1
|
Praveena G, Jayachandran A, Manda Venkata S, Asthana A. From bench to bedside: The evolution of extracellular vesicle diagnostics through microfluidic and paper-based technologies. Colloids Surf B Biointerfaces 2025; 252:114675. [PMID: 40222114 DOI: 10.1016/j.colsurfb.2025.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
"Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication and valuable biomarkers for various diseases. However, traditional EV isolation and detection methods often struggle with efficiency, scalability, and purity, limiting their clinical utility. Recent advances in microfluidic and paper-based technologies offer innovative solutions that enhance EV isolation and detection by reducing sample volume, accelerating processing times, and integrating multiple analytical steps into compact platforms. These technologies hold significant promise for advancing point-of-care diagnostics, enabling rapid disease detection, personalized treatment monitoring, and better patient outcomes. For example, early detection of cancer biomarkers through EVs can facilitate timely intervention, potentially improving survival rates, while rapid infectious disease diagnostics can support prompt treatment. Despite their potential, challenges such as standardization, scalability, and regulatory hurdles remain. This review discusses recent advancements in microfluidic and paper-based EV diagnostic technologies, their comparative advantages over traditional methods, and their transformative potential in clinical practice."
Collapse
Affiliation(s)
- Ganji Praveena
- Urvogelbio Private Limited, AHERF, Film Nagar, Hyderabad, Telangana 500033, India
| | - Arjun Jayachandran
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER - Hyderabad), Balanagar, Hyderabad, Telangana 500037, India
| | - Sasidhar Manda Venkata
- Urvogelbio Private Limited, AHERF, Film Nagar, Hyderabad, Telangana 500033, India; Apollo Hospitals Educational and Research Foundation (AHERF), Cell and Molecular Biology Research Lab, Hyderabad, India.
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER - Hyderabad), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
2
|
Vera SP, Lian E, Elia MWJ, Saar A, Sharon HB, Moshe P, Mia H. The modifying effect of mutant LRRK2 on mutant GBA1-associated Parkinson disease. Hum Mol Genet 2025:ddaf062. [PMID: 40315377 DOI: 10.1093/hmg/ddaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease. While most cases are sporadic, in ~ 5%-10% of PD patients the disease is caused by mutations in several genes, among them GBA1 (glucocerebrosidase beta 1) and LRRK2 (leucine-rich repeat kinase 2), both prevalent among the Ashkenazi Jewish population. LRRK2-associated PD tends to be milder than GBA1-associated PD. Several recent clinical studies have suggested that carriers of both GBA1 and LRRK2 mutations develop milder PD compared to that observed among GBA1 carriers. These findings strongly suggested an interplay between the two genes in the development and progression of PD. In the present study Drosophila was employed as a model to investigate the impact of mutations in the LRRK2 gene on mutant GBA1-associated PD. Our results strongly indicated that flies expressing both mutant genes exhibited milder parkinsonian signs compared to the disease developed in flies expressing only a GBA1 mutation. This was corroborated by a decrease in the ER stress response, increase in the number of dopaminergic cells, elevated levels of tyrosine hydroxylase, reduced neuroinflammation, improved locomotion and extended survival. Furthermore, a significant decrease in the steady-state levels of mutant GBA1-encoded GCase was observed in the presence of mutant LRRK2, strongly implying a role for mutant LRRK2 in degradation of mutant GCase.
Collapse
Affiliation(s)
- Serebryany-Piavsky Vera
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Egulsky Lian
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Manoim-Wolkovitz Julia Elia
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Anis Saar
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Hassin-Baer Sharon
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Parnas Moshe
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Horowitz Mia
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
4
|
da Silva-Neto PV, de Carvalho JCS, Toro DM, Oliveira BTM, Cominal JG, Castro RC, Almeida MA, Prado CM, Arruda E, Frantz FG, Ramos AP, Ciancaglini P, Martins RB, da Silveira JC, Almeida F, Malmegrim KCR, Sorgi CA. TREM-1-Linked Inflammatory Cargo in SARS-CoV-2-Stimulated Macrophage Extracellular Vesicles Drives Cellular Senescence and Impairs Antibacterial Defense. Viruses 2025; 17:610. [PMID: 40431622 PMCID: PMC12115590 DOI: 10.3390/v17050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/29/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has significantly affected global health, with severe inflammatory responses leading to tissue damage and persistent symptoms. Macrophage-derived extracellular vesicles (EVs) are involved in the modulation of immune responses, but their involvement in SARS-CoV-2-induced inflammation and senescence remains unclear. Triggering receptors expressed on myeloid cell-1 (TREM-1) are myeloid cell receptors that amplify inflammation, described as a biomarker of the severity and mortality of COVID-19. This study investigated the composition and effects of macrophage-derived EVs stimulated by SARS-CoV-2 (MφV-EVs) on the recipient cell response. Our results, for the first time, show that SARS-CoV-2 stimulation modifies the cargo profile of MφV-EVs, enriching them with TREM-1 and miRNA-155 association, along with MMP-9 and IL-8/CXCL8. These EVs carry senescence-associated secretory phenotype (SASP) components, promote cellular senescence, and compromise antibacterial defenses upon internalization. Our findings provide evidence that MφV-EVs are key drivers of inflammation and immune dysfunction, underscoring their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Pedro V. da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-901, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (J.G.C.); (A.P.R.); (P.C.)
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil; (R.C.C.); (F.G.F.); (R.B.M.); (K.C.R.M.)
| | - Jonatan C. S. de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-901, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (J.G.C.); (A.P.R.); (P.C.)
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil; (R.C.C.); (F.G.F.); (R.B.M.); (K.C.R.M.)
| | - Diana M. Toro
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil; (D.M.T.); (E.A.)
| | - Bianca T. M. Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil; (B.T.M.O.); (F.A.)
| | - Juçara G. Cominal
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-901, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (J.G.C.); (A.P.R.); (P.C.)
| | - Ricardo C. Castro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil; (R.C.C.); (F.G.F.); (R.B.M.); (K.C.R.M.)
| | - Maria A. Almeida
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-FZEA, Universidade de São Paulo-USP, Pirassununga 13635-900, SP, Brazil; (M.A.A.); (C.M.P.); (J.C.d.S.)
| | - Cibele M. Prado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-FZEA, Universidade de São Paulo-USP, Pirassununga 13635-900, SP, Brazil; (M.A.A.); (C.M.P.); (J.C.d.S.)
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil; (D.M.T.); (E.A.)
| | - Fabiani G. Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil; (R.C.C.); (F.G.F.); (R.B.M.); (K.C.R.M.)
| | - Ana P. Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-901, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (J.G.C.); (A.P.R.); (P.C.)
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-901, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (J.G.C.); (A.P.R.); (P.C.)
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil; (B.T.M.O.); (F.A.)
| | - Ronaldo B. Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil; (R.C.C.); (F.G.F.); (R.B.M.); (K.C.R.M.)
| | - Juliano C. da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos-FZEA, Universidade de São Paulo-USP, Pirassununga 13635-900, SP, Brazil; (M.A.A.); (C.M.P.); (J.C.d.S.)
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil; (B.T.M.O.); (F.A.)
| | - Kelen C. R. Malmegrim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-903, SP, Brazil; (R.C.C.); (F.G.F.); (R.B.M.); (K.C.R.M.)
| | - Carlos A. Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto 14040-901, SP, Brazil; (P.V.d.S.-N.); (J.C.S.d.C.); (J.G.C.); (A.P.R.); (P.C.)
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirão Preto 14049-900, SP, Brazil; (B.T.M.O.); (F.A.)
- Programa de Pós-graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| |
Collapse
|
5
|
Pawluczyk IZA, Bhachu JS, Brown JR, Lacey M, Mbadugha C, Straatman K, Wimbury D, Selvaskandan H, Barratt J. B cell-derived exosomal miR-483-5p and its potential role in promoting kidney function loss in IgA nephropathy. Kidney Int 2025:S0085-2538(25)00324-2. [PMID: 40268167 DOI: 10.1016/j.kint.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION While mesangial IgA deposition is the pathognomonic feature of IgA nephropathy (IgAN), the extent of mesangial IgA accumulation does not correlate with the future risk of kidney failure. This has led to the search for other serum factors that may influence clinical outcome. The emergence of microRNAs (miRs) as negative regulators of gene expression and the increasingly recognized role of extracellular miRs in intercellular communication has prompted study of the influence of miRs on inflammatory and scarring pathways in the kidneys. METHODS Here, next generation sequencing and subsequent qPCR validation identified a significant increase in the serum levels of miR-483-5p, largely packaged within exosomes. RESULTS Levels of miR-483-5p in serum exosomes were greatest in those IgAN patients with higher levels of proteinuria who subsequently developed kidney failure. Exosomal miR-483-5p content significantly correlated with numerous soluble isoforms of the tumor necrosis factor (TNF) receptor super family suggesting lymphocytes as a source of the miR-enriched exosomes. In PBMC miR-483-5p expression was almost exclusively seen in CD19+ lymphocytes. Activation of a human IgA secreting B-cell line with soluble TNFR1 induced miR-483-5p synthesis and enrichment within exosomes. Exposure to miR-483-5p-enriched B cell exosomes resulted in a proinflammatory phenotypic change in cultured human collecting duct epithelial cells, likely mediated through suppression of the transcription factor SOCS3. miR-483-5p-enriched exosomes were also present in the urine of patients with IgAN. CONCLUSIONS Interaction of B lymphocyte-derived miR-enriched exosomes with tubular epithelial cells may provide an explanation for the progressive tubulointerstitial scarring and loss of kidney function seen in IgAN.
