1
|
Wei L, Yan W, Shah W, Zhang Z, Wang M, Liu B, Xue Z, Cao Y, Hou X, Zhang K, Yan B, Wang X. Advancements and challenges in stem cell transplantation for regenerative medicine. Heliyon 2024; 10:e35836. [PMID: 39247380 PMCID: PMC11379611 DOI: 10.1016/j.heliyon.2024.e35836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stem cell transplantation has emerged as a promising avenue in regenerative medicine, potentially facilitating tissue repair in degenerative diseases and injuries. This review comprehensively examines recent developments and challenges in stem cell transplantation. It explores the identification and isolation of various stem cell types, including embryonic, induced pluripotent, and adult stem cells derived from multiple sources. Additionally, the review highlights the tissue-specific applications of these stem cells, focusing on bone and cartilage regeneration, treatment of neurological disorders, and management of hematological conditions. Future advancements and effective resolution of current challenges will be crucial in fully realizing the potential of stem cell transplantation in regenerative medicine. With responsible and ethical practices, the field can potentially transform disease and injury treatment, ultimately improving the quality of life for countless individuals.
Collapse
Affiliation(s)
- Lingxi Wei
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Wenqi Yan
- Shandong University, Ji Nan, Shandong, 250000, China
| | - Wahid Shah
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Zhengwei Zhang
- Department of Ophthalmology, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, China
| | - Minghe Wang
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Biao Liu
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Zhentong Xue
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Yixin Cao
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Xinyu Hou
- School of Geographic Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kai Zhang
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Beibei Yan
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Xiaogang Wang
- Department of Cataract, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| |
Collapse
|
2
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
3
|
Yang M, Peng GH. The molecular mechanism of human stem cell-derived extracellular vesicles in retinal repair and regeneration. Stem Cell Res Ther 2023; 14:84. [PMID: 37046324 PMCID: PMC10100447 DOI: 10.1186/s13287-023-03319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Extracellular vesicles (EVs), including microvesicles (MVs) and exosomes, play a critical role in metabolic regulation and intracellular communication. Stem cell-derived EVs are considered to have the potential for regeneration, like stem cells, while simultaneously avoiding the risk of immune rejection or tumour formation. The therapeutic effect of stem cell-derived EVs has been proven in many diseases. However, the molecular mechanism of stem cell-derived EVs in retinal repair and regeneration has not been fully clarified. In this review, we described the biological characteristics of stem cell-derived EVs, summarized the current research on stem cell-derived EV treatment in retinal repair and regeneration, and discussed the potential and challenges of stem cell-derived EVs in translational medicine.
Collapse
Affiliation(s)
- Mei Yang
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Cho YS, Gwak SJ. Novel Sensing Technique for Stem Cells Differentiation Using Dielectric Spectroscopy of Their Proteins. SENSORS (BASEL, SWITZERLAND) 2023; 23:2397. [PMID: 36904601 PMCID: PMC10007102 DOI: 10.3390/s23052397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Dielectric spectroscopy (DS) is the primary technique to observe the dielectric properties of biomaterials. DS extracts complex permittivity spectra from measured frequency responses such as the scattering parameters or impedances of materials over the frequency band of interest. In this study, an open-ended coaxial probe and vector network analyzer were used to characterize the complex permittivity spectra of protein suspensions of human mesenchymal stem cells (hMSCs) and human osteogenic sarcoma (Saos-2) cells in distilled water at frequencies ranging from 10 MHz to 43.5 GHz. The complex permittivity spectra of the protein suspensions of hMSCs and Saos-2 cells revealed two major dielectric dispersions, β and γ, offering three distinctive features for detecting the differentiation of stem cells: the distinctive values in the real and imaginary parts of the complex permittivity spectra as well as the relaxation frequency in the β-dispersion. The protein suspensions were analyzed using a single-shell model, and a dielectrophoresis (DEP) study was performed to determine the relationship between DS and DEP. In immunohistochemistry, antigen-antibody reactions and staining are required to identify the cell type; in contrast, DS eliminates the use of biological processes, while also providing numerical values of the dielectric permittivity of the material-under-test to detect differences. This study suggests that the application of DS can be expanded to detect stem cell differentiation.
Collapse
Affiliation(s)
- Young Seek Cho
- Department of Electronic Engineering, Wonkwang University, Iksan 54538, Jeollabuk-do, Republic of Korea
| | - So-Jung Gwak
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeollabuk-do, Republic of Korea
| |
Collapse
|
5
|
Ghandy N, Ebrahimzadeh-Bideskan A, Gorji A, Negah SS. Co-transplantation of novel Nano-SDF scaffold with human neural stem cells attenuates inflammatory responses and apoptosis in traumatic brain injury. Int Immunopharmacol 2023; 115:109709. [PMID: 36638659 DOI: 10.1016/j.intimp.2023.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Traumatic brain injury (TBI) causes long-term disability and mortality worldwide. The prime pathological players in TBI are neuroinflammation and apoptosis. These pathological changes lead to a limited capacity of regeneration after TBI. To alleviate inflammatory responses and apoptosis triggered by TBI, developing bioactive scaffolds conjoined with stem cells is a decisive approach in neural tissue engineering. The aim of this study was to fabricate a novel nano-scaffold made of RADA-16 with a bioactive motif of stromal cell-derived factor-1 α (SDF-1α) and evaluate its effects with stem cell transplantation on inflammatory pathways, reactive gliosis, and apoptosis after TBI. Co-transplantation of Nano-SDF and human neural stem cells (hNSCs) derived from fetus brain in adult rats subjected to TBI led to the improvement of motor activitycompared with the control group. The treated animals with hNSCs + Nano-SDF had a significantly lower expression of toll-like receptor 4 and nuclear factor-kappa B at the injury site than the control animals. A significant reduction in the number of reactive astrocytes was also observed in rats that received hNSCs + Nano-SDF compared with the vehicle and Nano-SDF groups. Furthermore, the TUNEL assay indicated a significant reduction in TUNEL positive cells in the hNSCs + Nano-SDF group compared with the TBI, vehicle, and Nano-SDF groups. These data demonstrated co-transplantation of hNSCs with Nano-SDF can reduce inflammatory responses and cell death after TBI via creating a more supportive microenvironment. Further research is required to establish the therapeutic efficacy of Nano-SDF with stem cells for TBI.
