1
|
Yu B, Peng L, Dang W, Fu Y, Li Z, Feng J, Zhao H, Wang T, Xu F, Yarmush ML, Huang H. Cryopreservable, scalable and ready-to-use cell-laden patches for diabetic ulcer treatment. Bioact Mater 2025; 50:461-474. [PMID: 40342487 PMCID: PMC12059593 DOI: 10.1016/j.bioactmat.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/11/2025] Open
Abstract
Stem cell-laden hydrogel patches are promising candidates to treat chronic ulcers due to cells' long-lasting and dynamic responses to wound microenvironment. However, their clinical translations are prohibited by the cryopreservation difficulty due to their weak mechanical strength and slow biotransport capability, and by the morphological mismatch between clinical ulcers and pre-fabricated patches. Here we report a stem cell-laden alginate-dopamine hydrogel patch that can be readily cryopreserved, processed, and scaled toward clinical usages. This cell-hydrogel patch not only maintains cell viability and structure integrity during cryopreservation, but also can be directly utilized without centrifugation or incubation post cryopreservation. In addition, this tissue-adhesive hydrogel patch enables close wound contact and fast cellular response, and its scalable and flexible structure enables assembly for large or irregularly shaped ulcers. Therefore, it accelerates ulcer healing and reduces scar formation via continuous, versatile, self-adjusting paracrine of imbedded, cryopreserved stem cells. These findings highlight its potential for scalable clinical applications in chronic wound management and pave the way for broader adoption of ready-to-use regenerative therapies.
Collapse
Affiliation(s)
- Bangrui Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Lanlan Peng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Wenjun Dang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Ying Fu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Zhijie Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jinteng Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Heng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Tian Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, United States
| | - Haishui Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| |
Collapse
|
2
|
Ramasamy T, Tevatia R, Ali S, Muhle A, Knight-Connoni V, Chakraborty N. Proteomic approach for evaluating cryoprotectant formulations for enhanced post-cryopreservation recovery of yeast. Sci Rep 2025; 15:15474. [PMID: 40316578 PMCID: PMC12048564 DOI: 10.1038/s41598-025-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025] Open
Abstract
Fungi have numerous potential biotechnological applications across the life sciences. To ensure these microorganisms are available for future research, it is essential that they are properly preserved to safeguard against genetic changes, cellular instability, and loss of viability. While the use of cryoprotective agents (CPA) is critical for increasing survival of the material during preservation, the wide adoption of glycerol and DMSO as CPAs may not always be ideal as fungal diversity and functionality are ever growing. Therefore, in the following work, we focused on developing robust cryopreservation formulations that can efficiently preserve fungal strains while also maximizing recovery. Here, 10 different cryopreservation formulations consisting of individual or a combination of CPAs were evaluated for their effect on the Saccharomyces cerevisiae (ATCC 7754) proteome. Spot assays were performed to study the recovery response of each formulation. Functional proteomic and KEGG pathway analyses were used to investigate the molecular mechanism of cold-stress response in S. cerevisiae. A total of 2,299 proteins were identified; depending on the formulation used, a range of 116-1,241 proteins were found to be significantly upregulated and downregulated, indicating the influence of individual formulations. To the best of our knowledge, this is the first study that uses a proteomic-based approach to investigate how different cryopreservation formulations affect key mechanisms within a model organism.
Collapse
Affiliation(s)
| | - Rahul Tevatia
- ATCC, 10801 University Boulevard, Manassas, VA, 20110, USA
| | - Shahin Ali
- ATCC, 10801 University Boulevard, Manassas, VA, 20110, USA
| | - Anthony Muhle
- ATCC, 10801 University Boulevard, Manassas, VA, 20110, USA
| | | | | |
Collapse
|
3
|
Kuang L, Lei W, Guo Z, Huang Z. Dynamic Manipulation of Ice Nucleation by an Electrochemical Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4714-4719. [PMID: 39933871 DOI: 10.1021/acs.langmuir.4c04602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In this report, we present a simple and effective method for manipulating ice nucleation through an electric-field-induced electrochemical reaction. By applying an electric field strength of 2 kV/m on water between a tin anode and platinum cathode, a significant increase of 7 °C in the nucleation temperature of water was observed. This threshold electric field strength is considerably lower than those reported in previous studies on electro-freezing. Our approach involves a cyclic process of charging and discharging, enabling the regulation of nucleation behavior to alternate between low and high nucleation temperatures. A comprehensive analysis of the electrochemical process reveals that the electric field facilitates the hydrolysis of tin ions, in which an ice nucleator composed by the hydrolysis product generates and accumulates near the cathode. This study offers a promising methodology for controlling ice nucleation through electrochemical means, paving the way for potential applications in cryopreservation, weather modification, and materials science.
Collapse
Affiliation(s)
- Lintao Kuang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Weimin Lei
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhenghao Guo
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhi Huang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
4
|
Stewart S, White A, Ou W, Liu W, Nagashima J, Songsasen N, He X. Controlled Ice Nucleation With a Sand-PDMS Film Device Enhances Cryopreservation of Mouse Preantral Ovarian Follicles. J Med Device 2024; 18:041007. [PMID: 39465055 PMCID: PMC11500804 DOI: 10.1115/1.4066445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian follicle cryopreservation is a promising strategy for fertility preservation; however, cryopreservation protocols have room for improvement to maximize post-thaw follicle viability and quality. Current slow-freezing protocols use either manual ice-seeding in combination with expensive programmable-rate freezers or other clinically incompatible ice initiators to control the ice-seeding temperature in the extracellular solution, a critical parameter that impacts post-cryopreservation cell/tissue quality. Previously, sand has been shown to be an excellent, biocompatible ice initiator, and its use in cryopreservation of human induced pluripotent stem cells enables high cell viability and quality after cryopreservation. This study applies sand as an ice initiator to cryopreserve multicellular microtissue, preantral ovarian follicles, using a simple slow-freezing protocol in the mouse model. Ovarian follicles cryopreserved using the sand partially embedded in polydimethylsiloxane (PDMS) film to seed ice in the extracellular solution exhibit healthy morphology, high viability, and the ability to grow similarly to fresh follicles in culture post-thaw. This sand-based cryopreservation strategy can facilitate convenient ovarian follicle cryopreservation using simple equipment, and this study further demonstrates the translatability of this strategy to not only single cells but also multicellular tissues.
Collapse
Affiliation(s)
- Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Wei Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742
| | - Jennifer Nagashima
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
5
|
Ermilova I, Lyubartsev A, Kocherbitov V. Sucrose versus Trehalose: Observations from Comparative Study Using Molecular Dynamics Simulations. ACS OMEGA 2024; 9:46323-46338. [PMID: 39583685 PMCID: PMC11579781 DOI: 10.1021/acsomega.4c07314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Binary mixtures of sucrose and trehalose in water were investigated using classical molecular dynamics (MD) simulations and free energy calculations. By classical MD simulations, the behavior of sugars was studied across the entire range of concentrations, from 0 to 100 wt % of water. Sugar-sugar and sugar-water affinities in diluted systems were in focus when using umbrella sampling and well-tempered metadynamics calculations. Moreover, in classical MD simulations, two approaches for system equilibration were applied: in the first, mixtures were preheated (using simulated annealing) before simulations under desired conditions, while in the second, no preliminary heating was used. It was discovered that sucrose has a stronger tendency to aggregate than trehalose, while the latter forms more hydrogen bonds with water. Below the concentration of 10 wt % of water, the number of hydrogen bonds between sugars is higher than the number of hydrogen bonds between sugars and water. The free energy calculations and hydrogen bonding analysis reveal certain dissimilarities in the hydration of oxygen-containing molecular groups. While there are noticeable differences in the hydration of various hydroxyl groups in sucrose and trehalose, all hydroxyl groups are clearly more hydrated than the ether oxygens in both sugars. Three factors contribute to the lower hydration of ether oxygens: they do not donate hydrogen bonds, they are slightly less polar than the oxygen atoms in hydroxyl groups, and they are less accessible to the solvent. Moreover, hydroxyl groups play the main role in binding water, and the geometry of trehalose is energetically preferable compared to the geometry of sucrose. Effects of preheating were demonstrated at water concentrations below 70 wt %, with more significant differences between mixtures observed at water concentrations below 40 wt %. Disaccharides bind stronger to each other and weaker with water molecules in preheated systems than in mixtures that were not preheated. The hydroxyl groups of sucrose and trehalose in preheated mixtures rotate slower than in systems that did not undergo thermal treatment. Therefore, while preheating is not necessary for liquid solutions, it is vital for the equilibration of samples in their amorphous solid state. In the experimental community, these findings are relevant for decision-making when choosing one of the disaccharides as a preservative.
