1
|
Vincent A, Krishnakumar S, Parameswaran S. Monoallelic loss of RB1 enhances osteogenic differentiation and delays DNA repair without inducing tumorigenicity. Differentiation 2024; 140:100815. [PMID: 39342657 DOI: 10.1016/j.diff.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The Retinoblastoma (RB1) gene plays a pivotal role in osteogenic differentiation. Our previous study, employing temporal gene expression analysis using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), revealed the deregulation of osteogenic differentiation in patient-derived heterozygous RB1 mutant orbital adipose-derived mesenchymal stem cells (OAMSCs). The study revealed increased Alizarin Red staining, suggesting heightened mineralization without a corresponding increase in osteogenic lineage-specific gene expression. In this study, we performed high-throughput RNA sequencing on RB1+/+ and RB1+/- patient-derived OAMSCs differentiated towards the osteogenic lineage to investigate the pathways and molecular mechanisms. The pathway analysis revealed significant differences in cell proliferation, DNA repair, osteoblast differentiation, and cancer-related pathways in RB1+/- OAMSC-derived osteocytes. These findings were subsequently validated through functional assays. The study revealed that osteogenic differentiation is increased in RB1+/- cells, along with enhanced proliferation of the osteocytes. There were delayed but persistent DNA repair mechanisms in RB1+/- osteocytes, which were sufficient to maintain genomic integrity, thereby preventing or delaying the onset of tumors. This contrasts with our earlier observation of increased mineralization without corresponding gene expression changes, emphasizing the importance of high-throughput analysis over preselected gene set analysis in comprehending functional assay results.
Collapse
Affiliation(s)
- Ambily Vincent
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-Be University, Thanjavur, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Chang CH, Liu F, Militi S, Hester S, Nibhani R, Deng S, Dunford J, Rendek A, Soonawalla Z, Fischer R, Oppermann U, Pauklin S. The pRb/RBL2-E2F1/4-GCN5 axis regulates cancer stem cell formation and G0 phase entry/exit by paracrine mechanisms. Nat Commun 2024; 15:3580. [PMID: 38678032 PMCID: PMC11055877 DOI: 10.1038/s41467-024-47680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
The lethality, chemoresistance and metastatic characteristics of cancers are associated with phenotypically plastic cancer stem cells (CSCs). How the non-cell autonomous signalling pathways and cell-autonomous transcriptional machinery orchestrate the stem cell-like characteristics of CSCs is still poorly understood. Here we use a quantitative proteomic approach for identifying secreted proteins of CSCs in pancreatic cancer. We uncover that the cell-autonomous E2F1/4-pRb/RBL2 axis balances non-cell-autonomous signalling in healthy ductal cells but becomes deregulated upon KRAS mutation. E2F1 and E2F4 induce whereas pRb/RBL2 reduce WNT ligand expression (e.g. WNT7A, WNT7B, WNT10A, WNT4) thereby regulating self-renewal, chemoresistance and invasiveness of CSCs in both PDAC and breast cancer, and fibroblast proliferation. Screening for epigenetic enzymes identifies GCN5 as a regulator of CSCs that deposits H3K9ac onto WNT promoters and enhancers. Collectively, paracrine signalling pathways are controlled by the E2F-GCN5-RB axis in diverse cancers and this could be a therapeutic target for eliminating CSCs.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Feng Liu
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Svenja Hester
- Target Discovery Institute, Nuffield Department of Medicine, Old Road, University of Oxford, Oxford, OX3 7FZ, UK
| | - Reshma Nibhani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - James Dunford
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Aniko Rendek
- Department of Histopathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Zahir Soonawalla
- Department of Hepatobiliary and Pancreatic Surgery, Oxford University Hospitals NHS, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Old Road, University of Oxford, Oxford, OX3 7FZ, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
4
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
5
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
6
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
7
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Krishnan B, Sanidas I, Dyson NJ. Seeing is believing: the impact of RB on nuclear organization. Cell Cycle 2023; 22:1357-1366. [PMID: 37139582 DOI: 10.1080/15384101.2023.2206352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) prevents G1 to S cell cycle transition by inhibiting E2F activity. This function requires that RB remains un- or underphosphorylated (the so-called active forms of RB). Recently, we showed that active forms of RB cause widespread changes in nuclear architecture that are visible under a microscope. These phenotypes did not correlate with cell cycle arrest or repression of the E2F transcriptional program, but appeared later, and were associated with the appearance of autophagy or in IMR-90 cells with senescence markers. In this perspective, we describe the relative timing of these RB-induced events and discuss the mechanisms that may underlie RB-induced chromatin dispersion. We consider the relationship between RB-induced dispersion, autophagy, and senescence and the potential connection between dispersion and cell cycle exit.
Collapse
Affiliation(s)
- Badri Krishnan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
10
|
Tian L, Lu L, Meng Y. Bone Marrow Stromal Stem Cell Fate Decision: A Potential Mechanism For Bone Marrow Adipose Increase with Aging-related Osteoporosis. Curr Mol Med 2023; 23:1046-1057. [PMID: 36284390 DOI: 10.2174/1566524023666221025104629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Osteoporosis is a systemic bone disease that seriously threatens the health and quality of life in middle-aged and older adults. In this review, we describe the relationship between bone marrow adipose tissue and aging osteoporosis and mainly focus on bone marrow mesenchymal stem cell osteogenic-adipose differentiation fate with aging along with the relevant mechanisms responsible for these changes. METHODS We summarized recent advances in regulating the bone marrow mesenchymal stem cell differentiation due to aging in this review. RESULTS Aging-related bone mass loss is accompanied by expanding bone marrow adipose because of an imbalance of bone marrow mesenchymal stem cell differentiation, resulting in adipogenesis. Ectopic adipocytes in the bone marrow increase with age and are a key factor responsible for the aging-related bone mass decrease. Transcription factors and classical regulating pathways are involved in this process during aging. CONCLUSION As the global aging population increases, not only older women but also older men face a great fracture risk. Therefore, finding molecular mechanisms controlling the stimulating adipogenesis in BMSC during aging is important for providing the new cue for prevention and therapeutics for aging-related bone loss. Furthermore, upon physical examination of older people, except for the bone mineral density and bone turnover biochemical marker, the bone marrow adipose measurement should be taken into account when assessing the fracture risk and treatment plan that will be beneficial in clinical practice.