Collapse
Affiliation(s)
- Nasibeh Ghandy
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Salvador WOS, Ribeiro IAB, Nogueira DES, Ferreira FC, Cabral JMS, Rodrigues CAV. Bioprocess Economic Modeling: Decision Support Tools for the Development of Stem Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120791. [PMID: 36550997 PMCID: PMC9774475 DOI: 10.3390/bioengineering9120791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Over recent years, the field of cell and gene therapy has witnessed rapid growth due to the demonstrated benefits of using living cells as therapeutic agents in a broad range of clinical studies and trials. Bioprocess economic models (BEMs) are fundamental tools for guiding decision-making in bioprocess design, being capable of supporting process optimization and helping to reduce production costs. These tools are particularly important when it comes to guiding manufacturing decisions and increasing the likelihood of market acceptance of cell-based therapies, which are often cost-prohibitive because of high resource and quality control costs. Not only this, but the inherent biological variability of their underlying bioprocesses makes them particularly susceptible to unforeseen costs arising from failed or delayed production batches. The present work reviews important concepts concerning the development of bioprocesses for stem cell therapy products and highlights the valuable role which BEMs can play in this endeavor. Additionally, some theoretical concepts relevant to the building and structuring of BEMs are explored. Finally, a comprehensive review of the existent BEMs so far reported in the scientific literature for stem cell-related bioprocesses is provided to showcase their potential usefulness.
Collapse
Affiliation(s)
- William O. S. Salvador
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Inês A. B. Ribeiro
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo E. S. Nogueira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico C. Ferreira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
7
|
Adugna DG, Aragie H, Kibret AA, Belay DG. Therapeutic Application of Stem Cells in the Repair of Traumatic Brain Injury. Stem Cells Cloning 2022; 15:53-61. [PMID: 35859889 PMCID: PMC9289752 DOI: 10.2147/sccaa.s369577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury is the main cause of injury-related deaths and disabilities throughout the world, which is characterized by a disruption of the normal physiology of the brain following trauma. It can potentially cause severe complications such as physical, cognitive, and emotional impairment. In addition to understanding traumatic brain injury pathophysiology, this review explains the therapeutic potential of stem cells following brain injury in two pathways: response of endogenous neurogenic cells and transplantation of exogenous stem cell therapy. After traumatic brain injuries, clinical evidence indicated that endogenous neural progenitor cells might play an important role in regenerative medicine to treat brain injury. This is due to an increased neurogenic regeneration ability of these cells following brain injury. Besides, exogenous stem cell transplantation has also accelerated immature neuronal development and increased endogenous cellular proliferation in the damaged brain region. Therefore, a better understanding of the endogenous neural stem cell’s regenerative ability and the effect of exogenous stem cells on proliferation and differentiation ability may help researchers to understand how to increase functional recovery and tissue repair following injury.
Collapse
Affiliation(s)
- Dagnew Getnet Adugna
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Hailu Aragie
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Anteneh Ayelign Kibret
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| | - Daniel Gashaneh Belay
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia.,Department of Epidemiology, Institution of Public Health, College of Medicine and Health Science, University of Gondar, Gondar, Amhara Region, Ethiopia
| |
Collapse
|
8
|
Yu HB, Xiong J, Zhang HZ, Chen Q, Xie XY. TGFβ1-transfected tendon stem cells promote tendon fibrosis. J Orthop Surg Res 2022; 17:358. [PMID: 35864537 PMCID: PMC9306186 DOI: 10.1186/s13018-022-03241-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background In aged people, tendon injuries frequently occur during sporting and daily activities. In clinical practice, typical physiotherapeutic, pharmacotherapeutic, and surgical techniques do not result in the full recovery of injured tendons, which may lead to chronic degenerative disease. Methods We first isolated tendon stem cells (TSCs) from rats and transfected them with the TGFβ1 gene, resulting in TGFβ1-TSCs. The proliferation of TSCs was detected using the Cell Counting Kit 8, and TSCs were identified by immunofluorescence analysis and differentiation capacity analysis. Aggrecan, COL2A1, alpha smooth muscle actin (α-SMA), and p-Smad2 expression levels were detected using western blotting and quantitative reverse transcription polymerase chain reaction. Additionally, a tendon injury model was generated to explore the effect of TGFβ1 on the repair of the tendon by TSCs. Results Compared with fibrinogen treatment, TSC + fibrinogen or TGFβ1-TSC + fibrinogen treatment significantly promoted the fibrosis of injured tendons, as evidenced by histological analyses, with TGFβ1-TSC + fibrinogen having a greater effect than TSC + fibrinogen. In TGFβ1-TSCs, increased expression levels of aggrecan and COL2A1 indicated that TGFβ1 signaling induced chondrogenic differentiation. Meanwhile, the increased collagen and α-SMA protein levels indicated that TGFβ1 promoted fibrogenesis. Additionally, TGFβ1 stimulated the production of phosphorylated Smad2 in TSCs, which suggested that the chondrogenic and fibrogenic differentiation of TSCs, as well as tissue regeneration, may be associated with the TGFβ1/Smad2 pathway. Conclusion TGFβ1-TSC therapy may be a candidate for effective tendon fibrosis.