Collapse
Affiliation(s)
- Inna Ermilova
- Department
of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden
| | - Alexander Lyubartsev
- Department
of Materials and Environmental Chemistry, Stockholm’s University, SE-114 18 Stockholm, Sweden
| | - Vitaly Kocherbitov
- Department
of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden
- Biofilms
Research Center for Biointerfaces, Faculty of Health and Society, SE-205 06 Malmö, Sweden
| |
Collapse
|
6
|
Murray A, Kilbride P, Gibson MI. Trehalose in cryopreservation. Applications, mechanisms and intracellular delivery opportunities. RSC Med Chem 2024; 15:2980-2995. [PMID: 39309363 PMCID: PMC11411628 DOI: 10.1039/d4md00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or via selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
- Asymptote, Cytiva Chivers Way Cambridge CB24 9BZ USA
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
7
|
Gokaltun A, Asik E, Byrne D, Yarmush ML, Usta OB. Supercooled preservation of cultured primary rat hepatocyte monolayers. Front Bioeng Biotechnol 2024; 12:1429412. [PMID: 39076209 PMCID: PMC11284110 DOI: 10.3389/fbioe.2024.1429412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Supercooled preservation (SCP) is a technology that involves cooling a substance below its freezing point without initiating ice crystal formation. It is a promising alternative to prolong the preservation time of cells, tissues, engineered tissue products, and organs compared to the current practices of hypothermic storage. Two-dimensional (2D) engineered tissues are extensively used in in vitro research for drug screening and development and investigation of disease progression. Despite their widespread application, there is a lack of research on the SCP of 2D-engineered tissues. In this study, we presented the effects of SCP at -2 and -6°C on primary rat hepatocyte (PRH) monolayers for the first time and compared cell viability and functionality with cold storage (CS, + 4°C). We preserved PRH monolayers in two different commercially available solutions: Hypothermosol-FRS (HTS-FRS) and the University of Wisconsin (UW) with and without supplements (i.e., polyethylene glycol (PEG) and 3-O-Methyl-Α-D-Glucopyranose (3-OMG)). Our findings revealed that UW with and without supplements were inadequate for the short-term preservation of PRH monolayers for both SCP and CS with high viability, functionality, and monolayer integrity. The combination of supplements (PEG and 3-OMG) in the HTS-FRS solution outperformed the other groups and yielded the highest viability and functional capacity. Notably, PRH monolayers exhibited superior viability and functionality when stored at -2°C through SCP for up to 3 days compared to CS. Overall, our results demonstrated that SCP is a feasible approach to improving the short-term preservation of PRH monolayers and enables readily available 2D-engineered tissues to advance in vitro research. Furthermore, our findings provide insights into preservation outcomes across various biological levels, from cells to tissues and organs, contributing to the advancement of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Department of Chemical Engineering, Hacettepe University, Ankara, Türkiye
| | - Eda Asik
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Bioengineering, Hacettepe University, Ankara, Türkiye
| | - Delaney Byrne
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Biomedical Engineering, Rutgers University, Newark, NJ, United States
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
8
|
Klbik I. Is post-hypertonic lysis of human red blood cells caused by excessive cell volume regulation? Cryobiology 2024; 114:104795. [PMID: 37984597 DOI: 10.1016/j.cryobiol.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Human red blood cells (RBC) exposed to hypertonic media are subject to post-hypertonic lysis - an injury that only develops during resuspension to an isotonic medium. The nature of post-hypertonic lysis was previously hypothesized to be osmotic when cation leaks were observed, and salt loading was suggested as a cause of the cell swelling upon resuspension in an isotonic medium. However, it was problematic to account for the salt loading since the plasma membrane of human RBCs was considered impermeable to cations. In this study, the hypertonicity-related behavior of human RBCs is revisited within the framework of modern cell physiology, considering current knowledge on membrane ion transport mechanisms - an account still missing. It is recognized here that the hypertonic behavior of human RBCs is consistent with the acute regulatory volume increase (RVI) response - a healthy physiological reaction initiated by cells to regulate their volume by salt accumulation. It is shown by reviewing the published studies that human RBCs can increase cation conductance considerably by activating cell volume-regulated ion transport pathways inactive under normal isotonic conditions and thus facilitate salt loading. A simplified physiological model accounting for transmembrane ion fluxes and membrane voltage predicts the isotonic cell swelling associated with increased cation conductance, eventually reaching hemolytic volume. The proposed involvement of cell volume regulation mechanisms shows the potential to explain the complex nature of the osmotic response of human RBCs and other cells. Cryobiological implications, including mechanisms of cryoprotection, are discussed.
Collapse
Affiliation(s)
- Ivan Klbik
- Institute of Physics SAS, Dúbravská cesta 9, 845 11, Bratislava, Slovak Republic; Department of Experimental Physics, FMFI UK, Mlynská dolina F1, 842 48, Bratislava, Slovak Republic.
| |
Collapse
|
9
|
Asadi E, Najafi A, Benson JD. Comparison of liquid nitrogen-free slow freezing protocols toward enabling a practical option for centralized cryobanking of ovarian tissue. Cryobiology 2024; 114:104836. [PMID: 38092234 DOI: 10.1016/j.cryobiol.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Geographically distributed ovarian tissue cryobanks remain limited due to the high facility and staff costs, and cold transportation to centers is associated with ischemia-induced tissue damage that increases with transport distance. It is ideal to perform the cryopreservation procedure at a tissue removal site or local hospital before shipment to cost-effective centralized cryobanks. However, conventional liquid nitrogen-based freezers are not portable and require expensive infrastructure. To study the possibility of an ovarian tissue cryopreservation network not dependent on liquid nitrogen, we cryopreserved bovine ovarian tissue using three cooling techniques: a controlled rate freezer using liquid nitrogen, a liquid nitrogen-free controlled rate freezer, and liquid nitrogen-free passive cooling. Upon thawing, we evaluated a panel of viability metrics in frozen and fresh groups to examine the potency of the portable liquid nitrogen-free controlled and uncontrolled rate freezers in preserving the ovarian tissue compared to the non-portable conventional controlled rate freezer. We found similar outcomes for reactive oxygen species (ROS), total antioxidant capacity (TAC), follicular morphology, tissue viability, and fibrosis in the controlled rate freezer groups. However, passive slow cooling was associated with the lowest tissue viability, follicle morphology, and TAC, and the highest tissue fibrosis and ROS levels compared to all other groups. A stronger correlation was found between follicle morphology, ovarian tissue viability, and fibrosis with the TAC/ROS ratio compared to ROS and TAC alone. The current study undergirds the possibility of centralized cryobanks using a controlled rate liquid nitrogen-free freezer to prevent ischemia-induced damage during ovarian tissue shipment.