Collapse
Affiliation(s)
- Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Lingyun Lu
- Department of Integrated Traditional Chinese and Western Medicine. West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yang Meng
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:14480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
12
|
Sanidas I, Lee H, Rumde PH, Boulay G, Morris R, Golczer G, Stanzione M, Hajizadeh S, Zhong J, Ryan MB, Corcoran RB, Drapkin BJ, Rivera MN, Dyson NJ, Lawrence MS. Chromatin-bound RB targets promoters, enhancers, and CTCF-bound loci and is redistributed by cell-cycle progression. Mol Cell 2022; 82:3333-3349.e9. [PMID: 35981542 PMCID: PMC9481721 DOI: 10.1016/j.molcel.2022.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Hanjun Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gaylor Boulay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Marcelo Stanzione
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Soroush Hajizadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Meagan B Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Benjamin J Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies. Proc Natl Acad Sci U S A 2022; 119:e2117857119. [PMID: 35412907 PMCID: PMC9169787 DOI: 10.1073/pnas.2117857119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rare human hereditary disorders provide unequivocal evidence of the role of gene mutations in human disease pathogenesis and offer powerful insights into their influence on human disease development. Using a hereditary retinoblastoma (RB) patient–derived induced pluripotent stem cell (iPSC) platform, we elucidate the role of pRB/E2F3a in regulating spliceosomal gene expression. Pharmacological inhibition of the spliceosome in RB1-mutant cells preferentially increases splicing abnormalities of genes involved in cancer-promoting signaling and impairs cell proliferation and tumorigenesis. Expression of pRB/E2F3a–regulated spliceosomal proteins is negatively associated with pRB expression and correlates with poor clinical outcomes of osteosarcoma (OS) patients. Our findings strongly indicate that the spliceosome is an “Achilles’ heel” of RB1-mutant OS. The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC–derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a–regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.
Collapse
|
14
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
15
|
Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina (B Aires) 2021; 58:medicina58010061. [PMID: 35056369 PMCID: PMC8779043 DOI: 10.3390/medicina58010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are stem cells with the potential ability to differentiate into various cells and the ability to self-renew and resemble fibroblasts. These cells can adhere to plastic to facilitate the culture process. MSCs can be used in research into tissue biotechnology and rejuvenation medicine. MSCs are also beneficial in recipient tissue and differentiate as a breakthrough strategy through paracrine activity. Many databases have shown MSC-based treatment can be beneficial in the reduction of osteogenesis induced by senescence. In this article, we will discuss the potential effect of MSCs in senescence cells related to osteogenesis.
Collapse
|
16
|
Xu C, Wang M, Zandieh-Doulabi B, Sun W, Wei L, Liu Y. To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Front Cell Dev Biol 2021; 9:740783. [PMID: 34869325 PMCID: PMC8635864 DOI: 10.3389/fcell.2021.740783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.
Collapse
Affiliation(s)
- Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Zhang Y, Jing X, Li Z, Tian Q, Wang Q, Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res 2021; 16:652. [PMID: 34717687 PMCID: PMC8557618 DOI: 10.1186/s13018-021-02804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. METHODS In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. RESULTS The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3'-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. CONCLUSION Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuran Jing
- Department of Molecular Laboratory, Qingdao, Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Zhongzhu Li
- Department of Clinical Laboratory, Pingyi Hospital of Traditional Chinese Medicine, Linyi, 273300, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
19
|
Zhu Y, Chen QY, Jordan A, Sun H, Roy N, Costa M. RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 2021; 46:154. [PMID: 34109987 DOI: 10.3892/or.2021.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| |
Collapse
|
20
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
21
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
22
|
Alper M, Aydemir T, Köçkar F. USF1 Suppresses Expression of Fibrillar Type I, II, and III Collagen and pNP Adamts-3 in Osteosarcoma Cells. Mol Biol 2021. [DOI: 10.1134/s0026893321030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Vincent A, Natarajan V, Khetan V, Krishnakumar S, Parameswaran S. Heterozygous retinoblastoma gene mutation compromises in vitro osteogenesis of adipose mesenchymal stem cells - a temporal gene expression study. Exp Cell Res 2020; 396:112263. [PMID: 32890459 DOI: 10.1016/j.yexcr.2020.112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022]
Abstract
Osteosarcoma (OS) is a bone malignancy affecting children and adolescents. Retinoblastoma (RB) patients with germline RB1 mutations are susceptible to osteosarcoma in the second decade of their life. Several studies, particularly in mice, have revealed a role for RB1 in osteogenesis. Since, there is species specific difference attributed in retinoblastoma tumorigenesis between mice and human, we assumed, it is worthwhile exploring the role of RB1 in osteogenesis and thus onset of osteosarcoma. In this study, we analyzed the temporal gene expression of the osteogenic markers, tumor suppressor genes and hormone receptors associated with growth spurt during in vitro osteogenesis of mesenchymal stem cells derived from orbital adipose tissue of germline RB patients and compared it with those with wild type RB1 gene. Mesenchymal stem cells with the heterozygous RB1 mutation showed reduced expression of RB1 and other tumor suppressor genes and showed deregulation of osteogenic markers which could be an initial step for the onset of osteosarcoma.
