1
|
Wang JB, Du MW, Zheng Y. Effect of ginsenoside Rg1 on hematopoietic stem cells in treating aplastic anemia in mice via MAPK pathway. World J Stem Cells 2024; 16:591-603. [PMID: 38817329 PMCID: PMC11135254 DOI: 10.4252/wjsc.v16.i5.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Aplastic anemia (AA) presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells, with the current therapeutic options being notably limited. AIM To assess the therapeutic potential of ginsenoside Rg1 on AA, specifically its protective effects, while elucidating the mechanism at play. METHODS We employed a model of myelosuppression induced by cyclophosphamide (CTX) in C57 mice, followed by administration of ginsenoside Rg1 over 13 d. The investigation included examining the bone marrow, thymus and spleen for pathological changes via hematoxylin-eosin staining. Moreover, orbital blood of mice was collected for blood routine examinations. Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice. Additionally, the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot. RESULTS Administration of CTX led to significant damage to the bone marrow's structural integrity and a reduction in hematopoietic cells, establishing a model of AA. Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice. In comparison to the AA group, ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX. Furthermore, it helped alleviate the blockade in the cell cycle. Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway. CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression, primarily through modulating the MAPK signaling pathway, which paves the way for a novel therapeutic strategy in treating AA, highlighting the potential of ginsenoside Rg1 as a beneficial intervention.
Collapse
Affiliation(s)
- Jin-Bo Wang
- Internal Medicine of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ming-Wei Du
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yan Zheng
- Department of Hepatic, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023, Zhejiang Province, China.
| |
Collapse
|
2
|
Guan J, Zhao Y, Wang T, Fu R. Traditional Chinese medicine for treating aplastic anemia. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11863. [PMID: 38022904 PMCID: PMC10679336 DOI: 10.3389/jpps.2023.11863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Aplastic anemia (AA) is a bone marrow failure disease caused by T cell hyperfunction. Although the overall response rate has been improved by immunosuppressive therapy (IST) plus Eltrombopag, 30% of patients have either no response or relapse. We therefore attempted to find other ways to improve the outcomes of AA patients. Traditional Chinese medicine has the advantages of low cost, reasonable effects, and few side effects. More and more clinical studies have confirmed that traditional Chinese medicine has a beneficial role in treating AA patients. This article reviews the potential mechanism of traditional Chinese medicine or its active ingredients in the treatment of AA. These include improving the bone marrow microenvironment, regulating immunity, and affecting the fate of hematopoietic stem cells. This provides useful information for further treatment of AA with integration of traditional Chinese and Western medicine and the development of new treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Dong N, Zhang X, Wu D, Hu Z, Liu W, Deng S, Ye B. Medication Regularity of Traditional Chinese Medicine in the Treatment of Aplastic Anemia Based on Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1605359. [PMID: 36062179 PMCID: PMC9436587 DOI: 10.1155/2022/1605359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Objective Aplastic anemia (AA) is an uncommon disease, characterized by pancytopenia and hypocellular bone marrow, but it is common in the blood system. The medication rules of traditional Chinese medicine (TCM) in the treatment of AA are not clear, for which it is worth exploring the medication rules by data mining methods. Methods This study used SPSS Modeler 18.0 and SPSS statistics to analyze the cases of AA from Zhejiang Provincial Hospital of Chinese Medicine (ZJHCM) from March 1, 2019, to March 1, 2022. Data mining methods, including frequency analysis, cluster analysis, and association rule learning, were performed in order to explore the medication rules for AA. Results (1) A total of 859 prescriptions, which met the inclusion criteria, consisted of 255 herbs. In descending order of the frequency of herbal medicine, we have Danggui, Huangqi, Shudihuang, Fuling, Gancao, Shanyao, Shanzhuyu, Baizhu, Dangshen, and Xianhecao. (2) Frequency analysis of herb properties: the Four Qi of 255 kinds of TCMs are mainly warm and neutral medicines. The Five Flavors are mainly sweet medicines, followed by bitter medicines. The main meridians are the liver, spleen, and kidney. (3) Clustering of medications: TCMs with the top 20 frequencies are classified into 9 groups by cluster analysis. (4) Association rule analysis of high-frequency herbs: using the Apriori algorithm, the results showed that there were 3 herb pairs with support of over 0.3 and 12 herb pairs with confidence above 0.85. Conclusion The basic pathogenesis of AA (Sui Lao) is spleen and kidney essence deficiency, Qi deficiency, and blood stasis. The main herbs have warm and neutral properties, sweet tastes, and liver, spleen, and kidney meridian tropisms, whose purpose is to tonify the kidney and invigorate the spleen, tonify Qi, and promote blood circulation.