Collapse
Affiliation(s)
- Hong-Bin Yu
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China.
| | - Jing Xiong
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| | - Hui-Zhen Zhang
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| | - Qin Chen
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| | - Xu-Yong Xie
- Department of Sports & Rehabilitation Medicine, The First People's Hospital of Jiujiang City, No. 48 of Taling Street, Jiujiang District, Jiujiang, 332000, China
| |
Collapse
|
9
|
Gorodetsky R, Aicher WK. Allogenic Use of Human Placenta-Derived Stromal Cells as a Highly Active Subtype of Mesenchymal Stromal Cells for Cell-Based Therapies. Int J Mol Sci 2021; 22:5302. [PMID: 34069909 PMCID: PMC8157571 DOI: 10.3390/ijms22105302] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stromal cells (MSCs) from different sources, including bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has been proposed for various clinical purposes. Accumulated evidence suggests that the activity of the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The easily available fresh human placenta seems to represent a preferred source for harvesting abundant numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta (f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a very competent cell for therapy in humans or animal models. This review summarizes the therapeutic potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and anti-inflammatory effects and discusses clinical feasibility studies.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Center of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72076 Tuebingen, Germany
| |
Collapse
|
10
|
Liu C, Han D, Liang P, Li Y, Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol 2021; 9:636136. [PMID: 33968924 PMCID: PMC8100527 DOI: 10.3389/fcell.2021.636136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide. Stem cell transplantation has become a promising approach for the treatment of IHD in recent decades. It is generally recognized that preclinical cell-based therapy is effective and have yielded encouraging results, which involves preventing or reducing myocardial cell death, inhibiting scar formation, promoting angiogenesis, and improving cardiac function. However, clinical studies have not yet achieved a desired outcome, even multiple clinical studies showing paradoxical results. Besides, many fundamental puzzles remain to be resolved, for example, what is the optimal delivery timing and approach? Additionally, limited cell engraftment and survival, challenging cell fate monitoring, and not fully understood functional mechanisms are defined hurdles to clinical translation. Here we review some of the current dilemmas in stem cell-based therapy for IHD, along with our efforts and opinions on these key issues.
Collapse
Affiliation(s)
- Chuanbin Liu
- Medical School of Chinese PLA, Beijing, China
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Dong Han
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasond, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
11
|
Tan HL, Tan BZ, Goh WXT, Cua S, Choo A. In vivo surveillance and elimination of teratoma-forming human embryonic stem cells with monoclonal antibody 2448 targeting annexin A2. Biotechnol Bioeng 2019; 116:2996-3005. [PMID: 31388993 PMCID: PMC6790577 DOI: 10.1002/bit.27135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody‐dependent cell‐mediated cytotoxicity (ADCC) and/or antibody‐drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post‐transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell‐derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC‐derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma‐forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.
Collapse
Affiliation(s)
- Heng Liang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Bao Zhu Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Winfred Xi Tai Goh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Simeon Cua
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
12
|
Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Parouchev A, Cacciapuoti I, Al-Daccak R, Benhamouda N, Blons H, Agbulut O, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Charron D, Tartour E, Tachdjian G, Desnos M, Larghero J. Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J Am Coll Cardiol 2019; 71:429-438. [PMID: 29389360 DOI: 10.1016/j.jacc.2017.11.047] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells. OBJECTIVES This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction. METHODS Six patients (median age 66.5 years [interquartile range (IQR): 60.5 to 74.7 years]; median left ventricular ejection fraction 26% [IQR: 22% to 32%]) received a median dose of 8.2 million (IQR: 5 to 10 million) hESC-derived cardiovascular progenitors embedded in a fibrin patch that was epicardially delivered during a coronary artery bypass procedure. The primary endpoint was safety at 1 year and focused on: 1) cardiac or off-target tumor, assessed by imaging (computed tomography and fluorine-18 fluorodeoxyglucose positron emission tomography scans); 2) arrhythmias, detected by serial interrogations of the cardioverter-defibrillators implanted in all patients; and 3) alloimmunization, assessed by the presence of donor-specific antibodies. Patients were followed up for a median of 18 months. RESULTS The protocol generated a highly purified (median 97.5% [IQR: 95.5% to 98.7%]) population of cardiovascular progenitors. One patient died early post-operatively from treatment-unrelated comorbidities. All others had uneventful recoveries. No tumor was detected during follow-up, and none of the patients presented with arrhythmias. Three patients developed clinically silent alloimmunization. All patients were symptomatically improved with an increased systolic motion of the cell-treated segments. One patient died of heart failure after 22 months. CONCLUSIONS This trial demonstrates the technical feasibility of producing clinical-grade hESC-derived cardiovascular progenitors and supports their short- and medium-term safety, thereby setting the grounds for adequately powered efficacy studies. (Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]; NCT02057900).
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France.
| | - Valérie Vanneaux
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Albert Hagège
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Bel
- Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Bernard Cholley
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Anesthesiology and Intensive Care, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Alexandre Parouchev
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Isabelle Cacciapuoti
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Reem Al-Daccak
- INSERM U976, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadine Benhamouda
- Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- INSERM Mixed Research Units (UMR)-S1147, National Scientific Research Center (CNRS) Non CNRS Structure 5014, Sorbonne Paris Cité, Department of Biochemistry, Pharmacogenetic and Molecular Oncology Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie, University Paris-6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Lucie Tosca
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Jean-Hugues Trouvin
- School of Pharmacy, University Paris Descartes, Paris, France; Central Pharmacy, Pharmaceutical Innovation Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Roch Fabreguettes
- Central Pharmacy, Clinical Trials Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valérie Bellamy
- National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Charron
- Human Leukocyte Antigen and Médecine, Hôpital Saint-Louis, INSERM U976, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Gérard Tachdjian
- Assistance Publique-Hôpitaux de Paris, University Paris Sud, Histology-Embryology-Cytogenetics, Hôpitaux Universitaires Paris Sud, Clamart, France
| | - Michel Desnos
- University Paris Descartes, Sorbonne Paris Cité, Paris, France; National Institute of Health and Medical Research (INSERM) U970, Hôpital Européen Georges Pompidou, Paris, France; Department of Cardiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Larghero
- Cell Therapy Unit, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France; INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Wang Y, Huang J, Gong L, Yu D, An C, Bunpetch V, Dai J, Huang H, Zou X, Ouyang H, Liu H. The Plasticity of Mesenchymal Stem Cells in Regulating Surface HLA-I. iScience 2019; 15:66-78. [PMID: 31030183 PMCID: PMC6487373 DOI: 10.1016/j.isci.2019.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 02/07/2023] Open
Abstract
A low surface expression level of human leukocyte antigen class I (HLA-I) ensures that the mesenchymal stem cells (MSCs) escape from the allogeneic recipients' immunological surveillance. Here, we discovered that both transcriptional and synthesis levels of HLA-I in MSCs increased continuously after interferon (IFN)-γ treatment, whereas interestingly, their surface HLA-I expression was downregulated after reaching an HLA-I surface expression peak. Microarray data indicated that the post-transcriptional process plays an important role in the downregulation of surface HLA-I. Further studies identified that IFN-γ-treated MSCs accelerated HLA-I endocytosis through a clathrin-independent dynamin-dependent endocytosis pathway. Furthermore, cells that have self-downregulated surface HLA-I expression elicit a weaker immune response than they previously could. Thus uncovering the plasticity of MSCs in the regulation of HLA-I surface expression would reveal insights into the membrane transportation events leading to the maintenance of low surface HLA-I expression, providing more evidence for selecting and optimizing low-immunogenic MSCs to improve the therapeutic efficiency.