Collapse
Affiliation(s)
- Ambily Vincent
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Medical Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.
| |
Collapse
|
24
|
Retinoblastoma Tumor Suppressor Protein Roles in Epigenetic Regulation. Cancers (Basel) 2020; 12:cancers12102807. [PMID: 33003565 PMCID: PMC7600434 DOI: 10.3390/cancers12102807] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancers. In retinoblastoma, tumor progression is driven by epigenetic changes following pRB loss. This review focuses on the diverse functions of pRB in epigenetic regulation. Abstract Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles. In this review, we discuss the diverse functions of pRB in epigenetic regulation including nucleosome mobilization, histone modifications, DNA methylation and non-coding RNAs.
Collapse
|
25
|
Yu W, Zheng Y, Li H, Lin H, Chen Z, Tian Y, Chen H, Zhang P, Xu X, Shen Y. The Toll-like receptor ligand, CpG oligodeoxynucleotides, regulate proliferation and osteogenic differentiation of osteoblast. J Orthop Surg Res 2020; 15:327. [PMID: 32795334 PMCID: PMC7427903 DOI: 10.1186/s13018-020-01844-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the regulation of CpG oligodeoxynucleotides (ODNs) on proliferation and osteogenic differentiation of MC3T3 cells. METHODS The laser co-focusing and flow cytometry assay were employed to detect cell uptake of CpG ODN 2006. Twelve ODNs were sythesized, and their effects on proliferation and differentiation were detected by MTT and alkaline phosphatase (ALP) activity assay. Flow cytometry assay was used to examine the regulation of CpG ODN on cell cycle. Quantitative real-time PCR (qRT-PCR) and western blot were used to evaluate the regulation of CpG ODN on mRNA and protein expression of osteogenic differentiation genes. RESULTS The phosphorothioate CpG ODN 2006 could efficiently enter the MC3T3 cells in 1 h and locate in the cytoplasm. The MTT assay demonstrated CpG ODNs could promote MC3T3 cell proliferation and differentiation in the early stage, and gradually attenuated along with the increase of treating time, except for BW001 and FC001. qRT-PCR assay demonstrated that all the 12 CpG ODNs could promote the relative expression level of osteogenic differentiated genes, SP7 and OCN. In addition, western blot analysis suggested the CpG ODNs of BW001 and FC001 could increase the protein expression of P27Kip1 and Runx2 and decrease the protein expression of cyclin D1. CONCLUSION The selected CpGODNs may be a potential gene therapy for bone regeneration of periodontitis.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
- Department of Orthodontics, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction; Tianjin Stomatological Hospital; Hospital of Stomatology, Nankai University, 75 Dagu North Road, Tianjin, 300041, China
| | - Yi Zheng
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Hongyan Li
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Hongbing Lin
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Zhen Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Yue Tian
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Huishan Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Peipei Zhang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Xiaowei Xu
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China
| | - Yuqin Shen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, China.
| |
Collapse
|
26
|
Cell stemness is maintained upon concurrent expression of RB and the mitochondrial ribosomal protein S18-2. Proc Natl Acad Sci U S A 2020; 117:15673-15683. [PMID: 32571933 PMCID: PMC7355020 DOI: 10.1073/pnas.1922535117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stemness encompasses the capability of a cell for self-renewal and differentiation. The stem cell maintains a balance between proliferation, quiescence, and regeneration via interactions with the microenvironment. Previously, we showed that ectopic expression of the mitochondrial ribosomal protein S18-2 (MRPS18-2) led to immortalization of primary fibroblasts, accompanied by induction of an embryonic stem cell (ESC) phenotype. Moreover, we demonstrated interaction between S18-2 and the retinoblastoma-associated protein (RB) and hypothesized that the simultaneous expression of RB and S18-2 is essential for maintaining cell stemness. Here, we experimentally investigated the role of S18-2 in cell stemness and differentiation. Concurrent expression of RB and S18-2 resulted in immortalization of Rb1 -/- primary mouse embryonic fibroblasts and in aggressive tumor growth in severe combined immunodeficiency mice. These cells, which express both RB and S18-2 at high levels, exhibited the potential to differentiate into various lineages in vitro, including osteogenic, chondrogenic, and adipogenic lineages. Mechanistically, S18-2 formed a multimeric protein complex with prohibitin and the ring finger protein 2 (RNF2). This molecular complex increased the monoubiquitination of histone H2ALys119, a characteristic trait of ESCs, by enhanced E3-ligase activity of RNF2. Furthermore, we found enrichment of KLF4 at the S18-2 promoter region and that the S18-2 expression is positively correlated with KLF4 levels. Importantly, knockdown of S18-2 in zebrafish larvae led to embryonic lethality. Collectively, our findings suggest an important role for S18-2 in cell stemness and differentiation and potentially also in cancerogenesis.
Collapse
|
27
|
Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int J Mol Sci 2020; 21:E4283. [PMID: 32560163 PMCID: PMC7349855 DOI: 10.3390/ijms21124283] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
The formation of adipocytes during embryogenesis has been largely understudied. However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation (adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists of two phases, namely commitment and terminal differentiation. This review discusses the role of signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and differentiation into mature adipocytes, as well as limitations in our understanding of these processes. To date, a limited number of transcription factors, genes and signalling pathways have been described to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis have used preadipocytes already committed to the adipogenic lineage, which are therefore not suitable for studying preadipocyte commitment. Conversely, over a dozen molecular players including transcription factors, genes, signalling pathways, epigenetic regulators, and microRNAs have been described to be involved in the differentiation of preadipocytes to adipocytes; however, only peroxisome proliferator-activated receptor gamma has proven to be clinically relevant. A detailed understanding of how the molecular players underpinning adipogenesis relate to adipose tissue function could provide new therapeutic approaches for addressing obesity without compromising adipose tissue function.