Collapse
Affiliation(s)
- Ebrahim Asadi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Atefeh Najafi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| |
Collapse
|
10
|
Han H, Zhan T, Guo N, Cui M, Xu Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J 2024; 19:e2300543. [PMID: 38403430 DOI: 10.1002/biot.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Organoid technology has demonstrated unique advantages in multidisciplinary fields such as disease research, tumor drug sensitivity, clinical immunity, drug toxicology, and regenerative medicine. It will become the most promising research tool in translational research. However, the long preparation time of organoids and the lack of high-quality cryopreservation methods limit the further application of organoids. Although the high-quality cryopreservation of small-volume biological samples such as cells and embryos has been successfully achieved, the existing cryopreservation methods for organoids still face many bottlenecks. In recent years, with the development of materials science, cryobiology, and interdisciplinary research, many new materials and methods have been applied to cryopreservation. Several new cryopreservation methods have emerged, such as cryoprotectants (CPAs) of natural origin, ice-controlled biomaterials, and rapid rewarming methods. The introduction of these technologies has expanded the research scope of cryopreservation of organoids, provided new approaches and methods for cryopreservation of organoids, and is expected to break through the current technical bottleneck of cryopreservation of organoids. This paper reviews the progress of cryopreservation of organoids in recent years from three aspects: damage factors of cryopreservation of organoids, new protective agents and loading methods, and new technologies of cryopreservation and rewarming.
Collapse
Affiliation(s)
- Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Ning Guo
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
11
|
Jiang P, Li Q, Liu B, Liang W. Effect of cryoprotectant-induced intracellular ice formation and crystallinity on bactria during cryopreservation. Cryobiology 2023; 113:104786. [PMID: 37863380 DOI: 10.1016/j.cryobiol.2023.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Cryopreservation is widely used for the long-term storage of bacteria. Glycerol is one of the traditional cryoprotectants used widely to prevent cryoinjury during the cryopreservation of bacteria,although it may be toxic to the cells. To overcome these issues, synthetic antifreeze polymers are also used as cryoprotectants to inhibit ice formation. In the study, we compared the performance of various antifreeze synthetic polymers including poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone), poly(ethylene glycol), and dextran with glycerol, among which PVA performed best on decreasing the ice growth rate.The impacts of glycerol, trehalose, combined with PVA on the survival of S. thermophilus were also explored. Notably,. S. thermophilus stored in 100 mg/mL trehalose and 1 mg/mL PVA +50 mg/mL trehalose combo showed significantly enhanced survival when compared with those in traditional cryoprotectant (20% [v/v] glycerol), which achieved the survival percentage of only 41.03 ± 0.09%. The effects of the freezing temperature and crystallinity on the survival of S. thermophilus were elucidated.
Collapse
Affiliation(s)
- Pei Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Obstetrics and Gynecology, Shanghai Changhai Hospital, Shanghai, China
| | - Baolin Liu
- Institute of Biothermal and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Qin X, Chen Z, Shen L, Liu H, Ouyang X, Zhao G. Core-Shell Microfiber Encapsulation Enables Glycerol-Free Cryopreservation of RBCs with High Hematocrit. NANO-MICRO LETTERS 2023; 16:3. [PMID: 37930493 PMCID: PMC10628128 DOI: 10.1007/s40820-023-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cryopreservation of red blood cells (RBCs) provides great potential benefits for providing transfusion timely in emergencies. High concentrations of glycerol (20% or 40%) are used for RBC cryopreservation in current clinical practice, which results in cytotoxicity and osmotic injuries that must be carefully controlled. However, existing studies on the low-glycerol cryopreservation of RBCs still suffer from the bottleneck of low hematocrit levels, which require relatively large storage space and an extra concentration process before transfusion, making it inconvenient (time-consuming, and also may cause injury and sample lose) for clinical applications. To this end, we develop a novel method for the glycerol-free cryopreservation of human RBCs with a high final hematocrit by using trehalose as the sole cryoprotectant to dehydrate RBCs and using core-shell alginate hydrogel microfibers to enhance heat transfer during cryopreservation. Different from previous studies, we achieve the cryopreservation of human RBCs at high hematocrit (> 40%) with high recovery (up to 95%). Additionally, the washed RBCs post-cryopreserved are proved to maintain their morphology, mechanics, and functional properties. This may provide a nontoxic, high-efficiency, and glycerol-free approach for RBC cryopreservation, along with potential clinical transfusion benefits.
Collapse
Affiliation(s)
- Xianhui Qin
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Zhongrong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Huilan Liu
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Xilin Ouyang
- The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100089, People's Republic of China.
| | - Gang Zhao
- Department of Blood Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| |
Collapse
|
13
|
Kim SJ, Youn UJ, Kang P, Kim TK, Kim IC, Han SJ, Lee DW, Yim JH. A novel exopolysaccharide (p-CY01) from the Antarctic bacterium Pseudoalteromonas sp. strain CY01 cryopreserves human red blood cells. Biomater Sci 2023; 11:7146-7157. [PMID: 37718649 DOI: 10.1039/d3bm00917c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Cryopreservation of human red blood cells (RBCs) is vital for regenerative medicine and organ transplantation, but current cryoprotectants (CPAs) like glycerol and hydroxyethyl starch (HES) have limitations. Glycerol requires post-thaw washing due to cell membrane penetration, while HES causes high viscosity. To address these issues, we explored exopolysaccharides (EPS) from Antarctic Pseudoalteromonas sp. strain CY01 as a non-penetrating CPA for RBC cryopreservation. The EPS, p-CY01, consisted mainly of repeating (1-4) glucose and (1-6) galactose linkages with a molecular mass of 1.1 × 107 Da. Through mild acid hydrolysis, we obtained low molecular weight p-CY01 (p-CY01 LM) with a molecular weight of 2.7 × 105 Da, offering reduced viscosity, improved solubility, and cryoprotective properties. Notably, combining low concentrations of penetrating CPAs (>1% glycerol and dimethyl sulfoxide) with 2.5% (w/v) p-CY01 LM demonstrated significant cryoprotective effects. These findings highlight the potential of p-CY01 LM as a highly effective CPA for human RBC cryopreservation, replacing HES and glycerol and enabling the long-term storage of biological materials.
Collapse
Affiliation(s)
- Sung Jin Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
- Graduate Program in Biomaterials Science & Engineering, Yonsei University, Seoul 03722, South Korea
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Pilsung Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| | - Dong-Woo Lee
- Graduate Program in Biomaterials Science & Engineering, Yonsei University, Seoul 03722, South Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, South Korea.
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea.
| |
Collapse
|
14
|
Wang X, Wang E, Zhao G. Advanced cryopreservation engineering strategies: the critical step to utilize stem cell products. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:28. [PMID: 37528321 PMCID: PMC10393932 DOI: 10.1186/s13619-023-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
With the rapid development of stem cell-related therapies and regenerative medicine, the clinical application of stem cell products is on the rise. However, ensuring the effectiveness of these products after storage and transportation remains a challenge in the transformation to clinical trials. Cryopreservation technology allows for the long-term storage of cells while ensuring viability, making it a top priority for stem cell preservation. The field of cryopreservation-related engineering technologies is thriving, and this review provides an overview of the background and basic principles of cryopreservation. It then delves into the main bioengineering technologies and strategies used in cryopreservation, including photothermal and electromagnetic rewarming, microencapsulation, and synergetic ice inhibition. Finally, the current challenges and future prospects in the field of efficient cryopreservation of stem cells are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Enyu Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
15
|
Huang Z, Liu W, Ma T, Zhao H, He X, Liu B. Slow Cooling and Controlled Ice Nucleation Enabling the Cryopreservation of Human T Lymphocytes with Low-Concentration Extracellular Trehalose. Biopreserv Biobank 2023; 21:417-426. [PMID: 36001824 DOI: 10.1089/bio.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of human T lymphocytes has become a key strategy for supporting cell-based immunotherapy. However, the effects of ice seeding on the cryopreservation of cells under relatively slow cooling have not been well researched. The cryopreservation strategy with a nontoxic, single-ingredient, and injectable cryoprotective solution remains to be developed. We conducted ice seeding for the cells in a solution of normal saline with 1% (v/v) dimethyl sulfoxide (Me2SO), 0.1 M trehalose, and 4% (w/v) human serum albumin (HSA) under different slow cooling rates. With the positive results, we further applied seeding in the solution of 0.2 M trehalose and 4% (w/v) HSA under the same cooling rates. The optimal concentration of trehalose in the Me2SO-free solutions was then investigated under the optimized cooling rate with seeding, with control groups without seeding, and in a freezing container. In vitro toxicity of the cryoprotective solutions to the cells was also tested. We found that the relative viability of cells (1% [v/v] Me2SO, 0.1 M trehalose and 4% [w/v] HSA) was improved significantly from 88.6% to 94.1% with ice seeding, compared with that without seeding (p < 0.05). The relative viability of cells (0.2 M trehalose and 4% [w/v] HSA) with seeding was significantly higher than that without seeding, 96.3% and 92.0%, respectively (p < 0.05). With no significant difference in relative viability between the solutions of 0.2 M trehalose or 0.3 M trehalose with 4% (w/v) HSA (92.4% and 94.6%, respectively, p > 0.05), the solution of 0.2 M trehalose and 4% (w/v) HSA was selected as the optimized Me2SO-free solution. This strategy could cryopreserve human T lymphocytes without any toxic cryoprotectant and boost the application of cell products in humans by intravenous injection, with the osmolality of the low-concentration cryoprotective solution close to that of human plasma.