Collapse
Affiliation(s)
- Izabella Z A Pawluczyk
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Jasraj S Bhachu
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jeremy R Brown
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Michael Lacey
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chidimma Mbadugha
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kees Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - David Wimbury
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Poncelet L, Richer C, Gutierrez-Camino A, Veres T, Sinnett D. Long Circulating RNAs Packaged in Extracellular Vesicles: Prospects for Improved Risk Assessment in Childhood B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2025; 26:3956. [PMID: 40362196 PMCID: PMC12071302 DOI: 10.3390/ijms26093956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Analysis of tumoral RNA from bone marrow (BM) biopsy is essential for diagnosing childhood B-cell acute lymphoblastic leukemia (B-ALL), risk stratification, and monitoring, by detecting fusions and gene expression patterns. However, frequent BM biopsies are invasive and traumatic for patients. Small extracellular vesicles (sEVs) circulating in blood contain a variety of biomolecules, including RNA, that may contribute to cancer progression, offering a promising source of non-invasive biomarkers from liquid biopsies. While most EV studies have focused on small RNAs like microRNAs (miRNAs), the role of longer RNA species, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), remains underexplored despite their demonstrated potential for risk-based patient stratification when starting from BM biopsies. We used immuno-purification to isolate sEVs from peripheral blood at diagnosis in B-ALL patients and cell model-based conditioned culture medium (CCM) with ETV6::RUNX1 and TCF3::PBX1 fusions. Using whole-transcriptome sequencing targeting transcripts over 200 nt and a novel data analysis pipeline, we identified 102 RNA transcripts (67 mRNAs, 16 lncRNAs, 10 circRNAs, 4 pseudogenes, and 5 others) in patient-derived sEVs. These transcripts could serve as biomarkers for two distinct molecular subgroups of B-ALL, each with different risk profiles at diagnosis. This is the first study characterizing the long transcriptome in blood-derived sEVs for childhood B-ALL, highlighting the potential use of circulating RNAs for improved risk-based stratification.
Collapse
Affiliation(s)
- Lucas Poncelet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (L.P.); (C.R.); (A.G.-C.)
- Medical Devices Research Centre, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada;
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (L.P.); (C.R.); (A.G.-C.)
| | - Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (L.P.); (C.R.); (A.G.-C.)
- Pediatric Oncology Group, BioBizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Teodor Veres
- Medical Devices Research Centre, National Research Council Canada, Boucherville, QC J4B 6Y4, Canada;
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; (L.P.); (C.R.); (A.G.-C.)
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Su X, Yang J, Xu Z, Wei L, Yang S, Li F, Sun M, Hu Y, He W, Zhao C, Chen L, Yuan Y, Qin L, Hu N. Fibrous scaffolds loaded with BMSC-derived apoptotic vesicles promote wound healing by inducing macrophage polarization. Genes Dis 2025; 12:101388. [PMID: 39759117 PMCID: PMC11697094 DOI: 10.1016/j.gendis.2024.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 01/07/2025] Open
Abstract
Macrophages play a key role in wound healing. Dysfunction of their M0 polarization to M2 leads to disorders of the wound immune microenvironment and chronic inflammation, which affects wound healing. Regulating the polarization of M0 macrophages to M2 macrophages is an effective strategy for treating wound healing. Mesenchymal stem cells (MSCs) deliver endogenous regulatory factors via paracrine extracellular vesicles, which may play a key role in wound healing, and previous studies have shown that apoptotic bodies (ABs) are closely associated with inflammation regression and macrophage polarization. However, the specific regulatory mechanisms involved in ABs remain unknown. In the present study, we designed an MSC-AB (MSC-derived AB)-loaded polycaprolactone (PCL) scaffold, evaluated the macrophage phenotype and skin wound inflammation in vivo and in vitro, and explored the ability of MSC-AB-loaded PCL scaffolds to promote wound healing. Our data suggest that the PCL scaffold regulates the expression of the CCL-1 gene by targeting the delivery of mmu-miR-21a-5p by local sustained-release MSC-ABs, and drives M0 macrophages to program M2 macrophages to regulate inflammation and angiogenesis, thereby synergistically promoting wound healing. This study provides a promising therapeutic strategy and experimental basis for treating various diseases associated with imbalances in proinflammatory and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Shuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Feilong Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Min Sun
- Department of Knee Joint Sports Injury, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610042, China
| | - Yingkun Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Wenge He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yonghua Yuan
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Cui X, Liu L, Duan C, Mao S, Wang G, Li H, Miao C, Cao Y. A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome. J Dent Sci 2025; 20:1-14. [PMID: 39873057 PMCID: PMC11762945 DOI: 10.1016/j.jds.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Indexed: 01/30/2025] Open
Abstract
Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents. In primary Sjögren's syndrome (pSS), exosomes derived from Epstein-Barr virus-infected B cells and activated T cells transfer key microRNAs that impair calcium signaling, contributing to glandular dysfunction. Exosome-based biomarkers like Ro/SSA and La/SSB, found in saliva, serum, and tears, offer non-invasive diagnostic tools for early disease detection. Furthermore, mesenchymal stem cell-derived exosomes show promise in treating pSS by modulating immune responses and promoting tissue repair. While exosomes hold promise for the diagnosis and treatment of other salivary gland diseases, such as radiation-induced xerostomia and sialolithiasis, their application remains limited, necessitating further research to unlock their full diagnostic and therapeutic potential. This review focuses on the role of exosomes in salivary gland diseases, with an emphasis on pSS, and highlights the need for future clinical applications and large-scale trials.
Collapse
Affiliation(s)
- Xianzhen Cui
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengchen Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Suning Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Evidence-Based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Nishiguchi Y, Ueda M, Kubo H, Jo JI, Hashimoto Y, Takenobu T. Optimized human dedifferentiated fat cells from the buccal fat pad-derived osteoinductive extracellular vesicles promote osteoblast differentiation. J Dent Sci 2025; 20:278-285. [PMID: 39873097 PMCID: PMC11763207 DOI: 10.1016/j.jds.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs). Materials and methods DFATs were isolated from human buccal fat pads, cultured to confluency, and placed in either a standard or osteogenic induction medium. After culturing for 3 days, the conditioned medium was used to generate EVs using the size-exclusion chromatography and concentration filter method. Results Characterization of DFAT-EVs revealed typical EV morphology and positive markers (CD9 and CD63), with no differences between the two groups. In vitro assays demonstrated that EVs derived from the osteogenic induction medium (OI-EVs) significantly increased alkaline phosphatase activity and osteogenesis-related genes (Runx2 and collagen type I) compared to control EVs. Next-generation sequencing identified differentially expressed miRNAs, and gene ontology analysis suggested pathways involved in osteoblast differentiation. Conclusion Isolating DFATs from buccal fat pads under osteogenic induction conditions offers a procedure confined to the oral cavity, eliminating the need for harvesting from other sites. Thus, DFAT-EVs hold promise for promoting bone regeneration in maxillofacial applications.
Collapse
Affiliation(s)
- Yusuke Nishiguchi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Mamoru Ueda
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Hirohito Kubo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Jun-Ichiro Jo
- Department of Biomaterials, Osaka Dental University, Osaka, Japan
| | | | - Toshihiko Takenobu
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| |
Collapse
|
10
|
Garg S, Garg G, Patel P, Kumar M, Thakur S, Sharma N, Das Kurmi B. A complete sojourn on exosomes: Potential diagnostic and therapeutic agents. Pathol Res Pract 2024; 264:155674. [PMID: 39481226 DOI: 10.1016/j.prp.2024.155674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Exosomes are vesicles produced by the human body for carrying certain information from one cell to another. The carriers are nanosized vesicles carrying a wide variety of cargo like RNA, DNA, and proteins. Exosomes are also being used in the early diagnosis of various diseases and disorders. Current research focuses on exosomes tailoring for achieving therapeutic potential in various diseases and disorders. Besides this, their biocompatibility, stability, adjustable efficacy, and targeting properties make them attractive vehicles for formulation developers. Various preclinical studies suggested that the exosome culture cells are also modified with certain genes to achieve the desirable properties of resultant exosomes. The human body also produces some other vesicles like Ectosomes and Exomeres produced along with exosomes. Additionally, vesicles like Migrasomes are produced by migrating cells and apoptotic bodies, and Oncosomes are produced by cancer cells which can also be useful for the diagnosis of various diseases and disorders. For the separation of desired exosomes from other vesicles some latest techniques that can be useful viz differential centrifugation, density gradient centrifugation, and immunoaffinity purification have been discussed. Briefly, this review summarized various techniques of isolation of purified exosomes along with an overview of the application of exosomes in various neurodegenerative disorders and cancer along with various latest aspects of exosomes in disease progression and management which might be beneficial for the researchers.
