1
|
Vignard V, Baruteau AE, Toutain B, Mercier S, Isidor B, Redon R, Schott JJ, Küry S, Bézieau S, Monsoro-Burq AH, Ebstein F. Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms? Front Cell Dev Biol 2024; 12:1370905. [PMID: 39071803 PMCID: PMC11272537 DOI: 10.3389/fcell.2024.1370905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Neurodevelopmental proteasomopathies constitute a recently defined class of rare Mendelian disorders, arising from genomic alterations in proteasome-related genes. These alterations result in the dysfunction of proteasomes, which are multi-subunit protein complexes essential for maintaining cellular protein homeostasis. The clinical phenotype of these diseases manifests as a syndromic association involving impaired neural development and multisystem abnormalities, notably craniofacial anomalies and malformations of the cardiac outflow tract (OFT). These observations suggest that proteasome loss-of-function variants primarily affect specific embryonic cell types which serve as origins for both craniofacial structures and the conotruncal portion of the heart. In this hypothesis article, we propose that neural crest cells (NCCs), a highly multipotent cell population, which generates craniofacial skeleton, mesenchyme as well as the OFT of the heart, in addition to many other derivatives, would exhibit a distinctive vulnerability to protein homeostasis perturbations. Herein, we introduce the diverse cellular compensatory pathways activated in response to protein homeostasis disruption and explore their potential implications for NCC physiology. Altogether, the paper advocates for investigating proteasome biology within NCCs and their early cranial and cardiac derivatives, offering a rationale for future exploration and laying the initial groundwork for therapeutic considerations.
Collapse
Affiliation(s)
- Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Alban-Elouen Baruteau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | | | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes, France
- CHU Nantes, Service de Génétique Médicale, Nantes Université, Nantes, France
| | - Anne H. Monsoro-Burq
- Faculté des Sciences d'Orsay, CNRS, UMR 3347, INSERM, Université Paris-Saclay, Orsay, France
- Institut Curie, PSL Research University, CNRS, UMR 3347, INSERM, Orsay, France
- Institut Universitaire de France, Paris, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| |
Collapse
|
2
|
Takahashi K, Aritomi S, Honkawa F, Asari S, Hirose K, Konishi A. Efficient and cost-effective differentiation of induced neural crest cells from induced pluripotent stem cells using laminin 211. Regen Ther 2024; 26:749-759. [PMID: 39290629 PMCID: PMC11406167 DOI: 10.1016/j.reth.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Neural crest cells (NCCs) are cell populations that originate during the formation of neural crest in developmental stages. They are characterized by their multipotency, self-renewal and migration potential. Given their ability to differentiate into various types of cells such as neurons and Schwann cells, NCCs hold promise for cell therapy applications. The conventional method for obtaining NCCs involves inducing them from stem cells like induced pluripotent stem cells (iPSCs), followed by a long-term passage or purification using fluorescence-activated cell sorting (FACS). Although FACS allows high purity induced neural crest cells (iNCCs) to be obtained quickly, it is complex and costly. Therefore, there is a need for a simpler, cost-effective and less time-consuming method for cell therapy application. Methods To select differentiated iNCCs from heterogeneous cell populations quickly without using FACS, we adopted the use of scaffold material full-length laminin 211 (LN211), a recombinant, xeno-free protein suitable for cell therapy. After fist passage on LN211, iNCCs characterization was performed using polymerase chain reaction and flow cytometry. Additionally, proliferation and multipotency to various cells were evaluated. Result The iNCCs obtained using our new method expressed cranial NCC- related genes and exhibited stable proliferation ability for at least 57 days, while maintaining high expression level of the NCCs marker CD271. They demonstrated differentiation ability into several cell types: neurons, astrocytes, melanocytes, smooth muscle cells, osteoblasts, adipocytes and chondrocytes. Furthermore, they could be induced to differentiate into induced mesenchymal stem cells (iMSCs) which retain the essential functions of somatic MSCs. Conclusion In this study, we have developed novel method for obtaining high purity iNCCs differentiated from iPSCs in a short time using LN211 under xeno-free condition. Compared with traditional methods, like FACS or long-term passage, this approach enables the acquisition of a large amount of cells at a lower cost and labor, and it is expected to contribute to stable supply of large scale iNCCs for future cell therapy applications.