Collapse
Affiliation(s)
- Zhiyong Huang
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | - Xiaowen He
- Origincell Technology Group Co., Shanghai, China
| | - Baolin Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Zhang W, Liu X, Hu Y, Tan S. Incorporate delivery, warming and washing methods into efficient cryopreservation. Front Bioeng Biotechnol 2023; 11:1215591. [PMID: 37397963 PMCID: PMC10309563 DOI: 10.3389/fbioe.2023.1215591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
|
17
|
Klbik I, Čechová K, Milovská S, Švajdlenková H, Maťko I, Lakota J, Šauša O. Polyethylene glycol 400 enables plunge-freezing cryopreservation of human keratinocytes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Daily MI, Whale TF, Kilbride P, Lamb S, John Morris G, Picton HM, Murray BJ. A highly active mineral-based ice nucleating agent supports in situ cell cryopreservation in a high throughput format. J R Soc Interface 2023; 20:20220682. [PMID: 36751925 PMCID: PMC9905984 DOI: 10.1098/rsif.2022.0682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Cryopreservation of biological matter in microlitre scale volumes of liquid would be useful for a range of applications. At present, it is challenging because small volumes of water tend to supercool, and deep supercooling is known to lead to poor post-thaw cell viability. Here, we show that a mineral ice nucleator can almost eliminate supercooling in 100 µl liquid volumes during cryopreservation. This strategy of eliminating supercooling greatly enhances cell viability relative to cryopreservation protocols with uncontrolled ice nucleation. Using infrared thermography, we demonstrate a direct relationship between the extent of supercooling and post-thaw cell viability. Using a mineral nucleator delivery system, we open the door to the routine cryopreservation of mammalian cells in multiwell plates for applications such as high throughput toxicology testing of pharmaceutical products and regenerative medicine.
Collapse
Affiliation(s)
- Martin I. Daily
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas F. Whale
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | | | | | | | - Helen M. Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Benjamin J. Murray
- Institute of Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Wang Y, Gao S, Zhu K, Ren L, Yuan X. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs. ACS Biomater Sci Eng 2023; 9:498-507. [PMID: 36577138 DOI: 10.1021/acsbiomaterials.2c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryopreservation of red blood cells (RBCs) is imperative for transfusion therapy, while cryoprotectants are essential to protect RBCs from cryoinjury under freezing temperatures. Trehalose has been considered as a biocompatible cryoprotectant that naturally accumulates in organisms to tolerate anhydrobiosis and cryobiosis. Herein, we report a feasible protocol that enables glycerol-free cryopreservation of human RBCs by integration of the synthesized trehalose lipids and dissociative trehalose through ice tuning and membrane stabilization. Typically, in comparison with sucrose monolaurate or trehalose only, trehalose monolaurate was able to protect cell membranes against freeze stress, achieving 96.9 ± 2.0% cryosurvival after incubation and cryopreservation of human RBCs with 0.8 M trehalose. Moreover, there were slight changes in cell morphology and cell functions. It was further confirmed by isothermal titration calorimetry and osmotic fragility tests that the moderate membrane-binding activity of trehalose lipids exerted cell stabilization for high cryosurvival. The aforementioned study is likely to provide an alternative way for glycerol-free cryopreservation of human RBCs and other types of cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin300072, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin300350, China
| |
Collapse
|
20
|
Mechanistic insights into the improvement of yeast viability by adding short-clustered maltodextrin during long-term frozen storage. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Gao S, Niu Q, Wang Y, Ren L, Chong J, Zhu K, Yuan X. A Dynamic Membrane-Active Glycopeptide for Enhanced Protection of Human Red Blood Cells against Freeze-Stress. Adv Healthc Mater 2022; 12:e2202516. [PMID: 36548128 DOI: 10.1002/adhm.202202516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Intracellular delivery of freezing-tolerant trehalose is crucial for cryopreservation of red blood cells (RBCs) and previous strategies based on membrane-disruptive activity usually generate severe hemolysis. Herein, a dynamic membrane-active glycopeptide is developed by grafting with 25% maltotriose and 50% p-benzyl alcohol for the first time to effectively facilitate entry of membrane-impermeable trehalose in human RBCs with low hemolysis. Results of the mechanism acting on cell membranes suggest that reversible adsorption of such benzyl alcohol-grafted glycopeptide on cell surfaces upon weak perturbation with phospholipids and dynamic transition toward membrane stabilization are essential for keeping cellular biofunctions. Furthermore, the functionalized glycopeptide is indicative of typical α-helical/β-sheet structure-driven regulations of ice crystals during freeze-thaw, thereby strongly promoting efficient cryopreservation. Such all-in-one glycopeptide enables achieving both high cell recovery post-thaw >85% and exceptional cryosurvival >95% in direct freezing protocols. The rationally designed benzyl alcohol-modified glycopeptide permits the development of a competent platform with high generality for protection of blood cells against freeze-stress.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Qingjing Niu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Yan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | | | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
22
|
Brunette MA, Kinnear HM, Hashim PH, Flanagan CL, Day JR, Cascalho M, Padmanabhan V, Shikanov A. Human Ovarian Follicles Xenografted in Immunoisolating Capsules Survive Long Term Implantation in Mice. Front Endocrinol (Lausanne) 2022; 13:886678. [PMID: 35721740 PMCID: PMC9205207 DOI: 10.3389/fendo.2022.886678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023] Open
Abstract
Female pediatric cancer survivors often develop Premature Ovarian Insufficiency (POI) owing to gonadotoxic effects of anticancer treatments. Here we investigate the use of a cell-based therapy consisting of human ovarian cortex encapsulated in a poly-ethylene glycol (PEG)-based hydrogel that replicates the physiological cyclic and pulsatile hormonal patterns of healthy reproductive-aged women. Human ovarian tissue from four donors was analyzed for follicle density, with averages ranging between 360 and 4414 follicles/mm3. Follicles in the encapsulated and implanted cryopreserved human ovarian tissues survived up to three months, with average follicle densities ranging between 2 and 89 follicles/mm3 at retrieval. We conclude that encapsulation of human ovarian cortex in PEG-based hydrogels did not decrease follicle survival after implantation in mice and was similar to non-encapsulated grafts. Furthermore, this approach offers the means to replace the endocrine function of the ovary tissue in patients with POI.