Collapse
Affiliation(s)
- Sonakshi Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Gurisha Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| |
Collapse
|
11
|
Zhao LX, Sun Q, Wang C, Liu JJ, Yan XR, Shao MC, Yu L, Xu WH, Xu R. Toxoplasma gondii-Derived Exosomes: A Potential Immunostimulant and Delivery System for Tumor Immunotherapy Superior to Toxoplasma gondii. Int J Nanomedicine 2024; 19:12421-12438. [PMID: 39600411 PMCID: PMC11590659 DOI: 10.2147/ijn.s483626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapies such as immune checkpoint blockade (ICB) therapy and chimeric antigen receptor T-cell (CAR-T) therapy have ushered in a new era of tumor treatment. However, most patients do not benefit from immunotherapy due to limitations such as narrow indications, low response rates, and high rates of adverse effects. Toxoplasma gondii (T. gondii), a specialized intracellular protozoan, can modulate host immune responses by inhibiting or stimulating cytokines. The ability of T. gondii to enhance an organism's immune response was found to have a direct anti-tumor effect and enhance the sensitivity of patients with tumors to ICB therapy. However, the application of T. gondii for tumor therapy faces several challenges, such as biosafety concerns. Exosomes, a subtype of extracellular vesicle that contains active components such as proteins, nucleic acids, and lipids, have become effective therapeutic tools for various diseases, including tumors. Parasites, such as T. gondii, mediate the communication of pathogens with immune cells and modulate host cellular immune responses through exosomes. Growing evidence indicates that T. gondii-derived exosomes mediate communication between pathogens and immune cells, modulate host immune responses, and have great potential as new tools for tumor therapy. In this review, we highlight recent advances in isolation and identification techniques, profiling analysis, host immunomodulatory mechanisms, and the role of T. gondii-derived exosomes in tumor immunotherapy. Additionally, we emphasize the potential of T. gondii-derived exosomes as delivery platform to enhance anti-tumor efficacy in combination with other therapies. This review proposes that T. gondii-derived exosomes may serve as a novel tool for tumor immunotherapy owing to their ability to activate host immune function and properties such as high modifiability, stability, and low toxicity. This work will assist in promoting the application of parasite exosomes in tumor therapy.
Collapse
Affiliation(s)
- Lai-Xi Zhao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Qiong Sun
- Department of Stomatology, Anhui Province Direct Subordinate Hospital, Hefei, 230601, People’s Republic of China
| | - Chong Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Jia-Jia Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Xiao-Rong Yan
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Meng-Ci Shao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Wen-Hua Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
12
|
Veerabhadraswamy P, Lata K, Dey S, Belekar P, Kothegala L, Mangala Prasad V, Gandasi NR. Comparison of localization and release of multivesicular bodies and secretory granules in islet cells: Dysregulation during type-2 diabetes. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70014. [PMID: 39619685 PMCID: PMC11605659 DOI: 10.1002/jex2.70014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 05/13/2025]
Abstract
Multivesicular bodies (MVBs) are vesicles of endosomal origin containing intraluminal vesicles, which upon fusion with plasma membrane, secrete exosomes. They play a significant role in the physiology and pathology of type-2 diabetes (T2D) due to disrupted intercellular communication. The role of MVBs and their influence on insulin secretory granules (ISGs) of β-cells or their characterization is yet to be uncovered. In our study, we compared MVBs to largely well-characterized ISGs in β-cells. This study compares the density, localization, and exocytosis of CD63+ compartments (CD63+c) with NPY labelled ISGs (NISGs) in β-cells. For this, tetraspanin CD63 was exploited to majorly label MVBs in β-cells. These labels preserve the structural integrity of labelled compartments and mostly do not localize with other endo-lysosomal compartments. This study showed that the β-cells have a significantly higher density of NISGs than CD63+c. CD63+c and NISGs are spatially localized apart within β-cells. The proteins that localize with CD63+c are different from the ones that localize with NISGs. Exocytosis of NISGs occurs at the periphery of the β-cells and takes significantly less time when compared to the release of CD63+c, which is non-peripheral and takes a longer duration. Mechanistically, the availability of CD63+c for exocytosis was assessed and found that an equilibrium is maintained between docking and undocking states at the plasma membrane. Although there are a high number of short-term residing, visiting CD63+c at the plasma membrane, the availability of CD63+c for exocytosis is maintained due to docking and undocking states. Further, a significant reduction in the density of NISGs and CD63+c was observed in β-cells isolated from T2D donors compared to healthy counterparts. Studying the effect of MVBs on insulin secretion in physiological and T2D conditions has huge potential. This study provides a strong basis to open new avenues for such future studies.
Collapse
Affiliation(s)
- Priyadarshini Veerabhadraswamy
- Cell Metabolism Lab (GA‐08), Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruIndia
| | - Kiran Lata
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Sristi Dey
- Cell Metabolism Lab (GA‐08), Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruIndia
| | - Prajakta Belekar
- Unit of Metabolic Physiology, Institute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Lakshmi Kothegala
- Cell Metabolism Lab (GA‐08), Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruIndia
- Unit of Metabolic Physiology, Institute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Vidya Mangala Prasad
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Nikhil R. Gandasi
- Cell Metabolism Lab (GA‐08), Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruIndia
- Unit of Metabolic Physiology, Institute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
13
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
14
|
Xiong J, Wang Y, Wang H, Luo J, Chen T, Sun J, Xi Q, Zhang Y. GHRH-stimulated pituitary small extracellular vesicles inhibit hepatocyte proliferation and IGF-1 expression by its cargo miR-375-3p. J Nanobiotechnology 2024; 22:649. [PMID: 39438882 PMCID: PMC11494759 DOI: 10.1186/s12951-024-02857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Small extracellular vesicles (sEV) have emerged as a novel mode of intercellular material transport and information transmission. It has been suggested hormones may regulate the production and function of sEV. However, the specific impact of growth hormone-releasing hormone (GHRH) on pituitary sEV production and the role of sEV in the regulation of the GHRH-GH-IGF axis has not been previously reported. The results of the present study demonstrated that GHRH increased the production of pituitary sEV by promoting the expression of Rab27a. More importantly, GHRH induced alterations in protein and miRNA levels within GH3-sEV components. Notably, GH3-sEV with GHRH treatment exhibited the enhanced ability to impede BRL 3A cell proliferation and the expression of IGF-1. Conclusively, for the first time, we corroborate the influence of GHRH on pituitary sEV, thereby presenting novel evidence for how sEV participates in the balance of the GHRH-GH-IGF axis. Importantly, this study provides new insight into a novel balance mechanism mediated by sEV within the endocrine system.
Collapse
Affiliation(s)
- Jiali Xiong
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hailong Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
15
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
16
|
Mao Y, Suryawanshi A, Patial S, Saini Y. Airspaces-derived exosomes contain disease-relevant protein signatures in a mouse model of cystic fibrosis (CF)-like mucoinflammatory lung disease. Front Pharmacol 2024; 15:1460692. [PMID: 39386033 PMCID: PMC11461968 DOI: 10.3389/fphar.2024.1460692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Exosomes, membrane-bound extracellular vesicles, ranging from approximately 30-200 nm in diameter, are released by almost all cell types and play critical roles in intercellular communication. In response to the prevailing stress, the exosome-bound protein signatures vary in abundance and composition. To identify the bronchoalveolar lavage fluid (BALF) exosome-bound proteins associated with mucoinflammatory lung disease and to gain insights into their functional implications, we compared BALF exosomes-derived proteins from adult Scnn1b transgenic (Scnn1b-Tg+) and wild type (WT) mice. A total of 3,144 and 3,119 proteins were identified in BALF exosomes from Scnn1b-Tg+ and WT mice, respectively. Using cutoff criteria (Log2 fold-change > 1 and adjusted p-value < 0.05), the comparison of identified proteins revealed 127 and 30 proteins that were significantly upregulated and downregulated, respectively, in Scnn1b-Tg+ versus WT mice. In addition, 52 and 27 proteins were exclusively enriched in Scnn1b-Tg+ and WT mice, respectively. The identified exosome-bound proteins from the homeostatic airspaces of WT mice were mostly relevant to the normal physiological processes. The protein signatures enriched in the BALF exosomes of Scnn1b-Tg+ mice were relevant to macrophage activation and mucoinflammatory processes. Ingenuity pathway analyses revealed that the enriched proteins in Scnn1b-Tg+ mice contributed to the inflammatory responses and antimicrobial defense pathways. Selective proteins including, RETNLA/FIZZ1, LGALS3/Galectin-3, S100A8/MRP8, and CHIL3/YM1 were immunolocalized to specific cell types. The comparative analysis between enriched BALF exosome proteins and previously identified differentially upregulated genes in Scnn1b-Tg+ versus WT mice suggested that the compartment-/cell-specific upregulation in gene expression dictates the enrichment of their respective proteins in the lung airspaces. Taken together, this study demonstrates that the BALF exosome-bound protein signatures reflect disease-relevant disturbances. Our findings suggest that the exosomes carry disease-relevant protein signatures that can be used as a diagnostic as well as predictive biomarkers for mucoinflammatory lung disease.
Collapse
Affiliation(s)
- Yun Mao
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Sonika Patial
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Shahsavari A, Liu F. Diagnostic and therapeutic potentials of extracellular vesicles for primary Sjögren's Syndrome: A review. DENTISTRY REVIEW 2024; 4:100150. [PMID: 39310092 PMCID: PMC11416744 DOI: 10.1016/j.dentre.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Primary Sjögren syndrome (pSS) is a chronic autoimmune disease mainly affecting salivary and lacrimal glands. The current pSS biomarkers, serum autoantibodies, are negative in many pSS patients diagnosed with histopathology changes, indicating the need of novel biomarkers. The current therapies of pSS are merely short-term symptomatic relief and can't provide effective long-term remedy. Extracellular vehicles (EVs) are nano-sized lipid bilayer-delimited particles spontaneously released by almost all types of cells and carrying various bioactive molecules to mediate inter-cellular communications. Recent studies found that EVs from salivary gland epithelial cells and immune cells play essential roles in pSS pathogenesis. Correspondingly, EVs and their cargos in plasma and saliva are promising candidate biomarkers for pSS diagnosis. Moreover, EVs from mesenchymal stem cells have shown promises to improve pSS treatment by modulating immune responses. This review summarizes recent findings in roles of EVs in pSS pathogenesis, diagnosis, and treatment of pSS, as well as related challenges and future research directions.
