1
|
Andreoli V, Vetere A, Conti V, Gavezzoli M, Berni P, Ramoni R, Basini G, Nardini G, Pelizzone I, Grolli S, Di Ianni F. Mesenchymal stromal cell isolation from pond slider ( Trachemys scripta) adipose tissue obtained during routine neutering: a model for turtle species. Front Vet Sci 2025; 12:1546091. [PMID: 40177670 PMCID: PMC11963382 DOI: 10.3389/fvets.2025.1546091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) hold great clinical potential in veterinary regenerative medicine. However, a notable gap exists in the literature regarding the isolation and characterization of these cells in reptiles. The objective of this study was to evaluate the feasibility of isolating adipose tissue-derived mesenchymal stem cells (MSCs) from pond slider (Trachemys scripta) tissue samples collected during routine neutering procedures. Methods Adipose tissue samples were obtained from five animals and processed using an enzymatic procedure. The resulting cell suspension was subsequently cultured at 28°C in a controlled atmosphere with 5% CO2. The cell growth rates were evaluated through direct counting of cells up to passage 7. The colony-forming unit (CFU) capacity of MSCs was evaluated in low-density cell cultures, and the ability of the cells to differentiate into adipogenic, chondrogenic and osteogenic lineages was assessed. The cell phenotype was characterized at the molecular level using reverse transcription-polymerase chain reaction (RT-PCR) and amplicon sequencing, with a focus on markers commonly used for gene expression profiling of mammalian MSCs. Results The cells demonstrated the capacity to differentiate into adipogenic, chondrogenic, and osteogenic lineages. RT-PCR revealed the expression of CD105, CD73, CD44, and CD90, whereas CD34 and HLA-DRA were not expressed. Sequence homology analysis demonstrated that the amplicons matched the sequences reported in the Trachemys scripta whole-genome shotgun sequence. This study represents the first investigation aimed at the isolation, in vitro expansion, and characterization of reptile adipose tissue-derived MSCs. Discussion The results demonstrate the feasibility of isolating MSC-like cells from chelonian adipose tissue and underscore their potential for application in regenerative medicine for both companion reptiles and endangered wild species.
Collapse
Affiliation(s)
- Valentina Andreoli
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Alessandro Vetere
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Virna Conti
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Martina Gavezzoli
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Priscilla Berni
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Roberto Ramoni
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Giuseppina Basini
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | | | - Igor Pelizzone
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Stefano Grolli
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Francesco Di Ianni
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Farahzadi R, Fathi E, Vandghanooni S, Valipour B. Cytokines secreted from bone marrow-derived mesenchymal stem cells promote apoptosis of CD34 + leukemic stem cells as anti-cancer therapy. Regen Ther 2024; 26:646-653. [PMID: 39281104 PMCID: PMC11401101 DOI: 10.1016/j.reth.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Objective The effect of mesenchymal stem cells (MSCs) on the immortal characteristics of malignant cells, particularly hematologic cancer cells, remains a topic of debate, with the underlying mechanisms still requiring further elucidation. We explored the in vitro effect of the bone marrow-derived MSCs (BM-MSCs) on CD34+ leukemic stem cells (LSCs) enriched from the KG1-a cell line by assessing apoptosis, measuring cytokine levels, and examining TERT protein expression. Additionally, the potential signaling pathways implicated in this process, such as P53, PTEN, NF-κB, ERK1/2, Raf-1, and H-RAS, were also investigated. Methods CD34+ LSCs were enriched from the KG1-a cell line with the magnetic activated cell sorting (MACS) method. Two cell populations (BM-MSCs and CD34+ LSCs) were co-cultured on trans well plates for seven days. Next, CD34+ LSCs were collected and subjected to Annexin V/PI assay, cytokine measurement, and western blotting. Results BM-MSCs caused a significant increase in early and late apoptosis in the CD34+LSCs. The significant presence of interleukin (IL)-2 and IL-4 was evident in the co-cultured media. In addition, BM-MSCs significantly increased the protein expression of P53, PTEN, NF-κB, and significantly decreased p-ERK1/2, Raf-1, H-RAS, and TERT. Conclusion The mentioned effects of IL-2 and IL-4 cytokines released from BM-MSCs on CD34+ LSCs as therapeutic agents were applied by the components of P53, PTEN, NF-κB, p-ERK1/2, Raf-1, and H-RAS signaling pathways.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| |
Collapse
|
4
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Schöfer S, Laffer S, Kirchberger S, Kothmayer M, Löhnert R, Ebner EE, Weipoltshammer K, Distel M, Pusch O, Schöfer C. Senescence-associated ß-galactosidase staining over the lifespan differs in a short- and a long-lived fish species. Eur J Histochem 2024; 68:3977. [PMID: 38568207 PMCID: PMC11017726 DOI: 10.4081/ejh.2024.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
During the aging process, cells can enter cellular senescence, a state in which cells leave the cell cycle but remain viable. This mechanism is thought to protect tissues from propagation of damaged cells and the number of senescent cells has been shown to increase with age. The speed of aging determines the lifespan of a species and it varies significantly in different species. To assess the progress of cellular senescence during lifetime, we performed a comparative longitudinal study using histochemical detection of the senescence-associated beta-galactosidase as senescence marker to map the staining patterns in organs of the long-lived zebrafish and the short-lived turquoise killifish using light- and electron microscopy. We compared age stages corresponding to human stages of newborn, childhood, adolescence, adult and old age. We found tissue-specific but conserved signal patterns with respect to organ distribution. However, we found dramatic differences in the onset of tissue staining. The stained zebrafish organs show little to no signal at newborn age followed by a gradual increase in signal intensity, whereas the organs of the short-lived killifish show an early onset of staining already at newborn stage, which remains conspicuous at all age stages. The most prominent signal was found in liver, intestine, kidney and heart, with the latter showing the most prominent interspecies divergence in onset of staining and in staining intensity. In addition, we found staining predominantly in epithelial cells, some of which are post-mitotic, such as the intestinal epithelial lining. We hypothesize that the association of the strong and early-onset signal pattern in the short-lived killifish is consistent with a protective mechanism in a fast growing species. Furthermore, we believe that staining in post-mitotic cells may play a role in maintaining tissue integrity, suggesting different roles for cellular senescence during life.