Collapse
Affiliation(s)
- Nanxi Dong
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xujie Zhang
- The College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Dijiong Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiping Hu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenbin Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu Deng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Baodong Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Bushen Jianpi Quyu Formula Alleviates Myelosuppression of an Immune-Mediated Aplastic Anemia Mouse Model via Inhibiting Expression of the PI3K/AKT/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9033297. [PMID: 35463076 PMCID: PMC9023145 DOI: 10.1155/2022/9033297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 12/29/2022]
Abstract
Bushen Jianpi Quyu Formula (BSJPQYF), an experienced formula, has been used to treat aplastic anemia (AA) more than three decades. To determinate the effect of BSJPQYF on AA, we constructed an immune-mediated AA mouse model. All mice were divided into four groups: control, model, low dose (0.85 g/mL), and high dose (1.7 g/mL BSJPQYF) group. They were administered with different concentrations of BSJPQYF or normal saline for 14 days. Besides, components of BSJPQYF were analyzed by electrospray ionization and mass spectrometry (ESI-MS). Subsequently, mouse peripheral blood and femurs were collected, and bone marrow mesenchymal stem cells (BMSCs) were isolated by fluorescence-activated cell sorting (FACS). Among them, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ) were measured by ELISA assay, PI3K, AKT, p-AKT, NF-κB, p-NF-κB, TNF-α, and cleaved caspase-3 proteins were detected by western blot. Compared with standard compounds, we identified three compounds of BSJPQYF, namely, icariin, kaempferol and tanshinone iia, as potentially effective compounds for the treatment of AA. Through an in vivo study, we found the administration of BSJPQYF in high dose for 14 days could significantly increase peripheral blood count and bone marrow (BM) cells, meanwhile decrease TNF-α, TGF-β, and IFN-γ levels. Besides, it could suppress the protein expression of PI3K and the phosphorylation of AKT and NF-κB to restrict the protein expression of TNF-α, eventually reduce the protein expression of cleaved caspase-3. This study demonstrated the therapeutic effects of BSJPQYF in AA, which could alleviate myelosuppression through inhibiting the expression of the PI3K/AKT/NF-κB signaling pathway.
Collapse
|
5
|
Effects of Sodium Chlorophyllin Copper on APO-1 Expression in Bone Marrow Mesenchymal Stem Cells of Rats with Aplastic Anaemia. J Immunol Res 2022; 2022:6792866. [PMID: 35434141 PMCID: PMC9007642 DOI: 10.1155/2022/6792866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Aplastic anaemia (AA) is a highly prevalent blood disorder in the East and Southeast Asian countries, and a proportion of the patients is poorly treated with immunosuppressive agents. This study is aimed at exploring the effects of sodium copper chlorophyllin (SCC) on rats with AA and at providing the theoretical basis for the treatment of AA using traditional Chinese medicine. Methods. A rat model of AA was induced by combining 5-fluorouracil with busulfan, and different groups were treated with 25 mg/kg cyclosporin A (CsA) and low-, medium-, and high-dose SCC (25-, 50-, and 100-mg/kg; L-, M-, and H-SCC, respectively). A comparative analysis of peripheral blood counts, T-cell subsets, cytokine levels, bone marrow pathology, and APO-1 expression in mesenchymal stem cells in each group was conducted. Results. SCC can increase the platelet count and haemoglobin concentration in the peripheral blood of AA rats, whereas bone marrow biopsies revealed that the number of nucleated cells and megakaryocytes of SCC-treated rats increased compared with the model group. This was particularly evident in the H-SCC group. As regards the correction of immune function, unlike CsA, which reduced the absolute CD8+ T-cell count, SCC corrected the imbalanced CD4/CD8 ratio by increasing the absolute CD4+ T-cell count, whereas SCC increased the number of regulatory T-cells and reduced the level of interferon-γ in AA rats. When comparing the expression of APO-1 in the MSCs, results of the reverse-transcriptase polymerase chain reaction and Western blot analysis showed that SCC can increase the expression of APO-1 both at the mRNA and protein levels. Conclusion. We found that SCC can improve haematopoietic function and regress immune disorders in AA rats, which enhanced the expression of APO-1 in bone marrow MSCs. This may be one of the mechanisms of SCC in treating AA.