Collapse
Affiliation(s)
- Arash Shahsavari
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| | - Fei Liu
- Cell Biology and Genetics department, School of Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
18
|
Ozaki K, Nagahara H, Kawamura A, Ohgita T, Higashi S, Ogura K, Tsutsuki H, Iyoda S, Yokotani A, Yamaji T, Moss J, Yahiro K. Extracellular Vesicle Inhibitors Enhance Cholix-Induced Cell Death via Regulation of the JNK-Dependent Pathway. Toxins (Basel) 2024; 16:380. [PMID: 39330838 PMCID: PMC11435833 DOI: 10.3390/toxins16090380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Vibrio cholerae is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by V. cholerae, is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by V. cholerae remains unclear. Some bacterial cytotoxins are carried by host extracellular vesicles (EVs) and transferred to other cells. In this study, we investigated the effects of EV inhibitors and EV-regulating proteins on Cholix-induced hepatocyte death. We observed that Cholix-induced cell death was significantly enhanced in the presence of EV inhibitors (e.g., dimethyl amiloride, and desipramine) and Rab27a-knockdown cells, but it did not involve a sphingomyelin-dependent pathway. RNA sequencing analysis revealed that desipramine, imipramine, and EV inhibitors promoted the Cholix-activated c-Jun NH2-terminal kinase (JNK) pathway. Furthermore, JNK inhibition decreased desipramine-enhanced Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage. In addition, suppression of Apaf-1 by small interfering RNA further enhanced Cholix-induced PARP cleavage by desipramine. We identified a novel function of desipramine in which the stimulated JNK pathway promoted a mitochondria-independent cell death pathway by Cholix.
Collapse
Affiliation(s)
- Kazuya Ozaki
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Hiyo Nagahara
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Asaka Kawamura
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Sachika Higashi
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Atsushi Yokotani
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
- Kyoto Biken Laboratories, Inc., Kyoto 611-0041, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Joel Moss
- Clinical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20824-0105, USA;
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| |
Collapse
|
19
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
20
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
21
|
Yang X, Yang X, Sun A, Chen S, Wang X, Zhao X. The miR-23b-3p from adipose-derived stem cell exosomes alleviate inflammation in mice experiencing kainic acid-induced epileptic seizures. Neuroreport 2024; 35:612-620. [PMID: 38813900 DOI: 10.1097/wnr.0000000000002044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
22
|
Lv X, Chen R, Liang T, Peng H, Fang Q, Xiao S, Liu S, Hu M, Yu F, Cao L, Zhang Y, Pan T, Xi Z, Ding Y, Feng L, Zeng T, Huang W, Zhang H, Ma X. NSP6 inhibits the production of ACE2-containing exosomes to promote SARS-CoV-2 infectivity. mBio 2024; 15:e0335823. [PMID: 38303107 PMCID: PMC10936183 DOI: 10.1128/mbio.03358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global pandemic, which severely endangers public health. Our and others' works have shown that the angiotensin-converting enzyme 2 (ACE2)-containing exosomes (ACE2-exos) have superior antiviral efficacies, especially in response to emerging variants. However, the mechanisms of how the virus counteracts the host and regulates ACE2-exos remain unclear. Here, we identified that SARS-CoV-2 nonstructural protein 6 (NSP6) inhibits the production of ACE2-exos by affecting the protein level of ACE2 as well as tetraspanin-CD63 which is a key factor for exosome biogenesis. We further found that the protein stability of CD63 and ACE2 is maintained by the deubiquitination of proteasome 26S subunit, non-ATPase 12 (PSMD12). NSP6 interacts with PSMD12 and counteracts its function, consequently promoting the degradation of CD63 and ACE2. As a result, NSP6 diminishes the antiviral efficacy of ACE2-exos and facilitates the virus to infect healthy bystander cells. Overall, our study provides a valuable target for the discovery of promising drugs for the treatment of coronavirus disease 2019. IMPORTANCE The outbreak of coronavirus disease 2019 (COVID-19) severely endangers global public health. The efficacy of vaccines and antibodies declined with the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants. Angiotensin-converting enzyme 2-containing exosomes (ACE2-exos) therapy exhibits a broad neutralizing activity, which could be used against various viral mutations. Our study here revealed that SARS-CoV-2 nonstructural protein 6 inhibited the production of ACE2-exos, thereby promoting viral infection to the adjacent bystander cells. The identification of a new target for blocking SARS-CoV-2 depends on fully understanding the virus-host interaction networks. Our study sheds light on the mechanism by which the virus resists the host exosome defenses, which would facilitate the study and design of ACE2-exos-based therapeutics for COVID-19.
Collapse
Affiliation(s)
- Xi Lv
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Sen Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Ding
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Zeng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Cheng X, Henick BS, Cheng K. Anticancer Therapy Targeting Cancer-Derived Extracellular Vesicles. ACS NANO 2024; 18:6748-6765. [PMID: 38393984 DOI: 10.1021/acsnano.3c06462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Extracellular vesicles (EVs) are natural lipid nanoparticles secreted by most types of cells. In malignant cancer, EVs derived from cancer cells contribute to its progression and metastasis by facilitating tumor growth and invasion, interfering with anticancer immunity, and establishing premetastasis niches in distant organs. In recent years, multiple strategies targeting cancer-derived EVs have been proposed to improve cancer patient outcomes, including inhibiting EV generation, disrupting EVs during trafficking, and blocking EV uptake by recipient cells. Developments in EV engineering also show promising results in harnessing cancer-derived EVs as anticancer agents. Here, we summarize the current understanding of the origin and functions of cancer-derived EVs and review the recent progress in anticancer therapy targeting these EVs.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical EngineeringNorth Carolina State University, Raleigh, North Carolina 27606, United States
| | - Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
24
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
25
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
26
|
Romero FJ, Diaz-Llopis M, Romero-Gomez MI, Miranda M, Romero-Wenz R, Sancho-Pelluz J, Romero B, Muriach M, Barcia JM. Small Extracellular Vesicles and Oxidative Pathophysiological Mechanisms in Retinal Degenerative Diseases. Int J Mol Sci 2024; 25:1618. [PMID: 38338894 PMCID: PMC10855665 DOI: 10.3390/ijms25031618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This review focuses on the role of small extracellular vesicles in the pathophysiological mechanisms of retinal degenerative diseases. Many of these mechanisms are related to or modulated by the oxidative burden of retinal cells. It has been recently demonstrated that cellular communication in the retina involves extracellular vesicles and that their rate of release and cargo features might be affected by the cellular environment, and in some instances, they might also be mediated by autophagy. The fate of these vesicles is diverse: they could end up in circulation being used as markers, or target neighbor cells modulating gene and protein expression, or eventually, in angiogenesis. Neovascularization in the retina promotes vision loss in diseases such as diabetic retinopathy and age-related macular degeneration. The importance of micro RNAs, either as small extracellular vesicles' cargo or free circulating, in the regulation of retinal angiogenesis is also discussed.
Collapse
Affiliation(s)
- Francisco J. Romero
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain;
| | - Manuel Diaz-Llopis
- Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain;
| | | | - Maria Miranda
- Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, 46115 Alfara del Patriarca, Spain;
| | - Rebeca Romero-Wenz
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain;
| | - Javier Sancho-Pelluz
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain; (J.S.-P.); (B.R.); (J.M.B.)
| | - Belén Romero
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain; (J.S.-P.); (B.R.); (J.M.B.)
- Unidad de Cuidados intensivos, Hospital de Manises, 46940 Manises, Spain
| | - Maria Muriach
- Facultad de Ciencias de la Salud, Universitat Jaume I, 12006 Castelló de la Plana, Spain;
| | - Jorge M. Barcia
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain; (J.S.-P.); (B.R.); (J.M.B.)
| |
Collapse
|
27
|
Ferruggia G, Contino M, Zimbone M, Brundo MV. Effectiveness of a Novel Compound HAIR & SCALP COMPLEX on Hair Follicle Regeneration. COSMETICS 2024; 11:10. [DOI: 10.3390/cosmetics11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Background: People lose between 50 and 100 hairs a day and generate new ones from stem cells in hair follicles, but in those suffering from baldness, the stem cells remain inactive and are unable to regenerate new hair. Although 9% of hair follicles remain in telogen at any time, a variety of factors, including growth factors and cytokines, promote the transition from telogen to anagen and the subsequent stimulation of hair growth. Methods: We compared in vitro, on cultures of human hair follicles, the effect on hair growth and regeneration of the dermal papilla of plant-derived nanovesicles, exosomes from cord blood stem cells and bovine colostrum, a mixture of growth factors and cytokines purified from bovine colostrum, called GF20, and a new compound called HAIR & SCALP COMPLEX obtained by adding exosomes isolated from colostrum to GF20. Results: The analyses demonstrated a significant increase in the growth of the bulb and the regeneration of the dermal papilla in the samples treated with HAIR & SCALP COMPLEX compared to the other elements tested. Conclusions: In this research, we propose a possible new treatment that could help significantly slow down hair loss and encourage new hair growth: HAIR & SCALP COMPLEX.