hESC-MSCs have the plasticity of maintaining low HLA-I expression on cell surface hESC-MSCs downregulate the surface HLA-I expression through endocytosis of HLA-I hESC-MSCs with lower HLA-I surface expression induce weaker MLR and slighter DTH
Collapse
Affiliation(s)
- Yafei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Jiayun Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Department of Orthopedic Surgery, 2nd Affiliated Hospital, Zhejiang University, School of Medicine, Zhejiang 310009, P.R.China; Orthopaedics Research Institute of Zhejiang University, Zhejiang 310009, P.R.China
| | - Lin Gong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Dongsheng Yu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R.China
| | - Chenrui An
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Jun Dai
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R. China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310003, P.R.China
| | - Xiaohui Zou
- Central Laboratory, the First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R.China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Department of Sports Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University, School of Medicine, Hangzhou 310003, P. R. China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, P.R. China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China.
| |
Collapse
|
14
|
Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metab 2019; 29:545-563. [PMID: 30840911 DOI: 10.1016/j.cmet.2019.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Incredible strides have been made since the discovery of insulin almost 100 years ago. Insulin formulations have improved dramatically, glucose levels can be measured continuously, and recently first-generation biomechanical "artificial pancreas" systems have been approved by regulators around the globe. However, still only a small fraction of patients with diabetes achieve glycemic goals. Replacement of insulin-producing cells via transplantation shows significant promise, but is limited in application due to supply constraints (cadaver-based) and the need for chronic immunosuppression. Over the past decade, significant progress has been made to address these barriers to widespread implementation of a cell therapy. Can glucose levels in people with diabetes be normalized with artificial pancreas systems or via cell replacement approaches? Here we review the road ahead, including the challenges and opportunities of both approaches.
Collapse
|
15
|
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res 2019; 115:488-500. [PMID: 30657875 PMCID: PMC6383054 DOI: 10.1093/cvr/cvz010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
- University of Pisa, Pisa University Hospital, Pisa, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Muscle Research Center Erlangen, MURCE
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Francesco Fernandez-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Jean-Sebastien Hulot
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- Paris Cardiovascular Research Center (PARCC), INSERM UMRS 970, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, South Africa
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institutes, Sackler Faculty of Medicine, Tel-Aviv University and Sheba Medical Center, Tel-Hashomer, Israel
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 970, Paris, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, INSERM, CNRS, Université d’Angers, Service de Cardiologie, CHU Angers, Angers, France
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT, The Arctic University of Norway, Norway
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX Utrecht, the Netherlands
| |
Collapse
|
16
|
Parizadeh SM, Jafarzadeh‐Esfehani R, Ghandehari M, Parizadeh MR, Ferns GA, Avan A, Hassanian SM. Stem cell therapy: A novel approach for myocardial infarction. J Cell Physiol 2019; 234:16904-16912. [DOI: 10.1002/jcp.28381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Reza Jafarzadeh‐Esfehani
- Department of Medical Genetics Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee, Faculty of Medicine Islamic Azad University, Mashhad Branch Mashhad Iran
| | - Mohammad Reza Parizadeh
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Clinical Biochemistry Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School Division of Medical Education Brighton UK
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Clinical Biochemistry Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. Cell Stem Cell 2019; 24:447-461.e8. [PMID: 30661960 DOI: 10.1016/j.stem.2018.12.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/29/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
Abstract
FOXO3 is an evolutionarily conserved transcription factor that has been linked to longevity. Here we wanted to find out whether human vascular cells could be functionally enhanced by engineering them to express an activated form of FOXO3. This was accomplished via genome editing at two nucleotides in human embryonic stem cells, followed by differentiation into a range of vascular cell types. FOXO3-activated vascular cells exhibited delayed aging and increased resistance to oxidative injury compared with wild-type cells. When tested in a therapeutic context, FOXO3-enhanced vascular cells promoted vascular regeneration in a mouse model of ischemic injury and were resistant to tumorigenic transformation both in vitro and in vivo. Mechanistically, constitutively active FOXO3 conferred cytoprotection by transcriptionally downregulating CSRP1. Taken together, our findings provide mechanistic insights into FOXO3-mediated vascular protection and indicate that FOXO3 activation may provide a means for generating more effective and safe biomaterials for cell replacement therapies.