Collapse
|
6
|
Hu H, Chen T, Liu W, Shen Y, Li Q, Zhou Y, Ye B, Wu D. Differentiation of Yin, Yang and Stasis Syndromes in Severe Aplastic Anemia Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation and Their Correlation with Iron Metabolism, cAMP/cGMP, 17-OH-CS and Thyroxine. J Blood Med 2021; 12:975-989. [PMID: 34803418 PMCID: PMC8598128 DOI: 10.2147/jbm.s332171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objective To better understanding and differentiation of traditional Chinese medicine (TCM) syndromes in severe aplastic anemia (SAA) patients undergoing hematopoietic stem cell transplantation (Allo-HSCT) and their correlation with iron metabolism, cAMP/cGMP, 17-OH-CS and thyroxine. Methods Eighteen patients with SAA who underwent HSCT were enrolled. The syndrome was evaluated before conditioning and days after stem cell reinfusion (−10d, −1d, +7d, +30d, +60d, and +90d). The correlation of TCM syndrome (Yin, Yang, and stasis) to cyclic nucleotides, 17-OH-CS, thyroxine, and iron metabolism were analyzed and compared to data from normal subjects. Results More “Yin deficiency” (n=11, 11/18) syndrome was observed before HSCT, and nearly 61% was complicated with “blood stasis”. After conditioning, the proportion of “kidney Yin and Yang deficiency” increased to 61.6%. Fourteen days after HSCT, the syndrome developed into “Spleen-Kidney Yang Deficiency,” and the stasis score decreased. On +90day, majority patients were diagnosed with “Kidney Yang Deficiency” (35.7%) or “Spleen-Kidney Yang Deficiency” (28.6%), and 88.9% were diagnosed without stasis. The correlation analysis showed that cGMP might represent “Deficient Yang” as well as low total triiodothyronine (T3) and free T3 (FT3). There was also a positive relation between labile plasma iron (LPI), hepcidin, soluble transferrin receptor (sTfR), and “Yin deficiency”, and the last two factors, along with marrow nitric oxide synthase were also positively related to “Stasis” syndrome. Conclusion During HSCT, the syndrome evolved from “kidney Yin and Yang deficiency” to “kidney Yang deficiency” or “spleen–kidney Yang deficiency”, and the “stasis” along with “Yin deficiency” syndromes were quickly relieved within 90 days. The changes of cyclic nucleotides, 17-OH-CS, thyroxine, and iron metabolism indexes can be applied for better differentiation of TCM syndrome.
Collapse
Affiliation(s)
- Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Chen
- Department of Hematology, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Wenbin Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Metabolomics-Based Clinical Efficacy of Compound Shenlu Granule, a Chinese Patent Medicine, in the Supportive Management of Aplastic Anemia Patients: A Randomized Controlled Pilot Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655848. [PMID: 34630613 PMCID: PMC8497100 DOI: 10.1155/2021/6655848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/29/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
Objective To explore the clinical efficacy and mechanism of compound Shenlu granule (SLG) treatment in patients with aplastic anemia (AA). Methods A total of 89 AA patients were randomly divided into an SLG supportive group (group A, n = 44) and a control group (group B, n = 45) while continuing Western medical management. After 6 months, hemograms, traditional Chinese medicine (TCM) syndrome scores, and overall clinical efficacy rate were assessed. Serum metabolomics characteristics were observed using ultraperformance liquid chromatography-mass spectrometry after SLG intervention. Results The levels of red blood cell (RBC), hemoglobin (Hb), and platelet (PLT) were increased in both groups after treatment for 6 months (P < 0.05), and in group A, the elevation of PLT became much more significant (P < 0.01). The TCM syndrome score was lower in group A than in group B after treatment (P < 0.05). Metabolomics data showed a significant difference in the patients using SLG after 6 months, and 14 biomarkers were identified. Conclusion SLG supportive treatment showed positive results in patients with AA, and metabolomics data indicated that SLG influenced aminoacyl-tRNA biosynthesis and glycerophospholipid metabolism to gradually return to normal.
Collapse
|
8
|
Li L, Li C, Zhou Y, Xu Q, Wang Z, Zhu X, Ba Y. Effects of Jianpi Bushen Therapy for Treatment of CKD Anemia: A Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2020; 11:560920. [PMID: 33041799 PMCID: PMC7523512 DOI: 10.3389/fphar.2020.560920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives To evaluate the efficacy of Traditional Chinese Medicine, specifically Jianpi Bushen (JPBS) therapy, for treatment of patients with chronic kidney disease (CKD) anemia. Methods Randomized controlled trials of JPBS therapy for CKD anemia were searched and selected from seven electronic databases. The Cochrane collaboration tool was used to conduct methodological quality assessment. RevMan v5.3 software was utilized to perform data analysis. Results In total, 12 randomized controlled trials with 799 patients met the meta-analysis criteria. The aggregated results indicated that JPBS therapy is beneficial for CKD anemia by improving the clinical efficacy rate [risk ratio (RR) = 1.23, 95% confidence interval (CI): (1.14, 1.33), P < 0.00001] and hemoglobin (Hb) [weighted mean difference (WMD) = 9.55, 95% CI: (7.97, 11.14), P < 0.00001], serum ferritin (SF) [WMD = 6.22, 95% CI: (2.65, 9.79), P = 0.0006], red blood cell (RBC) [WMD = 0.31, 95% CI: (0.24, 0.38), P < 0.00001], hematocrit (HCT) [WMD = 2.95, 95% CI: (2.36, 3.54), P < 0.00001], serum creatinine (SCr) [WMD = 64.57, 95% CI: (33.51, 95.64), P < 0.0001], and blood urea nitrogen (BUN) levels [WMD = 3.76, 95% CI: (2.21, 5.31), P <0.00001]. Furthermore, evidence suggests that JPBS therapy is safe and does not increase adverse reactions compared with western medicine (WM) alone. Conclusion This study found that JPBS therapy has a positive effect on the treatment of CKD anemia. However, more well-designed, double-blind, large-scale randomized controlled trials are needed to assess the efficacy of JPBS therapy in the treatment of CKD anemic patients.