Collapse
Affiliation(s)
- Simon Schöfer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | - Sylvia Laffer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | | | - Michael Kothmayer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | - Renate Löhnert
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | - Elmar E Ebner
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | - Martin Distel
- St. Anna Children's Cancer Research Institute (CCRI), Vienna.
| | - Oliver Pusch
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna.
| |
Collapse
|
6
|
Zhang X, Liu L, Wang J, Yao M, Liu L, Liu H, Ren S, Wei P, Cheng P, Li X, Zhang H, Chen M. Emodin suppresses adipogenesis of bone marrow derived mesenchymal stem cells from aplastic anemia via increasing TRIB3 expression. Tissue Cell 2024; 86:102287. [PMID: 38086146 DOI: 10.1016/j.tice.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Increasing evidence indicate that enhanced adipogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) could contribute to the adiposity alteration in marrow microenvironment of aplastic anemia (AA). Identifying small molecule drugs with role in inhibiting adipogenesis of BM-MSCs may represent a novel direction in AA therapy by improving BM-MSCs mediated marrow microenvironment. METHODS For the purpose, we isolated AA BM-MSCs through whole bone marrow cell culture, evaluated a series of small molecule drugs using the in vitro adipogenic differentiation model of BM-MSCs, and finally focused on emodin, a natural anthraquinone derivative. Subsequently, we systematically investigated the molecular mechanism of emodin in attenuating adipogenic process by means of microarray profiling, bioinformatics analysis and lentivirus-mediated functional studies and rescue assay. RESULTS We found that emodin presented significantly suppressive effect on the in vitro adipogenic differentiation of AA BM-MSCs. Further mechanistic investigation revealed that emodin could increase the expression of Tribbles homolog 3 (TRIB3) which exhibited remarkably decreased expression in AA BM-MSCs compared with the normal counterparts and was subsequently demonstrated as a negative regulator in adipogenesis of AA BM-MSCs. Besides, TRIB3 depletion alleviated the suppressive effect of emodin on the adipogenic differentiation of AA BM-MSCs. CONCLUSION Our findings propose that emodin mediated TRIB3 up-regulation alleviates the adipogenic capacity of AA BM-MSCs, and emodin could serve as a potential therapeutic regimen for AA therapy.
Collapse
Affiliation(s)
- Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Jian Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Mingkang Yao
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Haihui Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Peng Wei
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Xiyu Li
- Department of Graduate School, Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| |
Collapse
|
7
|
Farahzadi R, Fathi E, Mesbah-Namin SA, Vietor I. Granulocyte differentiation of rat bone marrow resident C-kit + hematopoietic stem cells induced by mesenchymal stem cells could be considered as new option in cell-based therapy. Regen Ther 2023; 23:94-101. [PMID: 37206538 PMCID: PMC10189093 DOI: 10.1016/j.reth.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are effective in hematopoietic engraftment and tissue repair in stem cell transplantation. In addition, these cells control the process of hematopoiesis by secreting growth factors and cytokines. The aim of the present study is to investigate the effect of rat bone marrow (BM)-derived MSCs on the granulocyte differentiation of rat BM-resident C-kit+ hematopoietic stem cells (HSCs). The mononuclear cells were collected from rat BM using density gradient centrifugation and MSCs and C-kit+ HSCs were isolated. Then, cells were divided into two groups and differentiated into granulocytes; C-kit+ HSCs alone (control group) and co-cultured C-kit+ HSCs with MSCs (experimental group). Subsequently, the granulocyte-differentiated cells were collected and subjected to real-time PCR and Western blotting for the assessment of their telomere length (TL) and protein expressions, respectively. Afterwards, culture medium was collected to measure cytokine levels. CD34, CD16, CD11b, and CD18 granulocyte markers expression levels were significantly increased in the experimental group compared to the control group. A significant change was also observed in the protein expression of Wnt and β-catenin. In addition, MSCs caused an increase in the TL of granulocyte-differentiated cells. MSCs could affect the granulocyte differentiation of C-kit+ HSCs via increasing TL and Wnt/β-catenin protein expression.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
8
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
9
|
Ren X, Wang Q, Liu C, Zhao Q, Zheng J, Tian K, Xu H, Mu Y. Osteogenic ability using porous hydroxyapatite scaffold-based delivery of human placenta-derived mesenchymal stem cells. Exp Ther Med 2021; 22:1091. [PMID: 34504545 PMCID: PMC8383769 DOI: 10.3892/etm.2021.10525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Previous preliminary studies have suggested that hydroxyapatite with a grooved structure (HAG) scaffold has good osteogenic potential. This type of scaffold may aid osteogenesis during the repair of large maxillofacial bony defects. The ectopic osteogenic effect and underlying mechanism were further studied using porous HAG scaffold-based delivery of human placenta-derived mesenchymal stem cells (hPMSCs). A total of 18 dogs were randomly allocated into a HAG scaffold group and a HAG scaffold-based hPMSC (HAG/hPMSC) group, and three scaffolds were implanted into the dorsal muscle of each dog. Samples were taken for subsequent analysis and tested 4, 8 and 12 weeks following heterotopic implantation. H&E staining was used to study the osteogenic effect in dog dorsal muscles, and RNA sequencing (RNA-seq) was used for exploring the underlying osteogenic mechanism. The osteogenic ability and effector of the HAG/hPMSC group were significantly greater than those of the HAG scaffold group at 4 weeks after implantation. After 12 weeks, a mature bone plate structure was seen in the HAG/hPMSC group. RNA-seq demonstrated that various osteogenesis-related pathways participated at different stages of metabolism, and that the expression of collagen-1 and runt-related transcription factor 2 increased with implantation time. The present study preliminarily focused on the ectopic osteogenic effect of the porous HAG scaffold-based delivery of hPMSCs in vivo, which may be helpful for the improved application of HAG scaffolds in the future.
