1
|
Liu G, Wu C, Yin L, Hou L, Yin B, Qiang B, Shu P, Peng X. MiR-125/let-7 cluster orchestrates neuronal cell fate determination and cortical layer formation during neurogenesis. Biochem Biophys Res Commun 2025; 766:151815. [PMID: 40300336 DOI: 10.1016/j.bbrc.2025.151815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
MicroRNA (miRNA) clusters, defined as genomically co-localized miRNAs regulated by a shared promoter and processed from polycistronic transcripts, exhibit synergistic regulatory roles in developmental processes. Among these, the evolutionarily conserved miR-125/let-7 cluster has been identified as a key regulator of neural stem cell (NSC) dynamics. In this study, we used Dicer conditional knockout (cKO) mice to confirm the essential role of miRNAs in mouse neocortical layer formation. The miR-125/let-7 cluster is co-expressed in mice and shows significant enrichment in upper-layer (UL) neurons. Using in utero electroporation (IUE), we found that miR-125b or let-7b overexpression partially rescues cortical phenotypes in Dicer-deficient mice, restoring proper UL organization but failing to rescue laminar fate defects in deep-layer cortical neurons. Our findings demonstrate that the miR-125b/let-7b exhibits a specialized function in regulating UL neuronal fate specification in mice and promotes the differentiation of NSC. Notably, miR-125b and let-7b exhibit both overlapping and distinct regulatory functions. Collectively, these results underscore the cooperative mechanisms by which miRNA clusters orchestrate cortical development.
Collapse
Affiliation(s)
- Gaoao Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chao Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Luyao Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Luo J, Tang Q, Lin T, Liu J, Wu Z, Zhang X, Zhang X, Jiang J, Wang Y. An optimized method for directed differentiation of hypothalamic neural stem cells in a 3D culture system. Sci Rep 2025; 15:18542. [PMID: 40425660 PMCID: PMC12117107 DOI: 10.1038/s41598-025-02847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Hypothalamic neurogenesis is a complex process that plays a crucial role in neuroendocrine homeostasis, making in vivo studies of the hypothalamus particularly challenging. In this study, we present an optimized protocol for isolating and culturing hypothalamic neural stem cells (htNSCs) from neonatal (P1) mice, followed by their directed differentiation in a three-dimensional (3D) Matrigel environment. We successfully established a primary culture system that supports the stability, growth, and distinct characteristics of htNSCs. Notably, we demonstrate that htNSCs can differentiate into GnRH-like neurons within the Matrigel-based 3D culture system. These differentiated neurons exhibit typical neuronal morphology and functional characteristics. Our findings highlight the potential of neonatal htNSCs as an invaluable model for studying hypothalamic function and neurogenesis. Furthermore, this method provides a novel platform for basic research and may serve as important implications for further studying the pathological mechanism of neuroendocrine disorders in hypothalamus.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiaoyan Tang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Tanjing Lin
- School of Pharmacy, Guangdong Medical University, Guangdong, China
| | - Jiabang Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiheng Wu
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xintao Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaohua Zhang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Junhai Jiang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Nakagawa T, Hata K, Izumi Y, Nakashima H, Katada S, Matsuda T, Bamba T, Nakashima K. E3 ubiquitin ligase RMND5A maintains the self-renewal state of human neural stem/precursor cells by regulating Wnt and mTOR signaling pathways. FEBS Lett 2025. [PMID: 40377017 DOI: 10.1002/1873-3468.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/18/2025]
Abstract
During cortical development, neural stem/precursor cells (NS/PCs) sequentially produce neurons, astrocytes, and oligodendrocytes. Before producing these cells, human (h) NS/PCs undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. Here, we performed a gene knockout screen using the CRISPR/Cas9 system to search for genes involved in hNS/PC self-renewal. We identified RMND5A, encoding an E3 ubiquitin ligase, among the candidate genes. We further demonstrated that knockdown of RMND5A decreased proliferation and promoted neuronal differentiation of hNS/PCs through the activation and suppression of the Wnt and mTOR signaling pathways, respectively. Taken together, our findings suggest that RMND5A participates in the maintenance of hNS/PC self-renewal by modulating the Wnt and mTOR signaling pathways. Impact statement During cortical development, human neural stem/precursor cells (hNS/PCs) undergo prolonged self-renewal to form a larger cortex than other mammals, although the mechanisms are mostly unknown. We identified RMND5A, an E3 ubiquitin ligase, as essential for maintaining self-renewal of hNS/PCs, providing valuable insights into the evolutionary expansion of the human brain.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Neural Regeneration and Brain Repair, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Qu J, Lu Z, Cheng Y, Deng S, Shi W, Liu Q, Ling Y. miR-484 in Hippocampal Astrocytes of Aged and Young Rats Targets CSF-1 to Regulate Neural Progenitor/Stem Cell Proliferation and Differentiation Into Neurons. CNS Neurosci Ther 2025; 31:e70415. [PMID: 40304412 PMCID: PMC12042212 DOI: 10.1111/cns.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/23/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
AIM Aging-related cognitive decline is closely linked to the reduced function of neural progenitor/stem cells (NPSCs), which can be influenced by the neural microenvironment, particularly astrocytes. The aim of this study was to explore how astrocytes affect NPSCs and cognitive function during aging. METHODS H2O2-treated astrocytes were used to mimic the aging phenotype of astrocytes. Proteomic analysis identified altered protein expression, revealing high levels of colony-stimulating factor-1 (CSF-1) in the supernatant of H2O2-treated astrocytes. Primary NPSCs were isolated and cultured in vitro, then stimulated with varying concentrations of recombinant CSF-1 protein to assess its effects on NPSC proliferation, differentiation, and apoptosis. Transcriptome sequencing identified miR-484 related to CSF-1 in H2O2-treated astrocytes, and a dual-luciferase assay verified the interaction between miR-484 and CSF-1. The impact of miR-484 overexpression on NPSC function and cognitive restoration was evaluated both in vitro and in vivo (in 20-month-old rats). RESULTS High concentration of CSF-1 inhibited the NPSC proliferation and differentiation into neurons while inducing apoptosis. Overexpression of miR-484 downregulated CSF-1 expression by binding to its 3' untranslated region, thereby promoting the NPSC proliferation and differentiation into neurons. In 20-month-old rats, miR-484 overexpression improved spatial learning and memory in the Morris water maze, increased NPSC proliferation, and reduced apoptosis. CONCLUSION Our findings reveal that miR-484 regulates CSF-1 to influence NPSC proliferation, differentiation into neurons, and apoptosis, consequently improving cognitive function in 20-month-old rats. This study provides a foundation for developing therapeutic strategies targeting age-related hippocampal cognitive impairments.