Collapse
Affiliation(s)
- Melvin A. Ambele
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Priyanka Dhanraj
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Rachel Giles
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Michael S. Pepper
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| |
Collapse
|
28
|
Zappia MP, Rogers A, Islam ABMMK, Frolov MV. Rbf Activates the Myogenic Transcriptional Program to Promote Skeletal Muscle Differentiation. Cell Rep 2020; 26:702-719.e6. [PMID: 30650361 PMCID: PMC6344057 DOI: 10.1016/j.celrep.2018.12.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/18/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022] Open
Abstract
The importance of the retinoblastoma tumor suppressor protein pRB in cell cycle control is well established. However, less is known about its role in differentiation during animal development. Here, we investigated the role of Rbf, the Drosophila pRB homolog, in adult skeletal muscles. We found that the depletion of Rbf severely reduced muscle growth and altered myofibrillogenesis but only minimally affected myoblast proliferation. We identified an Rbf-dependent transcriptional program in late muscle development that is distinct from the canonical role of Rbf in cell cycle control. Unexpectedly, Rbf acts as a transcriptional activator of the myogenic and metabolic genes in the growing muscles. The genomic regions bound by Rbf contained the binding sites of several factors that genetically interacted with Rbf by modulating Rbf-dependent phenotype. Thus, our results reveal a distinctive role for Rbf as a direct activator of the myogenic transcriptional program that drives late muscle differentiation. Inactivation of the tumor suppressor RB, an obligatory step in most cancers, results in unrestrained cell cycle progression. Zappia et al. show that Rbf, the RB Drosophila ortholog, directly activates the metabolic program that accompanies muscle development. This work expands the understanding of the plethora of Rbf functions.
Collapse
Affiliation(s)
- Maria Paula Zappia
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Alice Rogers
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | - Abul B M M K Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Greenspan LJ, Matunis EL. Retinoblastoma Intrinsically Regulates Niche Cell Quiescence, Identity, and Niche Number in the Adult Drosophila Testis. Cell Rep 2019; 24:3466-3476.e8. [PMID: 30257208 PMCID: PMC6226258 DOI: 10.1016/j.celrep.2018.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Homeostasis in adult tissues depends on the precise regulation of stem cells and their surrounding microenvironments, or niches. Here, we show that the cell cycle inhibitor and tumor suppressor Retinoblastoma (RB) is a critical regulator of niche cells in the Drosophila testis. The testis contains a single niche, composed of somatic hub cells, that signals to adjacent germline and somatic stem cells. Hub cells are normally quiescent, but knockdown of the RB homolog Rbf in these cells causes them to proliferate and convert to somatic stem cells. Over time, mutant hub cell clusters enlarge and split apart, forming ectopic hubs surrounded by active stem cells. Furthermore, we show that Rbf’s ability to restrict niche number depends on the transcription factors E2F and Escargot and the adhesion molecule E-cadherin. Together this work reveals how precise modulation of niche cells, not only the stem cells they support, can drive regeneration and disease. Greenspan and Matunis find that the tumor suppressor Retinoblastoma is required in niche cells to maintain quiescence, cell fate, and niche number. Loss of Retinoblastoma causes niche cell divisions, conversion to somatic stem cells, and ectopic niche formation through niche fission, suggesting that mutations in niche cells may drive disease.
Collapse
Affiliation(s)
- Leah J Greenspan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Cheng B, Zhang H, Liu C, Chen X, Chen Y, Sun Y, Leng L, Li Y, Luan P, Li H. Functional Intronic Variant in the Retinoblastoma 1 Gene Underlies Broiler Chicken Adiposity by Altering Nuclear Factor-kB and SRY-Related HMG Box Protein 2 Binding Sites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9727-9737. [PMID: 31398034 DOI: 10.1021/acs.jafc.9b01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study aimed to search for chicken abdominal fat deposition-related polymorphisms within RB1 and to provide functional evidence for significantly associated genetic variants. Association analyses showed that 11 single nucleotide polymorphisms (SNPs) in intron 17 of RB1, were significantly associated with both abdominal fat weight (P < 0.05) and abdominal fat percentage (P < 0.05). Functional analysis revealed that the A allele of g.32828A>G repressed the transcriptional efficiency of RB1 in vitro, through binding nuclear factor-kappa B (NF-KB) and SRY-related HMG box protein 2 (SOX2). Furthermore, RB1 mRNA expression levels in the abdominal fat tissue of individuals with the A/A genotype of g.32828A>G were lower than those of individuals with the G/G genotype. Collectively, we propose that the intronic SNP g.32828A>G of RB1 is an obesity-associated variant that directly affects binding with NF-KB and SOX2, leading to changes in RB1 expression which in turn may influence chicken abdominal fat deposition.