Collapse
Affiliation(s)
- Greta Ferruggia
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Martina Contino
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Massimo Zimbone
- Institute for Microelectronics and Microsystems, National Research Council of Italy (CNR-IMM), 95123 Catania, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| |
Collapse
|
28
|
Guo C, Sachithanandham J, Zhong W, Craney M, Villano J, Pekosz A, Gould SJ. Antigen-display exosomes provide adjuvant-free protection against SARS-CoV-2 disease at nanogram levels of spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574272. [PMID: 38328234 PMCID: PMC10849639 DOI: 10.1101/2024.01.04.574272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As the only bionormal nanovesicle, exosomes have high potential as a nanovesicle for delivering vaccines and therapeutics. We show here that the loading of type-1 membrane proteins into the exosome membrane is induced by exosome membrane anchor domains, EMADs, that maximize protein delivery to the plasma membrane, minimize protein sorting to other compartments, and direct proteins into exosome membranes. Using SARS-CoV-2 spike as an example and EMAD13 as our most effective exosome membrane anchor, we show that cells expressing a spike-EMAD13 fusion protein produced exosomes that carry dense arrays of spike trimers on 50% of all exosomes. Moreover, we find that immunization with spike-EMAD13 exosomes induced strong neutralizing antibody responses and protected hamsters against SARS-CoV-2 disease at doses of just 0.5-5 ng of spike protein, without adjuvant, demonstrating that antigen-display exosomes are particularly immunogenic, with important implications for both structural and expression-dependent vaccines.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - William Zhong
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Morgan Craney
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andrew Pekosz
- Department of Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Stephen J Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
29
|
Krause GJ, Kirchner P, Stiller B, Morozova K, Diaz A, Chen KH, Krogan NJ, Agullo-Pascual E, Clement CC, Lindenau K, Swaney DL, Dilipkumar S, Bravo-Cordero JJ, Santambrogio L, Cuervo AM. Molecular determinants of the crosstalk between endosomal microautophagy and chaperone-mediated autophagy. Cell Rep 2023; 42:113529. [PMID: 38060380 PMCID: PMC10807933 DOI: 10.1016/j.celrep.2023.113529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them.
Collapse
Affiliation(s)
- Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Philipp Kirchner
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara Stiller
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kateryna Morozova
- Department of Radiation Oncology, Weill Cornell School of Medicine, New York, NY 10021, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kuei-Ho Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Cristina C Clement
- Department of Radiation Oncology, Weill Cornell School of Medicine, New York, NY 10021, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shilpa Dilipkumar
- Microscopy CoRE, Dean's CoREs, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell School of Medicine, New York, NY 10021, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
31
|
Lakey JRT, Wang Y, Alexander M, Chan MKS, Wong MBF, Casazza K, Jenkins I. Exosomes; a Potential Source of Biomarkers, Therapy, and Cure for Type-1 Diabetes. Int J Mol Sci 2023; 24:15713. [PMID: 37958696 PMCID: PMC10647572 DOI: 10.3390/ijms242115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The scourge of type-1 diabetes (T1D) is the morbidity and mortality it and its complications cause at a younger age. This propels the constant search for better diagnostic, treatment, and management strategies, with the ultimate quest being a cure for T1D. Recently, the therapeutic potential of exosomes has generated a lot of interest. Among the characteristics of exosomes of particular interest are (a) their regenerative capacity, which depends on their "origin", and (b) their "content", which determines the cell communication and crosstalk they influence. Other functional capacities, including paracrine and endocrine homeostatic regulation, pathogenic response ability resulting in insulin secretory defects or β-cell death under normal metabolic conditions, immunomodulation, and promotion of regeneration, have also garnered significant interest. Exosome "specificity" makes them suitable as biomarkers or predictors, and their "mobility" and "content" lend credence to drug delivery and therapeutic suitability. This review aims to highlight the functional capacities of exosomes and their established as well as novel contributions at various pathways in the onset and progression of T1D. The pathogenesis of T1D involves a complex crosstalk between insulin-secreting pancreatic β-cells and immune cells, which is partially mediated by exosomes. We also examine the potential implications for type 2 diabetes (T2D), as the link in T2D has guided T1D exploration. The collective landscape presented is expected to help identify how a deeper understanding of exosomes (and their cargo) can provide a framework for actionable solutions to prevent, halt, or change the very course of T1D and its complications.
Collapse
Affiliation(s)
- Jonathan R. T. Lakey
- Department of Surgery, University of California Irvine, Irvine, CA 92617, USA;
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA
| | - Yanmin Wang
- California Medical Innovations Institute, 11107 Roselle Street, San Diego, CA 92121, USA;
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92617, USA;
| | - Mike K. S. Chan
- Uropean Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany; (M.K.S.C.); (M.B.F.W.)
- Baden R&D Laboratories GmbH, z Hd.v. Sabine Conrad, Ferdinand-Lassalle-Strasse 40, 72770 Reutlingen, Germany
| | - Michelle B. F. Wong
- Uropean Wellness Group, Klosterstrasse 205ID, 67480 Edenkoben, Germany; (M.K.S.C.); (M.B.F.W.)
- Baden R&D Laboratories GmbH, z Hd.v. Sabine Conrad, Ferdinand-Lassalle-Strasse 40, 72770 Reutlingen, Germany
| | - Krista Casazza
- GATC Health Inc., Suite 600, 2030 Main Street, Irvine, CA 92718, USA; (K.C.); (I.J.)
| | - Ian Jenkins
- GATC Health Inc., Suite 600, 2030 Main Street, Irvine, CA 92718, USA; (K.C.); (I.J.)
| |
Collapse
|
32
|
Castro-Cruz M, Hyka L, Daaboul G, Leblanc R, Meeussen S, Lembo F, Oris A, Van Herck L, Granjeaud S, David G, Zimmermann P. PDZ scaffolds regulate extracellular vesicle production, composition, and uptake. Proc Natl Acad Sci U S A 2023; 120:e2310914120. [PMID: 37695903 PMCID: PMC10515165 DOI: 10.1073/pnas.2310914120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.
Collapse
Affiliation(s)
- Monica Castro-Cruz
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Lukas Hyka
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | | | - Raphael Leblanc
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Sofie Meeussen
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Frédérique Lembo
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Anouk Oris
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Lore Van Herck
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Samuel Granjeaud
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Guido David
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Pascale Zimmermann
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| |
Collapse
|
33
|
Yu W, Nan X, Schroyen M, Wang Y, Xiong B. Inulin-induced differences on serum extracellular vesicles derived miRNAs in dairy cows suffering from subclinical mastitis. Animal 2023; 17:100954. [PMID: 37690274 DOI: 10.1016/j.animal.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
MicroRNA (miRNA) profiles vary with the nutritional and pathological conditions of cattle. In this study, we aimed to investigate the effects of inulin supplement on miRNA profiles derived from serum extracellular vesicles (EVs). Our goal was to determine the differences in miRNA expressions and analyse the pathways in which they are involved. Based on the results of California mastitis test and milk somatic cell counts, ten lactating cows with subclinical mastitis were randomly divided into two groups: an inulin group and a control group (n = 5 in each group). The inulin group received a daily supplement of 300 g of inulin while the control group did not receive any supplementation. After a 5-week treatment period, serum-derived EV-miRNAs from each cow were isolated. High-throughput sequencing was conducted to identify differentially expressed miRNAs. GO and KEGG bioinformatics analysis was performed to examine the target genes of these differentially expressed miRNAs. The EV-RNA concentration and small RNA content were not affected by the inulin treatment. A total of 162 known miRNAs and 180 novel miRNAs were identified from 10 samples in the two groups. Among the known miRNAs, 23 miRNAs were found to be differentially expressed between the two groups, with 18 upregulated and five downregulated in the inulin group compared to the control group. Pathway analysis revealed the involvement of these differentially expressed miRNAs in the regulation of cell structure and function, lipid oxidation and metabolism, immunity and inflammation, as well as digestion and absorption of nutrients. Overall, our study provides a molecular-level explanation for the reported beneficial health effects of inulin supplementation in cows with subclinical mastitis.
Collapse
Affiliation(s)
- W Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - X Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - M Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Y Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - B Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
34
|
Zhao X, Li Y, Wu S, Wang Y, Liu B, Zhou H, Li F. Role of extracellular vesicles in pathogenesis and therapy of renal ischemia-reperfusion injury. Biomed Pharmacother 2023; 165:115229. [PMID: 37506581 DOI: 10.1016/j.biopha.2023.115229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a complex disorder characterized by both intrinsic damage to renal tubular epithelial cells and extrinsic inflammation mediated by cytokines and immune cells. Unfortunately, there is no cure for this devastating condition. Extracellular vesicles (EVs) are nanosized membrane-bound vesicles secreted by various cell types that can transfer bioactive molecules to target cells and modulate their function. EVs have emerged as promising candidates for cell-free therapy of RIRI, owing to their ability to cross biological barriers and deliver protective signals to injured renal cells. In this review, we provide an overview of EVs, focusing on their functional role in RIRI and the signaling messengers responsible for EV-mediated crosstalk between various cell types in renal tissue. We also discuss the renoprotective role of EVs and their use as therapeutic agents for RIRI, highlighting the advantages and challenges encountered in the therapeutic application of EVs in renal disease.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
35
|
Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol 2023; 14:1256687. [PMID: 37691943 PMCID: PMC10486026 DOI: 10.3389/fimmu.2023.1256687] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Wound repair is a complex problem for both clinical practitioners and scientific investigators. Conventional approaches to wound repair have been associated with several limitations, including prolonged treatment duration, high treatment expenses, and significant economic and psychological strain on patients. Consequently, there is a pressing demand for more efficacious and secure treatment modalities to enhance the existing treatment landscapes. In the field of wound repair, cell-free therapy, particularly the use of mesenchymal stem cell-derived exosomes (MSC-Exos), has made notable advancements in recent years. Exosomes, which are small lipid bilayer vesicles discharged by MSCs, harbor bioactive constituents such as proteins, lipids, microRNA (miRNA), and messenger RNA (mRNA). These constituents facilitate material transfer and information exchange between the cells, thereby regulating their biological functions. This article presents a comprehensive survey of the function and mechanisms of MSC-Exos in the context of wound healing, emphasizing their beneficial impact on each phase of the process, including the regulation of the immune response, inhibition of inflammation, promotion of angiogenesis, advancement of cell proliferation and migration, and reduction of scar formation.