Collapse
Affiliation(s)
- Jiahua Qu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Zhichao Lu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yongbo Cheng
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Song Deng
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Wei Shi
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Qianqian Liu
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
| | - Yuejuan Ling
- Research Center of Clinical Medicine, Co‐Innovation Department of NeurosurgeryAffiliated Hospital of Nantong University, Medical School of Nantong UniversityNantongChina
- Institute of Pain Medicine and Special Environmental MedicineNantong UniversityNantongChina
| |
Collapse
|
5
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
6
|
Eguchi R, Higashida Y, Oouchi M, Yamaguchi S, Otsuguro KI. Epidermal growth factor increases cystathionine β-synthase expression in cultured embryonic spinal cord cells. In Vitro Cell Dev Biol Anim 2025; 61:416-424. [PMID: 40374833 DOI: 10.1007/s11626-025-01043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/23/2025] [Indexed: 05/18/2025]
Abstract
In the central nervous system (CNS), cystathionine β-synthase (CBS) is localized in astrocytes. CBS degrades cytotoxic homocysteine and produces cytoprotective hydrogen sulfide; thus the proper expression of CBS is required to maintain CNS functions. CBS expression is very low at the late embryonic stage and increases after birth. This study examined CBS expression in cultured spinal cord cells derived from fetal rats. Treatment of spinal cord cells with epidermal growth factor (EGF) promoted the proliferation and maturation of astrocytes during development. EGF (30 ng/ml, 4 days) increased CBS protein expression and the number of CBS-expressing astrocytes in the culture. A high cell density also increased CBS expression, and EGF was able to increase CBS expression when cellular proliferation was inhibited. The EGF receptor was predominately expressed in neural stem cells rather than astrocytes. These results suggest that EGF acts on neural stem cells, leading to increase in CBS-expressing astrocytes. This effect may reflect the maturation process of astrocytes during embryonic development.
Collapse
Affiliation(s)
- Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Yuya Higashida
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Mizuki Oouchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan.
| |
Collapse
|
7
|
Hu Y, Yang X, Lipshitz HD. The TRIM-NHL RNA-binding protein MEI-P26 modulates the size of Drosophila Type I neuroblast lineages. Genetics 2025; 229:iyaf015. [PMID: 39854267 PMCID: PMC11912871 DOI: 10.1093/genetics/iyaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
The Drosophila TRIM-NHL RNA-binding protein (RBP), MEI-P26, has previously been shown to suppress tumor formation in the germline. Here we show that, in the Drosophila larval central brain, cell-type-specific expression of MEI-P26 plays a vital role in regulating neural development. MEI-P26 and another TRIM-NHL RBP, Brain tumor (BRAT), have distinct expression patterns in Type I neuroblast (NB) lineages: While both proteins are expressed in NBs, BRAT is expressed in ganglion mother cells (GMCs) but not neurons, whereas MEI-P26 is expressed in neurons but not GMCs. Knockdown of MEI-P26 leads to re-expression of the stem cell marker Deadpan (DPN) and over-production of neurons. In contrast, ectopically expressed MEI-P26 reduces NB lineage size by repressing division of GMCs, resulting in reduced neuron production. We show that MEI-P26 positively regulates expression of Prospero (PROS), a transcription factor that is known to repress cell cycle-related genes. Ectopic expression of PROS phenocopies ectopic expression of MEI-P26. In both cases, Cyclin B (CYCB) expression is downregulated. Importantly, knockdown of PROS in the context of ectopic MEI-P26 rescues the neural lineage. Based on these results, we conclude that MEI-P26 functions to prevent over-production of neurons by promoting production of PROS which, in turn, downregulates cell division.
Collapse
Affiliation(s)
- Yichao Hu
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Institute of Genetics, Zhejiang University International School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Walter E, Angst G, Bollinger J, Truong L, Ware E, Wohleb ES, Fan Y, Wang C. Atg5 in microglia regulates sex-specific effects on postnatal neurogenesis in Alzheimer's disease. NPJ AGING 2025; 11:18. [PMID: 40091054 PMCID: PMC11911432 DOI: 10.1038/s41514-025-00209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Female Alzheimer's disease (AD) patients display greater cognitive deficits and worse AD pathology as compared to male AD patients. In this study, we found that conditional knockout (cKO) of Atg5 in female microglia failed to obtain disease-associated microglia (DAM) gene signatures in familiar AD mouse model (5xFAD). Next, we analyzed the maintenance and neurogenesis of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ) from 5xFAD mice with Atg5 cKO. Our data indicated that Atg5 cKO reduced the NSC number in hippocampus of female but not male 5xFAD mice. However, in the SVZ, Atg5 cKO only impaired NSCs in male 5xFAD mice. Interestingly, female 5xFAD;Fip200 cKO mice and 5xFAD;Atg14 cKO mice did not show NSC defects. These autophagy genes cKO 5xFAD mice exhibited a higher neurogenesis activity in their SVZ. Together, our data indicate a sex-specific role for microglial Atg5 in postnatal neurogenesis in AD mice.
Collapse
Affiliation(s)
- Ellen Walter
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Gabrielle Angst
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and College of Medicine at The Ohio State University, Columbus, OH, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, USA
| | - Justin Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Linh Truong
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Elena Ware
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College Medicine, Cincinnati, OH, USA.
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and College of Medicine at The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Ahmad R, Luka M, Journe A, Gallet S, Hegron A, Do Cruzeiro M, Millan MJ, Delagrange P, Masri B, Dam J, Prevot V, Jockers R. Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G 12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes. J Pineal Res 2025; 77:e70041. [PMID: 40091563 PMCID: PMC11911906 DOI: 10.1111/jpi.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G12/13 protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G12/13 protein-RhoA pathway.