Collapse
Affiliation(s)
- Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Xi Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yaofeng Chen
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yuhang Sun
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding , Ministry of Agriculture and Rural Affairs , Harbin 150030 , Heilongjiang , China
- Key Laboratory of Animal Genetics, Breeding and Reproduction , Education Department of Heilongjiang Province , Harbin 150030 , Heilongjiang , China
- College of Animal Science and Technology , Northeast Agricultural University , Harbin 150030 , Heilongjiang , China
| |
Collapse
|
31
|
Tosa I, Yamada D, Yasumatsu M, Hinoi E, Ono M, Oohashi T, Kuboki T, Takarada T. Postnatal Runx2 deletion leads to low bone mass and adipocyte accumulation in mice bone tissues. Biochem Biophys Res Commun 2019; 516:1229-1233. [DOI: 10.1016/j.bbrc.2019.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
|
32
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
33
|
Huang KC, Huang TW, Chuang PY, Yang TY, Chang SF. Zoledronate induces cell cycle arrest and differentiation by upregulating p21 in mouse MC3T3-E1 preosteoblasts. Int J Med Sci 2019; 16:751-756. [PMID: 31217743 PMCID: PMC6566742 DOI: 10.7150/ijms.32612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Increasing research has recently been focused on the supplementary use of drugs such as bisphosphonates that are known to influence bone turnover to prevent and treat periprosthetic bone loss and subsequent implant loosening following total joint replacements. However, there are still concerns about the conflicting effects of bisphosphonate treatment on osteoblastic bone formation in the literature. Methods: In this study, we investigate the role of zoledronate (ZOL) in regulating cell cycle distribution and differentiation in mouse MC3T3-E1 preosteoblasts and also explore the mechanism underlying this effect of ZOL. We examined the expression levels of osteocalcin (OCN) by quantitative polymerase chain reaction (qPCR), the total amount of CDK6, p21 and p27 proteins by Western blot analysis, and the cell cycle distribution by flow cytometric analysis in mouse MC3T3-E1 preosteoblasts to evaluate the effect of ZOL. Small interfering RNAs (siRNAs) were used to assess the individual contributions of genes to specific osteoblast phenotypes. Results: In addition to increased OCN expression, we found that ZOL treatment induces the G0/G1 arrest and results in the increase of p21 and p27 expressions and decrease of CDK6 expression in mouse MC3T3-E1 preosteoblasts. Both p21 and p27 mediates ZOL-induced cell cycle exit; however, p21, but not p27, is responsible for the increase of ZOL-induced OCN expression in these cells. Conclusions: These results endorse that ZOL might have an anabolic effect on osteoblasts. The CDK inhibitor p21 plays a key role in regulating osteoblast differentiation by controlling proliferation-related events in mouse MC3T3-E1 preosteoblasts.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan.,Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan
| | - Tsan-Wen Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Po-Yao Chuang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Tien-Yu Yang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| |
Collapse
|
34
|
Takahashi A, Mulati M, Saito M, Numata H, Kobayashi Y, Ochi H, Sato S, Kaldis P, Okawa A, Inose H. Loss of cyclin-dependent kinase 1 impairs bone formation, but does not affect the bone-anabolic effects of parathyroid hormone. J Biol Chem 2018; 293:19387-19399. [PMID: 30366983 DOI: 10.1074/jbc.ra118.004834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
Bone mass is maintained by a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Although recent genetic studies have uncovered various mechanisms that regulate osteoblast differentiation, the molecular basis of osteoblast proliferation remains unclear. Here, using an osteoblast-specific loss-of-function mouse model, we demonstrate that cyclin-dependent kinase 1 (Cdk1) regulates osteoblast proliferation and differentiation. Quantitative RT-PCR analyses revealed that Cdk1 is highly expressed in bone and is down-regulated upon osteoblast differentiation. We also noted that Cdk1 is dispensable for the bone-anabolic effects of parathyroid hormone (PTH). Cdk1 deletion in osteoblasts led to osteoporosis in adult mice due to low bone formation, but did not affect osteoclast formation in vivo Cdk1 overexpression in osteoblasts promoted proliferation, and conversely, Cdk1 knockdown inhibited osteoblast proliferation and promoted differentiation. Of note, we provide direct evidence that PTH's bone-anabolic effects occur without enhancing osteoblast proliferation in vivo Furthermore, we found that Cdk1 expression in osteoblasts is essential for bone fracture repair. These findings may help reduce the risk of nonunion after bone fracture and identify patients at higher risk for nonresponse to PTH treatment. Collectively, our results indicate that Cdk1 is essential for osteoblast proliferation and that it functions as a molecular switch that shifts osteoblast proliferation to maturation. We therefore conclude that Cdk1 plays an important role in bone formation.
Collapse
Affiliation(s)
- Akira Takahashi
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Mieradili Mulati
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masanori Saito
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hoashi Numata
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yutaka Kobayashi
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiroki Ochi
- the Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shingo Sato
- the Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Philipp Kaldis
- the Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Republic of Singapore, and.,the Department of Biochemistry, National University of Singapore (NUS), Singapore 117597, Republic of Singapore
| | - Atsushi Okawa
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiroyuki Inose
- From the Department of Orthopedics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan,
| |
Collapse
|
35
|
Brough R, Gulati A, Haider S, Kumar R, Campbell J, Knudsen E, Pettitt SJ, Ryan CJ, Lord CJ. Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer. Oncogene 2018; 37:5701-5718. [PMID: 29915391 PMCID: PMC6202330 DOI: 10.1038/s41388-018-0368-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
Abstract
Although defects in the RB1 tumour suppressor are one of the more common driver alterations found in triple-negative breast cancer (TNBC), therapeutic approaches that exploit this have not been identified. By integrating molecular profiling data with data from multiple genetic perturbation screens, we identified candidate synthetic lethal (SL) interactions associated with RB1 defects in TNBC. We refined this analysis by identifying the highly penetrant effects, reasoning that these would be more robust in the face of molecular heterogeneity and would represent more promising therapeutic targets. A significant proportion of the highly penetrant RB1 SL effects involved proteins closely associated with RB1 function, suggesting that this might be a defining characteristic. These included nuclear pore complex components associated with the MAD2 spindle checkpoint protein, the kinase and bromodomain containing transcription factor TAF1, and multiple components of the SCFSKP Cullin F box containing complex. Small-molecule inhibition of SCFSKP elicited an increase in p27Kip levels, providing a mechanistic rationale for RB1 SL. Transcript expression of SKP2, a SCFSKP component, was elevated in RB1-defective TNBCs, suggesting that in these tumours, SKP2 activity might buffer the effects of RB1 dysfunction.