Collapse
Affiliation(s)
- Xinchi Qin
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaodong Chen
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
36
|
Sonbhadra S, Mehak, Pandey LM. Biogenesis, Isolation, and Detection of Exosomes and Their Potential in Therapeutics and Diagnostics. BIOSENSORS 2023; 13:802. [PMID: 37622888 PMCID: PMC10452587 DOI: 10.3390/bios13080802] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
The increasing research and rapid developments in the field of exosomes provide insights into their role and significance in human health. Exosomes derived from various sources, such as mesenchymal stem cells, cardiac cells, and tumor cells, to name a few, can be potential therapeutic agents for the treatment of diseases and could also serve as biomarkers for the early detection of diseases. Cellular components of exosomes, several proteins, lipids, and miRNAs hold promise as novel biomarkers for the detection of various diseases. The structure of exosomes enables them as drug delivery vehicles. Since exosomes exhibit potential therapeutic applications, their efficient isolation from complex biological/clinical samples and precise real-time analysis becomes significant. With the advent of microfluidics, nano-biosensors are being designed to capture exosomes efficiently and rapidly. Herein, we have summarized the history, biogenesis, characteristics, functions, and applications of exosomes, along with the isolation, detection, and quantification techniques. The implications of surface modifications to enhance specificity have been outlined. The review also sheds light on the engineered nanoplatforms being developed for exosome detection and capture.
Collapse
Affiliation(s)
| | | | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (S.S.); (M.)
| |
Collapse
|
37
|
Salazar-Puerta AI, Kordowski M, Cuellar-Gaviria TZ, Rincon-Benavides MA, Hussein J, Flemister D, Mayoral-Andrade G, Barringer G, Guilfoyle E, Blackstone BN, Deng B, Zepeda-Orozco D, McComb DW, Powell H, Dasi LP, Gallego-Perez D, Higuita-Castro N. Engineered Extracellular Vesicle-Based Therapies for Valvular Heart Disease. Cell Mol Bioeng 2023; 16:309-324. [PMID: 37810997 PMCID: PMC10550890 DOI: 10.1007/s12195-023-00783-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Valvular heart disease represents a significant burden to the healthcare system, with approximately 5 million cases diagnosed annually in the US. Among these cases, calcific aortic stenosis (CAS) stands out as the most prevalent form of valvular heart disease in the aging population. CAS is characterized by the progressive calcification of the aortic valve leaflets, leading to valve stiffening. While aortic valve replacement is the standard of care for CAS patients, the long-term durability of prosthetic devices is poor, calling for innovative strategies to halt or reverse disease progression. Here, we explor the potential use of novel extracellular vesicle (EV)-based nanocarriers for delivering molecular payloads to the affected valve tissue. This approach aims to reduce inflammation and potentially promote resorption of the calcified tissue. Methods Engineered EVs loaded with the reprogramming myeloid transcription factors, CEBPA and Spi1, known to mediate the transdifferentiation of committed endothelial cells into macrophages. We evaluated the ability of these engineered EVs to deliver DNA and transcripts encoding CEBPA and Spil into calcified aortic valve tissue obtained from patients undergoing valve replacement due to aortic stenosis. We also investigated whether these EVs could induce the transdifferentiation of endothelial cells into macrophage-like cells. Results Engineered EVs loaded with CEBPA + Spi1 were successfully derived from human dermal fibroblasts. Peak EV loading was found to be at 4 h after nanotransfection of donor cells. These CEBPA + Spi1 loaded EVs effectively transfected aortic valve cells, resulting in the successful induction of transdifferentiation, both in vitro with endothelial cells and ex vivo with valvular endothelial cells, leading to the development of anti-inflammatory macrophage-like cells. Conclusions Our findings highlight the potential of engineered EVs as a next generation nanocarrier to target aberrant calcifications on diseased heart valves. This development holds promise as a novel therapy for high-risk patients who may not be suitable candidates for valve replacement surgery. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00783-x.
Collapse
Affiliation(s)
- Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
| | - Mia Kordowski
- Biophysics Program, The Ohio State University, Columbus, OH USA
| | - Tatiana Z. Cuellar-Gaviria
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
| | | | - Jad Hussein
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
| | - Dorma Flemister
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
| | - Gabriel Mayoral-Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH USA
| | - Grant Barringer
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
| | - Elizabeth Guilfoyle
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH USA
- Department of Pediatrics, The Ohio State University, Columbus, OH USA
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH USA
| | - David W. McComb
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH USA
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH USA
| | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH USA
- Scientific Staff, Shriners Children’s Ohio, Dayton, OH USA
| | - Lakshmi P. Dasi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
- Biophysics Program, The Ohio State University, Columbus, OH USA
- Department of Surgery, The Ohio State University, Columbus, OH USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Fontana Laboratories, 140 W. 19th Ave., Columbus, OH 43210 USA
- Biophysics Program, The Ohio State University, Columbus, OH USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH USA
| |
Collapse
|
38
|
Jimenez DE, Tahir M, Faheem M, Alves WBDS, Correa BDL, de Andrade GR, Larsen MR, de Oliveira GP, Pereira RW. Comparison of Four Purification Methods on Serum Extracellular Vesicle Recovery, Size Distribution, and Proteomics. Proteomes 2023; 11:23. [PMID: 37606419 PMCID: PMC10443378 DOI: 10.3390/proteomes11030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023] Open
Abstract
In recent decades, the role played by extracellular vesicles in physiological and pathological processes has attracted attention. Extracellular vesicles are released by different types of cells and carry molecules that could become biomarkers for the diagnosis of diseases. Extracellular vesicles are also moldable tools for the controlled release of bioactive substances in clinical and therapeutic applications. However, one of the significant challenges when studying these exciting and versatile vesicles is the purification process, which presents significant difficulties in terms of lack of purity, yield, and reproducibility, reflected in unreliable data. Therefore, our objective in the present study was to compare the proteomic profile of serum-derived EVs purified using ExoQuick™ (Systems Biosciences), Total Isolation Kit (Life Technologies), Ultracentrifugation, and Ultrafiltration. Each technique utilized for purification has shown different concentrations and populations of purified particles. The results showed marked differences in distribution, size, and protein content, demonstrating the need to develop reproducible and reliable protocols to isolate extracellular vesicles for their clinical application.
Collapse
Affiliation(s)
- Dianny Elizabeth Jimenez
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (D.E.J.); (M.F.); (W.B.d.S.A.); (B.d.L.C.)
| | - Muhammad Tahir
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (M.T.); (M.R.L.)
| | - Muhammad Faheem
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (D.E.J.); (M.F.); (W.B.d.S.A.); (B.d.L.C.)
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Wellington Bruno dos Santos Alves
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (D.E.J.); (M.F.); (W.B.d.S.A.); (B.d.L.C.)
| | - Barbara de Lucena Correa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (D.E.J.); (M.F.); (W.B.d.S.A.); (B.d.L.C.)
| | - Gabriel Rocha de Andrade
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (D.E.J.); (M.F.); (W.B.d.S.A.); (B.d.L.C.)
| | - Martin R. Larsen
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (M.T.); (M.R.L.)
| | | | - Rinaldo Wellerson Pereira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-700, Brazil; (D.E.J.); (M.F.); (W.B.d.S.A.); (B.d.L.C.)
| |
Collapse
|
39
|
Carata E, Muci M, Di Giulio S, Mariano S, Panzarini E. Looking to the Future of the Role of Macrophages and Extracellular Vesicles in Neuroinflammation in ALS. Int J Mol Sci 2023; 24:11251. [PMID: 37511010 PMCID: PMC10379393 DOI: 10.3390/ijms241411251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is a common pathological feature of amyotrophic lateral sclerosis (ALS). Although scientific evidence to date does not allow defining neuroinflammation as an ALS trigger, its role in exacerbating motor neuron (MNs) degeneration and disease progression is attracting research interest. Activated CNS (Central Nervous System) glial cells, proinflammatory peripheral and infiltrated T lymphocytes and monocytes/macrophages, as well as the immunoreactive molecules they release, represent the active players for the role of immune dysregulation enhancing neuroinflammation. The crosstalk between the peripheral and CNS immune cells significantly correlates with the survival of ALS patients since the modification of peripheral macrophages can downregulate inflammation at the periphery along the nerves and in the CNS. As putative vehicles for misfolded protein and inflammatory mediators between cells, extracellular vesicles (EVs) have also drawn particular attention in the field of ALS. Both CNS and peripheral immune cells release EVs, which are able to modulate the behavior of neighboring recipient cells; unfortunately, the mechanisms involved in EVs-mediated communication in neuroinflammation remain unclear. This review aims to synthesize the current literature regarding EV-mediated cell-to-cell communication in the brain under ALS, with a particular point of view on the role of peripheral macrophages in responding to inflammation to understand the biological process and exploit it for ALS management.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Marco Muci
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Simona Di Giulio
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Stefania Mariano
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
40
|
Salazar-Puerta AI, Rincon-Benavides MA, Cuellar-Gaviria TZ, Aldana J, Martinez GV, Ortega-Pineda L, Das D, Dodd D, Spencer CA, Deng B, McComb DW, Englert JA, Ghadiali S, Zepeda-Orozco D, Wold LE, Gallego-Perez D, Higuita-Castro N. Engineered Extracellular Vesicles Derived from Dermal Fibroblasts Attenuate Inflammation in a Murine Model of Acute Lung Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210579. [PMID: 37119468 PMCID: PMC10573710 DOI: 10.1002/adma.202210579] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Indexed: 06/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) represents a significant burden to the healthcare system, with ≈200 000 cases diagnosed annually in the USA. ARDS patients suffer from severe refractory hypoxemia, alveolar-capillary barrier dysfunction, impaired surfactant function, and abnormal upregulation of inflammatory pathways that lead to intensive care unit admission, prolonged hospitalization, and increased disability-adjusted life years. Currently, there is no cure or FDA-approved therapy for ARDS. This work describes the implementation of engineered extracellular vesicle (eEV)-based nanocarriers for targeted nonviral delivery of anti-inflammatory payloads to the inflamed/injured lung. The results show the ability of surfactant protein A (SPA)-functionalized IL-4- and IL-10-loaded eEVs to promote intrapulmonary retention and reduce inflammation, both in vitro and in vivo. Significant attenuation is observed in tissue damage, proinflammatory cytokine secretion, macrophage activation, influx of protein-rich fluid, and neutrophil infiltration into the alveolar space as early as 6 h post-eEVs treatment. Additionally, metabolomics analyses show that eEV treatment causes significant changes in the metabolic profile of inflamed lungs, driving the secretion of key anti-inflammatory metabolites. Altogether, these results establish the potential of eEVs derived from dermal fibroblasts to reduce inflammation, tissue damage, and the prevalence/progression of injury during ARDS via nonviral delivery of anti-inflammatory genes/transcripts.