Collapse
Affiliation(s)
- Raise Ahmad
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Marine Luka
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | | | - Sarah Gallet
- University Lille, Inserm, CHU Lille, Lille Neuroscience and CognitionLilleFrance
| | - Alan Hegron
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | | | | | | | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Julie Dam
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Lille Neuroscience and CognitionLilleFrance
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| |
Collapse
|
10
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
11
|
Alsiraey N, Dewald HD. Nitroxidative stress in human neural progenitor cells: In situ measurement of nitric oxide/peroxynitrite imbalance using metalloporphyrin nanosensors. J Inorg Biochem 2025; 263:112785. [PMID: 39603147 DOI: 10.1016/j.jinorgbio.2024.112785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Nitric oxide (NO) is an essential inorganic signaling molecule produced by constitutive NO synthase (cNOS) in the neurological system. Under pathological conditions, NO rapidly reacts with superoxide (O2•-) to generate peroxynitrite (ONOO¯). Elevated ONOO¯ concentrations induce nitroxidative stress, potentially contributing to numerous pathological processes as observed in neurodegenerative diseases including Alzheimer's disease (AD). Metalloporphyrin nanosensors, (200-300 nm diameter), were applied to quantify the NO/ONOO¯ balance produced by a single human neural progenitor cell (hNPC), in situ. These nanosensors, positioned in proximity of 4-5 ± 1 μm from the hNPCs membrane, enabled real-time measurement of NO and ONOO¯ concentrations following calcium ionophore (CaI) stimulation. The ratio of NO to ONOO¯ concentration ([NO]/[ONOO¯]) was established for the purpose of quantifying nitroxidative stress levels. Normal hNPCs produced a maximum of 107 ± 1 nmol/L of NO and 451 ± 7 nmol/L of ONOO¯, yielding a [NO]/[ONOO¯] ratio of 0.25 ± 0.005. In contrast, the model of the dysfunctional hNPCs, for long-term (48 h) amyloid-beta 42 (Aβ42) exposure significantly altered NO/ONOO¯ production. The NO level decreased to 14 ± 0.1 nmol/L, while ONOO¯ increased to 843 ± 0.8 nmol/L, resulting in a 94 % reduction of the [NO]/[ONOO¯] ratio to 0.016 ± 0.0001. The [NO]/[ONOO¯] ratio is determined by this work as a possible biomarker of nNOS efficiency and hNPC dysfunction, with implications for neurodegenerative disorders such as AD. Promising applications in the early medical diagnosis of neurological illnesses, electrochemical metalloporphyrin nanosensors demonstrate efficacy in real-time nitroxidative stress monitoring.
Collapse
Affiliation(s)
- Nouf Alsiraey
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
12
|
Aran S, Golmohammadi MG, Sagha M, Ghaedi K. Aging restricts the initial neural patterning potential of developing neural stem and progenitor cells in the adult brain. Front Aging Neurosci 2025; 16:1498308. [PMID: 39916688 PMCID: PMC11798963 DOI: 10.3389/fnagi.2024.1498308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Neurosphere culture is widely used to expand neural stem and progenitor cells (NSPCs) of the nervous system. Understanding the identity of NSPCs, such as the principals involved in spatiotemporal patterning, will improve our chances of using NSPCs for neurodevelopmental and brain repair studies with the ability to direct NSPCs toward distinct fates. Some reports indicate that aging can affect the nature of NSPCs over time. Therefore, in this study, we aimed to investigate how the initial neural patterning of developing NSPCs changes over time. Methods In this research, evidence of changing neural patterning potential in the nervous system over time was presented. Thus, the embryonic and adult-derived NSPCs for cardinal characteristics were analyzed, and then, the expression of candidate genes related to neural patterning using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was evaluated at various stages of embryonic (E14 and E18), neonatal, and adult brains. Finally, it was assessed the effect of cell attachment and passage on the initial neural patterning of NSPCs. Results The analysis of gene expression revealed that although temporal patterning is maintained in vitro, it shows a decrease over time. Embryonic NSPCs exhibited the highest potential for retaining regional identity than neonatal and adult NSPCs. Additionally, it was found that culture conditions, such as cell passaging and attachment status, could affect the initial neural patterning potential, resulting in a decrease over time. Conclusion Our study demonstrates that patterning potential decreases over time and aging imposes restrictions on preliminary neural patterning. These results emphasize the significance of patterning in the nervous system and the close relationship between patterning and fate determination, raising questions about the application of aged NSPCs in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saeideh Aran
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ghasem Golmohammadi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
13
|
Jiménez S, Senovilla-Ganzo R, Gallego-Flores T, Pérez-Pascual E, Ordeñana-Manso A, Rayo-Morales R, De Pittà M, García-Moreno F. Experimental Neurogenesis in the Embryos of the Gecko Paroedura picta. Methods Mol Biol 2025; 2899:127-145. [PMID: 40067621 DOI: 10.1007/978-1-0716-4386-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
This research introduces innovative tools for studying embryonic neurogenesis in the gecko Paroedura picta. Traditional research methods have been adapted for the gecko's unique biology, including variations of birthdating techniques and the implementation of EdU for tracking neuron generation. We also employ hybridization chain reaction (HCR) to detect specific mRNAs without the need for species-specific antibodies, providing a powerful and flexible tool for studying gene expression patterns in the gecko embryonic brain. However, HCR can also be combined with immunohistochemistry to visualize both RNA and protein distribution. Our work proves the importance of this innovative toolset to understand the evolutionary aspects of nervous system development and the gecko as a valuable model for understanding the ancestral stem amniote.
Collapse
Affiliation(s)
- Sara Jiménez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Tatiana Gallego-Flores
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Erise Pérez-Pascual
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Ordeñana-Manso
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raquel Rayo-Morales
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maurizio De Pittà
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- Basque Center for Applied Mathematics, Bilbao, Spain
- Computational Neuroscience Hub, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain.
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain.
- IKERBASQUE Foundation, Bilbao, Spain.
| |
Collapse
|
14
|
Nie S, Zhang W, Jin X, Li X, Sun S, Zhao Y, Jia Q, Li L, Liu Y, Liu D, Gao Q. Genetic Screening of Haploid Neural Stem Cells Reveals that Nfkbia and Atp2b4 are Key Regulators of Oxidative Stress in Neural Precursors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309292. [PMID: 38666459 PMCID: PMC11304298 DOI: 10.1002/advs.202309292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/31/2024] [Indexed: 08/09/2024]
Abstract
Neurological diseases are expected to become the leading cause of death in the next decade. Although little is known about it, the interaction between oxidative stress and inflammation is harmful to the nervous system. To find an advanced tool for neural genetics, mouse haploid neural stem cells (haNSCs) from the somite of chimeric mouse embryos at E8.5 is established. The haNSCs present a haploid neural progenitor identity for long-term culture, promising to robustly differentiate into neural subtypes and being able to form cerebral organoids efficiently. Thereafter, haNSC mutants via a high-throughput approach and screened targets of oxidative stress is generated using the specific mutant library. Deletion of Nfkbia (the top hit among the insertion mutants) reduces damage from reactive oxygen species (ROS) in NSCs exposed to H2O2. Transcriptome analysis revealed that Atp2b4 is upregulated significantly in Nfkbia-null NSCs and is probably responsible for the observed resistance. Additionally, overexpression of Atp2b4 itself can increase the survival of NSCs in the presence of H2O2, suggesting that Atp2b4 is closely involved in this resistance. Herein, a powerful haploid system is presented to study functional genetics in neural lineages, shedding light on the screening of critical genes and drugs for neurological diseases.
