1
|
Gupta A, Ghosh A, Sharma N, Gorain B. Advancements in Stem Cell Research for Effective Therapies Against Alzheimer's Disease: Current Investigation and Future Insight. Mol Neurobiol 2025:10.1007/s12035-025-05003-3. [PMID: 40327307 DOI: 10.1007/s12035-025-05003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in the elderly, affecting approximately 50 million individuals globally with significant impose in health and financial burdens. Despite extensive research, no current treatment effectively halts the progression of AD, primarily due to its complex pathophysiology of the disease and the limitations of available therapeutic approaches. In this context, stem cell transplantation has emerged as a promising treatment strategy, harnessing the regenerative capabilities of various stem cell types, including neural stem cells (NSCs), embryonic stem cells (ESCs), and mesenchymal stem cells (MSCs). This review explores the potential of stem cell-based therapies in AD, emphasizing the necessity for continued innovation to overcome existing challenges and enhance therapeutic efficacy. Briefly, NSCs have shown potential in improving cognitive function and reducing AD pathology through targeted transplantation and neuroprotection; however, challenges such as optimizing transplantation protocols and ensuring effective cell integration persist. Concurrently, ESCs, with their pluripotent nature, present opportunities for modulating AD and generating therapeutic neurons, but ethical concerns and immunogenicity present significant obstacles to clinical application. Moreover, MSCs have demonstrated potential in ameliorating AD-related pathology and promoting neurogenesis, offering a more accessible alternative with fewer ethical constraints. The review concludes that the combinatory approaches of different stem cells may provide synergistic benefits in addressing AD-related pathophysiology, warranting further exploration in future research.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Han D, Xu W, Jeong HW, Park H, Weyer K, Tsytsyura Y, Stehling M, Wu G, Lan G, Kim KP, Renner H, Han DW, Chen Y, Gerovska D, Araúzo-Bravo MJ, Klingauf J, Schwamborn JC, Adams RH, Liu P, Schöler HR. Multipotent neural stem cells originating from neuroepithelium exist outside the mouse central nervous system. Nat Cell Biol 2025; 27:605-618. [PMID: 40211073 PMCID: PMC11991921 DOI: 10.1038/s41556-025-01641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Conventional understanding dictates that mammalian neural stem cells (NSCs) exist only in the central nervous system. Here, we report that peripheral NSCs (pNSCs) exist outside the central nervous system and can be isolated from mouse embryonic limb, postnatal lung, tail, dorsal root ganglia and adult lung tissues. Derived pNSCs are distinct from neural crest stem cells, express multiple NSC-specific markers and exhibit cell morphology, self-renewing and differentiation capacity, genome-wide transcriptional profile and epigenetic features similar to control brain NSCs. pNSCs are composed of Sox1+ cells originating from neuroepithelial cells. pNSCs in situ have similar molecular features to NSCs in the brain. Furthermore, many pNSCs that migrate out of the neural tube can differentiate into mature neurons and limited glial cells during embryonic and postnatal development. Our discovery of pNSCs provides previously unidentified insight into the mammalian nervous system development and presents an alternative potential strategy for neural regenerative therapy.
Collapse
Affiliation(s)
- Dong Han
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Wan Xu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hongryeol Park
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kathrin Weyer
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Yaroslav Tsytsyura
- Department of Cellular Biophysics, Institute for Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Guocheng Lan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Henrik Renner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Yicong Chen
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute for Medical Physics and Biophysics, University of Münster, Münster, Germany
- IZKF Münster and Cluster of Excellence EXC 1003, Cells in Motion (CiM), Münster, Germany
| | - Jens Christian Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- University of Münster, Medical Faculty, Münster, Germany
| | - Pentao Liu
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Center for Translational Stem Cell Biology, Hong Kong, China.