Collapse
|
18
|
Sakai Y, Koike M, Yamanouchi K, Soyama A, Hidaka M, Kuroki T, Eguchi S. Time‐dependent structural and functional characterization of subcutaneous human liver tissue. J Tissue Eng Regen Med 2018; 12:2287-2298. [DOI: 10.1002/term.2761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 08/02/2018] [Accepted: 10/18/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yusuke Sakai
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Makiko Koike
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Kosho Yamanouchi
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Akihiko Soyama
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Masaaki Hidaka
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Tamotsu Kuroki
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| | - Susumu Eguchi
- Department of SurgeryNagasaki University Graduate School of Biomedical Sciences Nagasaki Japan
| |
Collapse
|
19
|
Nasser M, Ballout N, Mantash S, Bejjani F, Najdi F, Ramadan N, Soueid J, Zibara K, Kobeissy F. Transplantation of Embryonic Neural Stem Cells and Differentiated Cells in a Controlled Cortical Impact (CCI) Model of Adult Mouse Somatosensory Cortex. Front Neurol 2018; 9:895. [PMID: 30405520 PMCID: PMC6208009 DOI: 10.3389/fneur.2018.00895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death worldwide. Depending on the severity of the injury, TBI can reflect a broad range of consequences such as speech impairment, memory disturbances, and premature death. In this study, embryonic neural stem cells (ENSC) were isolated from E14 mouse embryos and cultured to produce neurospheres which were induced to generate differentiated cells (DC). As a cell replacement treatment option, we aimed to transplant ENSC or DC into the adult injured C57BL/6 mouse cortex controlled cortical impact (CCI) model, 7 days post-trauma, in comparison to saline injection (control). The effect of grafted cells on neuroinflammation and neurogenesis was investigated at 1 and 4 weeks post-transplantation. Results showed that microglia were activated following mild CCI, but not enhanced after engraftment of ENSC or DC. Indeed, ipsilateral lesioned somatosensory area expressed high levels of Iba-1+ microglia within the different groups after 1 and 4 weeks. On the other hand, treatment with ENSC or DC demonstrated a significant reduction in astrogliosis. The levels of GFAP expressing astrocytes started decreasing early (1 week) in the ENSC group and then were similarly low at 4 weeks in both ENSC and DC. Moreover, neurogenesis was significantly enhanced in ENSC and DC groups. Indeed, a significant increase in the number of DCX expressing progenitor cells was observed at 1 week in the ENSC group, and in DC and ENSC groups at 4 weeks. Furthermore, the number of mature neuronal cells (NeuN+) significantly increased in DC group at 4 weeks whereas they decreased in ENSC group at 1 week. Therefore, injection of ENSC or DC post-CCI caused decreased astrogliosis and suggested an increased neurogenesis via inducing neural progenitor proliferation and expression rather than neuronal maturation. Thus, ENSC may play a role in replacing lost cells and brain repair following TBI by improving neurogenesis and reducing neuroinflammation, reflecting an optimal environment for transplanted and newly born cells.
Collapse
Affiliation(s)
- Mohammad Nasser
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | - Sarah Mantash
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | | | - Farah Najdi
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Naify Ramadan
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
20
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
21
|
Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges. Stem Cells Int 2018; 2018:1429351. [PMID: 30254679 PMCID: PMC6142731 DOI: 10.1155/2018/1429351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) hold great potential for the treatment of various degenerative diseases. Pluripotent hESCs have a great ability to undergo unlimited self-renewal in culture and to differentiate into all cell types in the body. The journey of hESC research is not that smooth, as it has faced several challenges which are limited to not only tumor formation and immunorejection but also social, ethical, and political aspects. The isolation of hESCs from the human embryo is considered highly objectionable as it requires the destruction of the human embryo. The issue was debated and discussed in both public and government platforms, which led to banning of hESC research in many countries around the world. The banning has negatively affected the progress of hESC research as many federal governments around the world stopped research funding. Afterward, some countries lifted the ban and allowed the funding in hESC research, but the damage has already been done on the progress of research. Under these unfavorable conditions, still some progress was made to isolate, culture, and characterize hESCs using different strategies. In this review, we have summarized various strategies used to successfully isolate, culture, and characterize hESCs. Finally, hESCs hold a great promise for clinical applications with proper strategies to minimize the teratoma formation and immunorejection and better cell transplantation strategies.
Collapse
|
22
|
Liao CH, Wang YH, Chang WW, Yang BC, Wu TJ, Liu WL, Yu AL, Yu J. Leucine-Rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Post-Translational Modifications of Pluripotency Factors. Stem Cells 2018; 36:1514-1524. [PMID: 29893054 DOI: 10.1002/stem.2862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/12/2023]
Abstract
Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs before differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG, and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG, and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. Stem Cells 2018;36:1514-1524.
Collapse
Affiliation(s)
- Chien-Huang Liao
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Wei Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Bei-Chia Yang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Li Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. RECENT FINDINGS Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.
Collapse
Affiliation(s)
- Nicole M Weston
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, P.O.Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
24
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
25
|
Yang J, Li J, Suzuki K, Liu X, Wu J, Zhang W, Ren R, Zhang W, Chan P, Izpisua Belmonte JC, Qu J, Tang F, Liu GH. Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res 2017; 27:1178-1181. [PMID: 28685772 PMCID: PMC5587854 DOI: 10.1038/cr.2017.86] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Jiping Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiaomeng Liu
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, N 135 Guadalupe 30107 Murcia, Spain
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University
- Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
26
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Traumatic Brain Injury and Stem Cell: Pathophysiology and Update on Recent Treatment Modalities. Stem Cells Int 2017; 2017:6392592. [PMID: 28852409 PMCID: PMC5568618 DOI: 10.1155/2017/6392592] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex condition that presents with a wide spectrum of clinical symptoms caused by an initial insult to the brain through an external mechanical force to the skull. In the United States alone, TBI accounts for more than 50,000 deaths per year and is one of the leading causes of mortality among young adults in the developed world. Pathophysiology of TBI is complex and consists of acute and delayed injury. In the acute phase, brain tissue destroyed upon impact includes neurons, glia, and endothelial cells, the latter of which makes up the blood-brain barrier. In the delayed phase, “toxins” released from damaged cells set off cascades in neighboring cells eventually leading to exacerbation of primary injury. As researches further explore pathophysiology and molecular mechanisms underlying this debilitating condition, numerous potential therapeutic strategies, especially those involving stem cells, are emerging to improve recovery and possibly reverse damage. In addition to elucidating the most recent advances in the understanding of TBI pathophysiology, this review explores two primary pathways currently under investigation and are thought to yield the most viable therapeutic approach for treatment of TBI: manipulation of endogenous neural cell response and administration of exogenous stem cell therapy.