Collapse
Affiliation(s)
- Xiaohua Ren
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Qingwei Wang
- Institute of Chengdu Biology and Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Chunhui Liu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Qian Zhao
- Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, Sichuan 610000, P.R. China
| | - Jiajun Zheng
- Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Kun Tian
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Huijuan Xu
- Institute of Chengdu Biology and Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China.,The University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
10
|
Zhang S, Wang Q, Ji H, Lu H, Yang Q, Yin J, Guan W. Porcine pancreas mesenchymal cell characterization and functional differentiation into insulin‑producing cells in vitro. Mol Med Rep 2021; 24:737. [PMID: 34414446 PMCID: PMC8404098 DOI: 10.3892/mmr.2021.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is a promising treatment strategy for patients with type 1 diabetes. Porcine pancreas-derived mesenchymal stromal cells (PMSCs) have emerged as one of the most widely used cell resources owing to their high proliferative capacity and multi-lineage differentiation potential. Although the induction efficiency and insulin production of induced insulin-producing cells (IPCs) derived from PMSCs have been estimated, these have primarily focused on the function of induced cells and alterations in related gene expression levels. However, morphological analyses and biological characterization of PMSCs and induced IPCs have not been conducted. Therefore, the present study aimed to optimize an induction protocol, resulting in a 78.92% induction rate. The present study investigated the biological characteristics of PMSCs and optimized a simple but functional three-step protocol to transform PMSCs into IPCs. PMSCs were isolated from 2–3-month-old Bama miniature pig embryos, which were then subcultured to passage 16. The surface markers pancreatic and duodenal homeobox 1, NK6 homeobox 1, Vimentin, Nestin, CD73, CD90, neurogenin 3, CD45 and CD34 were detected by immunofluorescence staining or flow cytometry. Proliferative capacity was evaluated by constructing growth curves of cells at three different passages. Functional differentiation was assessed by morphological observation, dithizone staining, and immunofluorescence staining of C-peptide, insulin, NK6 homeobox 1 and glucagon. The production of insulin by differentiated cells was also analyzed by performing ELISAs. The results demonstrated that differentiated cells were distributed with an islet-like structure, expressed specific markers C-peptide and insulin, and displayed glucose responsiveness. The results of the present study demonstrated that PMSCs were functionally induced into IPCs with the optimized three-step protocol, which may serve as a potential cell therapy strategy to widen the availability and promote the clinical application of cell therapy.
Collapse
Affiliation(s)
- Shang Zhang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qi Wang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hongbing Ji
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Huidi Lu
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Qin Yang
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jiahui Yin
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
11
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
12
|
LIU L, YANG F. Application of Modified Mesenchymal Stem Cells Transplantation in the Treatment of Liver Injury. Physiol Res 2021. [DOI: 10.33549/physiolres.934623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute and chronic hepatitis, cirrhosis, and other liver diseases pose a serious threat to human health; however, liver transplantation is the only reliable treatment for the terminal stage of liver diseases. Previous researchers have shown that mesenchymal stem cells (MSCs) are characterized by differentiation and paracrine effects, as well as anti-oxidative stress and immune regulation functions. When MSCs are transplanted into animals, they migrate to the injured liver tissue along with the circulation, to protect the liver and alleviate the injury through the paracrine, immune regulation and other characteristics, making mesenchymal stem cell transplantation a promising alternative therapy for liver diseases. Although the efficacy of MSCs transplantation has been confirmed in various animal models of liver injury, many researchers have also proposed various pretreatment methods to improve the efficacy of mesenchymal stem cell transplantation, but there is still lack a set of scientific methods system aimed at improving the efficacy of transplantation therapy in scientific research and clinical practice. In this review, we summarize the possible mechanisms of MSCs therapy and compare the existing methods of MSCs modification corresponding to the treatment mechanism, hoping to provide as a reference to help future researchers explore a safe and simple transplantation strategy.
Collapse
Affiliation(s)
- L LIU
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, China
| | - F YANG
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, China
| |
Collapse
|
13
|
Bagheri Y, Fathi E, Maghoul A, Moshtagh S, Mokhtari K, Abdollahpour A, Montazersaheb S, Bagheri A. Effects of Achillea tenuifolia Lam. hydro-alcoholic extract on anxiety-like behavior and reproductive parameters in rat model of chronic restraint stress. Hum Exp Toxicol 2021; 40:1852-1866. [PMID: 34167364 DOI: 10.1177/09603271211026723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Achillea tenuifolia Lam (AT) has several biological activities and medicinal properties. In this study, we elucidated the impact of the AT on anxiety-related behaviors, reproductive parameters, antioxidant capacity in male rats subjected to chronic restraint stress (CRS). METHODS 35 Wistar rats were divided into five groups: control, CRS-control (received normal saline) and three CRS-treated groups received AT extract (100, 150, and 200 mg/kg body weight) for 21 consequences days. To induce CRS rats, the rats were immobilized for 21 days and received the extract orally. On the last day of treatment, anxiety-related behaviors were assessed through the sucrose preference test (SPT) as well as elevated plus maze (EPM) tests. Corticosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), testosterone levels were evaluated to determine reproductive capacity. Sperm parameters including the total count, motility, and viability were also analyzed. Weight of body, testis and seminal vesicles was measured as well. RESULTS The findings revealed that 100, 150, and 200 mg/kg of AT extract had anxiolytic effects in CRS rats, as confirmed by the EPM test and SPT. In addition, AT extract could improve fertile capacity and sperm quality to varying degrees. The level of corticosterone had decreased, whereas the level of LH, FSH and testosterone had increased in CRS-treated rats. Moreover, the reduced level of MDA coincided with an increased rate of antioxidant capacity. Our findings suggest that AT extract could alleviate stress-induced dysfunctions. CONCLUSION Overall, these observations would infer that AT extract could improve fertility capacity and behavioral impairment in the stress conditions. GRAPHICAL ABSTRACT Assumption pathway describing the probability underlying mechanism of CRS-induced anxiety and reproductive toxicity and protective effect of AT.