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
3
|
Berg LJ, Lee CK, Matsumura H, Leinhaas A, Konang R, Shaib AH, Royero P, Schlee J, Sheng C, Beck H, Schwarz MK, Brose N, Rhee JS, Brüstle O. Human neural stem cells directly programmed from peripheral blood show functional integration into the adult mouse brain. Stem Cell Res Ther 2024; 15:488. [PMID: 39707492 DOI: 10.1186/s13287-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative. However, little is known about the functionality of iNSC-derived neurons upon in vivo transplantation. Here, we grafted human iNSCs derived from adult peripheral blood by temporary overexpression of the transcription factors SOX2 and cMYC into the hippocampus or striatum of adult unlesioned immunodeficient Rag2tm1FwaIl2rgtm1Wjl mice of both sexes. Engrafted cells gave rise to stable transplants composed of mature neurons displaying extensive neurite outgrowth and dendritic spine formation. Functional analyses of acute slices using patch clamp recordings revealed that already after 12 weeks of in vivo maturation, most of iNSC-derived cells possess unique properties exclusive to neurons and exhibit voltage-dependent ion channel currents as well as action potential firing. Moreover, the formation of spontaneous inhibitory and excitatory postsynaptic currents, along with Rabies virus-based retrograde monosynaptic tracing data, strongly supports the structural and functional integration of graft-derived neurons. Taken together, our data demonstrate that iNSCs directly derived from peripheral blood cells have the inherent capacity to achieve full functional maturation in vivo, qualifying them as an alternative potential donor source for restorative applications and deserving further investigation.
Collapse
Affiliation(s)
- Lea Jessica Berg
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Chung Ku Lee
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, Göttingen, 37075, Germany
| | - Hideaki Matsumura
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Anke Leinhaas
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Rachel Konang
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Ali H Shaib
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, Göttingen, 37075, Germany
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, Göttingen, 37073, Germany
| | - Pedro Royero
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Julia Schlee
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Chao Sheng
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Martin Karl Schwarz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
- Cellomics Unit, LIFE & BRAIN GmbH, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, Göttingen, 37075, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, City Campus, Hermann-Rein-Str. 3, Göttingen, 37075, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.
| |
Collapse
|
4
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
5
|
Damrath M, Veletic M, Rudsari HK, Balasingham I. Optimization of Extracellular Vesicle Release for Targeted Drug Delivery. IEEE Trans Nanobioscience 2024; 23:109-117. [PMID: 37335787 DOI: 10.1109/tnb.2023.3287637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Targeted drug delivery is a promising approach for many serious diseases, such as glioblastoma multiforme, one of the most common and devastating brain tumor. In this context, this work addresses the optimization of the controlled release of drugs which are carried by extracellular vesicles. Towards this goal, we derive and numerically verify an analytical solution for the end-to-end system model. We then apply the analytical solution either to reduce the disease treatment time or to reduce the amount of required drugs. The latter is formulated as a bilevel optimization problem, whose quasiconvex/quasiconcave property is proved here. For solving the optimization problem, we propose and utilize a combination of bisection method and golden-section search. The numerical results demonstrate that the optimization can significantly reduce the treatment time and/or the required drugs carried by extracellular vesicles for a therapy compared to the steady state solution.
Collapse
|
6
|
Murayama MA. The past and present of therapeutic strategy for Alzheimer's diseases: potential for stem cell therapy. Exp Anim 2023; 72:285-293. [PMID: 36878603 PMCID: PMC10435354 DOI: 10.1538/expanim.22-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive dysfunction and neuropsychiatric symptoms, is the most prevalent form of dementia among the elderly. Amyloid aggregation, tau hyperphosphorylation, and neural cell loss are the main pathological features. Various hypotheses have been proposed to explain the development of AD. Some therapeutic agents have shown clinical benefits in patients with AD; however, many of these agents have failed. The degree of neural cell loss is associated with the severity of AD. Adult neurogenesis, which governs cognitive and emotional behaviors, occurs in the hippocampus, and some research groups have reported that neural cell transplantation into the hippocampus improves cognitive dysfunction in AD model mice. Based on these clinical findings, stem cell therapy for patients with AD has recently attracted attention. This review provides past and present therapeutic strategies for the management and treatment of AD.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
7
|
Yue C, Feng S, Chen Y, Jing N. The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer's Disease. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:28. [PMID: 36050613 PMCID: PMC9437172 DOI: 10.1186/s13619-022-00128-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder associated with aging. Due to its insidious onset, protracted progression, and unclear pathogenesis, it is considered one of the most obscure and intractable brain disorders, and currently, there are no effective therapies for it. Convincing evidence indicates that the irreversible decline of cognitive abilities in patients coincides with the deterioration and degeneration of neurons and synapses in the AD brain. Human neural stem cells (NSCs) hold the potential to functionally replace lost neurons, reinforce impaired synaptic networks, and repair the damaged AD brain. They have therefore received extensive attention as a possible source of donor cells for cellular replacement therapies for AD. Here, we review the progress in NSC-based transplantation studies in animal models of AD and assess the therapeutic advantages and challenges of human NSCs as donor cells. We then formulate a promising transplantation approach for the treatment of human AD, which would help to explore the disease-modifying cellular therapeutic strategy for the treatment of human AD.