Collapse
|
28
|
Ardeshirylajimi A. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering. J Cell Biochem 2017; 118:3034-3042. [DOI: 10.1002/jcb.25996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisMissouri
| |
Collapse
|
29
|
He J, Rong Z, Fu X, Xu Y. A Safety Checkpoint to Eliminate Cancer Risk of the Immune Evasive Cells Derived from Human Embryonic Stem Cells. Stem Cells 2017; 35:1154-1161. [PMID: 28090751 DOI: 10.1002/stem.2568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/01/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
Human embryonic stem cells (hESCs) hold great promise in the regenerative therapy of many currently untreatable human diseases. One of the key bottlenecks is the immune rejection of hESC-derived allografts by the recipient. To overcome this challenge, we have established new approaches to induce immune protection of hESC-derived allografts through the coexpression of immune suppressive molecules CTLA4-Ig and PD-L1. However, this in turn raises a safety concern of cancer risk because these hESC-derived cells can evade immune surveillance. To address this safety concern, we developed a safety checkpoint so that the immune evasive hESC-derived cells in the graft can be effectively eliminated if any cellular transformation is detected. In this context, we knock-in the suicidal gene herpes simplex virus thymidine kinase (HSVTK) into the constitutive HPRT locus of CP hESCs (knock-in hESCs expressing CTLA4-Ig and PD-L1), denoted CPTK hESCs. Employing humanized mice (Hu-mice) reconstituted with human immune system, we demonstrated that the CPTK hESC-derived cells are protected from immune rejection. In addition, CPTK hESC-derived cells can be efficiently eliminated in vitro and in vivo with FDA approved TK-targeting drug ganciclovir. Therefore, this new safety checkpoint improves the feasibility to use the immune evasive hESC-derived cells for regenerative medicine. Stem Cells 2017;35:1154-1161.
Collapse
Affiliation(s)
- Jingjin He
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Zhili Rong
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Xuemei Fu
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yang Xu
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Klement M, Zheng J, Liu C, Tan HL, Wong VVT, Choo ABH, Lee DY, Ow DSW. Antibody engineering of a cytotoxic monoclonal antibody 84 against human embryonic stem cells: Investigating the effects of multivalency on cytotoxicity. J Biotechnol 2017; 243:29-37. [PMID: 28042013 DOI: 10.1016/j.jbiotec.2016.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023]
Abstract
Antibody fragments have shown targeted specificity to their antigens, but only modest tissue retention times in vivo and in vitro. Multimerization has been used as a protein engineering tool to increase the number of binding units and thereby enhance the efficacy and retention time of antibody fragments. In this work, we explored the effects of valency using a series of self-assembling polypeptides based on the GCN4 leucine zipper multimerization domain fused to a single-chain variable fragment via an antibody upper hinge sequence. Four engineered antibody fragments with a valency from one to four antigen-binding units of a cytotoxic monoclonal antibody 84 against human embryonic stem cells (hESC) were constructed. We hypothesized that higher cytotoxicity would be observed for fragments with increased valency. Flow cytometry analysis revealed that the trimeric and tetrameric engineered antibody fragments resulted in the highest degree of cytotoxicity to the undifferentiated hESC, while the engineered antibody fragments were observed to have improved tissue penetration into cell clusters. Thus, a trade off was made for the trimeric versus tetrameric fragment due to improved tissue penetration. These results have direct implications for antibody-mediated removal of undifferentiated hESC during regenerative medicine and cell therapy.
Collapse
Affiliation(s)
- Maximilian Klement
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Jiyun Zheng
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, #05-01, 117456, Singapore
| | - Chengcheng Liu
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Heng-Liang Tan
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Victor Vai Tak Wong
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Andre Boon-Hwa Choo
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore.
| | - Dave Siak-Wei Ow
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, #06-01 Centros, 138668, Singapore.
| |
Collapse
|
31
|
Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Kassem N, Darwish H, Zibara K. Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 2016; 340:49-62. [PMID: 28043902 DOI: 10.1016/j.bbr.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/30/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
Collapse
Affiliation(s)
- AmiraSan Dekmak
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Sarah Mantash
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Amer Toutonji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Laboratory of Cardiovascular Diseases and Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
32
|
Kim DR, Lee JE, Shim KJ, Cho JH, Lee HC, Park SK, Chang MS. Effects of herbal Epimedium on the improvement of bone metabolic disorder through the induction of osteogenic differentiation from bone marrow-derived mesenchymal stem cells. Mol Med Rep 2016; 15:125-130. [PMID: 27959402 PMCID: PMC5355742 DOI: 10.3892/mmr.2016.6015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Herbal Epimedium (HE) has been commonly used as a tonic, antirheumatic agent and in the treatment of bone-associated diseases including osteoporosis. Treatment for osteoporosis is important to increase bone mass density and maintain to balance of bone remodeling. The present study was performed to investigate the effects of HE on mouse bone marrow mesenchymal stem cell (mBMMSC) proliferation and osteogenic differentiation, using MTT assays, proliferating cell nuclear antigen (PCNA) detection and apoptosis and differentiation assays. HE was demonstrated to inhibit the proliferation of mBMMSCs up to 45.43±3.33% and to decrease the level of PCNA expression compared with untreated cells. HE also induced late apoptosis at 24 and 48 h after treatment up to 71.93 and 67.03%, respectively, while only 14.93% of untreated cells exhibited apoptosis. By contrast, HE induced differentiation of mBMMSCs into an osteogenic lineage at the beginning of three weeks after commencement of treatment. This suggested that HE is a candidate as an inducer of osteogenesis from bone marrow mesenchymal stem cells, and additionally has potential for use in the treatment of bone metabolic disorders such as osteoporosis.
Collapse
Affiliation(s)
- Do Rim Kim
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Eun Lee
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Jun Shim
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Hyoung Cho
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Chul Lee
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong Kyu Park
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
33
|
Kim WT, Lee HM, Kim MK, Choi HS, Ryu CJ. In vivo Evaluation of Human Embryonic Stem Cells Isolated by 57-C11 Monoclonal Antibody. Int J Stem Cells 2016; 9:264-270. [PMID: 27871153 PMCID: PMC5155722 DOI: 10.15283/ijsc16052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Background The normal cells derived from human embryonic stem cells (hESCs) are regarded as substitutes for damaged or dysfunctional adult cells. However, tumorigenicity of hESCs remains a major challenge in clinical application of hESC-derived cell transplantation. Previously, we generated monoclonal antibody (MAb) 57-C11 specific to the surface molecule on undifferentiated hESCs. The aim of this study is to prove whether 57-C11-positive hESCs are pluripotent and tumorigenic in immunodeficient mice. Methods Undifferentiated hESCs were mixed with retinoic acid (RA)-differentiated hESCs at different ratios prior to 57-C11-mediated separation. To isolate 57-C11-positive hESCs from the mixture, biotinylated 57-C11 and streptavidin-coated magnetic beads were added to the mixture. Unbound 57-C11-negative hESCs were first isolated after applying magnet to the cell mixture, and 57-C11-bound hESCs were then released from the magnetic beads. In order to measure the efficiency of separation, 57-C11-positive or -negative hESCs were counted after isolation. To evaluate the efficiency of teratoma formation in vivo, 57-C11-positive or negative cells were further injected into left and right, respectively, testes of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Results Approximately 77~100% of undifferentiated hESCs were isolated after applying 57-C11-coated magnetic beads to the mixed cell populations. Importantly, teratomas were not observed in NOD/SCID mice after the injection of isolated 57-C11-negative hESCs, whereas teratomas were observed with 57-C11-positive hESCs. Conclusion 57-C11-positive hESCs are pluripotent and tumorigenic. The combination of 57-C11 and magnetic beads will be useful to eliminate remaining undifferentiated hESCs for the safe cell transplantation.