Collapse
Affiliation(s)
- Shaochen Nie
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of stomatologyTianjin Medical University School of StomatologyTianjin300070China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xin Jin
- School of MedicineNankai UniversityTianjin300071China
| | - Xiaoyan Li
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of stomatologyTianjin Medical University School of StomatologyTianjin300070China
| | - Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Qingshen Jia
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yan Liu
- Department of ObstetricsTianjin First Central HospitalNankai UniversityTianjin300192China
| | - Dayong Liu
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University School of stomatologyTianjin Medical University School of StomatologyTianjin300070China
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Animal and Plant ResistanceCollege of Life SciencesTianjin Normal UniversityTianjin300387China
| |
Collapse
|
15
|
Soares R, Lourenço DM, Mota IF, Sebastião AM, Xapelli S, Morais VA. Lineage-specific changes in mitochondrial properties during neural stem cell differentiation. Life Sci Alliance 2024; 7:e202302473. [PMID: 38664022 PMCID: PMC11045976 DOI: 10.26508/lsa.202302473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.
Collapse
Affiliation(s)
- Rita Soares
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Lourenço
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isa F Mota
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa A Morais
- Instituto de Medicina Molecular | João Lobo Antunes (iMM|JLA), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Alsiraey N, Malinski T, Dewald HD. Using Metalloporphyrin Nanosensors for In Situ Monitoring and Measurement of Nitric Oxide and Peroxynitrite in a Single Human Neural Progenitor Cell. ACS Sens 2024; 9:3037-3047. [PMID: 38773722 DOI: 10.1021/acssensors.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Nitric oxide (NO) is an inorganic signaling molecule that plays a crucial role in the regulation of numerous physiological functions. An oxidation product of the cytoprotective NO is cytotoxic peroxynitrite (ONOO-). In biological systems, the concentrations of NO and ONOO- are typically transient, ranging from nanomolar to micromolar, and these increases are normally followed by a swift return to their basal levels due to their short life spans. To understand the vital physiological role of NO and ONOO- in vitro and in vivo, sensitive and selective methods are necessary for direct and continuous NO and ONOO- measurements in real time. Because electrochemical methods can be adjusted for selectivity, sensitivity, and biocompatibility in demanding biological environments, they are suitable for real-time monitoring of NO and ONOO- release. Metalloporphyrin nanosensors, described here, have been designed to measure the concentration of NO and ONOO- produced by a single human neural progenitor cell (hNPC) in real time. These nanosensors (200-300 nm in diameter) can be positioned accurately in the proximity of 4-5 ± 1 μm from an hNPC membrane. The response time of the sensors is better than a millisecond, while detection limits for NO and ONOO- are 1 × 10-9 and 3 × 10-9 mol/L, respectively, with a linear concentration response of up to about 1 μM. The application of these metalloporphyrin nanosensors for the efficient measurement of the concentrations of NO and ONOO- in hNPCs is demonstrated, providing an opportunity to observe in real time the molecular changes of the two signaling molecules in situ.
Collapse
Affiliation(s)
- Nouf Alsiraey
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Tadeusz Malinski
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
17
|
Chuma S, Kiyosue K, Akiyama T, Kinoshita M, Shimazaki Y, Uchiyama S, Sotoma S, Okabe K, Harada Y. Implication of thermal signaling in neuronal differentiation revealed by manipulation and measurement of intracellular temperature. Nat Commun 2024; 15:3473. [PMID: 38724563 PMCID: PMC11082174 DOI: 10.1038/s41467-024-47542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.
Collapse
Affiliation(s)
- Shunsuke Chuma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuyuki Kiyosue
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Taishu Akiyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
| | - Masaki Kinoshita
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan
| | - Yukiho Shimazaki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shingo Sotoma
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- JST, PRESTO, 4-8-1 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yoshie Harada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, Kyoto, 606-8501, Japan.
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Campbell CE, Webber K, Bard JE, Chaves LD, Osinski JM, Gronostajski RM. Nuclear Factor I A and Nuclear Factor I B Are Jointly Required for Mouse Postnatal Neural Stem Cell Self-Renewal. Stem Cells Dev 2024; 33:153-167. [PMID: 38366751 DOI: 10.1089/scd.2022.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
Mouse postnatal neural stem cells (pNSCs) can be expanded in vitro in the presence of epidermal growth factor and fibroblast growth factor 2 and upon removal of these factors cease proliferation and generate neurons, astrocytes, and oligodendrocytes. The genetic requirements for self-renewal and lineage-commitment of pNSCs are incompletely understood. In this study, we show that the transcription factors NFIA and NFIB, previously shown individually, to be essential for the normal commitment of pNSCs to the astrocytic lineage in vivo, are jointly required for normal self-renewal of pNSCs in vitro and in vivo. Using conditional knockout alleles of Nfia and Nfib, we show that the simultaneous loss of these two genes under self-renewal conditions in vitro reduces the expression of the proliferation markers PCNA and Ki67, eliminates clonogenicity of the cells, reduces the number of cells in S phase, and induces aberrant differentiation primarily into the neuroblast lineage. This phenotype requires the loss of both genes and is not seen upon loss of Nfia or Nfib alone, nor with combined loss of Nfia and Nfix or Nfib and Nfix. These data demonstrate a unique combined requirement for both Nfia and Nfib for pNSC self-renewal.
Collapse
Affiliation(s)
- Christine E Campbell
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Genetics, Genomics & Bioinformatics Graduate Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Karstin Webber
- Genetics, Genomics & Bioinformatics Graduate Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Stem Cells in Regenerative Medicine Training Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan E Bard
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Genetics, Genomics & Bioinformatics Graduate Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Lee D Chaves
- Department of Internal Medicine, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jason M Osinski
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Richard M Gronostajski
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Genetics, Genomics & Bioinformatics Graduate Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Stem Cells in Regenerative Medicine Training Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
19
|
Zhang C, Ge L, Xie H, Liu X, Xun C, Chen Y, Chen H, Lu M, Chen P. Retinoic acid induced specific changes in the phosphoproteome of C17.2 neural stem cells. J Cell Mol Med 2024; 28:e18205. [PMID: 38506089 PMCID: PMC10951872 DOI: 10.1111/jcmm.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/β-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Cheng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouPR China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated HospitalHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Huali Xie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Xiaoqian Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Yan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Haiyan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| |
Collapse
|
20
|
Saldivia N, Salazar K, Cifuentes M, Espinoza F, Harrison FE, Nualart F. Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages. Glia 2024; 72:708-727. [PMID: 38180226 DOI: 10.1002/glia.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-β through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.
Collapse
Affiliation(s)
- Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, Universidad de Málaga, IBIMA, Málaga, Spain
| | - Francisca Espinoza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy, CMA BIO BIO, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
21
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
22
|
Dai W, Liu Z, Yan M, Nian X, Hong F, Zhou Z, Wang C, Fu X, Li X, Jiang M, Zhu Y, Huang Q, Lu X, Hou L, Yan N, Wang Q, Hu J, Mo W, Zhang X, Zhang L. Nucleoporin Seh1 controls murine neocortical development via transcriptional repression of p21 in neural stem cells. Dev Cell 2024; 59:482-495.e6. [PMID: 38272027 DOI: 10.1016/j.devcel.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/21/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.