Collapse
Affiliation(s)
- Margaret A. Brunette
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Hadrian M. Kinnear
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Prianka H. Hashim
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| | - Colleen L. Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - James R. Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics & Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Piao Z, Patel M, Park JK, Jeong B. Poly(l-alanine- co-l-lysine)- g-Trehalose as a Biomimetic Cryoprotectant for Stem Cells. Biomacromolecules 2022; 23:1995-2006. [PMID: 35412815 DOI: 10.1021/acs.biomac.1c01701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(l-alanine-co-l-lysine)-graft-trehalose (PAKT) was synthesized as a natural antifreezing glycopolypeptide (AFGP)-mimicking cryoprotectant for cryopreservation of mesenchymal stem cells (MSCs). FTIR and circular dichroism spectra indicated that the content of the α-helical structure of PAK decreased after conjugation with trehalose. Two protocols were investigated in cryopreservation of MSCs to prove the significance of the intracellularly delivered PAKT. In protocol I, MSCs were cryopreserved at -196 °C for 7 days by a slow-cooling procedure in the presence of both PAKT and free trehalose. In protocol II, MSCs were preincubated at 37 °C in a PAKT solution, followed by cryopreservation at -196 °C in the presence of free trehalose for 7 days by the slow-cooling procedure. Polymer and trehalose concentrations were varied by 0.0-1.0 and 0.0-15.0 wt %, respectively. Cell recovery was significantly improved by protocol II with preincubation of the cells in the PAKT solution. The recovered cells from protocol II exhibited excellent proliferation and maintained multilineage potentials into osteogenic, chondrogenic, and adipogenic differentiation, similar to MSCs recovered from cryopreservation in the traditional 10% dimethyl sulfoxide system. Ice recrystallization inhibition (IRI) activity of the polymers/trehalose contributed to cell recovery; however, intracellularly delivered PEG-PAKT was the major contributor to the enhanced cell recovery in protocol II. Inhibitor studies suggested that macropinocytosis and caveolin-dependent endocytosis are the main mechanisms for the intracellular delivery of PEG-PAKT. 1H NMR and FTIR spectra suggested that the intracellular PEG-PAKTs interact with water and stabilize the cells during cryopreservation.
Collapse
Affiliation(s)
- Zhengyu Piao
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
24
|
Ravanbakhsh H, Luo Z, Zhang X, Maharjan S, Mirkarimi HS, Tang G, Chávez-Madero C, Mongeau L, Zhang YS. Freeform Cell-Laden Cryobioprinting for Shelf-Ready Tissue Fabrication and Storage. MATTER 2022; 5:573-593. [PMID: 35695821 PMCID: PMC9173715 DOI: 10.1016/j.matt.2021.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
One significant drawback of existing bioprinted tissues is their lack of shelf-availability caused by complications in both fabrication and storage. Here, we report a cryobioprinting strategy for simultaneously fabricating and storing cell-laden volumetric tissue constructs through seamlessly combining extrusion bioprinting and cryopreservation. The cryobioprinting performance was investigated by designing, fabricating, and storing cell-laden constructs made of our optimized cryoprotective gelatin-based bioinks using a freezing plate with precisely controllable temperature. The in situ freezing process further promoted the printability of cell-laden hydrogel bioinks to achieve freeform structures otherwise inconvenient with direct extrusion bioprinting. The effects of bioink composition on printability and cell viability were evaluated. The functionality of the method was finally investigated using cell differentiation and chick ex ovo assays. The results confirmed the feasibility and efficacy of cryobioprinting as a single-step method for concurrent tissue biofabrication and storage.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Xiang Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hengameh S. Mirkarimi
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC, H3C1K3, Canada
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carolina Chávez-Madero
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Departamento de Ingeniería Mecatrónica y Electrónica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Jiang B, Li W, Stewart S, Ou W, Liu B, Comizzoli P, He X. Sand-mediated ice seeding enables serum-free low-cryoprotectant cryopreservation of human induced pluripotent stem cells. Bioact Mater 2021; 6:4377-4388. [PMID: 33997514 PMCID: PMC8111032 DOI: 10.1016/j.bioactmat.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to their widespread use. However, contemporary methods for hiPSC cryopreservation are associated with both limited cell survival and high concentration of toxic cryoprotectants and/or serum. The latter may cause spontaneous differentiation and/or introduce xenogeneic factors, which may compromise the quality of hiPSCs. Here, sand from nature is discovered to be capable of seeding ice above -10 °C, which enables cryopreservation of hiPSCs with no serum, much-reduced cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by their pluripotency marker expression, cell cycle analysis, and capability of differentiation into the three germ layers. This unique sand-mediated cryopreservation method may greatly facilitate the convenient and ready availability of high-quality hiPSCs and probably many other types of cells/tissues for the emerging cell-based translational medicine.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Weijie Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute of Biothermal Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Baolin Liu
- Institute of Biothermal Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
26
|
Study on cryopreservation of mouse single seminiferous tubule. Cryobiology 2021; 104:42-46. [PMID: 34813856 DOI: 10.1016/j.cryobiol.2021.11.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/06/2022]
Abstract
Cryopreservation of single seminiferous tubule is significant for fertility preservation, especially for male patients with cryptorchidism, Y-chromosome deletion and orchitis. However, there are few studies on cryopreservation of single seminiferous tubule. This study proposes several improved strategies for cryopreservation of single seminiferous tubule in mice. First, single seminiferous tubule was cryopreserved with modified slow freezing and vitrification methods. The results showed that the apoptosis negative rates of spermatogenic cells in single seminiferous tubule with modified slow freezing method were significantly higher than vitrification with plastic slide. Then, plastic slide and two metal vitrification carriers with high thermal conductivity, copper mesh and aluminum foil, were used to vitrify single seminiferous tubule. The metal carriers could improve the outcome of vitrification than plastic slide. The apoptosis negative rates of spermatogenic cells in the aluminum foil group was significantly higher than that in the copper mesh group. Finally, single seminiferous tubule was perfused with CPAs by micro-injection technique and vitrified. The results of cryo-microscopy experiments showed that the ice crystals formed inside the injected seminiferous tubule was reduced during the cooling process, the apoptosis negative rate of spermatocytes, spermatids and Sertoli cells were significantly higher than that of the non-injection group, indicating that the injection technique can effectively improve the effect of vitrification. This study has potential clinical value for in-vitro culture of spermatogonial stem cells and autologous testicular tissue grafting in patients with azoospermia.
Collapse
|
27
|
Wang J, Shi X, Xiong M, Tan WS, Cai H. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs. Cryobiology 2021; 104:47-55. [PMID: 34800528 DOI: 10.1016/j.cryobiol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022]
Abstract
The development of an effective cryopreservation method to achieve off-the-shelf and bioactive tissue-engineered constructs (TECs) is important to meet the requirements for clinical applications. The trehalose, a non-permeable cryoprotectant (CPA), has difficulty in penetrating the plasma membranes of mammalian cells and has only been used in combination with other cell penetrating CPA (such as DMSO) to cryopreserve mammalian cells. However, the inherent cytotoxicity of DMSO results in increasing risks with respect to cryopreserved cells. Therefore, in this study, permeable trehalose glycopolymers were synthesised for cryopreservation of TECs. The trehalose glycopolymers exhibited good ice inhibiting activities and biocompatibilities. Furthermore, the viability and function of TECs after cryopreservation with 5.0 wt% S2 were similar to those of the non-cryopreserved TECs. We developed an effective preservation strategy for the off-the-shelf availability of TECs.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaodi Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
28
|
Erol OD, Pervin B, Seker ME, Aerts-Kaya F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells 2021; 13:1197-1214. [PMID: 34630858 PMCID: PMC8474714 DOI: 10.4252/wjsc.v13.i9.1197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ozgur Dogus Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Mehmet Emin Seker
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
29
|
Huang Z, Liu W, Liu B, He X, Guo H, Xue S, Yan X, Jaganathan GK. Cryopreservation of human T lymphocytes under fast cooling with controlled ice nucleation in cryoprotective solutions of low toxicity. Cryobiology 2021; 103:92-100. [PMID: 34508713 DOI: 10.1016/j.cryobiol.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Cryopreservation of human T lymphocytes has become an essential tool for some cell-based immunotherapy. However, the cryopreservation procedure of the cells has not been systematically studied. In particular, the key factors of ice seeding and cryoprotective agents (CPA) driving the success of cryopreservation remain unclear. We systematically investigated the key factors, including cooling rate, ice-seeding temperature, CPA concentration, and types of CPA, during cryopreservation of human T lymphocytes with controlled ice nucleation. We found that ice seeding at below -10 °C could enable human T lymphocytes to be cooled at 90 °C min-1 with high relative viability and recovery after rewarming, 94.9% and 90.2%, respectively, which are significantly higher than those without ice seeding (P < 0.001). After optimization, the concentration of dimethyl sulphoxide was as low as 2% (v/v) with relative viability and recovery of 95.4% and 100.8%, respectively, at the cooling rate of 90 °C min-1 after ice seeding at -16 °C. The cryopreservation procedure developed in this study could facilitate the understanding of the mechanism for ice seeding and cell injury and offer a promising cryopreservation method with a high cooling rate and extremely low toxicity for extensive clinical application of immunotherapy.