Collapse
Affiliation(s)
- Y Bagheri
- Faculty of Veterinary Medicine, Tabriz Branch, 201583Islamic Azad University, Tabriz, Iran
| | - E Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, 56947University of Tabriz, Tabriz, Iran
| | - A Maghoul
- Faculty of Veterinary Medicine, Tabriz Branch, 201583Islamic Azad University, Tabriz, Iran
| | - S Moshtagh
- Faculty of Veterinary Medicine, Tabriz Branch, 201583Islamic Azad University, Tabriz, Iran
| | - K Mokhtari
- Faculty of Veterinary Medicine, Tabriz Branch, 201583Islamic Azad University, Tabriz, Iran
| | - A Abdollahpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, 201583Islamic Azad University, Tabriz, Iran
| | - S Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, 201583Tabriz University of Medical Sciences, Tabriz, Iran.,These authors are equally contributed to this work
| | - A Bagheri
- Department of Urology, Sina Hospital, 56947Tabriz University of Medical Sciences, Tabriz, Iran.,These authors are equally contributed to this work
| |
Collapse
|
14
|
Wang N, Wang L, Yang J, Wang Z, Cheng L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother Res 2021; 35:2639-2650. [PMID: 33421256 DOI: 10.1002/ptr.7010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Decrepitude and apoptosis of bone mesenchymal stem cells (BMSCs) induced by reactive oxygen species (ROS) lead to inhibited osteogenic differentiation, causing decreased bone density and osteoporosis. Quercetin, a bioactive component of Solanum muricatum extracts, promotes the osteogenic differentiation of BMSCs and ameliorates the symptoms of osteoporosis in vivo. However, the detailed mechanism underlying this process remains unclear. The study aims to reveal the regulatory mechanism of quercetin in BMSCs. Mouse BMSCs (mBMSCs) were isolated from the bone marrow and characterized by flow cytometry. QRT-PCR and western blot assays were performed to evaluate the expression levels of related genes and proteins. Alkaline phosphatase (ALP) staining and Oil Red O staining of lipids were used to estimate the osteogenesis and adipogenesis levels of mBMSCs, respectively. Quercetin treatment (2 and 5 μM) induced significant upregulation of antioxidant enzymes, SOD1 and SOD2, in mBMSCs. Quercetin promoted osteogenic differentiation and inhibited adipogenic differentiation of mBMSCs. Quercetin treatment enhanced the phosphorylation of AMPK protein and upregulated the expression of SIRT1, thus activating the AMPK/SIRT1 signaling pathway in mBMSCs. Quercetin promoted osteogenic differentiation and antioxidant responses of mBMSCs by activating the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luyao Wang
- Stomatological Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jihao Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihong Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liangxing Cheng
- Research Office, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Fathi E, Vietor I. Mesenchymal Stem Cells Promote Caspase Expression in Molt-4 Leukemia Cells Via GSK-3α/Β and ERK1/2 Signaling Pathways as a Therapeutic Strategy. Curr Gene Ther 2021; 21:81-88. [PMID: 33019931 DOI: 10.2174/1566523220666201005111126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are considered an interesting tool in cell therapy due to their unique features such as self-renewal, multi-potency, and pluripotency. The multifunctional properties of these cells are being investigated in many studies. The current research examined the influence of MSCs on the Molt-4 cell line as acute lymphoblastic leukemia (ALL) cells. METHODS MSCs were cultured, characterized, and co-cultured with Molt-4 cells in a trans-well system. Then, cultured Molt-4 alone and Molt-4 co-cultured with MSCs (10:1) were collected on day 7 and subjected to western blotting for protein expression assessment. Telomerase activity as well as cell senescence, were investigated by PCR-ELISA TRAP assay and β-galactosidase activity measurement, respectively. RESULTS It was found that MSCs resulted in a significant increase in the pro-caspase-8 and cleaved-caspase 8 and 9 expression levels. Furthermore, protein expression levels of GSK-3α/β and ERK1/2 were significantly decreased. The results also showed that MSCs caused significant decreases and increases in telomerase and β-galactosidase enzyme activity of Molt-4 cells, respectively. CONCLUSION It was concluded that MSCs co-cultured with Molt-4 cells could be involved in the promotion of Molt-4 cell apoptosis and cell senescence via caspase-8, 9 cascade and GSK-3α/β and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
16
|
Tsai MJ, Hung SC, Weng CF, Fan SF, Liou DY, Huang WC, Liu KD, Cheng H. Stem cell transplantation and/or adenoviral glial cell line-derived neurotrophic factor promote functional recovery in hemiparkinsonian rats. World J Stem Cells 2021; 13:78-90. [PMID: 33584981 PMCID: PMC7859988 DOI: 10.4252/wjsc.v13.i1.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson’s disease (PD) is a neurological disorder characterized by the progressive loss of midbrain dopamine (DA) neurons. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into multiple cell types including neurons and glia. Transplantation of BMSCs is regarded as a potential approach for promoting neural regeneration. Glial cell line-derived neurotrophic factor (GDNF) can induce BMSC differentiation into neuron-like cells. This work evaluated the efficacy of nigral grafts of human BMSCs (hMSCs) and/or adenoviral (Ad) GDNF gene transfer in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats.
AIM To evaluate the efficacy of nigral grafts of hMSCs and/or Ad-GDNF gene transfer in 6-OHDA-lesioned hemiparkinsonian rats.
METHODS We used immortalized hMSCs, which retain their potential for neuronal differentiation. hMSCs, preinduced hMSCs, or Ad-GDNF effectively enhanced neuronal connections in cultured neurons. In vivo, preinduced hMSCs and/or Ad-GDNF were injected into the substantia nigra (SN) after induction of a unilateral 6-OHDA lesion in the nigrostriatal pathway.
RESULTS Hemiparkinsonian rats that received preinduced hMSC graft and/or Ad-GDNF showed significant recovery of apomorphine-induced rotational behavior and the number of nigral DA neurons. However, DA levels in the striatum were not restored by these therapeutic treatments. Grafted hMSCs might reconstitute a niche to support tissue repair rather than contribute to the generation of new neurons in the injured SN.
