
- University Psychiatric Clinics, University of BaselBaselSwitzerland
| | - Eivind Valen
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Rafal Ciosk
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
4
|
Guan Z, Liang Y, Zhu Z, Yang A, Li S, Wang X, Wang J. Lithium carbonate exposure disrupts neurodevelopment by perturbing primary cilia and ER homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118200. [PMID: 40245563 DOI: 10.1016/j.ecoenv.2025.118200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Lithium, which is widely used in medicine and batteries, has become increasingly prevalent in the environment, raising concerns about its impact on human health. Lithium carbonate (Li2CO3) is a common treatment and relapse prevention method for bipolar disorder. It can freely cross the placental barrier; however, lithium treatment is accompanied by side effects, particularly in women of reproductive age. Among these, neural tube defects (NTDs) have the most severe impact on nervous system development; however, their underlying mechanisms remain unclear. This study explored the potential mechanisms by which Li2CO3 exposure contributes to NTDs. Pregnant mice were intraperitoneally injected with Li2CO3 (360 mg/kg), which mimicked high-exposure scenarios such as an unintended pregnancy during lithium therapy or exposure to industrial contamination. Embryos were assessed for morphological changes, primary cilia length, and endoplasmic reticulum (ER) homeostasis using histological analysis, scanning electron microscopy, PCR array analysis, immunofluorescence, and quantitative real-time PCR. Network and bioinformatics analyses were used to identify primary molecular targets and pathways. We also evaluated the effects of inositol supplementation on cilia during Li2CO3 exposure. The results revealed that treatment with Li2CO3 at 360 mg/kg induced exencephaly in some embryos, reduced primary cilia length, and dysregulated cilia-associated gene expression in the neural tube. PCR Array, network metabolism, and immunofluorescence analyses revealed that HSP90AB1, a critical regulator of ER homeostasis, was upregulated in Li2CO3-treated embryos with NTDs. Li2CO3 exposure disturbed ER homeostasis in the developing brain. Interestingly, inositol supplementation partially rescued ciliogenesis impairment in lithium-treated NIH3T3 cells. Li2CO3 exposure disrupted primary ciliary development and ER homeostasis in the embryonic neural tube. Maintaining adequate maternal inositol levels during Li2CO3 exposure before and during pregnancy prevents NTDs. These findings help in better understanding and reassessing the risks associated with lithium, especially in terms of maternal and fetal health.
Collapse
Affiliation(s)
- Zhen Guan
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yingchao Liang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhiqiang Zhu
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Aiyun Yang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shen Li
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiuwei Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jianhua Wang
- Laboratory of Translational Medicine, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
5
|
Sharma A, Heffernan LM, Hoang K, Jeyaseelan S, Beavers WN, Abuaita BH. Activation of the endoplasmic reticulum stress regulator IRE1α compromises pulmonary host defenses. Cell Rep 2025; 44:115632. [PMID: 40315054 DOI: 10.1016/j.celrep.2025.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
The endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) is associated with lung infections where innate immune cells are drivers for progression and resolution ammatory cytokinesflammation. Yet, the role of IRE1α in pulmonary innate immune host defense during acute respiratory infection remains unexplored. Here, we found that activation of IRE1α in infected lungs compromises immunity against methicillin-resistant Staphylococcus aureus (MRSA)-induced primary and secondary pneumonia. Moreover, activation of IRE1α in MRSA-infected lungs and alveolar macrophages (AMs) leads to exacerbated production of inflammatory mediators followed by cell death. Ablation of myeloid IRE1α or global IRE1α inhibition confers protection against MRSA-induced pneumonia with improved survival, bacterial clearance, cytokine reduction, and lung injury. In addition, loss of myeloid IRE1α protects mice against MRSA-induced secondary to influenza pneumonia by promoting AM survival. Thus, activation of IRE1α is detrimental to pneumonia, and therefore, it shows potential as a target to control excessive unresolved lung inflammation.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Linda M Heffernan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Ky Hoang
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Samithamby Jeyaseelan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA; Mass Spectrometry Resource Center, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Basel H Abuaita
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA.
| |
Collapse
|
6
|
Moreews M, Karlsson MCI. Endoplasmic reticulum stress: A key player in immune cell regulation and autoimmune disorders. Semin Immunol 2025; 78:101954. [PMID: 40267701 DOI: 10.1016/j.smim.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The endoplasmic reticulum (ER) is a large organelle, found in all eukaryotes, that is essential for normal cellular function. This function encompasses protein folding and quality control, post-translational modifications, lipid regulation, and the storage of intracellular calcium, among others. These diverse processes are essential for maintaining proteome stability. Therefore, a robust surveillance system is established under stress to ensure cell homeostasis. Sources of stress can originate from the cellular environment, including nutrient deprivation, hypoxia, and low pH, as well as from endogenous signals within the cell, such as metabolic challenges and increased demands for protein production. When cellular homeostasis is altered by one of these triggers, ER primary functions are altered which leads to the accumulation of misfolded proteins. These impaired proteins trigger the activation of the Unfolded Protein Response (UPR) pathway. This response aims at reducing ER stress by implementing the induction of complex programs to restore cell homeostasis. However, extended ER stress can modify the UPR response, shifting its signals from promoting survival to triggering pathways that reprogram or eliminate affected cells.
Collapse
Affiliation(s)
- Marion Moreews
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
7
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
8
|
Trouvé P, Férec C. p.Phe508del-CFTR Trafficking: A Protein Quality Control Perspective Through UPR, UPS, and Autophagy. Int J Mol Sci 2025; 26:3623. [PMID: 40332143 PMCID: PMC12026709 DOI: 10.3390/ijms26083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via the conventional protein secretion (CPS) pathway. Nevertheless, it can use unconventional protein secretion (UPS). Indeed, p.Phe508del-CFTR forms a complex with GRASP55 to assist its direct trafficking from the endoplasmic reticulum to the plasma membrane. While GRASP55 is a key player of UPS, it is also a key player of stress-induced autophagy. In parallel, the unfolded protein response (UPR), which is activated in the presence of misfolded proteins, is tightly linked to UPS and autophagy through the key effectors IRE1, PERK, and ATF6. A better understanding of how UPS, UPR, and stress-induced autophagy interact to manage protein trafficking in CF and other conditions could lead to novel therapeutic strategies. By enhancing or modulating these pathways, it may be possible to increase p.Phe508del-CFTR surface expression. In summary, this review highlights the critical roles of UPS- and UPR-induced autophagy in managing protein transport, offering new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France;
| | | |
Collapse
|
9
|
Dabsan S, Zur G, Abu-Freha N, Sofer S, Grossman-Haham I, Gilad A, Igbaria A. Cytosolic and endoplasmic reticulum chaperones inhibit wt-p53 to increase cancer cells' survival by refluxing ER-proteins to the cytosol. eLife 2025; 14:e102658. [PMID: 40202782 PMCID: PMC11981610 DOI: 10.7554/elife.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or 'ERCYS'). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gali Zur
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Naim Abu-Freha
- Institute of Gastroenterology and Liver Diseases, Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the NegevBeer ShevaIsrael
| | - Shahar Sofer
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Grossman-Haham
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ayelet Gilad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
10
|
Salvador-Mira M, Gimenez-Moya P, Manso-Aznar A, Sánchez-Córdoba E, Sevilla-Diez MA, Chico V, Nombela I, Puente-Marin S, Roher N, Perez L, Dučić T, Benseny-Cases N, Perez-Berna AJ, Ortega-Villaizan MDM. Viral vaccines promote endoplasmic reticulum stress-induced unfolding protein response in teleost erythrocytes. Eur J Cell Biol 2025; 104:151490. [PMID: 40252498 DOI: 10.1016/j.ejcb.2025.151490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Most available evidence points to a proviral role for endoplasmic reticulum (ER) stress, as many viruses exploit it to promote viral replication. In contrast, few studies have linked ER stress to the antiviral immune response, and even fewer to the vaccine-induced immune response. In this work, we demonstrated that ER stress is a key molecular link in the immune response of teleost erythrocytes or red blood cells (RBCs) under vaccine stimulation. Moreover, the unfolded protein response (UPRER) triggered by ER stress may work together with autophagy and related cellular mechanisms as part of a coordinated immune response in RBCs. We unveiled biochemical changes in the lipid-protein profile of vaccine-treated RBCs by synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-µFTIR) associated with the modulation of ER expansion, increased mitochondrial number, and vesicular structures detected by soft X-ray cryotomography (cryo-SXT). We found a positive correlation between both morphological and biochemical changes and the expression of genes related to UPRER, autophagy, mitochondrial stress, vesicle trafficking, and extracellular vesicle release. These processes in RBCs are ideal cellular targets for the development of more specific prophylactic tools with greater immunogenic capacity than currently available options.