Collapse
Affiliation(s)
- Liang Li
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Chengyin Li
- Department of Oncology, Hubei Provincial Hospital of TCM, Wuhan, China
| | - Yu Zhou
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qi Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zilin Wang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoyun Zhu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuanming Ba
- Department of Nephropathy, Hubei Provincial Hospital of TCM, Wuhan, China.,Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
9
|
Zhu N, Wu D, Ye B. The Progress of Traditional Chinese Medicine in the Treatment of Aplastic Anemia. J Transl Int Med 2018; 6:159-164. [PMID: 30637201 PMCID: PMC6326026 DOI: 10.2478/jtim-2018-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aplastic anemia (AA) is a common hematologic disease that is characterized by hematopoietic failure of the bone marrow and pancytopenia of the peripheral blood, which can be divided into severe and non-severe aplastic ane-mia, or acute and chronic aplastic anemia according to the severity of the disease and the progress of the clinical course. During the past years, the advantages of Traditional Chinese Medicine (TCM) on the treatment of AA have been well clarified and its theory system has been improved as well. This review is mainly on representing the pathogenesis, therapeutic principle and method, research progression, and advantages of TCM on AA.
Collapse
Affiliation(s)
- Ningning Zhu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou310053, Zhejiang Province, China
| | - Dijiong Wu
- Department of Hematology, First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou310006, Zhejiang Province, China
| | - Baodong Ye
- Department of Hematology, First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou310006, Zhejiang Province, China
| |
Collapse
|
10
|
Wu D, Wen X, Liu W, Hu H, Ye B, Zhou Y. Comparison of the effects of deferasirox, deferoxamine, and combination of deferasirox and deferoxamine on an aplastic anemia mouse model complicated with iron overload. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1081-1091. [PMID: 29760547 PMCID: PMC5937503 DOI: 10.2147/dddt.s161086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background and aim Iron overload is commonly observed during the course of aplastic anemia (AA), which is believed to aggravate hematopoiesis, cause multiple organ dysfunction, lead to disease progression, and impair quality of life. Deferasirox (DFX) and deferoxamine (DFO) are among the most common iron chelation agents available in the clinical setting. The aim of this study was to investigate if the combination therapy with DFX and DFO is superior in hematopoietic recovery and iron chelation. Methods Briefly, we developed a composite mouse model with AA and iron overload that was consequently treated with DFX, DFO, or with a combination of both agents. The changes in peripheral hemogram, marrow apoptosis, and its related protein expressions were compared during the process of iron chelation, while the iron depositions in liver and bone marrow and its regulator were also detected. Results The obtained results showed that compared to DFX, DFO has a better effect in protecting the bone marrow from apoptosis-induced failure. The combination of DFO and DFX accelerated the chelation of iron, while their efficiency on further hemogram improvement appeared limited. Conclusion To sum up, our data suggest that single treatment with DFO may be a better choice for improving the hematopoiesis during the gradual chelation treatment irrespective of the convenience of oral DFX, while the combination treatment should be considered for urgent reduction of the iron burden.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaowen Wen
- Department of Internal Medicine, Central Hospital of Jinhua Affiliated to Zhejiang University, Jinhua, Zhejiang, People's Republic of China
| | - Wenbin Liu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Wu D, Wen X, Liu W, Xu L, Ye B, Zhou Y. A composite mouse model of aplastic anemia complicated with iron overload. Exp Ther Med 2017; 15:1449-1455. [PMID: 29434729 PMCID: PMC5776174 DOI: 10.3892/etm.2017.5523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaowen Wen
- Department of Internal Medicine, Central Hospital of Jinhua Affiliated to Zhejiang University, Jinhua, Zhejiang 321001, P.R. China
| | - Wenbin Liu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Linlong Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Baodong Ye
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yuhong Zhou
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|