Collapse
Affiliation(s)
- Kazuma Takahashi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Shizuka Aritomi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Fumie Honkawa
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Sayaka Asari
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Ken Hirose
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| | - Atsushi Konishi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kanagawa, Kawasaki, 210-8681, Japan
| |
Collapse
|
3
|
Zeidler M, Kummer KK, Kress M. Towards bridging the translational gap by improved modeling of human nociception in health and disease. Pflugers Arch 2022; 474:965-978. [PMID: 35655042 PMCID: PMC9393146 DOI: 10.1007/s00424-022-02707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore.
| |
Collapse
|
5
|
Abe R, Yamauchi K, Kuniyoshi K, Suzuki T, Matsuura Y, Ohtori S, Takahashi K. Neural crest stem cells can be induced in vitro from human-induced pluripotent stem cells using a novel protocol free of feeder cells. J Rural Med 2021; 16:143-147. [PMID: 34239625 PMCID: PMC8249370 DOI: 10.2185/jrm.2021-010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: Our knowledge of human neural crest stem cells (NCSCs) is
expanding, owing to recent advances in technologies utilizing human-induced pluripotent
stem cells (hiPSCs) that generate NCSCs. However, the clinical application of these
technologies requires the reduction of xeno-materials. To overcome this significant
impediment, this study aimed to devise a novel method to induce NCSCs from hiPSCs without
using a feeder cell layer. Materials and Methods: hiPSCs were cultured in feeder-free maintenance media
containing the Rho-associated coiled-coil forming kinase inhibitor Y-27632. When the cells
reached 50–70% confluence, differentiation was initiated by replacing the medium with
knockout serum replacement (KSR) medium containing Noggin and SB431542. The KSR medium was
then gradually replaced with increasing concentrations of Neurobasal medium from day 5 to
11. Results: Immunocytochemistry and flow cytometry were performed 12 days after
induction of differentiation and revealed that the cells generated from hiPSCs expressed
the NCSC markers p75 and HNK-1, but not the hiPSC marker SOX2. Conclusion: These findings demonstrate that hiPSCs were induced to
differentiate into NCSCs in the absence of feeder cells.
Collapse
Affiliation(s)
- Rei Abe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuki Kuniyoshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Japan
| | - Yusuke Matsuura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
6
|
Srinivasan A, Toh YC. Human Pluripotent Stem Cell-Derived Neural Crest Cells for Tissue Regeneration and Disease Modeling. Front Mol Neurosci 2019; 12:39. [PMID: 30853889 PMCID: PMC6395379 DOI: 10.3389/fnmol.2019.00039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Neural crest cells (NCCs) are a multipotent and migratory cell population in the developing embryo that contribute to the formation of a wide range of tissues. Defects in the development, differentiation and migration of NCCs give rise to a class of syndromes and diseases that are known as neurocristopathies. NCC development has historically been studied in a variety of animal models, including xenopus, chick and mouse. In the recent years, there have been efforts to study NCC development and disease in human specific models, with protocols being established to derive NCCs from human pluripotent stem cells (hPSCs), and to further differentiate these NCCs to neural, mesenchymal and other lineages. These in vitro differentiation platforms are a valuable tool to gain a better understanding of the molecular mechanisms involved in human neural crest development. The use of induced pluripotent stem cells (iPSCs) derived from patients afflicted with neurocristopathies has also enabled the study of defective human NCC development using these in vitro platforms. Here, we review the various in vitro strategies that have been used to derive NCCs from hPSCs and to specify NCCs into cranial, trunk, and vagal subpopulations and their derivatives. We will also discuss the potential applications of these human specific NCC platforms, including the use of iPSCs for disease modeling and the potential of NCCs for future regenerative applications.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program, National University of Singapore, Singapore, Singapore.,Biomedical Institute for Global Health, Research and Technology, Singapore, Singapore
| |
Collapse
|
7
|
Generation and Applications of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:9601623. [PMID: 30154868 PMCID: PMC6091255 DOI: 10.1155/2018/9601623] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology and isolated from the bone marrow via plastic adhesion. Their multipotency and immunoregulatory properties make MSCs possible therapeutic agents, and an increasing number of publications and clinical trials have highlighted their potential in regenerative medicine. However, the finite proliferative capacity of MSCs limits their scalability and global dissemination as a standardized therapeutic product. Furthermore, adult tissue provenance could constrain accessibility, impinge on cellular potency, and incur greater exposure to disease-causing pathogens based on the donor. These issues could be circumvented by the derivation of MSCs from pluripotent stem cells. In this paper, we review methods that induce and characterize MSCs derived from induced pluripotent stem cells (iPSCs) and introduce MSC applications to disease modeling, pathogenic mechanisms, and drug discovery. We also discuss the potential applications of MSCs in regenerative medicine including cell-based therapies and issues that should be overcome before iPSC-derived MSC therapy will be applied in the clinic.