Collapse
Affiliation(s)
- Wenxiu Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhixiong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Minbiao Yan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ximing Nian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhihao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Chaomeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xuewen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Mengyun Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yanqin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoyun Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Ning Yan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wei Mo
- Sir Run Run Shaw Hospital, Department of Immunology, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Hangzhou 311121, China
| | - Xueqin Zhang
- Department of Gynaecology and Obstetrics, Women and Children's Hospital Affiliated to Xiamen University, Xiamen University, Xiamen 361102, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Gynaecology and Obstetrics, Women and Children's Hospital Affiliated to Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
23
|
Hutchings C, Nuriel Y, Lazar D, Kohl A, Muir E, Genin O, Cinnamon Y, Benyamini H, Nevo Y, Sela-Donenfeld D. Hindbrain boundaries as niches of neural progenitor and stem cells regulated by the extracellular matrix proteoglycan chondroitin sulphate. Development 2024; 151:dev201934. [PMID: 38251863 PMCID: PMC10911165 DOI: 10.1242/dev.201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.
Collapse
Affiliation(s)
- Carmel Hutchings
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yarden Nuriel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Daniel Lazar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Olga Genin
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Yuval Cinnamon
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon 7505101, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
24
|
Liao C, Guan Y, Zheng J, Wang X, Wang M, Zhu Z, Peng Q, Wang HH, Li M. Development of synthetic modulator enabling long-term propagation and neurogenesis of human embryonic stem cell-derived neural progenitor cells. Biol Res 2023; 56:59. [PMID: 37951961 PMCID: PMC10638775 DOI: 10.1186/s40659-023-00471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis. This DNA-based FGFR-agonist effectively stimulated FGFR1 phosphorylation and activated the downstream ERK signaling pathway in human embryonic stem cell (HESC)-derived NPCs. We replaced the basic fibroblast growth factor (bFGF) in the culture medium with our DNA-based FGFR-agonist to artificially modulate FGFR signaling in NPCs. Utilizing a combination of cell experiments and bioinformatics analyses, we showed that our FGFR-agonist could enhance NPC proliferation, direct migration, and promote neurosphere formation, thus mimicking the functions of bFGF. Notably, transcriptomic analysis indicated that the FGFR-agonist could specifically influence the transcriptional program associated with stemness while maintaining the neuronal differentiation program, closely resembling the effects of bFGF. Furthermore, our culture conditions allowed for the successful propagation of NPCs through over 50 passages while retaining their ability to efficiently differentiate into neurons. Collectively, our approach offers a highly effective method for expanding NPCs, thereby providing new avenues for disease-in-dish research and drug screening aimed at combating neural degeneration.
Collapse
Affiliation(s)
- Ceheng Liao
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China
| | - Jihui Zheng
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Xue Wang
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Meixia Wang
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China
| | - Qiyuan Peng
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China.
| | - Meng Li
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China.
| |
Collapse
|
25
|
Feng Y, Gao C, Xie D, Liu L, Chen B, Liu S, Yang H, Gao Z, Wilson DA, Tu Y, Peng F. Directed Neural Stem Cells Differentiation via Signal Communication with Ni-Zn Micromotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301736. [PMID: 37402480 DOI: 10.1002/adma.202301736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 07/02/2023] [Indexed: 07/06/2023]
Abstract
Neural stem cells (NSCs), with the capability of self-renewal, differentiation, and environment modulation, are considered promising for stroke, brain injury therapy, and neuron regeneration. Activation of endogenous NSCs, is attracting increasing research enthusiasm, which avoids immune rejection and ethical issues of exogenous cell transplantation. Yet, how to induce directed growth and differentiation in situ remain a major challenge. In this study, a pure water-driven Ni-Zn micromotor via a self-established electric-chemical field is proposed. The micromotors can be magnetically guided and precisely approach target NSCs. Through the electric-chemical field, bioelectrical signal exchange and communication with endogenous NSCs are allowed, thus allowing for regulated proliferation and directed neuron differentiation in vivo. Therefore, the Ni-Zn micromotor provides a platform for controlling cell fate via a self-established electrochemical field and targeted activation of endogenous NSCs.
Collapse
Affiliation(s)
- Ye Feng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chao Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dazhi Xie
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haihong Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhan Gao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
26
|
Zhao Y, Zhong Y, Chen W, Chang S, Cao Q, Wang Y, Yang L. Ocular and neural genes jointly regulate the visuospatial working memory in ADHD children. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:14. [PMID: 37658396 PMCID: PMC10472596 DOI: 10.1186/s12993-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder (ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) in ADHD using wide-ranging genetic analyses. METHODS The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immediate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), obsessive compulsive disorders (OCD), and substance use disorder (SUD). RESULTS Analyses at the single-marker level did not yield significant results (5E-08). However, the potential signals with P values less than E-05 and their mapped genes suggested the regulation of VSWM involved both ocular and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as significantly associated with DD scores (P = 1.96E-06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E-04, Padj = 0.025), and dopamine transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048). CONCLUSIONS Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yuanxin Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Wei Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), 51 Huayuan Bei Road, Beijing, 100191, China.
| |
Collapse
|
27
|
Fan Y, Goh ELK, Chan JKY. Neural Cells for Neurodegenerative Diseases in Clinical Trials. Stem Cells Transl Med 2023; 12:510-526. [PMID: 37487111 PMCID: PMC10427968 DOI: 10.1093/stcltm/szad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
28
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
29
|
Azizollahi H, Aarabi A, Kazemi K, Wallois F. Assessing the effects of head modelling errors and measurement noise on EEG source localization accuracy in preterm newborns: A single-subject study. Eur J Neurosci 2023; 58:2746-2765. [PMID: 37448164 DOI: 10.1111/ejn.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 07/15/2023]
Abstract
The accuracy of electroencephalogram (EEG) source localization is compromised because of head modelling errors. In this study, we investigated the effect of inaccuracy in the conductivity of head tissues and head model structural deficiencies on the accuracy of EEG source analysis in premature neonates. A series of EEG forward and inverse simulations was performed by introducing structural deficiencies into the reference head models to generate test models, which were then used to investigate head modelling errors caused by cerebrospinal fluid (CSF) exclusion, lack of grey matter (GM)-white matter (WM) distinction, fontanel exclusion and inaccuracy in skull conductivity. The modelling errors were computed between forward and inverse solutions obtained using the reference and test models generated for each deficiency. Our results showed that the exclusion of CSF from the head model had a strong widespread effect on the accuracy of the EEG source localization with position errors lower than 4.17 mm. The GM and WM distinction also caused strong localization errors (up to 3.5 mm). The exclusion of fontanels from the head model also strongly affected the accuracy of the EEG source localization for sources located beneath the fontanels with a maximum localization error of 4.37 mm. Similarly, inaccuracies in the skull conductivity caused errors in EEG forward and inverse modelling in sources beneath cranial bones. Our results indicate that the accuracy of EEG source imaging in premature neonates can be largely improved by using head models, which include not only the brain, skull and scalp but also the CSF, GM, WM and fontanels.