Collapse
Affiliation(s)
- Won-Tae Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hyun Min Lee
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Min Kyu Kim
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Hong Seo Choi
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Chun Jeih Ryu
- Institute of Anticancer Medicine Development, Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
34
|
Magown P, Brownstone RM, Rafuse VF. Tumor prevention facilitates delayed transplant of stem cell-derived motoneurons. Ann Clin Transl Neurol 2016; 3:637-49. [PMID: 27606345 PMCID: PMC4999595 DOI: 10.1002/acn3.327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Nerve injuries resulting in prolonged periods of denervation result in poor recovery of motor function. We have previously shown that embryonic stem cell-derived motoneurons transplanted at the time of transection into a peripheral nerve can functionally reinnervate muscle. For clinical relevance, we now focused on delaying transplantation to assess reinnervation after prolonged denervation. METHODS Embryonic stem cell-derived motoneurons were transplanted into the distal segments of transected tibial nerves in adult mice after prolonged denervation of 1-8 weeks. Twitch and tetanic forces were measured ex vivo 3 months posttransplantation. Tissue was harvested from the transplants for culture and immunohistochemical analysis. RESULTS In this delayed reinnervation model, teratocarcinomas developed in about one half of transplants. A residual multipotent cell population (~ 6% of cells) was found despite neural differentiation. Exposure to the alkylating drug mitomycin C eliminated this multipotent population in vitro while preserving motoneurons. Treating neural differentiated stem cells prior to delayed transplantation prevented tumor formation and resulted in twitch and tetanic forces similar to those in animals transplanted acutely after denervation. INTERPRETATION Despite a neural differentiation protocol, embryonic stem cell-derived motoneurons still carry a risk of tumorigenicity. Pretreating with an antimitotic agent leads to survival and functional muscle reinnervation if performed within 4 weeks of denervation in the mouse.
Collapse
Affiliation(s)
- Philippe Magown
- Medical Neuroscience Dalhousie University Halifax Nova Scotia Canada; Department of Surgery (Neurosurgery) Dalhousie University Halifax Nova Scotia Canada B3H 4R2
| | - Robert M Brownstone
- Medical Neuroscience Dalhousie University Halifax Nova Scotia Canada; Department of Surgery (Neurosurgery) Dalhousie University Halifax Nova Scotia Canada B3H 4R2; Sobell Department of Motor Neuroscience and Movement Disorders Institute of Neurology University College London London WC1N 3BG United Kingdom
| | - Victor F Rafuse
- Medical Neuroscience Dalhousie University Halifax Nova Scotia Canada; Department of Medicine (Neurology) Dalhousie University Halifax Nova Scotia Canada B3H 4R2
| |
Collapse
|
35
|
Abstract
The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.
Collapse
Affiliation(s)
- Caroline E Gargett
- Centre for Women's Health Research, Monash Institute of Medical Research, and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
36
|
Wu N, Wang Y, Yang L, Cho KS. Signaling Networks of Retinal Ganglion Cell Formation and the Potential Application of Stem Cell–Based Therapy in Retinal Degenerative Diseases. Hum Gene Ther 2016; 27:609-20. [PMID: 27466076 DOI: 10.1089/hum.2016.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Nan Wu
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Yi Wang
- 1 Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University , Chongqing, China
| | - Lanbo Yang
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| | - Kin-Sang Cho
- 2 Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
37
|
Zheng D, Wang X, Xu RH. Concise Review: One Stone for Multiple Birds: Generating Universally Compatible Human Embryonic Stem Cells. Stem Cells 2016; 34:2269-75. [DOI: 10.1002/stem.2407] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Dejin Zheng
- Faculty of Health Sciences, University of Macau; Taipa Macau China
| | - Xiaofang Wang
- ImStem Biotechnology, Inc; Farmington Connecticut USA
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau; Taipa Macau China
- ImStem Biotechnology, Inc; Farmington Connecticut USA
| |
Collapse
|
38
|
Kramer N, Rosner M, Kovacic B, Hengstschläger M. Full biological characterization of human pluripotent stem cells will open the door to translational research. Arch Toxicol 2016; 90:2173-2186. [PMID: 27325309 DOI: 10.1007/s00204-016-1763-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Boris Kovacic
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Mousavinejad M, Andrews PW, Shoraki EK. Current Biosafety Considerations in Stem Cell Therapy. CELL JOURNAL 2016; 18:281-7. [PMID: 27540533 PMCID: PMC4988427 DOI: 10.22074/cellj.2016.4324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient's life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies.