CONCLUSION The results suggest that preinduced hMSC grafts exert a regenerative effect and may have the potential to improve clinical outcome.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei 11217, Taiwan
| | - Shih-Chieh Hung
- Department of Medical Research, National Yang Ming University, Institute of Clinical Medicine, Taipei 112, Taiwan
- Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung 404, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- China Medical University, Graduate Institute of Clinical Medical Sciences, Taichung 404, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Stem Cell Laboratory, Taipei 112, Taiwan
| | - Ching-Feng Weng
- Department of Life Science, Institute of Biotechnology, Haulien 97401, Taiwan
| | - Su-Fen Fan
- Department of Neurosurgery, Neurological Institute, Taipei 112, Taiwan
| | - Dann-Ying Liou
- Department of Neurosurgery, Neurological Institute, Taipei 112, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Kang-Du Liu
- Department of neurosurgery, Neurological Institute, Taipei 112, Taiwan
| | - Henrich Cheng
- Department of Neurosurgery, Taipei Veterans General Hospital, Center for Neural Regeneration, Neurological Institute, Taipei 112, Taiwan
| |
Collapse
|
17
|
Zhang Q, Cheng X, Zhang H, Zhang T, Wang Z, Zhang W, Yu W. Dissecting molecular mechanisms underlying H 2O 2-induced apoptosis of mouse bone marrow mesenchymal stem cell: role of Mst1 inhibition. Stem Cell Res Ther 2020; 11:526. [PMID: 33298178 PMCID: PMC7724846 DOI: 10.1186/s13287-020-02041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover the underlying mechanisms the effect of Mst1 inhibition on the tolerance of BM-MSCs under H2O2 condition. METHODS Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell Counting Kit 8 (CCK-8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus, and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured. RESULTS Mst1 inhibition reduced ROS production; increased antioxidant enzyme SOD1/2, CAT, and GPx expression; maintained ΔΨm; and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. Moreover, the antioxidant pathway Keap1/Nrf2 was also blocked when autophagy was inhibited by the autophagy inhibitor 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. CONCLUSION Mst1 inhibition mediated the cytoprotective action of mBM-MSCs against H2O2-induced oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Xianfeng Cheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.,Department of Cardiovascular Surgery, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
18
|
Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 12:1341-1353. [PMID: 33312402 PMCID: PMC7705465 DOI: 10.4252/wjsc.v12.i11.1341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.
Collapse
Affiliation(s)
- Albert Anastasio
- Department of Orthopedic Surgery, Duke University Health System, Durham, NC 27710, United States
| | - Marina Gergues
- Department of Medicine, Hematology/Oncology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Michael S Lebhar
- School of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers School of Biomedical Health Science, Newark, NJ 07103, United States
| | - Joseph Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute, and Critical Care Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
19
|
Abu-Shahba N, Mahmoud M, Abdel-Rasheed M, Darwish Y, AbdelKhaliq A, Mohammed E, ElHefnawi M, Azmy O. Immunomodulatory and Antioxidative potentials of adipose-derived Mesenchymal stem cells isolated from breast versus abdominal tissue: a comparative study. ACTA ACUST UNITED AC 2020; 9:18. [PMID: 33020894 PMCID: PMC7536259 DOI: 10.1186/s13619-020-00056-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) are considered ideal candidates for both research and cellular therapy due to ease of access, large yield, feasibility, and efficacy in preclinical and clinical studies. Unlike the subcutaneous abdominal fat depot, breast ASCs features are still not well recognized, limiting their possible therapeutic use. ASCs were found to exert immunomodulatory and antioxidative activities for maintaining homeostasis and functionality of diseased/damaged tissues. This study aims to investigate the immunomodulatory and antioxidative potentials of breast versus abdominal isolated ASCs to find out which anatomical site provides ASCs with better immunoregulatory and oxidative stress resistance capabilities. METHODS ASCs were isolated from abdominal and breast tissues. Gene expression analysis was conducted for a panel of immunomodulatory and antioxidative genes, as well as adipokines and proliferation genes. Flow cytometric analysis of a group of immunomodulatory surface proteins was also performed. Finally, the significantly expressed genes have undergone protein-protein interaction and functional enrichment in silico analyses. RESULTS Our results revealed similar morphological and phenotypic characteristics for both breast and abdominal ASCs. However, a significant elevation in the expression of two potent immunosuppressive genes, IL-10 and IDO as well as the expression of the multifaceted immunomodulatory adipokine, visfatin, was detected in breast versus abdominal ASCs. Moreover, a significant overexpression of the antioxidative genes, GPX1, SIRT5, and STAT3 and the proliferation marker, Ki67, was also observed in breast ASCs relative to abdominal ones. In silico analysis showed that both of the differentially upregulated immunomodulatory and antioxidative mediators integratively involved in multiple biological processes and pathways indicating their functional association. CONCLUSION Breast ASCs possess superior immunomodulatory and antioxidative capabilities over abdominal ASCs. Our findings shed light on the possible therapeutic applications of breast ASCs in immune-related and oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt. .,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt.
| | - Marwa Mahmoud
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Department of Reproductive Health Research, Medical Research Division. National Research Centre, Cairo, Egypt
| | - Yasmine Darwish
- Plastic and Reconstructive Surgery Unit, General Surgery Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad AbdelKhaliq
- Plastic and Reconstructive Surgery Unit, General Surgery Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Eman Mohammed
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Centre of Excellence for Medical Research, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Osama Azmy
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Department of Reproductive Health Research, Medical Research Division. National Research Centre, Cairo, Egypt
| |
Collapse
|
20
|