Collapse
Affiliation(s)
- Hamed Azizollahi
- GRAMFC, Inserm U1105, University Research Center (CURS), CHU AMIENS-SITE SUD, Amiens, France
| | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (LNFP UR 4559), University Research Center, University Hospital, Amiens, France
- Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| | - Kamran Kazemi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Fabrice Wallois
- GRAMFC, Inserm U1105, University Research Center (CURS), CHU AMIENS-SITE SUD, Amiens, France
- EFSN Pediatric (Pediatric Nervous System Functional Investigation Unit), Department of Pediatrics, CHU AMIENS-SITE SUD, Amiens, France
| |
Collapse
|
30
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
32
|
Li X, Zou S, Tu X, Hao S, Jiang T, Chen JG. Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice. Neurosci Bull 2023; 39:1131-1145. [PMID: 36646976 PMCID: PMC10313612 DOI: 10.1007/s12264-022-01004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Shimin Zou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Shishuai Hao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China.
| |
Collapse
|
33
|
Sritawan N, Sirichoat A, Aranarochana A, Pannangrong W, Wigmore P, Welbat JU. Protective effect of metformin on methotrexate induced reduction of rat hippocampal neural stem cells and neurogenesis. Biomed Pharmacother 2023; 162:114613. [PMID: 37001179 DOI: 10.1016/j.biopha.2023.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Adult neurogenesis is a process in which the adult neural stem cells produce newborn neurons that are implicated in terms of learning and memory. Methotrexate (MTX) is a chemotherapeutic drug, which has a negative effect on memory and hippocampal neurogenesis in animal models. Metformin is an antidiabetic drug with strong antioxidant capacities. We found that metformin ameliorates MTX induced deteriorations of memory and hippocampal neurogenesis in adult rats. In this study, we focus to investigate neural stem cells, biomarkers of apoptosis, and the protein for synaptogenesis, which involves in the transcription factors of the hippocampus in rats that received metformin and MTX. Male Sprague-Dawley rats were composed of control, MTX, metformin, and MTX+metformin groups. MTX (75 mg/kg, i.v.) was given on days 7 and 14, whereas metformin (200 mg/kg, i.p.) was given for 14 days. Hippocampal neural stem cells in the subgranular zone (SGZ) were quantified using immunofluorescence staining of Sox2 and nestin. Protein expression including PSD95, Casepase-3, Bax, Bcl-2, CREB, and pCREB were determined using Western blotting. MTX-treated rats displayed decreases in Sox2 and nestin-positive cells in the SGZ. Increases in Caspase-3 and Bax levels and decreases in PSD95, Bcl-2, CREB, and pCREB protein expressions in the hippocampus were also detected. However, these negative impacts of MTX were ameliorated by co-treatment with metformin. These consequences postulate that metformin has a potential to increase neural stem cells, synaptic plasticity, decreased apoptotic activities, and transcription factors, resulting in upregulation of hippocampal neurogenesis in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
34
|
Li L, Li X, Han R, Wu M, Ma Y, Chen Y, Zhang H, Li Y. Therapeutic Potential of Chinese Medicine for Endogenous Neurogenesis: A Promising Candidate for Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:ph16050706. [PMID: 37242489 DOI: 10.3390/ph16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Strokes are a leading cause of morbidity and mortality in adults worldwide. Extensive preclinical studies have shown that neural-stem-cell-based treatments have great therapeutic potential for stroke. Several studies have confirmed that the effective components of traditional Chinese medicine can protect and maintain the survival, proliferation, and differentiation of endogenous neural stem cells through different targets and mechanisms. Therefore, the use of Chinese medicines to activate and promote endogenous nerve regeneration and repair is a potential treatment option for stroke patients. Here, we summarize the current knowledge regarding neural stem cell strategies for ischemic strokes and the potential effects of these Chinese medicines on neuronal regeneration.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meirong Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaolei Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhao Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
35
|
De Vincentiis S, Baggiani M, Merighi F, Cappello V, Lopane J, Di Caprio M, Costa M, Mainardi M, Onorati M, Raffa V. Low Forces Push the Maturation of Neural Precursors into Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205871. [PMID: 37058009 DOI: 10.1002/smll.202205871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Mechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields. In the present study, human neural stem cells (NSCs) are subjected to a standard differentiation protocol, in the presence or absence of nano-pulling. Under mechanical stimulation, an increase in the length of the neural processes which showed an enrichment in microtubules, endoplasmic reticulum, and mitochondria is found. A stimulation lasting up to 82 days induces a strong remodeling at the level of synapse density and a re-organization of the neuronal network, halving the time required for the maturation of neural precursors into neurons. The MNP-loaded NSCs are then transplanted into mouse spinal cord organotypic slices, demonstrating that nano-pulling stimulates the elongation of the NSC processes and modulates their orientation even in an ex vivo model. Thus, it is shown that active mechanical stimuli can guide the outgrowth of NSCs transplanted into the spinal cord tissue. The findings suggest that mechanical forces play an important role in neuronal maturation which could be applied in regenerative medicine.
Collapse
Affiliation(s)
| | - Matteo Baggiani
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | | | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Pontedera, 56025, Italy
| | - Jakub Lopane
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Mariachiara Di Caprio
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Marco Mainardi
- Neuroscience Institute, National Research Council, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Marco Onorati
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
36
|
A novel ex vivo assay to define charge-balanced electrical stimulation parameters for neural precursor cell activation in vivo. Brain Res 2023; 1804:148263. [PMID: 36702184 DOI: 10.1016/j.brainres.2023.148263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
Endogenous neural stem cells and their progeny (together termed neural precursor cells (NPCs)) are promising candidates to facilitate neuroregeneration. Charge-balanced biphasic monopolar stimulation (BPMP) is a clinically relevant approach that can activate NPCs both in vitro and in vivo. Herein, we established a novel ex vivo stimulation system to optimize the efficacy of BPMP electric field (EF) application in activating endogenous NPCs. Using the ex vivo system, we discerned that cathodal amplitude of 200 μA resulted in the greatest NPC pool expansion and enhanced cathodal migration. Application of the same stimulation parameters in vivo resulted in the same NPC activation in the mouse brain. The design and implementation of the novel ex vivo model bridges the gap between in vitro and in vivo systems, enabling a moderate throughput stimulation system to explore and optimize EF parameters that can be applied to clinically relevant brain injury/disease models.