Collapse
Affiliation(s)
- Maria Salvador-Mira
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Paula Gimenez-Moya
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Alba Manso-Aznar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ester Sánchez-Córdoba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Manuel A Sevilla-Diez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB) & Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Tanja Dučić
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Núria Benseny-Cases
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain.
| |
Collapse
|
11
|
Kong X, Liu T, Wei J. Parkinson's Disease: The Neurodegenerative Enigma Under the "Undercurrent" of Endoplasmic Reticulum Stress. Int J Mol Sci 2025; 26:3367. [PMID: 40244210 PMCID: PMC11989508 DOI: 10.3390/ijms26073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder, demonstrates the critical involvement of endoplasmic reticulum stress (ERS) in its pathogenesis. This review comprehensively examines the role and molecular mechanisms of ERS in PD. ERS represents a cellular stress response triggered by imbalances in endoplasmic reticulum (ER) homeostasis, induced by factors such as hypoxia and misfolded protein aggregation, which activate the unfolded protein response (UPR) through the inositol-requiring enzyme 1 (IRE1), protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) pathways. Clinical, animal model, and cellular studies have consistently demonstrated a strong association between PD and ERS. Abnormal expression of ERS-related molecules in PD patients' brains and cerebrospinal fluid (CSF) correlates with disease progression. In animal models (e.g., Drosophila and mice), ERS inhibition alleviates dopaminergic neuronal damage. Cellular experiments reveal that PD-mimicking pathological conditions induce ERS, while interactions between ERS and mitochondrial dysfunction promote neuronal apoptosis. Mechanistically, (1) pathological aggregation of α-synuclein (α-syn) and ERS mutually reinforce dopaminergic neuron damage; (2) leucine-rich repeat kinase 2 (LRRK2) gene mutations induce ERS through thrombospondin-1 (THBS1)/transforming growth factor beta 1 (TGF-β1) interactions; (3) molecules such as Parkin and PTEN-induced kinase 1 (PINK1) regulate ERS in PD. Furthermore, ERS interacts with mitochondrial dysfunction, oxidative stress, and neuroinflammation to exacerbate neuronal injury. Emerging therapeutic strategies show significant potential, including artificial intelligence (AI)-assisted drug design targeting ERS pathways and precision medicine approaches exploring non-pharmacological interventions such as personalized electroacupuncture. Future research should focus on elucidating ERS-related mechanisms and identifying novel therapeutic targets to develop more effective treatments for PD patients, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Xiangrui Kong
- Wushu College, Henan University, Kaifeng 475004, China;
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Jianshe Wei
- Wushu College, Henan University, Kaifeng 475004, China;
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
12
|
Huang D, Li X, Pan M, Liu Y, Qin G, Chen Z, Yu X, Mai K, Zhang W. Comprehensive analysis of the xbp1 gene in Pacific abalone Haliotis discus hannai: Structure, expression, and role in heat stress response. Int J Biol Macromol 2025; 298:139771. [PMID: 39800022 DOI: 10.1016/j.ijbiomac.2025.139771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The present study explores the x-box binding protein 1 (xbp1) gene in Haliotis discus hannai (Pacific abalone), focusing on its structure, expression, and functional role under heat stress. Southern blot revealed two copies of xbp1 in the intestine and mantle, one in the gill and muscle, and no detection in the digestive gland. mRNA expression level of xbp1 was highest in the gill, followed by the mantle, intestine, and muscle, with the digestive gland showing the lowest expression. Actinomycin D treatment demonstrated that xbp1 mRNA stability varied among tissues, with slower degradation in the gill and mantle, while rapid degradation was observed in the digestive gland. Heat stress caused a 20 bp fragment removal from xbp1 mRNA, producing spliced xbp1 (xbp1s), with a conserved inositol-requiring enzyme 1α (IRE1α) cleavage motif (5'- CAGCACCUGCUGAUCCUCUG -3'). Genome walking was used to obtain the promoter sequences of downstream genes regulated by xbp1s. Through sequence conservation analysis, the binding sites of xbp1s on these promoters were identified in Pacific abalone. Yeast one-hybrid (Y1H) assays confirmed xbp1s binding to these sites, and morpholino oligonucleotides (MO) treatment effectively suppressed xbp1s production. Western blot analysis demonstrated that heat stress induced the expression of HDEL-related proteins, while MO injection significantly reduced their expression under both basal and heat stress conditions. Immunofluorescence analysis revealed decreased endoplasmic reticulum (ER) chaperone glucose-regulated protein 78 (GRP78) levels and increased apoptosis in MO-treated abalone under heat stress, suggesting a compromised ER stress response. These findings underscore XBP1's crucial role in regulating ER stress management and apoptotic processes, providing new insights into the functional significance of xbp1 in abalone's response to thermal stress.
Collapse
Affiliation(s)
- Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Mingzhu Pan
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yue Liu
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Gaochan Qin
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zhichu Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojun Yu
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
13
|
Yang N, Wessoly L, Meng Y, Kiefer MF, Chen Y, Vahrenbrink M, Wulff S, Li C, Schreier JW, Steinhoff JS, Oster M, Sommerfeld M, Wowro SJ, Petricek KM, Flores RE, Ziros PG, Sykiotis GP, Wirth EK, Schupp M. The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice. Antioxid Redox Signal 2025; 42:463-479. [PMID: 39761014 DOI: 10.1089/ars.2023.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aims: Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of H2O2 to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis. RetSat is highly expressed in metabolically active organs where it regulates lipid metabolism and the production of reactive oxygen species. Due to the high expression of RetSat in the thyroid gland and its role in peroxide sensitivity, we investigated the regulation and function of RetSat in the thyroid gland in appropriate mouse models. Results: RetSat is strongly expressed in thyrocytes, induced by hypothyroidism, and decreased by iodide overload in mice. Thyrocyte-specific deletion of RetSat increased circulating thyroid-stimulating hormone levels, altered thyroid morphology, and disturbed metabolic homeostasis in a diet- and sex-dependent manner without major effects on the concentrations of circulating TH. Moreover, deletion of RetSat increased TG protein levels but lowered TG iodination upon iodide overload. In cultured thyrocytes, acute RetSat depletion altered the expression of genes involved in TH biosynthesis and the response to endoplasmic reticulum stress. Innovation: This is the first report that specifically dissects the regulation and function of the oxidoreductase RetSat in the thyroid gland. Conclusion: Deletion of RetSat in thyrocytes induces compensatory feedback mechanisms to maintain TH homeostasis in mice. We conclude that RetSat in the thyroid gland is required for TH biosynthesis and secretion and metabolic homeostasis in mice. Antioxid. Redox Signal. 42, 463-479.
Collapse
Affiliation(s)
- Na Yang
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Wessoly
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yueming Meng
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie F Kiefer
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yingfu Chen
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Madita Vahrenbrink
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chen Li
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonah W Schreier
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia S Steinhoff
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Moritz Oster
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuela Sommerfeld
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eva K Wirth
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Lu Y, Zhang Y, Li W, Jiang H, Wang J, Guo X. Tumor Cell-Expressed Herpesvirus Entry Mediator Regulates Proliferation and Adaptive Immunity in Ovarian Cancer. Immun Inflamm Dis 2025; 13:e70175. [PMID: 40105652 PMCID: PMC11921469 DOI: 10.1002/iid3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Ovarian cancer (OvCa) is a prevalent gynecological malignancy with an increasing incidence and high mortality rate. Although the role of the herpesvirus entry mediator (HVEM), encoded by the TNFRSF14 gene, is currently considered pivotal in various types of cancer, the regulation of tumor cell-expressed HVEM in OvCa remains inadequately understood. METHODS Specimens were used to detect HVEM expression via quantitative RT-PCR and flow cytometry. The proliferation of the murine OvCa cell line ID8 was determined using the Cell Counting Kit-8, colony formation, and EdU staining assays. The immune constituents within the ascites fluid and spleen of tumor-bearing mice were analyzed by flow cytometry. Bioinformatics analysis was performed to explore cytokines, chemokines, and signaling pathways regulated by HVEM, and differential expression levels were confirmed via quantitative RT-PCR and western blot analysis. RESULTS Herein, we identified a significant upregulation of HVEM in OvCa tissues compared with that in benign tissues and observed dominant expression of HVEM in CD45⁻EpCAM⁺ subsets in OvCa specimens. Tumor cell-expressed HVEM was found to promote OvCa cell proliferation by partly activating spliced X-box-binding protein 1 (XBP1s)-c-Myc signaling. In mouse models, knockdown of Tnfrsf14 in ID8 cells alleviated OvCa progression and specifically affected the frequency and function of T cells in the ascites fluid and spleen. In addition, tumor cell-expressed HVEM altered chemokine expression (CXCL1/9/10/11 and CCL2/4/5) and STAT signal activation (STAT5 and STAT6) in ID8 cells. CONCLUSION This study investigated the effects of HVEM on OvCa and validated its potential as a therapeutic marker for treating OvCa.