Samiei M, Aghazadeh Z, Abdolahinia ED, Vahdati A, Daneshvar S, Noghani A. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells. Acta Odontol Scand 2020; 78:494-500. [PMID: 32191156 DOI: 10.1080/00016357.2020.1734655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: Extremely low-frequency electromagnetic fields (ELF-EMF) can affect biological systems and alter some cell functions like proliferation rate. Dental pulp tissue is known as a source of multipotent stromal stem cells (MSCs), which can be obtained by a less invasive and more available process compared to bone marrow-derived stem cells (BMSCs). This study aimed to consider the effect of ELF-EMF on proliferation rates of human dental pulp stem cells (hDPSCs).Material and methods: ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. The effect of ELF-EMF with the intensity of 0.5 and 1 mT and 50 Hz on the proliferation rate of hDPSCs was assessed in 20 and 40 min per day for 7 days. MTT assay and DAPI test were used to determine the growth and proliferation of DPSCs.Results: Based on MTT, ELF-EMF has maximum effect with the intensity of 1 mT for 20 min/day on the proliferation of hDPSCs. The survival and proliferation rate in all exposure groups were significantly higher than the control group. Based on the data obtained from MTT and DAPI assay, the number of viable cells in the group exposed to 1 mT for 20 min/day was higher than other groups (p < .05).Conclusions: Regarding to the results of this study, 0.5 and 1 mT ELF-EMF can enhance survival and proliferation rates of hDPSCs.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Vahdati
- Dental Public Health Program, Community Oral Health Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran
| | - Sabalan Daneshvar
- Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, University of Tabriz, Tabriz, Iran
| | - Atefe Noghani
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Montazersaheb S, Avci ÇB, Bagca BG, Ay NPO, Tarhriz V, Nielsen PE, Charoudeh HN, Hejazi MS. Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates. Int J Biol Macromol 2020; 164:4583-4590. [PMID: 32941907 DOI: 10.1016/j.ijbiomac.2020.09.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid (PNA) is an amide based structural nucleic acid mimic with potential applications in gene therapeutic drug discovery. In the present study, we evaluated and compared the effects on gene expression, cell viability and apoptosis of two antisense PNA-d-octaarginine conjugates, targeting sequences at the AUG translation start site or the 5'-UTR of the TdT (terminal deoxynucleotidyl transferase) gene, as well as a sense oligomer corresponding to the 5'-UTR-antisense, in Molt-4 cells. The protein level of TdT was determined by flow cytometry, and qPCR was used for mRNA expression analysis. Mismatch PNAs were used as control to address the sequence/target spcifity of the biological effects. The results showed that treatment with the AUG- and to slightly lesser extent with the 5'-UTR-antisense PNAs reduced the TdT mRNA as wel as the protein level, whereas only very low effect was observed for the 5'-UTR-sense PNA. A parallel effect was observed on reduced cell survival and increased rate of apoptosis. Our findings suggest that antisense PNAs can inhibit expression of the TdT gene and induce apoptosis in Molt-4 cells.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | | | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Wei D, Hou J, Zheng K, Jin X, Xie Q, Cheng L, Sun X. Suicide Gene Therapy Against Malignant Gliomas by the Local Delivery of Genetically Engineered Umbilical Cord Mesenchymal Stem Cells as Cellular Vehicles. Curr Gene Ther 2020; 19:330-341. [PMID: 31657679 DOI: 10.2174/1566523219666191028103703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant tumor that is difficult to eliminate, and new therapies are thus strongly desired. Mesenchymal stem cells (MSCs) have the ability to locate to injured tissues, inflammation sites and tumors and are thus good candidates for carrying antitumor genes for the treatment of tumors. Treating GBM with MSCs that have been transduced with the herpes simplex virus thymidine kinase (HSV-TK) gene has brought significant advances because MSCs can exert a bystander effect on tumor cells upon treatment with the prodrug ganciclovir (GCV). OBJECTIVE In this study, we aimed to determine whether HSV-TK-expressing umbilical cord mesenchymal stem cells (MSCTKs) together with prodrug GCV treatment could exert a bystander killing effect on GBM. METHODS AND RESULTS Compared with MSCTK: U87 ratio at 1:10,1:100 and 1:100, GCV concentration at 2.5µM or 250µM, when MSCTKs were cocultured with U87 cells at a ratio of 1:1, 25 µM GCV exerted a more stable killing effect. Higher amounts of MSCTKs cocultured with U87 cells were correlated with a better bystander effect exerted by the MSCTK/GCV system. We built U87-driven subcutaneous tumor models and brain intracranial tumor models to evaluate the efficiency of the MSCTK/GCV system on subcutaneous and intracranial tumors and found that MSCTK/GCV was effective in both models. The ratio of MSCTKs and tumor cells played a critical role in this therapeutic effect, with a higher MSCTK/U87 ratio exerting a better effect. CONCLUSION This research suggested that the MSCTK/GCV system exerts a strong bystander effect on GBM tumor cells, and this system may be a promising assistant method for GBM postoperative therapy.
Collapse
Affiliation(s)
- Dan Wei
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - JiaLi Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Ke Zheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xin Jin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Qi Xie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| |
Collapse
|
23
|
Lan XR, Li YW, Chen QL, Shen YJ, Liu ZH. Tributyltin impaired spermatogenesis and reproductive behavior in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105503. [PMID: 32438217 DOI: 10.1016/j.aquatox.2020.105503] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT) was reported to affect sexual behavior and gametogenesis in fish. However, the modes of action involved are largely unclear. In order to elucidate the toxicological mechanisms of TBT in reproduction, zebrafish (Danio rerio) males were exposed to TBT at concentrations of 100 and 500 ng/L for 28 days. After exposure, the sperm count of the treated fish was sharply decreased though the testis weight and gonadosomatic index remained unchanged. Moreover, reduced number of spermatogonia and spermatozoa and increased spermatocytes were observed in TBT-treated fish by histological observation and PCNA-immunostaining. Increased number of apoptotic-positive spermatocytes was also present in TBT-treated fish, indicating an enhanced apoptosis in these cells. Consistent to decreased number of spermatogonia, down-regulated expressions of genes responsible for germ cell proliferation (cyclind1 and pcna) were observed in TBT-treated fish. In contrast, TBT elevated the expressions of genes involved in meiotic entry and maintenance (aldhla2, sycp3 and dmc1) while suppressed the mRNA level of gene responsible for terminus of meiotic entry (cyp26a1), in agreement with arrested meiosis and reduced sperm count. Furthermore, TBT significantly elevated the ratios of bax/bcl-2 and tnfrsf1a/tnfrsf1b in testis, which are markers for intrinsic- and extrinsic-apoptotic pathways, consistent with the enhanced TUNEL positive signals in spermatocytes. Moreover, TBT also significantly affected the parameter of reproductive behaviors in treated fish (reflected by decreased frequency of meeting, visits and time spent in spawning area). Consistently, the expressions of genes responsible for the modulation of reproductive behaviors in brain (such as cyp19a1b, kiss2, gnrh3 and ompb) were significantly down-regulated in treated-fish. Interestingly, disrupted reproductive behaviors of untreated female fish were also observed in the present study. The present study indicated that TBT might affect the reproduction of zebrafish male by disrupting the spermatogenesis and reproductive behavior of the fish.