Collapse
|
8
|
Tang-Schomer M, Wu W, Kaplan D, Bookland M. In vitro 3D regeneration-like growth of human patient brain tissue. J Tissue Eng Regen Med 2018; 12:1247-1260. [DOI: 10.1002/term.2657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/15/2017] [Accepted: 02/17/2018] [Indexed: 01/19/2023]
Affiliation(s)
- M.D. Tang-Schomer
- Department of Pediatrics; UConn Health; Farmington CT USA
- The Jackson Laboratory for Genomic Medicine; Farmington CT USA
| | - W.B. Wu
- Department of Statistics; University of Chicago; Chicago IL USA
| | - D.L. Kaplan
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - M.J. Bookland
- Connecticut Children's Medical Center; Hartford CT USA
| |
Collapse
|
9
|
Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cells Int 2017; 2017:1960965. [PMID: 28607560 PMCID: PMC5451770 DOI: 10.1155/2017/1960965] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage.
Collapse
|
10
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Naylor RW, McGhee CNJ, Cowan CA, Davidson AJ, Holm TM, Sherwin T. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0165464. [PMID: 27792791 PMCID: PMC5085044 DOI: 10.1371/journal.pone.0165464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Corneal diseases such as keratoconus represent a relatively common disorder in the human population. However, treatment is restricted to corneal transplantation, which only occurs in the most advanced cases. Cell based therapies may offer an alternative approach given that the eye is amenable to such treatments and corneal diseases like keratoconus have been associated specifically with the death of corneal keratocytes. The ability to generate corneal keratocytes in vitro may enable a cell-based therapy to treat patients with keratoconus. Human induced pluripotent stem cells (hiPSCs) offer an abundant supply of cells from which any cell in the body can be derived. In the present study, hiPSCs were successfully differentiated into neural crest cells (NCCs), the embryonic precursor to keratocytes, and then cultured on cadaveric corneal tissue to promote keratocyte differentiation. The hiPSC-derived NCCs were found to migrate into the corneal stroma where they acquired a keratocyte-like morphology and an expression profile similar to corneal keratocytes in vivo. These results indicate that hiPSCs can be used to generate corneal keratocytes in vitro and lay the foundation for using these cells in cornea cell-based therapies.