Collapse
Affiliation(s)
- Yun Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yijun Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenxuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Haonan Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiapo Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaoqing Guo
- Department of Gynecological Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
15
|
Minjares M, Thepsuwan P, Zhang K, Wang JM. Unfolded protein responses: Dynamic machinery in wound healing. Pharmacol Ther 2025; 267:108798. [PMID: 39826569 PMCID: PMC11881203 DOI: 10.1016/j.pharmthera.2025.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Skin wound healing is a dynamic process consisting of multiple cellular and molecular events that must be tightly coordinated to repair the injured tissue efficiently. The healing pace is decided by the type of injuries, the depth and size of the wounds, and whether wound infections occur. However, aging, comorbidities, genetic factors, hormones, and nutrition also impact healing outcomes. During wound healing, cells undergo robust processes of synthesizing new proteins and degrading multifunctional proteins. This imposes an increasing burden on the endoplasmic reticulum (ER), causing ER stress. Unfolded protein response (UPR) represents a collection of highly conserved stress signaling pathways originated from the ER to maintain protein homeostasis and modulate cell physiology. UPR is known to be beneficial for tissue healing. However, when excessive ER stress exceeds ER's folding potential, UPR pathways trigger cell apoptosis, interrupting tissue regeneration. Understanding how UPR pathways modulate the skin's response to injuries is critical for new interventions toward the control of acute and chronic wounds. Herein, in this review, we focus on the participation of the canonical and noncanonical UPR pathways during different stages of wound healing, summarize the available evidence demonstrating UPR's unique position in balancing homeostasis and pathophysiology of healing tissues, and highlight the understudied areas where therapeutic opportunities may arise.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | | | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, Wayne State University, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA; Centers for Molecular Medicine and Genetics, Wayne State University, USA; Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
16
|
Lucas D, Sarkar T, Niemeyer CY, Harnoss JC, Schneider M, Strowitzki MJ, Harnoss JM. IRE1 is a promising therapeutic target in pancreatic cancer. Am J Physiol Cell Physiol 2025; 328:C806-C824. [PMID: 39819023 DOI: 10.1152/ajpcell.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Denise Lucas
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tamal Sarkar
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Clara Y Niemeyer
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian C Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
17
|
Dabsan S, Twito G, Biadsy S, Igbaria A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J 2025; 292:976-989. [PMID: 38865586 PMCID: PMC11880973 DOI: 10.1111/febs.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle that controls the intracellular and extracellular environments. The ER is responsible for folding almost one-third of the total protein population in the eukaryotic cell. Disruption of ER-protein folding is associated with numerous human diseases, including metabolic disorders, neurodegenerative diseases, and cancer. During ER perturbations, the cells deploy various mechanisms to increase the ER-folding capacity and reduce ER-protein load by minimizing the number of substrates entering the ER to regain homeostasis. These mechanisms include signaling pathways, degradation mechanisms, and other processes that mediate the reflux of ER content to the cytosol. In this review, we will discuss the recent discoveries of five different ER quality control mechanisms, including the unfolded protein response (UPR), ER-associated-degradation (ERAD), pre-emptive quality control, ER-phagy and ER to cytosol signaling (ERCYS). We will discuss the roles of these processes in decreasing ER-protein load and inter-mechanism crosstalk.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Gal Twito
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Suma Biadsy
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
18
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
19
|
Huber MK, Widener AE, Cuaycal AE, Smurlick D, Butterworth EA, Lenchik NI, Chen J, Beery M, Hiller H, Verney E, Kusmartseva I, Rupnik MS, Campbell-Thompson M, Gerling IC, Atkinson MA, Mathews CE, Phelps EA. Beta cell dysfunction occurs independently of insulitis in type 1 diabetes pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.29.630665. [PMID: 39763971 PMCID: PMC11703223 DOI: 10.1101/2024.12.29.630665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The loss of insulin secretory function associated with type 1 diabetes (T1D) is attributed to the immune-mediated destruction of beta cells. Yet, at onset of T1D, patients often have a significant beta cell mass remaining while T cell infiltration of pancreatic islets is sporadic. Thus, we investigated the hypothesis that the remaining beta cells in T1D are largely dysfunctional using live human pancreas tissue slices prepared from organ donors with recently diagnosed T1D. Beta cells in slices from donors with T1D had significantly diminished Ca2+ mobilization and insulin secretion responses to glucose. Beta cell function was equally impaired in T cell-infiltrated and non-infiltrated islets. Fixed tissue staining and gene expression profiling of laser-capture microdissected islets revealed significant decreases of proteins and genes in the glucose stimulus secretion coupling pathway. From these data, we posit that functional defects occur in the remaining mass of beta cells during human T1D pathogenesis.
Collapse
Affiliation(s)
- Mollie K. Huber
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Adrienne E. Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Alexandra E. Cuaycal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, UF College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Dylan Smurlick
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Elizabeth A. Butterworth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Nataliya I. Lenchik
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Maria Beery
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Helmut Hiller
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Ellen Verney
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea University—European Center Maribor, Maribor, Slovenia
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Ivan C. Gerling
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, UF College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Edward A. Phelps
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
20
|
Jo A, Jung M, Mun JY, Kim YJ, Yoo JY. Membrane-tethered SCOTIN condensates elicit an endoplasmic reticulum stress response by sequestering luminal BiP. Cell Rep 2025; 44:115297. [PMID: 39946235 DOI: 10.1016/j.celrep.2025.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
The endoplasmic reticulum (ER) stress response controls the balance between cellular survival and death. Here, we implicate SCOTIN, an interferon-inducible ER protein, in activating the ER stress response and modulating cell fate through its proline-rich domain (PRD)-mediated cytosolic condensation. SCOTIN overexpression leads to the formation of condensates enveloping multiple layers of the ER, accompanied by morphological signs of organelle stress. Luminal BiP chaperone proteins are sequestered within these SCOTIN condensates, which elicit ER stress responses. The colocalization of luminal BiP with SCOTIN is strictly contingent upon the PRD-mediated condensation of SCOTIN in the cytosolic compartment, closely associated with the ER membrane. The cysteine-rich domain (CRD) of SCOTIN, along with the condensation-prone PRD domain, is required for ER stress induction. We propose that membrane-associated condensation transduces signals across the ER membrane, leading to the induction of BiP assembly and the ER stress response.
Collapse
Affiliation(s)
- Areum Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
21
|
Mayhew WC, Kaipa BR, Li L, Maddineni P, Sundaresan Y, Clark AF, Zode GS. C/EBP Homologous Protein Expression in Retinal Ganglion Cells Induces Neurodegeneration in Mice. Int J Mol Sci 2025; 26:1858. [PMID: 40076484 PMCID: PMC11899906 DOI: 10.3390/ijms26051858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The progressive loss of retinal ganglion cell (RGC) axons leading to irreversible loss of vision is the pathological hallmark of glaucoma. However, the pathological mechanisms of RGC degeneration are not completely understood. Here, we investigated the role of chronic endoplasmic reticulum (ER) stress in glaucomatous neurodegeneration. To evaluate whether chronic ER stress-induced transcriptional factors, activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) are induced in RGCs; we utilized human donor tissue and the microbead occlusion model of glaucoma. Additionally, we performed the intravitreal injection of adeno-associated virus (AAV) 2 to express CHOP selectively in RGCs in C57BL/6 mice and evaluated its effect on RGC function and structure by pattern electroretinogram (PERG) and whole-mount retina staining with the RBPMS antibody. Here, we report that the ATF4-CHOP pathway is activated in the retinas of human glaucoma donor eyes and a mouse model of ocular hypertension. Further, the expression of CHOP in RGCs led to a significant loss of function, as evidenced by reduced PERG. Notably, the expression of CHOP in the retina induced a significant structural loss of RGCs within 15 weeks of injection. Altogether, our studies indicate that the expression of CHOP in RGCs leads to neurodegeneration in mice.