Collapse
Affiliation(s)
- Xue-Rong Lan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
24
|
Fathi E, Valipour B, Sanaat Z, Nozad Charoudeh H, Farahzadi R. Interleukin-6, -8, and TGF-β Secreted from Mesenchymal Stem Cells Show Functional Role in Reduction of Telomerase Activity of Leukemia Cell Via Wnt5a/β-Catenin and P53 Pathways. Adv Pharm Bull 2020; 10:307-314. [PMID: 32373501 PMCID: PMC7191235 DOI: 10.34172/apb.2020.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: The effect of mesenchymal stem cells (MSCs) on the immortality features of malignant cells, such as hematologic cancerous cells, are controversial, and the associated mechanisms are yet to be well understood. The aim of the present study was to investigate the in vitro effect of bone marrow-derived MSCs (BMSCs) on the chronic myeloid leukemia cell line K562 through telomere length measurements, telomerase activity assessments, and hTERT gene expression. The possible signaling pathways involved in this process, including Wnt-5a/β-catenin and P53, were also evaluated. Methods: Two cell populations (BMSCs and K562 cell line) were co-cultured on transwell plates for 7 days. Next, K562 cells were collected and subjected to quantitative real-time PCR, PCR-ELISA TRAP assay, and the ELISA sandwich technique for telomere length, hTERT gene expression, telomerase activity assay, and cytokine measurement, respectively. Also, the involvement of the mentioned signaling pathways in this process was reported by real-time PCR and Western blotting through gene and protein expression, respectively. Results: The results showed that BMSCs caused significant decreases in telomere length, telomerase activity, and the mRNA level of hTERT as a regulator of telomerase activity. The significant presence of interleukin (IL)-6, IL-8, and transforming growth factor beta (TGF-β) was obvious in the co-cultured media. Also, BMSCs significantly decreased and increased the gene and protein expression of β-catenin and P53, respectively. Conclusion: It was concluded that the mentioned effects of IL-6, IL-8, and TGF-β cytokines secreted from MSCs on K562 cells as therapeutic agents were applied by Wnt-5a/β-catenin and P53 pathways.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Li Y, Wang L, Zhang M, Huang K, Yao Z, Rao P, Cai X, Xiao J. Advanced glycation end products inhibit the osteogenic differentiation potential of adipose-derived stem cells by modulating Wnt/β-catenin signalling pathway via DNA methylation. Cell Prolif 2020; 53:e12834. [PMID: 32468637 PMCID: PMC7309593 DOI: 10.1111/cpr.12834] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/05/2023] Open
Abstract
Objectives Advanced glycation end products (AGEs) are considered a cause of diabetic osteoporosis. Although adipose‐derived stem cells (ASCs) are widely used in the research of bone regeneration, the mechanisms of the osteogenic differentiation of ASCs from diabetic osteoporosis model remain unclear. This work aimed to investigate the influence and the molecular mechanisms of AGEs on the osteogenic potential of ASCs. Materials and methods Enzyme‐linked immunosorbent assay was used to measure the change of AGEs in diabetic osteoporotic and control C57BL/6 mice. ASCs were obtained from the inguinal fat of C57BL/6 mice. AGEs, 5‐aza2′‐deoxycytidine (5‐aza‐dC) and DKK‐1 were used to treat ASCs. Real‐time cell analysis and cell counting kit‐8 were used to monitor the proliferation of ASCs within and without AGEs. Real‐time PCR, Western blot and Immunofluorescence were used to analyse the genes and proteins expression of osteogenic factors, DNA methylation factors and Wnt/β‐catenin signalling pathway among the different groups. Results The AGEs and DNA methylation were increased in the adipose and bone tissue of the diabetic osteoporosis group. Untreated ASCs had higher cell proliferation activity than AGEs‐treatment group. The expression levels of osteogenic genes, Opn and Runx2, were lower, and mineralized nodules were less in AGEs‐treatment group. Meanwhile, DNA methylation was increased, and the Wnt signalling pathway markers, including β‐Catenin, Lef1 and P‐GSK‐3β, were inhibited. After treatment with 5‐aza‐dC, the osteogenic differentiation capacity of ASCs in the AGEs environment was restored and the Wnt signalling pathway was activated during this process. Conclusions Advanced glycation end products inhibit the osteogenic differentiation ability of ASCs by activating DNA methylation and inhibiting Wnt/β‐catenin pathway in vitro. Therefore, DNA methylation may be promising targets for the bone regeneration of ASCs with diabetic osteoporosis.
Collapse
Affiliation(s)
- Yong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Maorui Zhang
- Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Kui Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Zhihao Yao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Pengcheng Rao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
26
|
Hesari R, Keshvarinia M, Kabiri M, Rad I, Parivar K, Hoseinpoor H, Tavakoli R, Soleimani M, Kouhkan F, Zamanlui S, Hanaee-Ahvaz H. Combination of low intensity electromagnetic field with chondrogenic agent induces chondrogenesis in mesenchymal stem cells with minimal hypertrophic side effects. Electromagn Biol Med 2020; 39:154-165. [PMID: 32131644 DOI: 10.1080/15368378.2020.1737809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: There are different methods to develop in vitro neo-chondral tissues from adipose-derived stem cells (ADSCs). Application of electromagnetic field (EMF) on ADSCs is one of popular approaches, which results in chondrogenesis. If chondrogenic impact of EMF on ADSCs is supposed to be generalized as a protocol in translational medicine field, possible emergence of early or late hypertrophic maturation, mineralization and inflammatory side effects in chondrogenically differentiating ADSCs should be considered.Methods: The advent of chondrogenic and hypertrophic markers by differentiated cells under standard, platelet-rich plasma (PRP)-based or EMF treatments were monitored. Along with monitoring the expressions of chondrogenic markers, inflammatory and hypertrophic markers, VEGF/TNFα secretion, calcium deposition and ALP activity were evaluated.Results: Accordingly, treatment with %5 PRP results in higher GAG production, enhanced SOX9 transcription, lowered TNFα and VEGF secretions compared to other treatments. Although PRP up-regulates miR-146a and miR-199a in early and late stages of chondrogenesis, respectively, application of EMF + PRP down regulates miR-101 and -145 while up-regulates miR-140 and SOX9 expression.Conclusion: Comparing our results with previous reports suggests that presented EMF-ELF in this study with f = 50 Hz, EMF intensity of less than 30 mT, and 5% PRP (v/v), would facilitate chondrogenesis via mesenchymal stem cells with minor inflammation and hypertrophic maturation.Abbreviations: MSCs: mesenchymal stem cells; TGFβ: transforming growth factor-beta; PRP: platelet-rich plasma; ELF-EMF: extremely low-frequency electromagnetic fields; GAGs: glycosaminoglycans; ADSCs: adipose-derived stem cells; VEGF: vascular endothelial growth factor; TNFα: tumor necrosis factor alpha; ALP: alkaline phosphatase.