Collapse
Affiliation(s)
- Chunmei Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou, 510005, China
| | - Yingying Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
8
|
Chakritbudsabong W, Sariya L, Jantahiran P, Chaisilp N, Chaiwattanarungruengpaisan S, Rungsiwiwut R, Ferreira JN, Rungarunlert S. Generation of Porcine Induced Neural Stem Cells Using the Sendai Virus. Front Vet Sci 2022; 8:806785. [PMID: 35097051 PMCID: PMC8790232 DOI: 10.3389/fvets.2021.806785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
The reprogramming of cells into induced neural stem cells (iNSCs), which are faster and safer to generate than induced pluripotent stem cells, holds tremendous promise for fundamental and frontier research, as well as personalized cell-based therapies for neurological diseases. However, reprogramming cells with viral vectors increases the risk of tumor development due to vector and transgene integration in the host cell genome. To circumvent this issue, the Sendai virus (SeV) provides an alternative integration-free reprogramming method that removes the danger of genetic alterations and enhances the prospects of iNSCs from bench to bedside. Since pigs are among the most successful large animal models in biomedical research, porcine iNSCs (piNSCs) may serve as a disease model for both veterinary and human medicine. Here, we report the successful generation of piNSC lines from pig fibroblasts by employing the SeV. These piNSCs can be expanded for up to 40 passages in a monolayer culture and produce neurospheres in a suspension culture. These piNSCs express high levels of NSC markers (PAX6, SOX2, NESTIN, and VIMENTIN) and proliferation markers (KI67) using quantitative immunostaining and western blot analysis. Furthermore, piNSCs are multipotent, as they are capable of producing neurons and glia, as demonstrated by their expressions of TUJ1, MAP2, TH, MBP, and GFAP proteins. During the reprogramming of piNSCs with the SeV, no induced pluripotent stem cells developed, and the established piNSCs did not express OCT4, NANOG, and SSEA1. Hence, the use of the SeV can reprogram porcine somatic cells without first going through an intermediate pluripotent state. Our research produced piNSCs using SeV methods in novel, easily accessible large animal cell culture models for evaluating the efficacy of iNSC-based clinical translation in human medicine. Additionally, our piNSCs are potentially applicable in disease modeling in pigs and regenerative therapies in veterinary medicine.