Collapse
Affiliation(s)
- Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - María A. Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
| | | | - Julian Aldana
- Biochemistry Program, The Ohio State University, Columbus, Ohio, United States
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Dodd
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Charles A. Spencer
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
41
|
Ai Y, Guo C, Garcia-Contreras M, Sanchez LS, Saftics A, Shodubi O, Raghunandan S, Xu J, Tsai SJ, Dong Y, Li R, Jovanovic-Talisman T, Gould S. Syntenin and CD63 Promote Exosome Biogenesis from the Plasma Membrane by Blocking Cargo Endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542409. [PMID: 37292617 PMCID: PMC10245948 DOI: 10.1101/2023.05.26.542409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exosomes are small extracellular vesicles important in health and disease. Syntenin is thought to drive the biogenesis of CD63 exosomes by recruiting Alix and the ESCRT machinery to endosomes, initiating an endosome-mediated pathway of exosome biogenesis. Contrary to this model, we show here that syntenin drives the biogenesis of CD63 exosomes by blocking CD63 endocytosis, thereby allowing CD63 to accumulate at the plasma membrane, the primary site of exosome biogenesis. Consistent with these results, we find that inhibitors of endocytosis induce the exosomal secretion of CD63, that endocytosis inhibits the vesicular secretion of exosome cargo proteins, and that high-level expression of CD63 itself also inhibits endocytosis. These and other results indicate that exosomes bud primarily from the plasma membrane, that endocytosis inhibits their loading into exosomes, that syntenin and CD63 are expression-dependent regulators of exosome biogenesis, and that syntenin drives the biogenesis of CD63 exosomes even in Alix knockout cells.
Collapse
|
42
|
Graham R, Gazinska P, Zhang B, Khiabany A, Sinha S, Alaguthurai T, Flores-Borja F, Vicencio J, Beuron F, Roxanis I, Matkowski R, Liam-Or R, Tutt A, Ng T, Al-Jamal KT, Zhou Y, Irshad S. Serum-derived extracellular vesicles from breast cancer patients contribute to differential regulation of T-cell-mediated immune-escape mechanisms in breast cancer subtypes. Front Immunol 2023; 14:1204224. [PMID: 37441083 PMCID: PMC10335744 DOI: 10.3389/fimmu.2023.1204224] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Background Intracellular communication within the tumour is complex and extracellular vesicles (EVs) have been identified as major contributing factors for the cell-to-cell communication in the local and distant tumour environments. Here, we examine the differential effects of breast cancer (BC) subtype-specific patient serum and cell-line derived EVs in the regulation of T cell mediated immune responses. Methods Ultracentrifugation was used to isolate EVs from sera of 63 BC patients, 15 healthy volunteers and 4 human breast cancer cell lines. Longitudinal blood draws for EV isolation for patients on neoadjuvant chemotherapy was also performed. Characterization of EVs was performed by Nanoparticle Tracking Analysis (NTA), transmission electron microscopy (TEM) and immunoblotting. CD63 staining was performed on a tissue microarray of 218 BC patients. In-house bioinformatics algorithms were utilized for the computation of EV associated expression scores within The Cancer Genome Atlas (TCGA) and correlated with tumour infiltrating lymphocyte (TIL) scores. In vitro stimulation of PBMCs with EVs from serum and cell-line derived EVs was performed and changes in the immune phenotypes characterized by flow cytometry. Cytokine profiles were assessed using a 105-plex immunoassay or IL10 ELISA. Results Patients with triple negative breast cancers (TNBCs) exhibited the lowest number of EVs in the sera; whilst the highest was detected in ER+HER2+ cancers; reflected also in the higher level of CD63+ vesicles found within the ER+HER2+ local tumour microenvironment. Transcriptomic analysis of the TCGA data identified that samples assigned with lower EV scores had significantly higher abundance of CD4+ memory activated T cells, T follicular cells and CD8 T cells, plasma, and memory B cells; whilst samples with high EV scores were more enriched for anti-inflammatory M2 macrophages and mast cells. A negative correlation between EV expression scores and stromal TIL counts was also observed. In vitro experiments confirmed that circulating EVs within breast cancer subtypes have functionally differing immunomodulatory capabilities, with EVs from patients with the most aggressive breast cancer subtype (TNBCs) demonstrating the most immune-suppressive phenotype (decreased CD3+HLA-DR+ but increased CD3+PD-L1 T cells, increased CD4+CD127-CD25hi T regulatory cells with associated increase in IL10 cytokine production). In depth assessment of the cytokine modulation triggered by the serum/cell line derived exosomes confirmed differential inflammatory cytokine profiles across differing breast cancer subtypes. Studies using the MDA-231 TNBC breast cancer cell-line derived EVs provided further support that TNBC EVs induced the most immunosuppressive response within PBMCs. Discussion Our study supports further investigations into how tumour derived EVs are a mechanism that cancers can exploit to promote immune suppression; and breast cancer subtypes produce EVs with differing immunomodulatory capabilities. Understanding the intracellular/extracellular pathways implicated in alteration from active to suppressed immune state may provide a promising way forward for restoring immune competence in specific breast cancer patient populations.
Collapse
Affiliation(s)
- Rosalind Graham
- Breast Immunology Group, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Patrycja Gazinska
- Breast Cancer Now Research Unit, King's College London, Guy's Hospital, London, United Kingdom
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
- Biobank Research Group, Lukasiewicz Research Network – PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Atousa Khiabany
- Breast Immunology Group, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Shubhankar Sinha
- Breast Immunology Group, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Thanussuyah Alaguthurai
- Breast Immunology Group, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Breast Cancer Now Research Unit, King's College London, Guy's Hospital, London, United Kingdom
| | - Fabian Flores-Borja
- Richard Dimbleby Laboratory of Cancer Research School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Jose Vicencio
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, United Kingdom
| | - Fabienne Beuron
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Ioannis Roxanis
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Rafal Matkowski
- Breast Unit, Lower Silesian Oncology, Pulmunology and Hematology Center, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Andrew Tutt
- Breast Cancer Now Research Unit, King's College London, Guy's Hospital, London, United Kingdom
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Tony Ng
- Breast Cancer Now Research Unit, King's College London, Guy's Hospital, London, United Kingdom
- Richard Dimbleby Laboratory of Cancer Research School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, United Kingdom
| | - Khuloud T. Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sheeba Irshad
- Breast Immunology Group, School of Cancer & Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Breast Cancer Now Research Unit, King's College London, Guy's Hospital, London, United Kingdom
- Medical Oncology, Guy's & St Thomas' NHS Trust, London, United Kingdom
| |
Collapse
|
43
|
Lee JH, Won YJ, Kim H, Choi M, Lee E, Ryoou B, Lee SG, Cho BS. Adipose Tissue-Derived Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing and Tissue Regeneration. Int J Mol Sci 2023; 24:10434. [PMID: 37445612 DOI: 10.3390/ijms241310434] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Wound healing is a complex process involving cell proliferation, migration, and extracellular matrix (ECM) remodeling. Extracellular vesicles (EVs) or exosomes derived from adipose tissue-derived stem cells (ASCs) are emerging as promising alternatives to cell therapy for advanced wound healing. Hyaluronic acid (HA), a major component of the skin ECM, is widely utilized in wound dressings and dermal fillers. This study aimed to investigate the effects of ASC-derived exosomes (ASC-EXOs) on human dermal fibroblasts (HDFs) and their potential combination with HA in in vivo wound healing and dermal filler models. In HDFs, ASC-EXOs increased cell proliferation and migration. ASC-EXOs also upregulated the expression of genes involved in cell proliferation and wound healing while stimulating collagen production in HDFs. In a porcine wound healing model, topical treatment with a combination of HA and ASC-EXOs led to higher wound closure rates compared to HA alone. Histological examination showed increased re-epithelialization and collagen type III deposition in wounds treated with the combination of HA and ASC-EXOs. In a mouse dermal filler model, tissues injected with the combination of HA and ASC-EXOs exhibited thicker tissue layers, increased vascularization, enhanced infiltration of myofibroblasts, and higher levels of collagen III and collagen fiber content compared to HA alone. These findings suggest that ASC-EXOs have beneficial effects on cell proliferation, migration, and gene expression related to wound healing, and they may accelerate wound closure and promote tissue regeneration. Furthermore, the combination of HA and ASC-EXOs may enhance wound healing and tissue remodeling, indicating its potential for both clinical and regenerative aesthetic applications in skin repair and regeneration.