Collapse
Affiliation(s)
- Rachel Brough
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
| | - Rahul Kumar
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - James Campbell
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Erik Knudsen
- Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Stephen J Pettitt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.
- School of Computer Science, University College Dublin, Dublin, Ireland.
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, SW3 6JB, UK.
- CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
36
|
Miller RE, Uwamahoro N, Park JH. PPM1B depletion in U2OS cells supresses cell growth through RB1-E2F1 pathway and stimulates bleomycin-induced cell death. Biochem Biophys Res Commun 2018; 500:391-397. [DOI: 10.1016/j.bbrc.2018.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
|
37
|
Delou JMA, Biasoli D, Borges HL. The Complex Link between Apoptosis and Autophagy: a Promising New Role for RB. AN ACAD BRAS CIENC 2018; 88:2257-2275. [PMID: 27991962 DOI: 10.1590/0001-3765201620160127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Physiological processes, as autophagy, proliferation and apoptosis are affected during carcinogenesis. Restoring cellular sensitivity to apoptotic stimuli, such as the antineoplastic cocktails, has been explored as a strategy to eliminate cancer cells. Autophagy, a physiological process of recycling organelles and macromolecules can be deviated from homeostasis to support cancer cells survival, proliferation, escape from apoptosis, and therapy resistance. The relationship between autophagy and apoptosis is complex and many stimuli can induce both processes. Most chemotherapeutic agents induce autophagy and it is not clear whether and how this chemotherapy-induced autophagy might contribute to resistance to apoptosis. Here, we review current strategies to sensitize cancer cells by interfering with autophagy. Moreover, we discuss a new link between autophagy and apoptosis: the tumor suppressor retinoblastoma protein (RB). Inactivation of RB is one of the earliest and more frequent hallmarks of cancer transformation, known to control cell cycle progression and apoptosis. Therefore, understanding RB functions in controlling cell fate is essential for an effective translation of RB status in cancer samples to the clinical outcome.
Collapse
Affiliation(s)
- João M A Delou
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| | - Deborah Biasoli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| | - Helena L Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Conditional deletion of RB1 in the Tie2 lineage leads to aortic valve regurgitation. PLoS One 2018; 13:e0190623. [PMID: 29304157 PMCID: PMC5755794 DOI: 10.1371/journal.pone.0190623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023] Open
Abstract
Objective Aortic valve disease is a complex process characterized by valve interstitial cell activation, disruption of the extracellular matrix culminating in valve mineralization occurring over many years. We explored the function of the retinoblastoma protein (pRb) in aortic valve disease, given its critical role in mesenchymal cell differentiation including bone development and mineralization. Approach and results We generated a mouse model of conditional pRb knockout (cKO) in the aortic valve regulated by Tie2-Cre-mediated excision of floxed RB1 alleles. Aged pRb cKO animals showed significantly more aortic valve regurgitation by echocardiography compared to pRb het control animals. The pRb cKO aortic valves had increased leaflet thickness without increased cellular proliferation. Histologic studies demonstrated intense α-SMA expression in pRb cKO leaflets associated with disorganized extracellular matrix and increased leaflet stiffness. The pRb cKO mice also showed increased circulating cytokine levels. Conclusions Our studies demonstrate that pRb loss in the Tie2-lineage that includes aortic valve interstitial cells is sufficient to cause age-dependent aortic valve dysfunction.
Collapse
|
39
|
Pérez-Morales J, Núñez-Marrero A, Santiago-Cardona PG. Immunohistochemical Detection of Retinoblastoma Protein Phosphorylation in Human Tumor Samples. Methods Mol Biol 2018; 1726:77-84. [PMID: 29468545 DOI: 10.1007/978-1-4939-7565-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The retinoblastoma protein (pRb) is an important tumor suppressor and cell cycle repressor. pRb is a phosphoprotein whose function is regulated primarily at the level of phosphorylation, and therefore, detecting pRb's phosphorylation status in human tissue samples can be clinically informative. Unfortunately, detection of phosphorylated pRb residues can be technically challenging, as these residues can often be weak antigens. In this chapter, we describe an enhanced sensitivity immunohistochemistry protocol for the staining of phosphorylated serine 249 in pRb, in human lung tumor samples.
Collapse
Affiliation(s)
- Jaileene Pérez-Morales
- Biochemistry and Cancer Biology Divisions, Basic Science Department, Ponce Health Sciences University, Ponce, Puerto Rico.
| | - Angel Núñez-Marrero
- Biochemistry and Cancer Biology Divisions, Basic Science Department, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Pedro G Santiago-Cardona
- Biochemistry and Cancer Biology Divisions, Basic Science Department, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
40
|
Abstract
The retinoblastoma tumor suppressor protein (pRb) is a preeminent tumor suppressor that acts as a cell cycle repressor, specifically as an inhibitor of the G1-S transition of the cell cycle . pRb is a phosphoprotein whose function is repressed by extensive phosphorylation in several key residues, and therefore, pRb's phosphorylation status has become a surrogate for pRb activity. In particular, hyperphosphorylation of pRb has been associated with pathological states such as cancer, and therefore, assessing pRb's phosphorylation status is increasingly gaining diagnostic and prognostic value, may be used to inform therapeutic decisions, and is also an important tool for the cancer biologists seeking an understanding of the molecular etiology of cancer. In this chapter, we discuss an immunoblot protocol to detect pRb phosphorylation in two residues, serine 612 and threonine 821, in protein extracts from cancer cells.