Collapse
Affiliation(s)
- Roya Hesari
- Institute of Materials and Biomaterials, Tehran, Iran
| | - Mina Keshvarinia
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Iman Rad
- Stemcell Technology Research Center, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | | | | | - Masoud Soleimani
- Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Soheila Zamanlui
- Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
27
|
Zheng J, Zhu L, Iok In I, Chen Y, Jia N, Zhu W. RETRACTED: Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. Int Immunopharmacol 2020; 78:105985. [PMID: 31776092 DOI: 10.1016/j.intimp.2019.105985] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2D, 3E and 4E, which appear to have a similar phenotype as contained in many other publications, detailed here: https://pubpeer.com/publications/7C4BCEFA1DB0FE34826962595A5C9C; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Although no Western blot duplications were identified within this article, when this article was compared with ‘Jin, Ren & Qi (2020)’™, mentioned in the PubPeer thread, two suspected image duplications were identified within Figure 5B. We confirmed that the histological sections represent different treatment groups from different papers as discussed in the PubPeer thread. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Lijuan Zhu
- Department of Rheumatology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Iong Iok In
- Department of Rheumatology, Kiang Wu Hospital, Macao 999078, PR China
| | - Yilan Chen
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Ning Jia
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| | - Weiping Zhu
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China.
| |
Collapse
|
28
|
Yuan WX, Wang XX, Zheng DH, Ma D, Cui Q, Yang F, Zhang J. Muscone Promotes The Adipogenic Differentiation Of Human Gingival Mesenchymal Stem Cells By Inhibiting The Wnt/β-Catenin Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3291-3306. [PMID: 31571831 PMCID: PMC6756161 DOI: 10.2147/dddt.s220970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
Abstract
Objectives This study was performed to evaluate the effects of muscone on the proliferation, migration and differentiation of human gingival mesenchymal stem cells (GMSCs) and to explore the relevant mechanisms. Materials and methods We performed studies to determine the effects and mechanisms of muscone on GMSC proliferation, migration and differentiation. We conducted CCK-8, colony formation, transwell chamber, scratch wound, alkaline phosphatase (ALP) staining and activity, and alizarin red and oil red O staining assays, as well as real-time quantitative polymerase chain reaction (qRT-PCR), to ascertain the effects of muscone on GMSC proliferation, migration and differentiation in vitro. The mechanism by which muscone influences the osteogenic and adipogenic differentiation of GMSCs was elucidated by qRT-PCR and Western blotting. Results We found that muscone significantly promoted GMSC proliferation, chemotaxis, wound healing and fat droplet formation and inhibited ALP activity and mineral deposition. Notably, we observed that the Wnt/β-catenin pathway was closely related to the ability of muscone to inhibit the osteogenic differentiation and promote the adipogenic differentiation of GMSCs. The effect of muscone on the multidirectional differentiation capacity of GMSCs was significantly reversed by the agonist lithium chloride through the Wnt/β-catenin signaling pathway. Conclusion Muscone effectively increased the proliferation and migration, promoted the adipogenic differentiation and inhibited the osteogenic differentiation of GMSCs by inhibiting the Wnt/β-catenin signaling pathway. These results may provide a theoretical basis for the application of GMSCs and muscone in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Wen-Xiu Yuan
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Xu-Xia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - De-Hua Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Dan Ma
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Qun Cui
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Fan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
29
|
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54:165-174. [PMID: 31730689 PMCID: PMC6779935 DOI: 10.5045/br.2019.54.3.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Drug resistance in cancer, especially in leukemia, creates a dilemma in treatment planning. Consequently, studies related to the mechanisms underlying drug resistance, the molecular pathways involved in this phenomenon, and alternate therapies have attracted the attention of researchers. Among a variety of therapeutic modalities, mesenchymal stem cells (MSCs) are of special interest due to their potential clinical use. Therapies involving MSCs are showing increasing promise in cancer treatment and anticancer drug screening applications; however, results have been inconclusive, possibly due to the heterogeneity of MSC populations. Most recently, the effect of MSCs on different types of cancer, such as hematologic malignancies, their mechanisms, sources of MSCs, and its advantages and disadvantages have been discussed. There are many proposed mechanisms describing the effects of MSCs in hematologic malignancies; however, the most commonly-accepted mechanism is that MSCs induce tumor cell cycle arrest. This review explains the anti-tumorigenic effects of MSCs through the suppression of tumor cell proliferation in hematological malignancies, especially in acute myeloid leukemia.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Fathi E, Farahzadi R, Valipour B, Sanaat Z. Cytokines secreted from bone marrow derived mesenchymal stem cells promote apoptosis and change cell cycle distribution of K562 cell line as clinical agent in cell transplantation. PLoS One 2019; 14:e0215678. [PMID: 31009502 PMCID: PMC6476492 DOI: 10.1371/journal.pone.0215678] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of special interest due their potential clinical use in cell-based therapy. Therapies engaging MSCs are showing increasing promise in the cancer treatment and anticancer drug screening applications. A multitude of growth factors and cytokines secreted from these cells are known to give such multifunctional properties, but details of their role are yet to be absolutely demonstrated. In this study, we have evaluated the influence of BMSCs on K562 cell line as chronic myeloid leukemia (CML) cells, with the use of a cytokine antibody array recognizing 34 cytokines. For this purpose, BMSCs were isolated and co-cultured with K562 cells; thereafter, cultured K562 alone and co-cultured K562 with BMSCs (10:1) were collected at day 7 and subjected to cell cycle distribution assay as well as annexin/PI analysis and Ki/caspase-3 assay for apoptosis assessment. In the following, the gene and protein expression levels of BAX and BCL-2 as pro- and anti-apoptotic agents were investigated. Furthermore, after 7 days' treatment, culture medium was collected from both control and experimental groups for cytokine antibody array. It was found that BMSCs resulted in a robust increase in the number of cells at G0/G1 phase and arrest the G0/G1 phase as well as significantly inducing late apoptosis in K562 cells. The significant presence of TIMP-1 (tissue inhibitor of metalloproteinases-1), and moderate elevated signals for CINC-1 (cytokine-induced neutrophil chemoattractant-1) were obvious in the co-cultured conditioned media, but no significant increase was found in 32 other cytokines. It is concluded that co-culture of BMSCs with K562 cells could secrete a substantial amount of TIMP-1 and CINC-1. These cytokines could be involved in the inhibition of the K562 cell proliferation via BAX and caspase-3 cascade pathways.
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Cells/cytology
- Bone Marrow Cells/metabolism
- Cell Cycle
- Cells, Cultured
- Chemokine CXCL1/metabolism
- Coculture Techniques
- Cytokines/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|