Collapse
Affiliation(s)
- Warunya Chakritbudsabong
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Disease in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Phakhin Jantahiran
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Nattarun Chaisilp
- The Monitoring and Surveillance Center for Zoonotic Disease in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Disease in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Joao N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Sasitorn Rungarunlert
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Sasitorn Rungarunlert
| |
Collapse
|
9
|
Hong S, Lee SE, Kang I, Yang J, Kim H, Kim J, Kang KS. Induced neural stem cells from human patient-derived fibroblasts attenuate neurodegeneration in Niemann-Pick type C mice. J Vet Sci 2021; 22:e7. [PMID: 33522159 PMCID: PMC7850792 DOI: 10.4142/jvs.2021.22.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background Niemann-Pick disease type C (NPC) is caused by the mutation of NPC genes, which leads to the abnormal accumulation of unesterified cholesterol and glycolipids in lysosomes. This autosomal recessive disease is characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. Recently, the application of induced neural stem cells (iNSCs), converted from fibroblasts using specific transcription factors, to repair degenerated lesions has been considered a novel therapy. Objectives The therapeutic effects on NPC by human iNSCs generated by our research group have not yet been studied in vivo; in this study, we investigate those effects. Methods We used an NPC mouse model to efficiently evaluate the therapeutic effect of iNSCs, because neurodegeneration progress is rapid in NPC. In addition, application of human iNSCs from NPC patient-derived fibroblasts in an NPC model in vivo can give insight into the clinical usefulness of iNSC treatment. The iNSCs, generated from NPC patient-derived fibroblasts using the SOX2 and HMGA2 reprogramming factors, were transplanted by intracerebral injection into NPC mice. Results Transplantation of iNSCs showed positive results in survival and body weight change in vivo. Additionally, iNSC-treated mice showed improved learning and memory in behavior test results. Furthermore, through magnetic resonance imaging and histopathological assessments, we observed delayed neurodegeneration in NPC mouse brains. Conclusions iNSCs converted from patient-derived fibroblasts can become another choice of treatment for neurodegenerative diseases such as NPC.
Collapse
Affiliation(s)
- Saetbyul Hong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seung Eun Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Insung Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jehoon Yang
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul 06351, Korea
| | - Hunnyun Kim
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul 06351, Korea
| | - Jeyun Kim
- Animal Research and Molecular Imaging Center, Samsung Medical Center, Seoul 06351, Korea
| | - Kyung Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
10
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Kerkenberg N, Hohoff C, Zhang M, Lang I, Schettler C, Ponimaskin E, Wachsmuth L, Faber C, Baune BT, Zhang W. Acute stress reveals different impacts in male and female Zdhhc7-deficient mice. Brain Struct Funct 2021; 226:1613-1626. [PMID: 33880616 PMCID: PMC8096773 DOI: 10.1007/s00429-021-02275-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/09/2021] [Indexed: 10/25/2022]
Abstract
Numerous processes of neuronal development and synaptic plasticity in the brain rely on the palmitoyl acyltransferase ZDHHC7, as it palmitoylates various synaptic and extrasynaptic proteins such as neural cell adhesion molecule (NCAM) or gamma-aminobutyric acid (GABAA) receptors. In addition, ZDHHC7 palmitoylates sex steroid hormone receptors and is, therefore, indirectly linked to mental disorders that often occur because of or in conjunction with stress. In this work, we investigated how ZDHHC7 affects stress responses in mice. For this purpose, genetically modified mice with a knockout of the Zdhhc7 gene (KO) and wild-type (WT) littermates of both sexes were exposed to acute stressors or control conditions and examined with regard to their behavior, brain microstructure, gene expression, and synaptic plasticity. While no behavioral effects of acute stress were found, we did find that acute stress caused reduced mRNA levels of Esr1 and Esr2 coding for estrogen receptor α and β in the medial prefrontal cortex of male WT and KO mice. Strikingly, after acute stress only male KO mice showed reduced mean fiber lengths of the medioventral hippocampus. Furthermore, Zdhhc7-deficiency impaired synaptic plasticity in mice of both sexes, while acute stress improved it in females, but not in male mice. Taken together, our findings suggest that ZDHHC7 plays a modulatory role in the brain that leads to sex-specific stress responses, possibly due to estrogen receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- Nicole Kerkenberg
- Department of Mental Health, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Christa Hohoff
- Department of Mental Health, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Department of Mental Health, University of Münster, Münster, Germany
| | - Ilona Lang
- Department of Mental Health, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| |
Collapse
|
12
|
Kim MS, Kim DH, Kang HK, Kook MG, Choi SW, Kang KS. Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids. Cells 2021; 10:cells10020234. [PMID: 33504071 PMCID: PMC7911731 DOI: 10.3390/cells10020234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immature neuronal development of brain organoids generated from pluripotent stem cells pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hypoxic brain injury model generated from neural stem cells. Here, we generated self-organized 3D human neural organoids from adult dermal fibroblast-derived neural stem cells. Radial glial cells in these human neural organoids exhibited characteristics of the human cerebral cortex trend, including an inner (ventricular zone) and an outer layer (early and late cortical plate zones). These data suggest that neural organoids reflect the distinctive radial organization of the human cerebral cortex and allow for the study of neuronal proliferation and maturation. To utilize this 3D model, we subjected our neural organoids to hypoxic injury. We investigated neuronal damage and regeneration after hypoxic injury and reoxygenation. Interestingly, after hypoxic injury, reoxygenation restored neuronal cell proliferation but not neuronal maturation. This study suggests that human neural organoids generated from neural stem cells provide new opportunities for the development of drug screening platforms and personalized modeling of neurodegenerative diseases, including hypoxic brain injury.