Collapse
Affiliation(s)
- Richard W. Naylor
- Department of Ophthalmology, University of Auckland, Auckland 1142, New Zealand
| | | | - Chad A. Cowan
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Teresa M. Holm
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, United States of America
- * E-mail: (TS); (TH)
| | - Trevor Sherwin
- Department of Ophthalmology, University of Auckland, Auckland 1142, New Zealand
- * E-mail: (TS); (TH)
| |
Collapse
|
12
|
Kim K, Ossipova O, Sokol SY. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells 2015; 33:674-85. [PMID: 25346532 DOI: 10.1002/stem.1877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/13/2014] [Indexed: 01/14/2023]
Abstract
Neural crest is a population of multipotent progenitor cells that form at the border of neural and non-neural ectoderm in vertebrate embryos, and undergo epithelial-mesenchymal transition and migration. According to the traditional view, the neural crest is specified in early embryos by signaling molecules including BMP, FGF, and Wnt proteins. Here, we identify a novel signaling pathway leading to neural crest specification, which involves Rho-associated kinase (ROCK) and its downstream target nonmuscle Myosin II. We show that ROCK inhibitors promote differentiation of human embryonic stem cells (hESCs) into neural crest-like progenitors (NCPs) that are characterized by specific molecular markers and ability to differentiate into multiple cell types, including neurons, chondrocytes, osteocytes, and smooth muscle cells. Moreover, inhibition of Myosin II was sufficient for generating NCPs at high efficiency. Whereas Myosin II has been previously implicated in the self-renewal and survival of hESCs, we demonstrate its role in neural crest development during ESC differentiation. Inhibition of this pathway in Xenopus embryos expanded neural crest in vivo, further indicating that neural crest specification is controlled by ROCK-dependent Myosin II activity. We propose that changes in cell morphology in response to ROCK and Myosin II inhibition initiate mechanical signaling leading to neural crest fates.
Collapse
Affiliation(s)
- Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
13
|
The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells. Sci Rep 2015; 5:16821. [PMID: 26581770 PMCID: PMC4652175 DOI: 10.1038/srep16821] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/20/2015] [Indexed: 01/20/2023] Open
Abstract
Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrations yielded a high population of neural crest progenitor cells (AP2α+, P75+), which further differentiated into nociceptive neurons (TRKA+, Nav1.7+, P2X3+). The overexpression of Neurogenin 1 (Neurog1) promoted the neurons to express genes related to sensory neurons (Peripherin, TrkA) and to further mature into TRPV1+ nociceptive neurons. Importantly, the overexpression of Neurog1 increased the response of these neurons to capsaicin stimulation, a hallmark of mature functional nociceptive neurons. Taken together, this study reveals the important role that Neurog1 plays in generating functional human nociceptive neurons.
Collapse
|
14
|
Liu A, Zhang D, Liu L, Gong J, Liu C. A simple method for differentiation of H9 cells into neuroectoderm. Tissue Cell 2015; 47:471-477. [PMID: 26253416 DOI: 10.1016/j.tice.2015.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 02/08/2023]
Abstract
Human embryonic stem cells (ESCs) can form neuroectoderm (NE), providing a platform for in vitro dissection of NE formation. However, human ESCs can differentiate into all three germ layers. It thus is crucial to develop efficient methods for differentiation of human ESCs into NE cells. Both plating cell density and localized cell density (LCD) affect NE differentiation. Here, we developed a cell cluster-based NE differentiation method, in which both plating cell density and LCD are under control. Using our new method, high plating cell densities promote expression of PAX6, a NE marker protein. Two SMAD signaling blockers, SB431542 and NOGGIN, downregulate OCT4 and upregulate PAX6, while does not affect mRNA expression of GATA2 after 5 d of differentiation. Moreover, IB analysis showed a time-dependent upregulation of PAX6 and beta-III-tubulin together with a downregulation of OCT4 during the neural differentiation. Coexpression of both TH and beta-III-tubulin in the H9-derived cells was also detected, proving the NE cells have an ability to differentiate into one of the specific neurons. Together, we established a simple method for generating NE cells from H9 cells, which might contribute to develop high efficient method for neural differentiation.
Collapse
Affiliation(s)
- Annuo Liu
- Institute of Stem Cell and Tissue Engineering & Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Dijuan Zhang
- Institute of Stem Cell and Tissue Engineering & Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Juan Gong
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Liu
- Institute of Stem Cell and Tissue Engineering & Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; Central Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
15
|
Napoli A, Obeid I. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology. J Cell Biochem 2015; 117:559-65. [PMID: 26284690 DOI: 10.1002/jcb.25312] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/06/2022]
Abstract
Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans.