Collapse
Affiliation(s)
- Zhiyong Huang
- Institute of Biothermal and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wei Liu
- Institute of Biothermal and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baolin Liu
- Institute of Biothermal and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xiaowen He
- Origincell Technology Group Co, Shanghai, 201203, China.
| | - Hao Guo
- Origincell Technology Group Co, Shanghai, 201203, China
| | - Suxia Xue
- Origincell Technology Group Co, Shanghai, 201203, China
| | - Xiaojuan Yan
- Origincell Technology Group Co, Shanghai, 201203, China
| | - Ganesh K Jaganathan
- Institute of Biothermal and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
30
|
Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng 2021; 5:1008-1018. [PMID: 33941895 DOI: 10.1038/s41551-021-00720-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/26/2021] [Indexed: 02/01/2023]
Abstract
Cell therapies for the treatment of skin disorders could benefit from simple, safe and efficient technology for the transdermal delivery of therapeutic cells. Conventional cell delivery by hypodermic-needle injection is associated with poor patient compliance, requires trained personnel, generates waste and has non-negligible risks of injury and infection. Here, we report the design and proof-of-concept application of cryogenic microneedle patches for the transdermal delivery of living cells. The microneedles are fabricated by stepwise cryogenic micromoulding of cryogenic medium with pre-suspended cells, and can be easily inserted into porcine skin and dissolve after deployment of the cells. In mice, cells delivered by the cryomicroneedles retained their viability and proliferative capability. In mice with subcutaneous melanoma tumours, the delivery of ovalbumin-pulsed dendritic cells via the cryomicroneedles elicited higher antigen-specific immune responses and led to slower tumour growth than intravenous and subcutaneous injections of the cells. Biocompatible cryomicroneedles may facilitate minimally invasive cell delivery for a range of cell therapies.
Collapse
|
31
|
Huang H, He X, Yarmush ML. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 2021; 5:793-804. [PMID: 34426675 PMCID: PMC8765766 DOI: 10.1038/s41551-021-00784-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The three classical core technologies for the preservation of live mammalian biospecimens-slow freezing, vitrification and hypothermic storage-limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Bioinspired Engineering and Biomechanics Center, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States.
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
32
|
Maria da Silva A, Pereira AG, Brasil AV, Macedo LB, Souza-Junior J, Bezerra de Moura CE, Pereira AF, Franco de Oliveira M, Comizzoli P, Silva AR. Influence of freezing techniques and glycerol-based cryoprotectant combinations on the survival of testicular tissues from adult collared peccaries. Theriogenology 2021; 167:111-119. [PMID: 33813051 DOI: 10.1016/j.theriogenology.2021.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/23/2023]
Abstract
The objective of the study was to evaluate the effects of different cryopreservation techniques including glycerol-based cryoprotectant combinations on the structure and viability of testicular tissues from adult collared peccaries. Tissue biopsies (3.0 mm³) from 5 different individuals were allocated to 10 different groups: fresh control; slow freezing (SF), conventional vitrification (CV), or solid-surface vitrification (SSV); each of them using three different combinations of cryoprotectants [dimethyl sulfoxide (DMSO) + ethylene glycol (EG); DMSO + Glycerol; and EG + Glycerol]. After thawing/warming, samples were evaluated for histomorphology, viability, proliferative capacity potential, and DNA integrity. Most effective preservation of testicular histomorphology was achieved using SF and CV with DMSO + EG. However, the use of glycerol-based cryoprotectant combinations increased the occurrence of tubular cell swelling, tubular cell loss and shrinkage from the basal membrane. Cell viability was comparable among cryopreservation methods and cryoprotectant combinations. Regarding cell proliferative capacity, the use of SF with EG + Glycerol and SSV with DMSO + Glycerol impaired the conservation of spermatogonia proliferative potential compared to other treatments. Moreover, CV with DMSO + EG was better than SF with EG + Glycerol for Sertoli cell proliferation potential. Regarding DNA integrity, less damage occurred when using SF with DMSO + EG while more fragmentations were observed when using CV with EG + Glycerol or DMSO + Glycerol as well as SSV with EG + Glycerol or DMSO + Glycerol. In sum, SF and CV appeared to be the most suitable methods for the cryopreservation of adult peccary testicular tissues. Additionally, the use of glycerol-based cryoprotectant combinations did not improve testicular tissues preservation with DMSO + EG being the most efficient option.
Collapse
Affiliation(s)
- Andréia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | - Ana Gloria Pereira
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | - Andreza Vieira Brasil
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | | | - João Souza-Junior
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | | | | | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital, Washington, DC, USA
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil.
| |
Collapse
|
33
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
34
|
Gallichotte EN, Dobos KM, Ebel GD, Hagedorn M, Rasgon JL, Richardson JH, Stedman TT, Barfield JP. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021; 99:1-10. [PMID: 33556359 DOI: 10.1016/j.cryobiol.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, USA; Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Jennifer P Barfield
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
35
|
Shen L, Guo X, Ouyang X, Huang Y, Gao D, Zhao G. Fine-tuned dehydration by trehalose enables the cryopreservation of RBCs with unusually low concentrations of glycerol. J Mater Chem B 2021; 9:295-306. [DOI: 10.1039/d0tb02426k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We regulated the amount of trehalose and combined it with glycerol to achieve unusually low glycerol concentrations in the cryopreservation of RBCs compared with traditional methods.
Collapse
Affiliation(s)
- Lingxiao Shen
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei 230027
- China
| | | | - Xilin Ouyang
- The Fourth Medical Center
- Chinese PLA General Hospital
- Beijing 100089
- China
| | - Yu Huang
- Clinic Medical College of Anhui Medical University
- Hefei 230601
- China
| | - Dayong Gao
- Department of Mechanical Engineering
- University of Washington
- Seattle
- USA
| | - Gang Zhao
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei 230027
- China
| |
Collapse
|
36
|
Cryopreservation of Mesenchymal Stem Cells Using Medical Grade Ice Nucleation Inducer. Int J Mol Sci 2020; 21:ijms21228579. [PMID: 33203028 PMCID: PMC7696797 DOI: 10.3390/ijms21228579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple different tissue lineages and have favourable immunogenic potential making them an attractive prospect for regenerative medicine. As an essential part of the manufacturing process, preservation of these cells whilst maintaining potential is of critical importance. An uncontrolled area of storage remains the rate of change of temperature during freezing and thawing. Controlled-rate freezers attempted to rectify this; however, the change of phase from liquid to solid introduces two extreme phenomena; a rapid rise and a rapid fall in temperature in addition to the intended cooling rate (normally -1 °C/min) as a part of the supercooling event in cryopreservation. Nucleation events are well known to initiate the freezing transition although their active use in the form of ice nucleation devices (IND) are in their infancy in cryopreservation. This study sought to better understand the effects of ice nucleation and its active instigation with the use of an IND in both a standard cryotube with MSCs in suspension and a high-throughput adhered MSC 96-well plate set-up. A potential threshold nucleation temperature for best recovery of dental pulp MSCs may occur around -10 °C and for larger volume cell storage, IND and fast thaw creates the most stable process. For adhered cells, an IND with a slow thaw enables greatest metabolic activity post-thaw. This demonstrates a necessity for a medical grade IND to be used in future regenerative medicine manufacturing with the parameters discussed in this study to create stable products for clinical cellular therapies.