Collapse
Affiliation(s)
- William C. Mayhew
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (W.C.M.); (A.F.C.)
| | - Balasankara Reddy Kaipa
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Linya Li
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Prabhavathi Maddineni
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Yogapriya Sundaresan
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Abbot F. Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (W.C.M.); (A.F.C.)
| | - Gulab S. Zode
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| |
Collapse
|
22
|
Pullen KM, Finethy R, Ko SHB, Reames CJ, Sassetti CM, Lauffenburger DA. Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection. NPJ Syst Biol Appl 2025; 11:19. [PMID: 39955299 PMCID: PMC11830044 DOI: 10.1038/s41540-024-00487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/25/2024] [Indexed: 02/17/2025] Open
Abstract
Numerous studies have identified similarities in blood transcriptomic signatures of tuberculosis (TB) phenotypes between mice and humans, including type 1 interferon production and innate immune cell activation. However, murine infection pathophysiology is distinct from human disease. We hypothesized that this is partly due to differences in the relative importance of biological pathways across species. To address this animal-to-human gap, we applied a systems modeling framework, Translatable Components Regression, to identify the axes of variation in the preclinical data most relevant to human TB disease state. Among the pathways our cross-species model pinpointed as highly predictive of human TB phenotype was the infection-induced unfolded protein response. To validate this mechanism, we confirmed that this cellular stress pathway modulates immune functions in Mycobacterium tuberculosis-infected mouse macrophages. Our work demonstrates how systems-level computational models enhance the value of animal studies for elucidating complex human pathophysiology.
Collapse
Affiliation(s)
- Krista M Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ryan Finethy
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Seung-Hyun B Ko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charlotte J Reames
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Yang Y, Li W, Zhao Y, Sun M, Xing F, Yang J, Zhou Y. GRP78 in Glioma Progression and Therapy: Implications for Targeted Approaches. Biomedicines 2025; 13:382. [PMID: 40002794 PMCID: PMC11852679 DOI: 10.3390/biomedicines13020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Glioma is the most common primary malignant brain tumor, accounting for the majority of brain cancer-related deaths. Considering the limited efficacy of conventional therapies, novel molecular targeted therapies have been developed to improve outcomes and minimize toxicity. Glucose-regulated protein 78 (GRP78), a molecular chaperone primarily localized in the endoplasmic reticulum (ER), has received increasing attention for its role in glioma progression and resistance to conventional therapies. Overexpressed in gliomas, GRP78 supports tumor growth, survival, and therapeutic resistance by maintaining cellular homeostasis and regulating multiple signaling pathways. Its aberrant expression correlates with higher tumor grades and poorer patient prognosis. Beyond its intracellular functions, GRP78's presence on the cell surface and its role in the tumor microenvironment underscore its potential as a therapeutic target. Recent studies have explored innovative strategies to target GRP78, including small molecule inhibitors, monoclonal antibodies, and chimeric antigen receptor (CAR) T cell therapy, showing significant potential in glioma treatment. This review explores the biological characteristics of GRP78, its role in glioma pathophysiology, and the potential of GRP78-targeted therapy as a novel strategy to overcome treatment resistance and improve clinical outcomes. GRP78-targeted therapy, either alone or in combination with conventional treatments, could be a novel and attractive strategy for future glioma treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wen Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Feifei Xing
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiao Yang
- Suzhou Research Center of Medical School, Institute of Clinical Medicine Research, Suzhou Hospital, The Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou 215009, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (W.L.); (Y.Z.)
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
24
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
25
|
Yamazaki A, Omura I, Kamikawa Y, Hide M, Tanaka A, Kaneko M, Imaizumi K, Saito A. Unfolded protein response modulates Tyrosinase levels and melanin production during melanogenesis. J Dermatol Sci 2025; 117:36-44. [PMID: 39818444 DOI: 10.1016/j.jdermsci.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity. OBJECTIVE This study investigates the regulatory mechanisms of melanin production, focusing on ER stress and the ER stress-induced response. METHODS B16 mouse melanoma cells induced to undergo melanogenesis were treated with unfolded protein response (UPR) inhibitors or chemical chaperones, and their effects on melanogenesis were analyzed. RESULTS During melanogenesis in B16 cells stimulated by alpha-melanocyte-stimulating hormone (α-MSH), ER stress and UPR activation occurred, accompanied by increased Tyrosinase protein. Reducing IRE1 and ATF6 branch activity lowered melanin levels, while chemical chaperone treatment restored melanin production and increased Tyrosinase levels. CONCLUSION UPR activation, linked to elevated Tyrosinase levels, influences melanin production during melanogenesis. Modulating UPR can regulate melanin synthesis and provides a potential new approach for treating pigmentation disorders.
Collapse
Affiliation(s)
- Akari Yamazaki
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Kaneko
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
26
|
Qu Z, Zhang L, Yin X, Dai F, Huang W, Zhang Y, Ran D, Zheng S. Male sex determination maintains proteostasis and extends lifespan of daf-18/PTEN deficient C. elegans. EMBO Rep 2025; 26:1084-1113. [PMID: 39820856 PMCID: PMC11850635 DOI: 10.1038/s44319-025-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Although females typically have a survival advantage, those with PTEN functional abnormalities face a higher risk of developing tumors than males. However, the differences in how each sex responds to PTEN dysfunction have rarely been studied. We use Caenorhabditis elegans to investigate how male and hermaphrodite worms respond to dysfunction of the PTEN homolog daf-18. Our study reveals that male worms can counterbalance the negative effects of daf-18 deficiency, resulting in longer adult lifespan. The survival advantage depends on the loss of DAF-18 protein phosphatase activity, while its lipid phosphatase activity is dispensable. The deficiency in DAF-18 protein phosphatase activity leads to the failure of dephosphorylation of the endoplasmic reticulum membrane protein C18E9.2/SEC62, causing increased levels of unfolded and aggregated proteins in hermaphrodites. In contrast, males maintain proteostasis through a UNC-23/NEF-mediated protein ubiquitination and degradation process, providing them with a survival advantage. We find that sex determination is a key factor in regulating the differential expression of unc-23 between sexes in response to daf-18 loss. These findings highlight the unique role of the male sex determination pathway in regulating protein degradation.
Collapse
Affiliation(s)
- Zhi Qu
- The Zhongzhou Laboratory for Integrative Biology, Henan University, 450000, Zhengzhou, Henan, China
- School of Nursing and Health, Henan University, 475004, Kaifeng, China
| | - Lu Zhang
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Xue Yin
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Fangzhou Dai
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Wei Huang
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Yutong Zhang
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Dongyang Ran
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Shanqing Zheng
- The Zhongzhou Laboratory for Integrative Biology, Henan University, 450000, Zhengzhou, Henan, China.
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, 475004, Kaifeng, China.
| |
Collapse
|
27
|
Barton BM, Son F, Verma A, Bal SK, Tang Q, Wang R, Umphred-Wilson K, Khan R, Trichka J, Dong H, Lentucci C, Chen X, Chen Y, Hong Y, Duy C, Elemento O, Melnick AM, Cao J, Chen X, Glimcher LH, Adoro S. IRE1α-XBP1 safeguards hematopoietic stem and progenitor cells by restricting pro-leukemogenic gene programs. Nat Immunol 2025; 26:200-214. [PMID: 39789376 DOI: 10.1038/s41590-024-02063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway. Transcriptome analysis and genome-wide mapping of XBP1 targets in HSPCs identified an '18-gene signature' of XBP1-repressed β-catenin targets that were highly expressed in acute myeloid leukemia (AML) cases with worse prognosis. Accordingly, IRE1α deficiency cooperated with a myeloproliferative oncogene in HSPCs to cause a lethal AML in mice, while genetic induction of XBP1 suppressed the leukemia stem cell program and activity of patient-derived AML cells. Thus, IRE1α-XBP1 signaling safeguards the integrity of the blood system by restricting pro-leukemogenic programs in HSPCs.