Collapse
Affiliation(s)
- Alessandro Napoli
- Department of Electrical and Computer Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Iyad Obeid
- Department of Electrical and Computer Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
17
|
Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, Matsumoto Y, Yamamoto T, Umeda K, Heike T, Okumura N, Koizumi N, Sato T, Nakahata T, Saito M, Otsuka T, Kinoshita S, Ueno M, Ikeya M, Toguchida J. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 2014; 9:e112291. [PMID: 25464501 PMCID: PMC4251837 DOI: 10.1371/journal.pone.0112291] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/06/2014] [Indexed: 12/27/2022] Open
Abstract
Neural crest cells (NCCs) are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs) from human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM) was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin) very efficiently induced hNCCs (70-80%) from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs) were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.
Collapse
Affiliation(s)
- Makoto Fukuta
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshinori Nakai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kosuke Kirino
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masato Nakagawa
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kazuya Sekiguchi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoshihisa Matsumoto
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takuya Yamamoto
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail: (MU); (MI); (JT)
| | - Makoto Ikeya
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail: (MU); (MI); (JT)
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail: (MU); (MI); (JT)
| |
Collapse
|
18
|
Sinha S, Iyer D, Granata A. Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci 2014; 71:2271-88. [PMID: 24442477 PMCID: PMC4031394 DOI: 10.1007/s00018-013-1554-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/03/2013] [Accepted: 12/30/2013] [Indexed: 01/06/2023]
Abstract
Vascular smooth muscle cells (SMCs) arise from multiple origins during development, raising the possibility that differences in embryological origins between SMCs could contribute to site-specific localization of vascular diseases. In this review, we first examine the developmental pathways and embryological origins of vascular SMCs and then discuss in vitro strategies for deriving SMCs from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). We then review in detail the potential for vascular disease modeling using iPSC-derived SMCs and consider the pathological implications of heterogeneous embryonic origins. Finally, we touch upon the role of human ESC-derived SMCs in therapeutic revascularization and the challenges remaining before regenerative medicine using ESC- or iPSC-derived cells comes of age.
Collapse
Affiliation(s)
- Sanjay Sinha
- Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK,
| | | | | |
Collapse
|
19
|
Mayanil CS. Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev Neurosci 2013; 35:361-72. [PMID: 24051984 DOI: 10.1159/000354749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Neurulation is one of the many important events in mammalian development. It is the stage of organogenesis in vertebrate embryos during which the neural tube is transformed into the primitive structures that will later develop into the central nervous system. Recent transcriptome analysis during neurulation and early organogenesis in humans and mice has identified the global dynamics of gene expression changes across developmental time. This has revealed a richer understanding of gene regulation and provides hints at the transcriptional regulatory networks that underlie these processes. Similarly, epigenome analysis, which collectively constitutes histone modifications, transcription factor binding, and other structural features associated with gene regulation, has given a renewed appreciation to the subtle mechanisms involving the process of neurulation. More specifically, the histone demethylases KDM4A and KDM6B have recently been shown to be key histone H3K4 and H3K27 modifiers that regulate neural crest specification and neural tube closure. Additionally, miRNAs have recently been shown to influence transcription of genes directly or by altering the levels of epigenetic modifiers and thus regulate gene expression. This mini review briefly summarizes the literature, highlighting the transcriptional and epigenetic regulation of key genes involved in neural crest induction and neural crest specification by transcription factors and miRNAs. Understanding how these mechanisms work individually and in clusters will shed light on pathways in the context of diseases associated with neural crest cell derivatives such as melanoma, cardiovascular defects and neuronal craniofacial defects.
Collapse
Affiliation(s)
- Chandra S Mayanil
- Developmental Biology Program, Lurie Children's Hospital of Chicago Research Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Ill., USA
| |
Collapse
|
20
|
Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22-33. [PMID: 22305800 DOI: 10.1016/j.ydbio.2012.01.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
Abstract
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.
Collapse
Affiliation(s)
- Cécile Milet
- Institut Curie, INSERM U1021, CNRS, UMR 3347, F-91405 Orsay, France
| | | |
Collapse
|