Collapse
|
37
|
Kuroda K, Komori T, Ishibashi K, Uto T, Kobayashi I, Kadokawa R, Kato Y, Ninomiya K, Takahashi K, Hirata E. Non-aqueous, zwitterionic solvent as an alternative for dimethyl sulfoxide in the life sciences. Commun Chem 2020; 3:163. [PMID: 36703409 PMCID: PMC9814479 DOI: 10.1038/s42004-020-00409-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a solvent in the life sciences, however, it is somewhat toxic and affects cell behaviours in a range of ways. Here, we propose a zwitterionic liquid (ZIL), a zwitterion-type ionic liquid containing histidine-like module, as a new alternative to DMSO. ZIL is not cell permeable, less toxic to cells and tissues, and has great potential as a vehicle for various hydrophobic drugs. Notably, ZIL can serve as a solvent for stock solutions of platinating agents, whose anticancer effects are completely abolished by dissolution in DMSO. Furthermore, ZIL possesses suitable affinity to the plasma membrane and acts as a cryoprotectant. Our results suggest that ZIL is a potent, multifunctional and biocompatible solvent that compensates for many shortcomings of DMSO.
Collapse
Affiliation(s)
- Kosuke Kuroda
- grid.9707.90000 0001 2308 3329Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Tetsuo Komori
- grid.9707.90000 0001 2308 3329Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Kojiro Ishibashi
- grid.9707.90000 0001 2308 3329Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Takuya Uto
- grid.410849.00000 0001 0657 3887Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki, 889-2192 Japan
| | - Isao Kobayashi
- grid.9707.90000 0001 2308 3329Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Riki Kadokawa
- grid.9707.90000 0001 2308 3329Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Yui Kato
- grid.9707.90000 0001 2308 3329Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Kazuaki Ninomiya
- grid.9707.90000 0001 2308 3329Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Kenji Takahashi
- grid.9707.90000 0001 2308 3329Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Eishu Hirata
- grid.9707.90000 0001 2308 3329Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan ,grid.9707.90000 0001 2308 3329Nano Life Science Institute of Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| |
Collapse
|
38
|
Sui X, Chen P, Wen C, Yang J, Li Q, Zhang L. Exploring novel cell cryoprotectants based on neutral amino acids. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Burkey AA, Hillsley A, Harris DT, Baltzegar JR, Zhang DY, Sprague WW, Rosales AM, Lynd NA. Mechanism of Polymer-Mediated Cryopreservation Using Poly(methyl glycidyl sulfoxide). Biomacromolecules 2020; 21:3047-3055. [DOI: 10.1021/acs.biomac.0c00392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aaron A. Burkey
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - Alexander Hillsley
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - Dale T. Harris
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - Jacob R. Baltzegar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - Diana Y. Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - William W. Sprague
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - Adrianne M. Rosales
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
40
|
Dinu MV, Dinu IA, Saxer SS, Meier W, Pieles U, Bruns N. Stabilizing Enzymes within Polymersomes by Coencapsulation of Trehalose. Biomacromolecules 2020; 22:134-145. [PMID: 32567847 DOI: 10.1021/acs.biomac.0c00824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes are essential biocatalysts and very attractive as therapeutics. However, their functionality is strictly related to their stability, which is significantly affected by the environmental changes occurring during their usage or long-term storage. Therefore, maintaining the activity of enzymes is essential when they are exposed to high temperature during usage or when they are stored for extended periods of time. Here, we stabilize and protect enzymes by coencapsulating them with trehalose into polymersomes. The anhydrobiotic disaccharide preserved up to about 81% of the enzyme's original activity when laccase/trehalose-loaded nanoreactors were kept desiccated for 2 months at room temperature and 75% of its activity when heated at 50 °C for 3 weeks. Moreover, the applicability of laccase/trehalose-loaded nanoreactors as catalysts for bleaching of the textile dyes orange G, toluidine blue O, and indigo was proven. Our results demonstrate the advantages of coencapsulating trehalose within polymersomes to stabilize enzymes in dehydrated state for extended periods of time, preserving their activity even when heated to elevated temperature.
Collapse
Affiliation(s)
- Maria Valentina Dinu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Uwe Pieles
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
41
|
Cao K, Shen L, Guo X, Wang K, Hu X, Ouyang X, Zhao G. Hydrogel Microfiber Encapsulation Enhances Cryopreservation of Human Red Blood Cells with Low Concentrations of Glycerol. Biopreserv Biobank 2020; 18:228-234. [PMID: 32315536 DOI: 10.1089/bio.2020.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Kexin Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Lingxiao Shen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaojie Guo
- Department of Quality Control, Hefei Blood Center, Hefei, China
| | - Kun Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoyu Hu
- Department of Quality Control, Hefei Blood Center, Hefei, China
| | - Xilin Ouyang
- The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
42
|
Liu B, Zhang L, Zhang Q, Gao S, Zhao Y, Ren L, Shi W, Yuan X. Membrane Stabilization of Poly(ethylene glycol)-b-polypeptide-g-trehalose Assists Cryopreservation of Red Blood Cells. ACS APPLIED BIO MATERIALS 2020; 3:3294-3303. [DOI: 10.1021/acsabm.0c00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lingyue Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Qifa Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
43
|
Weng L, Beauchesne PR. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology 2020; 94:9-17. [PMID: 32247742 DOI: 10.1016/j.cryobiol.2020.03.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
Cell-based therapeutics promise to transform the treatment of a wide range of diseases including cancer, genetic and degenerative disorders, or severe injuries. Many of the commercial and clinical development of cell therapy products require cryopreservation and storage of cellular starting materials, intermediates and/or final products at cryogenic temperature. Dimethyl sulfoxide (Me2SO) has been the cryoprotectant of choice in most biobanking situations due to its exceptional performance in mitigating freezing-related damages. However, there is concern over the toxicity of Me2SO and its potential side effects after administration to patients. Therefore, there has been growing demand for robust Me2SO-free cryopreservation methods that can improve product safety and maintain potency and efficacy. This article provides an overview of the recent advances in Me2SO-free cryopreservation of cells having therapeutic potentials and discusses a number of key challenges and opportunities to motivate the continued innovation of cryopreservation for cell therapy.
Collapse
Affiliation(s)
- Lindong Weng
- Sana Biotechnology, Inc., Cambridge, MA, 02139, United States.
| | | |
Collapse
|
44
|
Huang H, Rey-Bedón C, Yarmush ML, Usta OB. Deep-supercooling for extended preservation of adipose-derived stem cells. Cryobiology 2020; 92:67-75. [PMID: 31751557 PMCID: PMC7195234 DOI: 10.1016/j.cryobiol.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
Abstract
Cell preservation is an enabling technology for widespread distribution and applications of mammalian cells. Traditional cryopreservation via slow-freezing or vitrification provides long-term storage but requires cytotoxic cryoprotectants (CPA) and tedious CPA loading/unloading, cooling, and recovering procedures. Hypothermic storage around 0-4 °C is an alternative method but only works for a short period due to its high storage temperatures. Here, we report on the deep-supercooling (DSC) preservation of human adipose-derived stem cells at deep subzero temperatures without freezing for extended storage. Enabled by surface sealing with an immiscible oil phase, cell suspension can be preserved in a liquid state at -13 °C and -16 °C for 7 days with high cell viability, retention of stemness, attachment, and multilineage differentiation capacities. These results demonstrate that DSC is an improved short-term preservation approach to provide off-the-shelf cell sources for booming cell-based medicine and bioengineering.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
| | - Camilo Rey-Bedón
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, United States.