Collapse
Affiliation(s)
- Brendan M Barton
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Francheska Son
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Akanksha Verma
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Saswat Kumar Bal
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rehan Khan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Claudia Lentucci
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xi Chen
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Olivier Elemento
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jin Cao
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Callow B, He X, Juriga N, Mangum KD, Joshi A, Xing X, Obi A, Chattopadhyay A, Milewicz DM, O’Riordan MX, Gudjonsson J, Gallagher K, Davis FM. Inhibition of vascular smooth muscle cell PERK/ATF4 ER stress signaling protects against abdominal aortic aneurysms. JCI Insight 2025; 10:e183959. [PMID: 39846252 PMCID: PMC11790032 DOI: 10.1172/jci.insight.183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 01/24/2025] Open
Abstract
Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response. Mechanistically, we reported that aberrant TNF-α activity within the aortic wall induces VSMC ATF4 activation through the PERK endoplasmic reticulum stress response, resulting in progressive apoptosis. In vivo targeted inhibition of the PERK pathway, with VSMC-specific genetic depletion (Eif2ak3fl/fl Myh11-CreERT2) or pharmacological inhibition in the elastase and angiotensin II-induced AAA model preserved VSMC function, decreased elastin fragmentation, attenuated VSMC apoptosis, and markedly reduced AAA expansion. Together, our findings suggest that cell-specific pharmacologic therapy targeting the PERK/eIF2α/ATF4 pathway in VSMCs may be an effective intervention to prevent AAA expansion.
Collapse
MESH Headings
- Activating Transcription Factor 4/metabolism
- Activating Transcription Factor 4/genetics
- eIF-2 Kinase/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/antagonists & inhibitors
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Animals
- Humans
- Mice
- Signal Transduction/drug effects
- Apoptosis/drug effects
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Eukaryotic Initiation Factor-2/metabolism
- Angiotensin II
- Mice, Inbred C57BL
Collapse
Affiliation(s)
| | - Xiaobing He
- Section of Vascular Surgery, Department of Surgery, and
| | | | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery, and
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea Obi
- Section of Vascular Surgery, Department of Surgery, and
| | | | - Dianna M. Milewicz
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary X. O’Riordan
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
29
|
Su S, Liu X, Zhu M, Liu W, Liu J, Yuan Y, Fu F, Rao Z, Liu J, Lu Y, Chen Y. Trehalose Ameliorates Nonalcoholic Fatty Liver Disease by Regulating IRE1α-TFEB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:521-540. [PMID: 39680632 DOI: 10.1021/acs.jafc.4c08669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by hepatic lipid deposition, is one of the most prevalent chronic metabolic disorders globally, and its pharmaceutical treatments are still limited. Excessive lipid accumulation triggers endoplasmic reticulum (ER) stress and autophagy flux dysfunction, which are important mechanisms for NAFLD. Trehalose (Tre), a natural disaccharide, has been identified to reduce hepatic steatosis and glucose intolerance. However, its underlying mechanisms for NAFLD remain unclear. In this study, a high-fat-diet (HFD)-induced mouse NAFLD model and a saturated fatty acid palmitic acid (PA)-stimulated cell model were constructed. The results indicated that Tre supplementation ameliorated hepatocyte lipid deposition in vitro, as well as hepatic steatosis and hyperlipidemia in vivo. Mechanistically, Tre alleviated both autophagy flux dysfunction and endoplasmic reticulum (ER) stress. Under the stimulation of HFD or PA, Tre remarkably increased the expression and nucleic translocation of the lysosomal master protein transcription factor EB (TFEB), while decreasing the accumulation of p62 and also decreasing the ER stress markers (inositol-requiring enzyme 1 (IRE1α), XBP-1, CHOP, and BIP). Similar results were observed in an ER stressor tunicamycin (TM)-induced in vivo and in vitro models. In addition, the transcriptomic analysis of NAFLD patients revealed significant differences in ER stress-related and autophagy-related biomarkers, including TFEB, ATG7, IRE1α, and CHOP. Molecular docking results demonstrated a strong affinity between Tre and both IRE1α and TFEB. Overall, Tre protected hepatocytes from lipotoxicity-related ER stress and autophagy dysfunction, and its regulatory effect on the IRE1α-TFEB signaling pathway may be a critical mechanism. These findings suggest that Tre, as a bioactive substance with significant medicinal potential, holds considerable promise for drug development and clinical application in treating NAFLD.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| | - Xiaohong Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Min Zhu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wen Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingyi Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yujia Yuan
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingping Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yanrong Lu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Younan Chen
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| |
Collapse
|
30
|
Nie Q, Yang J, Zhou X, Li N, Zhang J. The Role of Protein Disulfide Isomerase Inhibitors in Cancer Therapy. ChemMedChem 2025; 20:e202400590. [PMID: 39319369 DOI: 10.1002/cmdc.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Protein disulfide isomerase (PDI) is a member of the mercaptan isomerase family, primarily located in the endoplasmic reticulum (ER). At least 21 PDI family members have been identified. PDI plays a key role in protein folding, correcting misfolded proteins, and catalyzing disulfide bond formation, rearrangement, and breaking. It also acts as a molecular chaperone. Dysregulation of PDI activity is thus linked to diseases such as cancer, infections, immune disorders, thrombosis, neurodegenerative diseases, and metabolic disorders. In particular, elevated intracellular PDI levels can enhance cancer cell proliferation, metastasis, and invasion, making it a potential cancer marker. Cancer cells require extensive protein synthesis, with disulfide bond formation by PDI being a critical producer. Thus, cancer cells have higher PDI levels than normal cells. Targeting PDI can induce ER stress and activate the Unfolded Protein Response (UPR) pathway, leading to cancer cell apoptosis. This review discusses the structure and function of PDI, PDI inhibitors in cancer therapy, and the limitations of current inhibitors, proposing especially future directions for developing new PDI inhibitors.
Collapse
Affiliation(s)
- Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junwei Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Na Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
31
|
Bassiouni W, Mahmud Z, Simmen T, Seubert JM, Schulz R. MMP-2 inhibition attenuates ER stress-mediated cell death during myocardial ischemia-reperfusion injury by preserving IRE1α. J Mol Cell Cardiol 2025; 198:74-88. [PMID: 39622369 DOI: 10.1016/j.yjmcc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Endoplasmic reticulum (ER) stress is one of the major events accompanying myocardial ischemia-reperfusion (IR) injury, as hypoxia and oxidative stress disrupt protein folding in the ER. As a result, the unfolded protein response (UPR) is activated through different sensors including inositol-requiring enzyme 1α (IRE1α) and protein kinase R-like ER kinase (PERK). Failure of the UPR to reduce ER stress induces cellular dysfunction. Matrix metalloproteinase-2 (MMP-2) is a ubiquitous protease that is activated intracellularly in response to oxidative stress and partially localizes near the ER. However, its role in ER homeostasis is unknown. We hypothesized that MMP-2 is involved in the regulation of the UPR and ER stress-mediated apoptosis during IR injury. Isolated mouse hearts subjected to IR injury showed impaired recovery of post-ischemic contractile function compared to aerobically perfused controls. Ventricular extracts from IR hearts had higher levels of glucose-regulated protein-78 and protein disulfide isomerase and lower levels of IRE1α and PERK compared to aerobic controls. MMP-2 inhibitors, ARP-100 or ONO-4817, given 10 min before ischemia, improved cardiac post-ischemic recovery and preserved IRE1α level in hearts subjected to 30 min ischemia/40 min reperfusion. IR also increased the levels of CHOP and mitochondrial Bax and caspase-3 and -9 activities, indicating induction of apoptosis, all of which were attenuated by MMP-2 inhibitors, regardless of the reperfusion time. Immunoprecipitation showed an association between MMP-2 and IRE1α in aerobic and IR hearts. During myocardial IR injury MMP-2 may impair the UPR and induce apoptosis by proteolysis of IRE1α. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in part by preserving IRE1α and preventing the progression to myocardial cell death.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
32
|
Zhao C, Luo J, Zhang Y, Yu Y. Temperature-dependent lifespan extension is achieved in miR-80-deleted Caenorhabditis elegans by NLP-45 to modulate endoplasmic reticulum unfolded protein responses. Aging Cell 2025; 24:e14345. [PMID: 39323014 PMCID: PMC11709106 DOI: 10.1111/acel.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
MicroRNA plays a crucial role in post-transcriptional gene regulation and has recently emerged as a factor linked to aging, but the underlying regulatory mechanisms remain incompletely understood. In this study, we observed lifespan-extending effects in miR-80-deficient Caenorhabditis elegans at 20°C but not 25°C. At 20°C, miR-80 deletion leads to NLP-45 upregulation, which positively correlates to increased abu transcripts and extended lifespan. Supportively, we identified miR-80 binding regions in the 5' and 3' UTR of nlp-45. As the temperature rises to 25°C, wildtype increases miR-80 levels, but removal of miR-80 is accompanied by decreased nlp-45 expression, suggesting intervention from other temperature-sensitive mechanisms. These findings support the concept that microRNAs and neuropeptide-like proteins can form molecular regulatory networks involving downstream molecules to regulate lifespan, and such regulatory effects vary on environmental conditions. This study unveils the role of an axis of miR-80/NLP-45/UPRER components in regulating longevity, offering new insights on strategies of aging attenuation and health span prolongation.