Collapse
Affiliation(s)
| | | | | | | | - Soon Won Choi
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| | - Kyung-Sun Kang
- Correspondence: (S.W.C.); (K.-S.K.); Tel.: +82-2-880-1298 (S.W.C.); +82-2-880-1246 (K.-S.K.)
| |
Collapse
|
13
|
Valerio LSA, Sugaya K. Xeno- and transgene-free reprogramming of mesenchymal stem cells toward the cells expressing neural markers using exosome treatments. PLoS One 2020; 15:e0240469. [PMID: 33048978 PMCID: PMC7553345 DOI: 10.1371/journal.pone.0240469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/26/2020] [Indexed: 01/03/2023] Open
Abstract
Neural stem cells (NSCs), capable of self-renew and differentiate into neural cells, hold promise for use in studies and treatments for neurological diseases. However, current approaches to obtain NSCs from a live brain are risky and invasive, since NSCs reside in the subventricular zone and the in the hippocampus dentate gyrus. Alternatively, mesenchymal stem cells (MSCs) could be a more available cell source due to their abundance in tissues and easier to access. However, MSCs are committed to producing mesenchymal tissue and are not capable of spontaneously differentiating into neural cells. Thus, the process of reprogramming of MSCs into neural cells to use in clinical and scientific settings has significantly impacted the advancement of regenerative medicine. Previously, our laboratory reported trans-differentiation of MSCs to neural cells through the induced pluripotent stem (iPS) cells state, which was produced by overexpression of the embryonic stem cell gene NANOG. In the current study, we demonstrate that treatment with exosomes derived from NSCs makes MSCs capable of expressing neural cell markers bypassing the generation of iPS cells. An epigenetic modifier, decitabine (5-aza-2'-deoxycytidine), enhanced the process. This novel Xeno and transgene-free trans-differentiation technology eliminates the issues associated with iPS cells, such as tumorigenesis. Thus, it may accelerate the development of neurodegenerative therapies and in vitro neurological disorder models for personalized medicine.
Collapse
Affiliation(s)
- Luis Sebástian Alexis Valerio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- Institute for Scientific Research and Technology Services (INDICASAT), Panama City, Republic of Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- Institute for Scientific Research and Technology Services (INDICASAT), Panama City, Republic of Panama
- * E-mail:
| |
Collapse
|
14
|
Veletic M, Barros MT, Arjmandi H, Balasubramaniam S, Balasingham I. Modeling of Modulated Exosome Release From Differentiated Induced Neural Stem Cells for Targeted Drug Delivery. IEEE Trans Nanobioscience 2020; 19:357-367. [PMID: 32365033 DOI: 10.1109/tnb.2020.2991794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel implantable and externally controllable stem-cell-based platform for the treatment of Glioblastoma brain cancer has been proposed to bring hope to patients who suffer from this devastating cancer type. Induced Neural Stem Cells (iNSCs), known to have potent therapeutic effects through exosomes-based molecular communication, play a pivotal role in this platform. Transplanted iNSCs demonstrate long-term survival and differentiation into neurons and glia which then fully functionally integrate with the existing neural network. Recent studies have shown that specific types of calcium channels in differentiated neurons and astrocytes are inhibited or activated upon cell depolarization leading to the increased intracellular calcium concentration levels which, in turn, interact with mobilization of multivesicular bodies and exosomal release. In order to provide a platform towards treating brain cancer with the optimum therapy dosage, we propose mathematical models to compute the therapeutic exosomal release rate that is modulated by cell stimulation patterns applied from the external wearable device. This study serves as an initial and required step in the evaluation of controlled exosomal secretion and release via induced stimulation with electromagnetic, optical and/or ultrasonic waves.