Collapse
|
37
|
Seo Y, Han S, Song BW, Chang JW, Na YC, Chang WS. Endogenous Neural Stem Cell Activation after Low-Intensity Focused Ultrasound-Induced Blood-Brain Barrier Modulation. Int J Mol Sci 2023; 24:5712. [PMID: 36982785 PMCID: PMC10056062 DOI: 10.3390/ijms24065712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Endogenous neural stem cells (eNSCs) in the adult brain, which have the potential to self-renew and differentiate into functional, tissue-appropriate cell types, have raised new expectations for neurological disease therapy. Low-intensity focused ultrasound (LIFUS)-induced blood-brain barrier modulation has been reported to promote neurogenesis. Although these studies have reported improved behavioral performance and enhanced expression of brain biomarkers after LIFUS, indicating increased neurogenesis, the precise mechanism remains unclear. In this study, we evaluated eNSC activation as a mechanism for neurogenesis after LIFUS-induced blood-brain barrier modulation. We evaluated the specific eNSC markers, Sox-2 and nestin, to confirm the activation of eNSCs. We also performed 3'-deoxy-3'[18F] fluoro-L-thymidine positron emission tomography ([18F] FLT-PET) to evaluate the activation of eNSCs. The expression of Sox-2 and nestin was significantly upregulated 1 week after LIFUS. After 1 week, the upregulated expression decreased sequentially; after 4 weeks, the upregulated expression returned to that of the control group. [18F] FLT-PET images also showed higher stem cell activity after 1 week. The results of this study indicated that LIFUS could activate eNSCs and induce adult neurogenesis. These results show that LIFUS may be useful as an effective treatment for patients with neurological damage or neurological disorders in clinical settings.
Collapse
Affiliation(s)
- Younghee Seo
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangheon Han
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byeong-Wook Song
- Department for Medical Science, College of Medicine, Catholic Kwandong University, Gangwon-do, Gangneung City 25601, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Seo-gu, Incheon Metropolitan City 22711, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery and Brain Research Institute, Yonsei University College of Medicine, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
38
|
Ermiş E, Althaus A, Blatti M, Uysal E, Leiser D, Norouzi S, Riggenbach E, Hemmatazad H, Ahmadli U, Wagner F. Therapy Resistance of Glioblastoma in Relation to the Subventricular Zone: What Is the Role of Radiotherapy? Cancers (Basel) 2023; 15:cancers15061677. [PMID: 36980563 PMCID: PMC10046464 DOI: 10.3390/cancers15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Glioblastoma is a highly heterogeneous primary malignant brain tumor with marked inter-/intratumoral diversity and a poor prognosis. It may contain a population of neural stem cells (NSC) and glioblastoma stem cells that have the capacity for migration, self-renewal and differentiation. While both may contribute to resistance to therapy, NSCs may also play a role in brain tissue repair. The subventricular zone (SVZ) is the main reservoir of NSCs. This study investigated the impact of bilateral SVZ radiation doses on patient outcomes. We included 147 patients. SVZs were delineated and the dose administered was extracted from dose–volume histograms. Tumors were classified based on their spatial relationship to the SVZ. The dose and outcome correlations were analyzed using the Kaplan–Meier and Cox proportional hazards regression methods. Median progression-free survival (PFS) was 7 months (range: 4–11 months) and median overall survival (OS) was 14 months (range: 9–23 months). Patients with an ipsilateral SVZ who received ≥50 Gy showed significantly better PFS (8 versus 6 months; p < 0.001) and OS (16 versus 11 months; p < 0.001). Furthermore, lower doses (<32 Gy) to the contralateral SVZ were associated with improved PFS (8 versus 6 months; p = 0.030) and OS (15 versus 11 months; p = 0.001). Targeting the potential tumorigenic cells in the ipsilateral SVZ while sparing contralateral NSCs correlated with an improved outcome. Further studies should address the optimization of dose distribution with modern radiotherapy techniques for the areas surrounding infiltrated and healthy SVZs.
Collapse
Affiliation(s)
- Ekin Ermiş
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| | - Alexander Althaus
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Marcela Blatti
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Emre Uysal
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Shokoufe Norouzi
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Elena Riggenbach
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Uzeyir Ahmadli
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
39
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Chen T, Xia Y, Zhang L, Xu T, Yi Y, Chen J, Liu Z, Yang L, Chen S, Zhou X, Chen X, Wu H, Liu J. Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater Today Bio 2023; 19:100606. [PMID: 37063247 PMCID: PMC10102240 DOI: 10.1016/j.mtbio.2023.100606] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.
Collapse
Affiliation(s)
- Tiange Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Yan Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Hunan, China
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Ziyuan Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siming Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Corresponding author. Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Rd, Kaifu District, Changsha, 410008, PR China.
| |
Collapse
|
41
|
Arcuschin CD, Pinkasz M, Schor IE. Mechanisms of robustness in gene regulatory networks involved in neural development. Front Mol Neurosci 2023; 16:1114015. [PMID: 36814969 PMCID: PMC9940843 DOI: 10.3389/fnmol.2023.1114015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
The functions of living organisms are affected by different kinds of perturbation, both internal and external, which in many cases have functional effects and phenotypic impact. The effects of these perturbations become particularly relevant for multicellular organisms with complex body patterns and cell type heterogeneity, where transcriptional programs controlled by gene regulatory networks determine, for example, the cell fate during embryonic development. Therefore, an essential aspect of development in these organisms is the ability to maintain the functionality of their genetic developmental programs even in the presence of genetic variation, changing environmental conditions and biochemical noise, a property commonly termed robustness. We discuss the implication of different molecular mechanisms of robustness involved in neurodevelopment, which is characterized by the interplay of many developmental programs at a molecular, cellular and systemic level. We specifically focus on processes affecting the function of gene regulatory networks, encompassing transcriptional regulatory elements and post-transcriptional processes such as miRNA-based regulation, but also higher order regulatory organization, such as gene network topology. We also present cases where impairment of robustness mechanisms can be associated with neurodevelopmental disorders, as well as reasons why understanding these mechanisms should represent an important part of the study of gene regulatory networks driving neural development.
Collapse
Affiliation(s)
- Camila D. Arcuschin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Pinkasz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio E. Schor
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Jang H, Jo Y, Lee JH, Choi S. Aging of hair follicle stem cells and their niches. BMB Rep 2023; 56:2-9. [PMID: 36379515 PMCID: PMC9887102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 01/28/2023] Open
Abstract
Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth. [BMB Reports 2023; 56(1): 2-9].
Collapse
Affiliation(s)
- Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Yemin Jo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, Korea
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA, Incheon 21983, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
- School of Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
43
|
Jang H, Jo Y, Lee JH, Choi S. Aging of hair follicle stem cells and their niches. BMB Rep 2023; 56:2-9. [PMID: 36379515 PMCID: PMC9887102 DOI: 10.5483/bmbrep.2022-0183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 09/06/2023] Open
Abstract
Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth. [BMB Reports 2023; 56(1): 2-9].