Collapse
Affiliation(s)
- Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Yu Jin Won
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Clinical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Esther Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Bumsik Ryoou
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., STE 306, 19 Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| |
Collapse
|
44
|
Gorgani S, Hosseini SA, Wang AZ, Baino F, Kargozar S. Effects of Bioactive Glasses (BGs) on Exosome Production and Secretion: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114194. [PMID: 37297327 DOI: 10.3390/ma16114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
There is an increasing trend toward the application of bioactive glasses in different areas of biomedicine, including tissue engineering and oncology. The reason for this increase is mostly attributed to the inherent properties of BGs, such as excellent biocompatibility, and the ease of tailoring their properties by changing, for example, the chemical composition. Previous experiments have demonstrated that the interactions between BGs and their ionic dissolution products, and mammalian cells, can affect and change cellular behaviors, and thereby govern the performance of living tissues. However, limited research exists on their critical role in the production and secretion of extracellular vesicles (EVs) such as exosomes. Exosomes are nanosized membrane vesicles that carry various therapeutic cargoes such as DNA, RNA, proteins, and lipids, and thereby can govern cell-cell communication and subsequent tissue responses. The use of exosomes is currently considered a cell-free approach in tissue engineering strategies, due to their positive roles in accelerating wound healing. On the other hand, exosomes are known as key players in cancer biology (e.g., progression and metastasis), due to their capability to carry bioactive molecules between tumor cells and normal cells. Recent studies have demonstrated that the biological performance of BGs, including their proangiogenic activity, is accomplished with the help of exosomes. Indeed, therapeutic cargos (e.g., proteins) produced in BG-treated cells are transferred by a specific subset of exosomes toward target cells and tissues, and lead to a biological phenomenon. On the other hand, BGs are suitable delivery vehicles that can be utilized for the targeted delivery of exosomes to cells and tissues of interest. Therefore, it seems necessary to have a deeper understanding of the potential effects of BGs in the production of exosomes in cells that are involved in tissue repair and regeneration (mostly mesenchymal stem cells), as well as in those that play roles in cancer progression (e.g., cancer stem cells). This review aims to present an updated report on this critical issue, to provide a roadmap for future research in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Andrew Z Wang
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| |
Collapse
|
45
|
Liu YX, Sun JM, Ho CK, Gao Y, Wen DS, Liu YD, Huang L, Zhang YF. Advancements in adipose-derived stem cell therapy for skin fibrosis. World J Stem Cells 2023; 15:342-353. [PMID: 37342214 PMCID: PMC10277960 DOI: 10.4252/wjsc.v15.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Pathological scarring and scleroderma, which are the most common conditions of skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing response. The pathogenesis of these diseases has not been fully clarified and is unfortunately accompanied by exceptionally high medical needs and poor treatment effects. Currently, a promising and relatively low-cost treatment has emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell therapy, including ASCs and their derivatives-purified ASC, stromal vascular fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources and easy to obtain. ASCs have been widely used in therapeutic settings for patients, primarily for the defection of soft tissues, such as breast enhancement and facial contouring. In the field of skin regeneration, ASC therapy has become a hot research topic because it is beneficial for reversing skin fibrosis. The ability of ASCs to control profibrotic factors as well as anti-inflammatory and immunomodulatory actions will be discussed in this review, as well as their new applications in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is still unclear, ASCs have emerged as one of the most promising systemic antifibrotic therapies under development.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Dong-Sheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yang-Dan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
46
|
Lee AH, Ghosh D, Koh IL, Dawson MR. Senescence-associated exosomes transfer miRNA-induced fibrosis to neighboring cells. Aging (Albany NY) 2023; 15:1237-1256. [PMID: 36842089 PMCID: PMC10042705 DOI: 10.18632/aging.204539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Radiation-induced fibrosis is a common side effect of radiotherapy, which is the most common treatment for cancer. However, radiation also causes p53-mediated cell cycle arrest, prolonged expression of p21, and the development of senescence in normal cells that reside in irradiated tissues. Bone marrow-derived mesenchymal stem cells (MSCs) accumulate in primary tumor sites because of their natural tropism for inflammatory and fibrotic tissues. MSCs are extremely sensitive to low doses of ionizing radiation and acquire senescence as a result of bystander radiation effects. Senescent cells remain metabolically active but develop a potent senescence-associated secretory phenotype (SASP) that correlates to hyperactive secretion of cytokines, pro-fibrotic growth factors, and exosomes (EXOs). Integrative pathway analysis highlighted that radiation-induced senescence significantly enriched cell-cycle, extracellular matrix, transforming growth factor-β (TGF-β) signaling, and vesicle-mediated transport genes in MSCs. EXOs are cell-secreted nanovesicles (a subclass of small extracellular vesicles) that contain biomaterials-proteins, RNAs, microRNAs (miRNAs)-that are critical in cell-cell communication. miRNA content analysis of secreted EXOs further revealed that radiation-induced senescence uniquely altered miRNA profiles. In fact, several of the standout miRNAs directly targeted TGF-β or downstream genes. To examine bystander effects of radiation-induced senescence, we further treated normal MSCs with senescence-associated EXOs (SA-EXOs). These modulated genes related to TGF-β pathway and elevated both alpha smooth muscle actin (protein increased in senescent, activated cells) and Ki-67 (proliferative marker) expression in SA-EXO treated MSCs compared to untreated MSCs. We revealed SA-EXOs possess unique miRNA content that influence myofibroblast phenotypes via TGF-β pathway activation. This highlights that SA-EXOs are potent SASP factors that play a large role in cancer-related fibrosis.
Collapse
Affiliation(s)
- Amy H Lee
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | - Deepraj Ghosh
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ivy L Koh
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Michelle R Dawson
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
47
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
48
|
Sharma A. Mitochondrial cargo export in exosomes: Possible pathways and implication in disease biology. J Cell Physiol 2023; 238:687-697. [PMID: 36745675 DOI: 10.1002/jcp.30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Exosome biogenesis occurs parallel to multiple endocytic traffic routes. These coexisting routes drive cargo loading in exosomes via overlapping of exosome biogenesis with endosomal pathways. One such pathway is autophagy which captures damaged intracellular organelles or their components in an autophagosome vesicle and route them for lysosomal degradation. However, in case of a noncanonical fusion event between autophagosome and maturing multivesicular body (MVB)-a site for exosome biogenesis, the autophagic cargo is putatively loaded in exosomes and subsequent released out of the cell via formation of an "amphisome" like structure. Similarly, during "mitophagy" or mitochondrial (mt) autophagy, amphisome formation routes mitophagy cargo to exosomes. These mt-cargo enriched exosomes or mt-enREXO are often positive for LC3 protein-an autophagic flux marker, and potent regulators of paracrine signaling with both homeostatic and pathological roles. Here, I review this emerging concept and discuss how intracellular autophagic routes helps in generation of mt-enREXO and utility of these vesicles in paracrine cellular signaling and diagnostic areas.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Ltd, Pune, India
| |
Collapse
|
49
|
Basthi Mohan P, Rajpurohit S, Musunuri B, Bhat G, Lochan R, Shetty S. Exosomes in chronic liver disease. Clin Chim Acta 2023; 540:117215. [PMID: 36603656 DOI: 10.1016/j.cca.2022.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chronic liver disease (CLD) is the major cause of mortality and morbidity, particularly in developing countries. Although there has been a significant advancement in the identification and treatment of liver diseases over time, clinical results are not satisfactory in advanced liver disease. Thus, it is crucial to develop certain technology for early detection, and curative therapies and to investigate the molecular mechanisms behind CLD's pathogenesis. The study of exosomes in CLD is a rapidly developing field. They are structurally membrane-derived nano vesicles released by various cells. In CLD, exosomes released from injured hepatic cells affect intercellular communication, creating a microenvironment conducive to the illness's development. They also carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets for various liver diseases. End-stage liver disease can only be treated by a liver transplant, however, the low availability of compatible organs, high expenses of treatment, and surgical complications significantly lower patient survival rates. Early diagnosis and therapeutic intervention of CLD positively affect the likelihood of curative treatment and high patient survival rates. Considering the possibility that exosomes could be employed as tools for disease diagnostics and clinical intervention, The current study briefly summarizes the roles of exosomes and their cargo in diagnosing and treating liver diseases.
Collapse
Affiliation(s)
- Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Bhat
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajiv Lochan
- Lead Consultant- Liver transplant Surgeon, Manipal Hospital, Old Airport Road, Bangalore, and Adjunct Professor Manipal Academy of Higher Education, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
50
|
Yu W, Nan X, Schroyen M, Wang Y, Zhou M, Tang X, Xiong B. Effect of inulin on small extracellular vesicles microRNAs in milk from dairy cows with subclinical mastitis. J Anim Sci 2023; 101:skae366. [PMID: 39656780 DOI: 10.1093/jas/skae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Milk contains microRNAs (miRNA) that are shielded by small extracellular vesicles (sEVs). Beyond variations among individuals, many factors including nutrition play a role in shaping miRNA expression profiles. This study is to explore milk-derived sEVs-miRNA variations induced by inulin supplementation in subclinical mastitis-suffering cows. Fourteen lactating cows diagnosed with subclinical mastitis were equally assigned to either an inulin or a control group. Apart from total mixed rations, cows in the inulin group were provided with 300 g/d inulin during the morning feeding, while the control group did not receive any supplement. Following 1 wk of adaptation and 5 wk of treatment, sEVs-miRNA were isolated from the milk of each cow. RNA is subjected to high-throughput sequencing and differentially expressed (DE) miRNA (P < 0.05 and ∣ log2FC∣> 1) were detected through bioinformatics analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine the target genes of DE miRNA. A sum of 350 miRNA was discovered, including 332 in the control group and 249 in the inulin group. Among these, 9 miRNA showed differential expression within the 2 groups, including 3 upregulated and 6 downregulated in the inulin group. The DE miRNA participates in regulating organismal systems, cellular processes, and signal transduction, which may affect inflammatory response and milk production. Overall, our study provides insight into the micromolecular-level mechanism of inulin in alleviating subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Wanjie Yu
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|