Collapse
Affiliation(s)
- Chunlin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Jintao Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Yuqiang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
33
|
Zhao XY, Xu DE, Wu ML, Liu JC, Shi ZL, Ma QH. Regulation and function of endoplasmic reticulum autophagy in neurodegenerative diseases. Neural Regen Res 2025; 20:6-20. [PMID: 38767472 PMCID: PMC11246128 DOI: 10.4103/nrr.nrr-d-23-00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 05/22/2024] Open
Abstract
The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - De-En Xu
- Department of Neurology, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
34
|
Congur I, Mingrone G, Guan K. Targeting endoplasmic reticulum stress as a potential therapeutic strategy for diabetic cardiomyopathy. Metabolism 2025; 162:156062. [PMID: 39515414 DOI: 10.1016/j.metabol.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Endoplasmic reticulum (ER) is an essential organelle involved in vesicular transport, calcium handling, protein synthesis and folding, and lipid biosynthesis and metabolism. ER stress occurs when ER homeostasis is disrupted by the accumulation of unfolded and/or misfolded proteins in the ER lumen. Adaptive pathways of the unfolded protein response (UPR) are activated to maintain ER homeostasis. In obesity and type 2 diabetes mellitus (T2DM), accumulating data indicate that persistent ER stress due to maladaptive UPR interacts with insulin/leptin signaling, which may be the potential and central mechanistic link between obesity-/T2DM-induced metabolic dysregulation (chronic hyperglycemia, dyslipidemia and lipotoxicity in cardiomyocytes), insulin/leptin resistance and the development of diabetic cardiomyopathy (DiabCM). Meanwhile, these pathological conditions further exacerbate ER stress. However, their interrelationships and the underlying molecular mechanisms are not fully understood. A deeper understanding of ER stress-mediated pathways in DiabCM is needed to develop novel therapeutic strategies. The aim of this review is to discuss the crosstalk between ER stress and leptin/insulin signaling and their involvement in the development of DiabCM focusing on mitochondria-associated ER membranes and chronic inflammation. We also present the current direction of drug development and important considerations for translational research into targeting ER stress for the treatment of DiabCM.
Collapse
Affiliation(s)
- Irem Congur
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom; Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany.
| |
Collapse
|
35
|
Liu PC, Huang SY, Lin KI, Hsieh SL, Leu CM. Suppression of NF-κB and downstream XBP1 by DcR3 contributes to a decrease in antibody secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:72-84. [PMID: 40073262 DOI: 10.1093/jimmun/vkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Decoy receptor 3 (DcR3), a soluble receptor in the tumor necrosis factor receptor superfamily, regulates the functions of monocytes, macrophages, dendritic cells, and T cells. Previous studies have demonstrated that DcR3 suppresses B cell proliferation in vitro and ameliorates autoimmune diseases in animal models; however, whether and how DcR3 regulates antibody production is unclear. Using a DcR3 transgenic mouse model, we found that DcR3 impaired the T cell-dependent antigen-stimulated antibody response. The number of Ag-specific antibody-secreting cells was transiently reduced, but the concentration of specific antibodies continued to decrease in the DcR3 transgenic mice, implying a direct suppression of antibody production by DcR3. In vitro assays showed that the DcR3-Fc fusion protein attenuated T cell-dependent induced antibody production and reduced the expression of secretory Igh and Xbp1. We found that nuclear factor κB (NF-κB) activity was essential for the expression of Xbp1 in activated B cells. DcR3-Fc attenuated anti-CD40-induced NF-κB activity and Xbp1 promoter activity. Furthermore, DcR3-Fc decreased the expression of Xbp1 in Blimp1+ antibody-secreting cells. Restoration of spliced XBP1 (X-box binding protein 1) in DcR3-treated B cells increased the secretory Ighg1 transcript levels, suggesting that reducing XBP1 is one of the mechanisms by which DcR3 regulates antibody production both in vitro and in vivo. Collectively, these results indicate that in addition to blocking proliferation, DcR3 impairs NF-κB activation, subsequently decreasing the expression of Xbp1, eventually leading to a reduction in antibody secretion.
Collapse
Affiliation(s)
- Po-Chun Liu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Szu-Ying Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
36
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
37
|
Klein BY, Ben-David I, Gofrit ON, Greenblatt CL. Repurposing peripheral immunocytes of Bacillus Calmette Guerin-vaccinated melanoma patients to reveal preventive Alzheimer's disease mechanisms, possibly via the unfolded protein response. J Alzheimers Dis Rep 2025; 9:25424823241309664. [PMID: 40034523 PMCID: PMC11864245 DOI: 10.1177/25424823241309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/05/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) dysfunctional unfolded protein response (UPR) is revealed by amyloid-β aggregates. Normally, UPR reacts to endoplasmic reticulum stress by resolving misfolded/aggregated proteins, and UPR failure induces brain-cell apoptosis consistent with AD pathology. Peripheral blood mononuclear cells (PBMC) and immunocyte brain infiltrates are involved in AD pathogenesis, whose risk is lowered by the Bacillus Calmette Guerin (BCG) vaccine. Hypothetically, BCG prevents AD caused by UPR-driven apoptosis in PBMC brain infiltrates, corrected by BCG-vaccinated PBMC brain infiltrates. Objective To reveal whether BCG shifts the UPR towards cell survival. Method: PBMC proteins from 6 individuals were compared by immuno-electrophoresis before and after BCG hypervaccination. Cryopreserved PBMC provided an opportunity to analyze the BCG impact on the UPR, although their donor destiny to develop AD was unknown. UPR signaling responsive to BCG was recorded to examine if BCG can influence UPR signaling and thereby explain the previously demonstrated AD prevention by BCG. Results UPR signal levels were scored according to positive versus negative cell survival odds by the BCG impact on a dozen UPR signals. The balance between positive and negative scores of individuals emphasizes the impact of the BCG vaccine on the UPR. The antiapoptotic UPR signals under BCG show opposite trends to UPR signals in AD brains, reported by the literature. In conclusion, 3/6 individuals had superior PBMC survival chances under BCG. Conclusions These results suggest that the UPR is part of the mechanism responsible for reducing the risk of AD, as previously shown among BCG-treated bladder cancer patients.