Collapse
Affiliation(s)
- Hansaem Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Yemin Jo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, Korea
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA, Incheon 21983, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea, Incheon 21983, Korea
- School of Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
44
|
Kang MJ, Jin N, Park SY, Han JS. Phospholipase D1 promotes astrocytic differentiation through the FAK/AURKA/STAT3 signaling pathway in hippocampal neural stem/progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119361. [PMID: 36162649 DOI: 10.1016/j.bbamcr.2022.119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Phospholipase D1 (PLD1) plays a crucial role in cell differentiation of different cell types. However, the involvement of PLD1 in astrocytic differentiation remains uncertain. In the present study, we investigate the possible role of PLD1 and its product phosphatidic acid (PA) in astrocytic differentiation of hippocampal neural stem/progenitor cells (NSPCs) from hippocampi of embryonic day 16.5 rat embryos. We showed that overexpression of PLD1 increased the expression level of glial fibrillary acidic protein (GFAP), an astrocyte marker, and the number of GFAP-positive cells. Knockdown of PLD1 by transfection with Pld1 shRNA inhibited astrocytic differentiation. Moreover, PLD1 deletion (Pld1-/-) suppressed the level of GFAP in the mouse hippocampus. These results indicate that PLD1 plays a crucial role in regulating astrocytic differentiation in hippocampal NSPCs. Interestingly, PA itself was sufficient to promote astrocytic differentiation. PA-induced GFAP expression was decreased by inhibition of signal transducer and activation of transcription 3 (STAT3) using siRNA. Furthermore, PA-induced STAT3 activation and astrocytic differentiation were regulated by the focal adhesion kinase (FAK)/aurora kinase A (AURKA) pathway. Taken together, our findings suggest that PLD1 is an important modulator of astrocytic differentiation in hippocampal NSPCs via the FAK/AURKA/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Min-Jeong Kang
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Nuri Jin
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea.
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea; Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
45
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
46
|
Zhao XY, Zhang XL. DNA Methyltransferase Inhibitor 5-AZA-DC Regulates TGF β1-Mediated Alteration of Neuroglial Cell Functions after Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9259465. [PMID: 36211817 PMCID: PMC9534700 DOI: 10.1155/2022/9259465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
5-AZA-DC is an efficient methylation inhibitor that inhibits methylation of target DNA. In this study, we explored the effects of 5-AZA-DC on the regulation of TGFβ1 on target genes in neuroglial cell, as well as neuroglial cell functions under oxidative stress. The oxidative stress was constructed by editing CRISPR/Cas9 for knock out Ang-1 and ApoE4 genes. Cells were subjected to TGFβ1OE (or shTGFβ1) transfection and/or 5-AZA-DC intervention. Results showed that under oxidative stress, both TGFβ1OE and shTGFβ1 transfection raised DNMT1, but reduced TGFβ1, PTEN, and TSC2 expressions in neuroglial cells. TGFβ1 directly bind to the promoter of PTEN gene. 5-AZA-DC intervention lowered DNMT1 and raised TGFβ1 expression, as well as promoted the binding between TGFβ1 and promoter of PTEN. TGFβ1OE caused a significant increase in the DNA demethylation level of PTEN promoter, while 5-AZA-DC intervention reduced the DNA demethylation level of PTEN promoter. Under oxidative stress, TGFβ1OE (or shTGFβ1) transfection inhibited neuroglial cell proliferation, migration, and invasion, promoted cell apoptosis. 5-AZA-DC intervention alleviated TGFβ1OE (or shTGFβ1) transfection caused neuroglial cell proliferation, migration, and invasion inhibition, as well as cell apoptosis. To conclude, these results suggest that 5-AZA-DC can be used as a potential drug for epigenetic therapy on oxidative stress damage in neuroglial cells. The findings of this research provide theoretical basis and research ideas for methylation drug intervention and TGFβ1 gene as a possible precise target of glial oxidative stress diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao-Yong Zhao
- Department of Neurosurgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou 510800, China
- The Third School of Clinical Medicine Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Zhang
- The Third School of Clinical Medicine Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou 510800, China
- Department of Obstetrics and Gynecology, The Second People's Hospital of Guangdong Province, Guangzhou, China
| |
Collapse
|
47
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
48
|
Wei X, Fu S, Li H, Liu Y, Wang S, Feng W, Yang Y, Liu X, Zeng YY, Cheng M, Lai Y, Qiu X, Wu L, Zhang N, Jiang Y, Xu J, Su X, Peng C, Han L, Lou WPK, Liu C, Yuan Y, Ma K, Yang T, Pan X, Gao S, Chen A, Esteban MA, Yang H, Wang J, Fan G, Liu L, Chen L, Xu X, Fei JF, Gu Y. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 2022; 377:eabp9444. [PMID: 36048929 DOI: 10.1126/science.abp9444] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The molecular mechanism underlying brain regeneration in vertebrates remains elusive. We performed spatial enhanced resolution omics sequencing (Stereo-seq) to capture spatially resolved single-cell transcriptomes of axolotl telencephalon sections during development and regeneration. Annotated cell types exhibited distinct spatial distribution, molecular features, and functions. We identified an injury-induced ependymoglial cell cluster at the wound site as a progenitor cell population for the potential replenishment of lost neurons, through a cell state transition process resembling neurogenesis during development. Transcriptome comparisons indicated that these induced cells may originate from local resident ependymoglial cells. We further uncovered spatially defined neurons at the lesion site that may regress to an immature neuron-like state. Our work establishes spatial transcriptome profiles of an anamniote tetrapod brain and decodes potential neurogenesis from ependymoglial cells for development and regeneration, thus providing mechanistic insights into vertebrate brain regeneration.
Collapse
Affiliation(s)
- Xiaoyu Wei
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China
| | - Sulei Fu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hanbo Li
- BGI-Shenzhen, Shenzhen 518103, China.,BGI-Qingdao, Qingdao 266555, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 266555, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen 518103, China
| | - Shuai Wang
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Feng
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunzhi Yang
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | | | - Yan-Yun Zeng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yujia Jiang
- BGI-Shenzhen, Shenzhen 518103, China.,BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Cheng Peng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen 518103, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Wilson Pak-Kin Lou
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen 518103, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Tao Yang
- BGI-Shenzhen, Shenzhen 518103, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | - Ao Chen
- BGI-Shenzhen, Shenzhen 518103, China.,Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518103, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518103, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | | | - Longqi Liu
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518103, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ying Gu
- BGI-Hangzhou, Hangzhou 310012, China.,BGI-Shenzhen, Shenzhen 518103, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
49
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
50
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|