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, 02114, United States.
| |
Collapse
|
45
|
Diaz-Dussan D, Peng YY, Sengupta J, Zabludowski R, Adam MK, Acker JP, Ben RN, Kumar P, Narain R. Trehalose-Based Polyethers for Cryopreservation and Three-Dimensional Cell Scaffolds. Biomacromolecules 2020; 21:1264-1273. [PMID: 31913606 DOI: 10.1021/acs.biomac.0c00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The capability to slow ice growth and recrystallization is compulsory in the cryopreservation of cells and tissues to avoid injuries associated with the physical and chemical responses of freezing and thawing. Cryoprotective agents (CPAs) have been used to restrain cryoinjury and improve cell survival, but some of these compounds pose greater risks for the clinical application of cryopreserved cells due to their inherent toxicity. Trehalose is known for its unique physicochemical properties and its interaction with the phospholipids of the plasma membrane, which can reduce cell osmotic stress and stabilized the cryopreserved cells. Nonetheless, there has been a shortage of relevant studies on the synthesis of trehalose-based CPAs. We hereby report the synthesis and evaluation of a trehalose-based polymer and hydrogel and its use as a cryoprotectant and three-dimensional (3D) cell scaffold for cell encapsulation and organoid production. In vitro cytotoxicity studies with the trehalose-based polymers (poly(Tre-ECH)) demonstrated biocompatibility up to 100 mg/mL. High post-thaw cell membrane integrity and post-thaw cell plating efficiencies were achieved after 24 h of incubation with skin fibroblast, HeLa (cervical), and PC3 (prostate) cancer cell lines under both controlled-rate and ultrarapid freezing protocols. Differential scanning calorimetry and a splat cooling assay for the determination of ice recrystallization inhibition activity corroborated the unique properties of these trehalose-based polyethers as cryoprotectants. Furthermore, the ability to form hydrogels as 3D cell scaffolds encourages the use of these novel polymers in the development of cell organoids and cryopreservation platforms.
Collapse
Affiliation(s)
- Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Jayeeta Sengupta
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Rebecca Zabludowski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| | - Madeleine K Adam
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5 Ontario, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, T6G 2R8 Alberta, Canada
| | - Robert N Ben
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5 Ontario, Canada
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, T6G 1Z2 Alberta, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T5B 4E4 Alberta, Canada
| |
Collapse
|
46
|
Xu Z, Dou W, Wang C, Sun Y. Stiffness and ATP recovery of stored red blood cells in serum. MICROSYSTEMS & NANOENGINEERING 2019; 5:51. [PMID: 31700671 PMCID: PMC6826049 DOI: 10.1038/s41378-019-0097-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 07/12/2019] [Indexed: 05/03/2023]
Abstract
In transfusion medicine, there has been a decades-long debate about whether the age of stored red blood cells (RBCs) is a factor in transfusion efficacy. Existing clinical studies investigating whether older RBCs cause worse clinical outcomes have provided conflicting information: some have shown that older blood is less effective, while others have shown no such difference. The controversial results could have been biased by the vastly different conditions of the patients involved in the clinical studies; however, another source of inconsistency is a lack of understanding of how well and quickly stored RBCs can recover their key parameters, such as stiffness and ATP concentration, after transfusion. In this work, we quantitatively studied the stiffness and ATP recovery of stored RBCs in 37 °C human serum. The results showed that in 37 °C human serum, stored RBCs are able to recover their stiffness and ATP concentration to varying extents depending on how long they have been stored. Fresher RBCs (1-3 weeks old) were found to have a significantly higher capacity for stiffness and ATP recovery in human serum than older RBCs (4-6 weeks old). For instance, for 1-week-old RBCs, although the shear modulus before recovery was 1.6 times that of fresh RBCs, 97% of the cells recovered in human serum to have 1.1 times the shear modulus of fresh RBCs, and the ATP concentration of 1-week-old RBCs after recovery showed no difference from that of fresh RBCs. However, for 6-week-old RBCs, only ~70% of the RBCs showed stiffness recovery in human serum; their shear modulus after recovery was still 2.1 times that of fresh RBCs; and their ATP concentration after recovery was 25% lower than that of fresh RBCs. Our experiments also revealed that the processes of stiffness recovery and ATP recovery took place on the scale of tens of minutes. We hope that this study will trigger the next steps of comprehensively characterizing the recovery behaviors of stored RBCs (e.g., recovery of normal 2,3-DPG [2,3-Diphosphoglycerate]and SNO [S-nitrosation] levels) and quantifying the in vivo recovery of stored RBCs in transfusion medicine.
Collapse
Affiliation(s)
- Zhensong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
| | - Chen Wang
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| |
Collapse
|
47
|
Lyoprotective effect of soluble extracellular polymeric substances from Oenococcus oeni during its freeze-drying process. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Hannam SDW, Daivis PJ, Bryant G. Compositional relaxation on the approach to the glass transition in a model trehalose solution. Phys Rev E 2019; 99:032602. [PMID: 30999477 DOI: 10.1103/physreve.99.032602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Molecular dynamics simulation was used to study the temperature dependence of the mutual diffusion coefficient D_{m} and the intermediate scattering function of equilibrium and metastable aqueous solutions of the cryoprotectant molecule trehalose at very low (2.2 and 9wt.%) and very high (80 and 95wt.%) concentrations. The simulations were conducted over a range of temperatures approaching the glass transition temperature T_{g} for each concentration. Similar to a recent observation made on a glass-forming model polydisperse colloidal suspension [Hannam et al., Phys. Rev. E 96, 022609 (2017)2470-004510.1103/PhysRevE.96.022609], we confirmed by a set of independent computations that D_{m} is responsible for the long-time decay of the intermediate scattering function. We observed that D_{m} decreased on the approach to the glass transition temperature, resulting in an extremely slow long-time decay in the intermediate scattering function that culminated in the arrest of compositional fluctuations and a plateau in the intermediate scattering function at T_{g}. In both cases, crystallization requires a change in the composition of the solution, which is a process controlled by D_{m}. This transport coefficient can either increase or decrease as solidification is approached, because it depends on a product of thermodynamic and mobility factors. Our observations show that in both cases, for the glass-forming liquids, it is observed to decrease, while for a previously studied monodisperse colloidal suspension which crystallizes easily, it increases. The similarity in the behavior of these two very different glass-forming systems (the polydisperse colloidal suspension and the sugar solution) shows the importance of the mutual diffusion coefficient to our understanding of vitrification and suggests a possible distinction between between glass-forming and crystallizing solutions.
Collapse
Affiliation(s)
- Stephen D W Hannam
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, GPO Box 2476, Melbourne Victoria 3001, Australia
| | - Peter J Daivis
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, GPO Box 2476, Melbourne Victoria 3001, Australia
| | - Gary Bryant
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, GPO Box 2476, Melbourne Victoria 3001, Australia
| |
Collapse
|
49
|
Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5909524. [PMID: 30805009 PMCID: PMC6360551 DOI: 10.1155/2019/5909524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.
Collapse
|
50
|
Omedi JO, Huang W, Zhang B, Li Z, Zheng J. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends-A review. Cereal Chem 2019. [DOI: 10.1002/cche.10122] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jacob O. Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
- MagiBake GS International; Jinjiang; Quanzhou China
| | - Zhibin Li
- MagiBake GS International; Jinjiang; Quanzhou China
| | | |
Collapse
|