Collapse
Affiliation(s)
- Benjamin Y Klein
- Department of Microbiology and Molecular Genetics Hebrew University Medical School, Hadassah University Medical School, Ein-Karem, Jerusalem, Israel
| | - Inna Ben-David
- Sharett Institute of Oncology, Hadassah University Medical School,
Ein-Karem, Jerusalem, Israel
| | - Ofer N Gofrit
- Department of Urology, Hadassah University Medical School, Ein-Karem, Jerusalem, Israel
| | - Charles L Greenblatt
- Department of Microbiology and Molecular Genetics Hebrew University Medical School, Hadassah University Medical School, Ein-Karem, Jerusalem, Israel
| |
Collapse
|
38
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
39
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
40
|
Coakley AJ, Hruby AJ, Wang J, Bong A, Nair T, Ramos CM, Alcala A, Hicks D, Averbukh M, Dutta N, Moaddeli D, Siebrand C, Rogers MDLR, Sahay A, Curran SP, Mullen PJ, Benayoun BA, Garcia G, Higuchi-Sanabria R. Distinct mechanisms of non-autonomous UPR ER mediated by GABAergic, glutamatergic, and octopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595950. [PMID: 38854121 PMCID: PMC11160609 DOI: 10.1101/2024.05.27.595950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The capacity to deal with stress declines during the aging process, and preservation of cellular stress responses is critical to healthy aging. The unfolded protein response of the endoplasmic reticulum (UPRER) is one such conserved mechanism, which is critical for the maintenance of several major functions of the ER during stress, including protein folding and lipid metabolism. Hyperactivation of the UPRER by overexpression of the major transcription factor, xbp-1s, solely in neurons drives lifespan extension as neurons send a neurotransmitter-based signal to other tissue to activate UPRER in a non-autonomous fashion. Previous work identified serotonergic, dopaminergic, and tyraminergic neurons in this signaling paradigm. To further expand our understanding of the neural circuitry that underlies the non-autonomous signaling of ER stress, we activated UPRER solely in glutamatergic, octopaminergic, and GABAergic neurons in C. elegans and paired whole-body transcriptomic analysis with functional assays. We found that UPRER-induced signals from glutamatergic neurons increased expression of canonical protein homeostasis pathways and octopaminergic neurons promoted pathogen response pathways; while minor, statistically significant changes were observed in lipid metabolism-related genes with GABAergic UPRER activation. These findings provide further evidence for the distinct role neuronal subtypes play in driving the diverse response to ER stress.
Collapse
Affiliation(s)
- Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Adam J. Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Cynthia Siebrand
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
- Current: Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Mattias de los Rios Rogers
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, United States
| | - Arushi Sahay
- Department of Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Peter J. Mullen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | | | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
41
|
Zhou L, Zhuo H, Jin J, Pu A, Liu Q, Song J, Tong X, Tang H, Dai F. Temperature perception by ER UPR promotes preventive innate immunity and longevity. Cell Rep 2024; 43:115071. [PMID: 39675004 DOI: 10.1016/j.celrep.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Microbial infectivity increases with rising environmental temperature, heightening the risk of infection to host organisms. The host's basal immunity is activated accordingly to mitigate upcoming pathogenic threats; still, how animals sense temperature elevation to adjust their preventive immune response remains elusive. This study reports that high temperature enhances innate immunity differently from pathogen infection. Unlike pathogen invasion requiring the mitochondrial unfolded protein response (UPR), high temperature engages the endoplasmic reticulum (ER) UPR to trigger the innate immune response. Furthermore, chronic activation of the XBP-1 UPR branch represses nucleolar ribosome biogenesis, a highly energy-consuming process, leading to lipid accumulation. The subsequent increase in oleic acid promotes the activation of the PMK-1 immune pathway. Additionally, ribosome biogenesis was identified as a regulator of longevity, wherein its impact is dependent on lipid metabolism and innate immunity. Collectively, our findings reveal the crucial role of ER-nucleolus crosstalk in shaping preventive immune responses and lifespan regulation.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haoyu Zhuo
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Jin
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Anrui Pu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Liu
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
42
|
Chowdhury D, Jang CE, Lajoie P, Renaud SJ. A stress paradox: the dual role of the unfolded protein response in the placenta. Front Endocrinol (Lausanne) 2024; 15:1525189. [PMID: 39758342 PMCID: PMC11695235 DOI: 10.3389/fendo.2024.1525189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
The placenta is a temporary organ that forms during pregnancy and is essential for fetal development and maternal health. As an endocrine organ, proper placental function requires continual production, folding, and transport of proteins and lipids. Central to these processes is the endoplasmic reticulum (ER), a dynamic organelle responsible for maintaining cellular protein and lipid synthesis and processing. ER stress occurs when there is an accumulation of unfolded or misfolded proteins, which triggers the activation of cellular pathways collectively called the unfolded protein response. Unfolded protein response pathways act to alleviate the misfolded protein burden and restore ER homeostasis, or if unresolved, initiate cell death. While prolonged ER stress has been linked to deficient placental function and adverse pregnancy outcomes, basal activation of unfolded protein response pathways is required for placental development and function. This review explores the importance of ER homeostasis in placental development and function, examining how disruptions in ER stress responses may contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Chloe E. Jang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
43
|
Fu Z, Wang W, Gao Y. Understanding the impact of ER stress on lung physiology. Front Cell Dev Biol 2024; 12:1466997. [PMID: 39744015 PMCID: PMC11688383 DOI: 10.3389/fcell.2024.1466997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Human lungs consist of a distinctive array of cell types, which are subjected to persistent challenges from chemical, mechanical, biological, immunological, and xenobiotic stress throughout life. The disruption of endoplasmic reticulum (ER) homeostatic function, triggered by various factors, can induce ER stress. To overcome the elevated ER stress, an adaptive mechanism known as the unfolded protein response (UPR) is activated in cells. However, persistent ER stress and maladaptive UPR can lead to defects in proteostasis at the cellular level and are typical features of the lung aging. The aging lung and associated lung diseases exhibit signs of ER stress-related disruption in cellular homeostasis. Dysfunction resulting from ER stress and maladaptive UPR can compromise various cellular and molecular processes associated with aging. Hence, comprehending the mechanisms of ER stress and UPR components implicated in aging and associated lung diseases could enable to develop appropriate therapeutic strategies for the vulnerable population.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
44
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
45
|
Xu L, Peng F, Luo Q, Ding Y, Yuan F, Zheng L, He W, Zhang SS, Fu X, Liu J, Mutlu AS, Wang S, Nehring RB, Li X, Tang Q, Li C, Lv X, Dobrolecki LE, Zhang W, Han D, Zhao N, Jaehnig E, Wang J, Wu W, Graham DA, Li Y, Chen R, Peng W, Chen Y, Catic A, Zhang Z, Zhang B, Mustoe AM, Koong AC, Miles G, Lewis MT, Wang MC, Rosenberg SM, O'Malley BW, Westbrook TF, Xu H, Zhang XHF, Osborne CK, Li JB, Ellis MJ, Rimawi MF, Rosen JM, Chen X. IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer. Cell 2024; 187:7248-7266.e34. [PMID: 39419025 PMCID: PMC11645245 DOI: 10.1016/j.cell.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53-/- TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.