Collapse
|
41
|
Yu L, Ma X, Sun J, Tong J, Shi L, Sun L, Zhang J. Fluid shear stress induces osteoblast differentiation and arrests the cell cycle at the G0 phase via the ERK1/2 pathway. Mol Med Rep 2017; 16:8699-8708. [PMID: 28990082 PMCID: PMC5779962 DOI: 10.3892/mmr.2017.7720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated that fluid shear stress (FSS) may promote the proliferation and differentiation of osteoblast cells. However, proliferation and differentiation are mutually exclusive processes and are unlikely to be promoted by FSS simultaneously. Cell proliferation and differentiation induced by FSS has rarely been reported. In order to provide an insight into this process, the present study investigated the effects of FSS on osteoblast‑like MC3T3 cells in the G0/G1 phase, the period during which the fate of a cell is determined. The results of the present study demonstrated that FSS promoted alkaline phosphatase (ALP) activity, and the mRNA expression and protein expression of osteocalcin, collagen type I and runt‑related transcription factor 2 (Runx2), while inhibiting DNA synthesis and arresting the cell cycle at the G0/G1 phase. The increase in Runx2 and ALP activity was accompanied by the activation of calcium/calmodulin‑dependent protein kinase type II (CaMK II) and extracellular signal‑regulated kinases 1/2 (ERK1/2), which was completely abolished by treatment with KN93 and U0126, respectively. In addition, the inhibition of ERK1/2, although not CaMK II, decreased p21Cip/Kip activity, resulting in an increase in cell number and S phase re‑entry. The results of the present study indicated that in the G0/G1 phase, FSS promoted osteoblast differentiation via the CaMK II and ERK1/2 signaling pathways, and blocked the cell cycle at the G0/G1 phase via the ERK1/2 pathway only. The present findings provided an increased understanding of osteoblastic mechanobiology.
Collapse
Affiliation(s)
- Liyin Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xingfeng Ma
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Junqin Sun
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jie Tong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Liang Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
42
|
Zhang D, Shen B, Zhang Y, Ni N, Wang Y, Fan X, Sun H, Gu P. Betacellulin regulates the proliferation and differentiation of retinal progenitor cells in vitro. J Cell Mol Med 2017; 22:330-345. [PMID: 28922560 PMCID: PMC5742713 DOI: 10.1111/jcmm.13321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/21/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal progenitor cells (RPCs) hold great potential for the treatment of retinal degenerative diseases. However, their proliferation capacity and differentiation potential towards specific retinal neurons are limited, which limit their future clinical applications. Thus, it is important to improve the RPCs’ ability to proliferate and differentiate. Currently, epidermal growth factor (EGF) is commonly used to stimulate RPC growth in vitro. In this study, we find that betacellulin (BTC), a member of the EGF family, plays important roles in the proliferation and differentiation of RPCs. Our results showed that BTC can significantly promote the proliferation of RPCs more efficiently than EGF. EGF stimulated RPC proliferation through the EGFR/ErbB2‐Erk pathway, while BTC stimulated RPC proliferation more powerfully through the EGFR/ErbB2/ErbB4‐Akt/Erk pathway. Meanwhile, under differentiated conditions, the BTC‐pre‐treated RPCs were preferentially differentiated into retinal neurons, including photoreceptors, one of the most important types of cells for retinal cell replacement therapy, compared to the EGF‐pre‐treated RPCs. In addition, knockdown of endogenous BTC expression can also obviously promote RPC differentiation into retinal neuronal cells. This data demonstrate that BTC plays important roles in promoting RPC proliferation and differentiation into retinal neurons. This study may provide new insights into the study of RPC proliferation and differentiation and make a step towards the application of RPCs in the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Runx3 plays a critical role in restriction-point and defense against cellular transformation. Oncogene 2017; 36:6884-6894. [PMID: 28846108 PMCID: PMC5735299 DOI: 10.1038/onc.2017.290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022]
Abstract
The restriction (R)-point decision is fundamental to normal differentiation and the G1-S transition, and the decision-making machinery is perturbed in nearly all cancer cells. The mechanisms underlying the cellular context-dependent R-point decision remain poorly understood. We found that the R-point was dysregulated in Runx3-/-mouse embryonic fibroblasts (MEFs), which formed tumors in nude mice. Ectopic expression of Runx3 restored the R-point and abolished the tumorigenicity of Runx3-/-MEFs and K-Ras-activated Runx3-/-MEFs (Runx3-/-;K-RasG12D/+). During the R-point, Runx3 transiently formed a complex with pRb and Brd2 and induced Cdkn1a (p21Waf1/Cip1/Sdi1; p21), a key regulator of the R-point transition. Cyclin D-CDK4/6 promoted dissociation of the pRb-Runx3-Brd2 complex, thus turning off p21 expression. However, cells harboring oncogenic K-Ras maintained the pRb-Runx3-Brd2 complex and p21 expression even after introduction of Cyclin D1. Thus, Runx3 plays a critical role in R-point regulation and defense against cellular transformation.