Collapse
Affiliation(s)
- Masoumeh Mousavinejad
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Elham Kargar Shoraki
- Department of Biological Sciences, Faculty of Science, Tehran Kharazmi University, Tehran, Iran
| |
Collapse
|
40
|
Sabapathy V, Kumar S. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine. J Cell Mol Med 2016; 20:1571-88. [PMID: 27097531 PMCID: PMC4956943 DOI: 10.1111/jcmm.12839] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft‐versus‐host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human‐induced pluripotent stem cells (hiPSCs) has been shown in recent pre‐clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue‐derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC‐derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human‐induced PSC‐derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint‐free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC‐derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanjay Kumar
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
41
|
Sun D. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury. Neural Regen Res 2016; 11:18-22. [PMID: 26981070 PMCID: PMC4774215 DOI: 10.4103/1673-5374.169605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
42
|
Zou L, Chen Q, Quanbeck Z, Bechtold JE, Kaufman DS. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep 2016; 6:22868. [PMID: 26980556 PMCID: PMC4793227 DOI: 10.1038/srep22868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells provide a standardized resource for bone repair. However, criteria to determine which exogenous cells best heal orthopedic injuries remain poorly defined. We evaluated osteogenic progenitor cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Phenotypic and genotypic analyses demonstrated that these hESCs/hiPSCs are similar in their osteogenic differentiation efficiency and they generate osteogenic cells comparable to osteogenic cells derived from mesenchymal stromal cells (BM-MSCs). However, expression of angiogenic factors, such as vascular endothelial growth factor and basic fibroblast growth factor in these osteogenic progenitor cells are markedly different, suggesting distinct pro-angiogenic potential of these stem cell derivatives. Studies to repair a femur non-union fracture demonstrate only osteogenic progenitor cells with higher pro-angiogenic potential significantly enhance bone repair in vivo. Together, these studies highlight a key role of pro-angiogenic potential of transplanted osteogenic cells for effective cell-mediated bone repair.
Collapse
Affiliation(s)
- Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qingshan Chen
- Excelen Center for Bone &Joint Research and Education, Minneapolis, MN, 55415, USA
| | - Zachary Quanbeck
- Excelen Center for Bone &Joint Research and Education, Minneapolis, MN, 55415, USA
| | - Joan E Bechtold
- Excelen Center for Bone &Joint Research and Education, Minneapolis, MN, 55415, USA
| | - Dan S Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
|
44
|
Lui PPY. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:163-74. [PMID: 26715856 PMCID: PMC4685888 DOI: 10.2147/sccaa.s60832] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Headquarter, Hospital Authority, Hong Kong SAR, People's Republic of China
| |
Collapse
|
45
|
Sridharan B, Sharma B, Detamore MS. A Road Map to Commercialization of Cartilage Therapy in the United States of America. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:15-33. [PMID: 26192161 DOI: 10.1089/ten.teb.2015.0147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite numerous efforts in cartilage regeneration, few products see the light of clinical translation as the commercialization process is opaque, financially demanding, and requires collaboration with people of varied skill sets. The aim of this review is to introduce, to an academic audience, the different paradigms involved in the commercialization of cartilage regeneration technology, elucidate the different hurdles associated with the use of cells and materials in developing new technologies, discuss potential commercialization strategies, and inform the reader about the current trends observed in both the clinical and laboratory setting for establishing clinical trials. Although there are review articles on articular cartilage tissue engineering, independent reports provided by the Food and Drug Administration, and separate review articles on animal models, this is the first review that encompasses all of these facets and is presented in a format favorable to the academic investigator interested in clinical translation from bench to bedside.
Collapse
Affiliation(s)
| | - Blanka Sharma
- 2 Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| | - Michael S Detamore
- 1 Bioengineering Program, University of Kansas , Lawrence, Kansas.,3 Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas
| |
Collapse
|
46
|
Sakai Y, Yamanouchi K, Ohashi K, Koike M, Utoh R, Hasegawa H, Muraoka I, Suematsu T, Soyama A, Hidaka M, Takatsuki M, Kuroki T, Eguchi S. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice. Biomaterials 2015; 65:66-75. [PMID: 26142777 DOI: 10.1016/j.biomaterials.2015.06.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.
Collapse
Affiliation(s)
- Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kosho Yamanouchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Makiko Koike
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hideko Hasegawa
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Izumi Muraoka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tamotsu Kuroki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
47
|
Pipino C, Pandolfi A. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential. World J Stem Cells 2015; 7:681-690. [PMID: 26029340 PMCID: PMC4444609 DOI: 10.4252/wjsc.v7.i4.681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine.
Collapse
|
48
|
Komura T, Kato K, Konagaya S, Nakaji-Hirabayashi T, Iwata H. Optimization of surface-immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells. Biotechnol Bioeng 2015; 112:2388-96. [DOI: 10.1002/bit.25636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Komura
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Koichi Kato
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Shuhei Konagaya
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Tadashi Nakaji-Hirabayashi
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| |
Collapse
|
49
|
Song H, Rosano JM, Wang Y, Garson CJ, Prabhakarpandian B, Pant K, Klarmann GJ, Perantoni A, Alvarez LM, Lai E. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. LAB ON A CHIP 2015; 15:1320-8. [PMID: 25589423 PMCID: PMC8385543 DOI: 10.1039/c4lc01253d] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper presents a continuous-flow microfluidic device for sorting stem cells and their differentiation progenies. The principle of the device is based on the accumulation of multiple dielectrophoresis (DEP) forces to deflect cells laterally in conjunction with the alternating on/off electric field to manipulate the cell trajectories. The microfluidic device containing a large array of oblique interdigitated electrodes was fabricated using a combination of standard and soft lithography techniques to generate a PDMS-gold electrode construct. Experimental testing with human mesenchymal stem cells (hMSC) and their differentiation progenies (osteoblasts) was carried out at different flow rates, and clear separation of the two populations was achieved. Most of the osteoblasts experiencing stronger DEP forces were deflected laterally and continuously, following zig-zag trajectories, and moved towards the desired collection outlet, whereas most of the hMSCs remained on the original trajectory due to weaker DEP forces. The experimental measurements were characterized and evaluated quantitatively, and consistent performance was demonstrated. Collection efficiency up to 92% and 67% for hMSCs and osteoblasts, respectively, along with purity up to 84% and 87% was obtained. The experimental results established the feasibility of our microfluidic DEP sorting device for continuous, label-free sorting of stem cells and their differentiation progenies.
Collapse
Affiliation(s)
- Hongjun Song
- CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13:9. [PMID: 25890180 PMCID: PMC4351689 DOI: 10.1186/s12958-015-0005-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/09/2015] [Indexed: 01/23/2023] Open
Abstract
Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.
Collapse
Affiliation(s)
- Nina Desai
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| | - Pooja Rambhia
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| | - Arsela Gishto
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| |
Collapse
|