Collapse
Affiliation(s)
- Longyong Xu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Luo
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Ding
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liting Zheng
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Xin Fu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Jin Liu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Ayse Sena Mutlu
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ralf Bernd Nehring
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingyu Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Catherine Li
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Jaehnig
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingyi Wang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiche Wu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis A Graham
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhibin Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Miles
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Susan M Rosenberg
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Kent Osborne
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Ellis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F Rimawi
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
47
|
Wang H, Nikain C, Fortounas KI, Amengual J, Tufanli O, La Forest M, Yu Y, Wang MC, Watts R, Lehner R, Qiu Y, Cai M, Kurland IJ, Goldberg IJ, Rajan S, Hussain MM, Brodsky JL, Fisher EA. FITM2 deficiency results in ER lipid accumulation, ER stress, and reduced apolipoprotein B lipidation and VLDL triglyceride secretion in vitro and in mouse liver. Mol Metab 2024; 90:102048. [PMID: 39426520 PMCID: PMC11574801 DOI: 10.1016/j.molmet.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVE Triglycerides (TGs) associate with apolipoprotein B100 (apoB100) to form very low density lipoproteins (VLDLs) in the liver. The repertoire of factors that facilitate this association is incompletely understood. FITM2, an integral endoplasmic reticulum (ER) protein, was originally discovered as a factor participating in cytosolic lipid droplet (LD) biogenesis in tissues that do not form VLDL. We hypothesized that in the liver, in addition to promoting cytosolic LD formation, FITM2 would also transfer TG from its site of synthesis in the ER membrane to nascent VLDL particles within the ER lumen. METHODS Experiments were conducted using a rat hepatic cell line (McArdle-RH7777, or McA cells), an established model of mammalian lipoprotein metabolism, and mice. FITM2 expression was reduced using siRNA in cells and by liver specific cre-recombinase mediated deletion of the Fitm2 gene in mice. Effects of FITM2 deficiency on VLDL assembly and secretion in vitro and in vivo were measured by multiple methods, including density gradient ultracentrifugation, chromatography, mass spectrometry, stimulated Raman scattering (SRS) microscopy, sub-cellular fractionation, immunoprecipitation, immunofluorescence, and electron microscopy. MAIN FINDINGS 1) FITM2-deficient hepatic cells in vitro and in vivo secrete TG-depleted VLDL particles, but the number of particles is unchanged compared to controls; 2) FITM2 deficiency in mice on a high fat diet (HFD) results in decreased plasma TG levels. The number of apoB100-containing lipoproteins remains similar, but shift from VLDL to low density lipoprotein (LDL) density; 3) Both in vitro and in vivo, when TG synthesis is stimulated and FITM2 is deficient, TG accumulates in the ER, and despite its availability this pool is unable to fully lipidate apoB100 particles; 4) FITM2 deficiency disrupts ER morphology and results in ER stress. CONCLUSION The results suggest that FITM2 contributes to VLDL lipidation, especially when newly synthesized hepatic TG is in abundance. In addition to its fundamental importance in VLDL assembly, the results also suggest that under dysmetabolic conditions, FITM2 may be an important factor in the partitioning of TG between cytosolic LDs and VLDL particles.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Cyrus Nikain
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center and Weill Graduate School of Medical Sciences, Cornell University, NY, USA
| | - Konstantinos I Fortounas
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Jaume Amengual
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA; Department of Food Sciences and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA
| | - Ozlem Tufanli
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Maxwell La Forest
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA
| | - Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Russell Watts
- Department of Pediatrics and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Department of Pediatrics and Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Min Cai
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, NY, USA
| | - Ira J Goldberg
- Department of Medicine (Endocrinology), NYU Grossman School of Medicine, NY, USA
| | - Sujith Rajan
- Department of Foundations of Medicine and Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine and Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, Mineola, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences and the Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology), the Cardiovascular Research Center, and the Marc and Ruti Bell Program in Vascular Biology, NYU Grossman School of Medicine, NY, USA.
| |
Collapse
|
48
|
Lucas-Rodríguez P, Brokate-Llanos AM, Hernandez-Curiel JM, Murdoch PDS, Garzón A, Carrión A, Muñoz MJ. Monosaccharides improve symptoms of an animal model for type III galactosemia, through the activation of the insulin pathway. Biomed Pharmacother 2024; 181:117677. [PMID: 39549362 DOI: 10.1016/j.biopha.2024.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Type III galactosemia is characterized by the inability to metabolize galactose due to deficiency of the UDP-galactose-4-epimerase (GALE) gene, which catalyzes the interconversion of UDP-Galactose and UDP-Glucose. Additionally, GALE interconverts UDP-N-Acetylgalactosamine and UDP-N-Acetylglucosamine. These four sugars are needed for glycosylation of biomolecules. GALE deletion is considered lethal, and all described patients carry hypomorphic mutations. Symptoms are diverse and can range from mild to severe, without effective treatment. We have previously generated a Caenorhabditis elegans model for type III galactosemia, which carries a hypomorphic mutation in the GALE gene homologue. In this model, we observed that the symptoms varied depending on the diet. The aim of this work is to identify which dietary metabolites might alleviate the symptoms of type III galactosemia. To identify the molecules responsible, we used a C. elegans model of type III galactosemia and a mouse model to test whether the respond to the treatment is conserved in mammals and thus could be a putative intervention in patients. We found that high levels of monosaccharides in the diet is responsible for the beneficial effect in the C. elegans model. This intervention generates an increase of gale-1 expression through activation of the insulin pathway which may explain the reduction of the symptoms in animals carrying hypomorphic mutations. The increase of the GALE gene expression after monosaccharides treatment is also conserved in mammals and if maintained in humans, monosaccharide treatment combined with monitorization of GALE expression could be included in the management of patients with type III galactosemia.
Collapse
Affiliation(s)
- Patricia Lucas-Rodríguez
- Centro Andaluz de Biología del Desarrollo (CABD) - Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla 41013, Spain
| | - Ana María Brokate-Llanos
- Centro Andaluz de Biología del Desarrollo (CABD) - Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla 41013, Spain
| | - José Manuel Hernandez-Curiel
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide (UPO), Sevilla 41013, Spain
| | - Piedad Del Socorro Murdoch
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla 41092, Spain
| | - Andrés Garzón
- Centro Andaluz de Biología del Desarrollo (CABD) - Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla 41013, Spain
| | - Angel Carrión
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide (UPO), Sevilla 41013, Spain
| | - Manuel J Muñoz
- Centro Andaluz de Biología del Desarrollo (CABD) - Universidad Pablo de Olavide (UPO), Departamento de Biología Molecular e Ingeniería Bioquímica, UPO/CSIC/JA, Sevilla 41013, Spain.
| |
Collapse
|
49
|
Garcia-Toscano L, Currey HN, Hincks JC, Stair JG, Lehrbach NJ, Liachko NF. Decreased Hsp90 activity protects against TDP-43 neurotoxicity in a C. elegans model of amyotrophic lateral sclerosis. PLoS Genet 2024; 20:e1011518. [PMID: 39724103 PMCID: PMC11709271 DOI: 10.1371/journal.pgen.1011518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/08/2025] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell. The heat shock responsive chaperone Hsp90 has been shown to interact with TDP-43 and stabilize its normal conformation; however, it is not known whether this interaction contributes to neurotoxicity in vivo. Using a C. elegans model of fALS mutant TDP-43 proteinopathy, we find that loss of function of HSP-90 protects against TDP-43 neurotoxicity and subsequent neurodegeneration in adult animals. This protection is accompanied by a decrease in both total and phosphorylated TDP-43 protein. We also find that hsp-90 mutation or inhibition upregulates key stress responsive heat shock pathway gene expression, including hsp-70 and hsp-16.1, and we demonstrate that normal levels of hsp-16.1 are required for hsp-90 mutation effects on TDP-43. We also observe that the neuroprotective effect due to HSP-90 dysfunction does not involve direct regulation of proteasome activity in C. elegans. Our data demonstrate for the first time that Hsp90 chaperone activity contributes to adverse outcomes in TDP-43 proteinopathies in vivo using a whole animal model of ALS.
Collapse
Affiliation(s)
- Laura Garcia-Toscano
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Heather N. Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Joshua C. Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Nicolas J. Lehrbach
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
50
|
Jadhav R, Mach RL, Mach-Aigner AR. Protein secretion and associated stress in industrially employed filamentous fungi. Appl Microbiol Biotechnol 2024; 108:92. [PMID: 38204136 PMCID: PMC10781871 DOI: 10.1007/s00253-023-12985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Application of filamentous fungi for the production of commercial enzymes such as amylase, cellulase, or xylanase is on the rise due to the increasing demand to degrade several complex carbohydrates as raw material for biotechnological processes. Also, protein production by fungi for food and feed gains importance. In any case, the protein production involves both cellular synthesis and secretion outside of the cell. Unfortunately, the secretion of proteins or enzymes can be hampered due to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) as a result of too high synthesis of enzymes or (heterologous) protein expression. To cope with this ER stress, the cell generates a response known as unfolded protein response (UPR). Even though this mechanism should re-establish the protein homeostasis equivalent to a cell under non-stress conditions, the enzyme expression might still suffer from repression under secretory stress (RESS). Among eukaryotes, Saccharomyces cerevisiae is the only fungus, which is studied quite extensively to unravel the UPR pathway. Several homologs of the proteins involved in this signal transduction cascade are also found in filamentous fungi. Since RESS seems to be absent in S. cerevisiae and was only reported in Trichoderma reesei in the presence of folding and glycosylation inhibitors such as dithiothreitol and tunicamycin, more in-depth study about this mechanism, specifically in filamentous fungi, is the need of the hour. Hence, this review article gives an overview on both, protein secretion and associated stress responses in fungi. KEY POINTS: • Enzymes produced by filamentous fungi are crucial in industrial processes • UPR mechanism is conserved among many fungi, but mediated by different proteins • RESS is not fully understood or studied in industrially relevant filamentous fungi.
Collapse
Affiliation(s)
- Reshma Jadhav
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|