Collapse
|
44
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
45
|
Meserve JH, Duronio RJ. A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye. Dev Biol 2017. [PMID: 28645749 DOI: 10.1016/j.ydbio.2017.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell cycle progression and differentiation are highly coordinated during the development of multicellular organisms. The mechanisms by which these processes are coordinated and how their coordination contributes to normal development are not fully understood. Here, we determine the developmental fate of a population of precursor cells in the developing Drosophila melanogaster retina that arrest in G2 phase of the cell cycle and investigate whether cell cycle phase-specific arrest influences the fate of these cells. We demonstrate that retinal precursor cells that arrest in G2 during larval development are selected as sensory organ precursors (SOPs) during pupal development and undergo two cell divisions to generate the four-cell interommatidial mechanosensory bristles. While G2 arrest is not required for bristle development, preventing G2 arrest results in incorrect bristle positioning in the adult eye. We conclude that G2-arrested cells provide a positional cue during development to ensure proper spacing of bristles in the eye. Our results suggest that the control of cell cycle progression refines cell fate decisions and that the relationship between these two processes is not necessarily deterministic.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Abstract
In this review, Dyson summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients? The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene to be molecularly defined. RB1 mutations occur in almost all familial and sporadic forms of retinoblastoma, and this gene is mutated at variable frequencies in a variety of other human cancers. Because of its early discovery, the recessive nature of RB1 mutations, and its frequency of inactivation, RB1 is often described as a prototype for the class of tumor suppressor genes. Its gene product (pRB) regulates transcription and is a negative regulator of cell proliferation. Although these general features are well established, a precise description of pRB's mechanism of action has remained elusive. Indeed, in many regards, pRB remains an enigma. This review summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients?
Collapse
|
47
|
Abstract
Hereditary bone tumors are rare and result from mutations affecting cell cycle regulation (e.g. retinoblastoma syndrome/RB1 and Li-Fraumeni syndrome/TP53, Gardner syndrome/APC), energy metabolism (enchondromatosis/IDH1/2), complex signaling cascades (multiple hereditary exostoses/EXT1/2) and DNA integrity (Rothmund-Thomson/RECQL4, Werner/WRN and Bloom syndromes/BLM). The majority of syndromes are incompletely understood and can lead to multiple benign tumors, of which some might undergo secondary malignant transformation over time (enchondromatosis: enchondromas, multiple hereditary exostoses: osteochondromas, Gardner syndrome: osteomas) or bone sarcomas, primarily osteosarcomas as primary (Li-Fraumeni, Rothmund-Thomson, Werner and Bloom syndromes) or secondary manifestation (retinoblastoma syndrome) of the disease. Some syndromes additionally predispose to the development of a variety of other malignant tumors during life. Compared to sporadically occurring tumors, syndrome-related neoplasms can differ in the time of manifestation, site and histology, which can help in recognizing a specific tumor predisposition syndrome.
Collapse
Affiliation(s)
- D Baumhoer
- Institut für Pathologie, Knochentumor-Referenzzentrum, Universitätsspital Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz.
| |
Collapse
|
48
|
Hutcheson J, Witkiewicz AK, Knudsen ES. The RB tumor suppressor at the intersection of proliferation and immunity: relevance to disease immune evasion and immunotherapy. Cell Cycle 2016; 14:3812-9. [PMID: 25714546 DOI: 10.1080/15384101.2015.1010922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) was the first identified tumor suppressor based on germline predisposition to the pediatric eye tumor. Since these early studies, it has become apparent that the functional inactivation of RB is a common event in nearly all human malignancy. A great deal of research has gone into understanding how the loss of RB promotes tumor etiology and progression. Since malignant tumors are characterized by aberrant cell division, much of this research has focused upon the ability of RB to regulate the cell cycle by repression of proliferation-related genes. However, it is progressively understood that RB is an important mediator of multiple functions. One area that is gaining progressive interest is the emerging role for RB in regulating diverse features of immune function. These findings suggest that RB is more than simply a regulator of cellular proliferation; it is at the crossroads of proliferation and the immune response. Here we review the data related to the functional roles of RB on the immune system, relevance to immune evasion, and potential significance to the response to immune-therapy.
Collapse
Affiliation(s)
- Jack Hutcheson
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| | - Agnieszka K Witkiewicz
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA.,b Simmons Cancer Center ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| | - Erik S Knudsen
- a Department of Pathology ; University of Texas Southwestern Medical Center ; Dallas , TX USA.,b Simmons Cancer Center ; University of Texas Southwestern Medical Center ; Dallas , TX USA
| |
Collapse
|
49
|
Commentary on Alfred G. Knudson, Jr.: “Hereditary Cancer, Oncogenes, and Antioncogenes”. Cancer Res 2016; 76:2851-3. [DOI: 10.1158/0008-5472.can-16-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 11/16/2022]
|
50
|
Kohno S, Kitajima S, Sasaki N, Takahashi C. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies. World J Stem Cells 2016; 8:170-84. [PMID: 27114748 PMCID: PMC4835675 DOI: 10.4252/wjsc.v8.i4.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/30/2015] [Accepted: 02/14/2016] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic transformation of somatic cells resembles nuclear reprogramming toward the generation of pluripotent stem cells. These events share eternal escape from cellular senescence, continuous self-renewal in limited but certain population of cells, and refractoriness to terminal differentiation while maintaining the potential to differentiate into cells of one or multiple lineages. As represented by several oncogenes those appeared to be first keys to pluripotency, carcinogenesis and nuclear reprogramming seem to share a number of core mechanisms. The retinoblastoma tumor suppressor product retinoblastoma (RB) seems to be critically involved in both events in highly complicated manners. However, disentangling such complicated interactions has enabled us to better understand how stem cell strategies are shared by cancer cells. This review covers recent findings on RB functions related to stem cells and stem cell-like behaviors of cancer cells.
Collapse
Affiliation(s)
- Susumu Kohno
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Shunsuke Kitajima
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Nobunari Sasaki
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Chiaki Takahashi
- Susumu Kohno, Chiaki Takahashi, Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|