Collapse
|
15
|
Kwak TH, Hali S, Kim S, Kim J, La H, Kim KP, Hong KH, Shin CY, Kim NH, Han DW. Robust and Reproducible Generation of Induced Neural Stem Cells from Human Somatic Cells by Defined Factors. Int J Stem Cells 2020; 13:80-92. [PMID: 32114739 PMCID: PMC7119206 DOI: 10.15283/ijsc19097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have described direct reprogramming of mouse and human somatic cells into induced neural stem cells (iNSCs) using various combinations of transcription factors. Although iNSC technology holds a great potential for clinical applications, the low conversion efficiency and limited reproducibility of iNSC generation hinder its further translation into the clinic, strongly suggesting the necessity of highly reproducible method for human iNSCs (hiNSCs). Thus, in orderto develop a highly efficient and reproducible protocol for hiNSC generation, we revisited the reprogramming potentials of previously reported hiNSC reprogramming cocktails by comparing the reprogramming efficiency of distinct factor combinations including ours. METHODS We introduced distinct factor combinations, OSKM (OCT4+SOX2+KLF4+C-MYC), OCT4 alone, SOX2 alone, SOX2+HMGA2, BRN4+SKM+SV40LT (BSKMLT), SKLT, SMLT, and SKMLT and performed comparative analysis of reprogramming potentials of distinct factor combinations in hiNSC generation. RESULTS Here we show that ectopic expression of five reprogramming factors, BSKMLT leads the robust hiNSC generation (>80 folds enhanced efficiency) from human somatic cells compared with previously described factor combinations. With our combination, we were able to observe hiNSC conversion within 7 days of transduction. Throughout further optimization steps, we found that both BRN4 and KLF4 are not essential for hiNSC conversion. CONCLUSIONS Our factor combination could robustly and reproducibly generate hiNSCs from human somatic cells with distinct origins. Therefore, our novel reprogramming strategy might serve as a useful tool for hiNSC-based clinical application.
Collapse
Affiliation(s)
- Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
| | - Sai Hali
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
| | - Sungmin Kim
- School of Cell and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyeonwoo La
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kwon Ho Hong
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| |
Collapse
|
16
|
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11:148. [PMID: 32265815 PMCID: PMC7100551 DOI: 10.3389/fneur.2020.00148] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have garnered significant scientific and commercial interest in the last 15 years. Given their plasticity, defined as the ability to develop into different phenotypes inside and outside of the nervous system, with a capacity of almost unlimited self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing; (ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv) drug target validation and testing; (v) personalized medicine. Moreover, given the growing interest in developing cell-based therapies to target neurodegenerative diseases, recent progress in developing NSCs from human-induced pluripotent stem cells has produced an analog of endogenous NSCs. Herein, we will review the current understanding on emerging conceptual and technological topics in the neural stem cell field, such as deep characterization of the human compartment, single-cell spatial-temporal dynamics, reprogramming from somatic cells, and NSC manipulation and monitoring. Together, these aspects contribute to further disentangling NSC plasticity to better exploit the potential of those cells, which, in the future, might offer new strategies for brain therapies.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianvito Martino
- Neurology and Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy
| |
Collapse
|
17
|
Lee KM, Hawi ZH, Parkington HC, Parish CL, Kumar PV, Polo JM, Bellgrove MA, Tong J. The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. Mol Psychiatry 2020; 25:368-378. [PMID: 31455859 DOI: 10.1038/s41380-019-0495-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 05/19/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Cellular models of neurodevelopmental disorders provide a valuable experimental system to uncover disease mechanisms and novel therapeutic strategies. The ability of induced pluripotent stem cells (iPSCs) to generate diverse brain cell types offers great potential to model several neurodevelopmental disorders. Further patient-derived iPSCs have the unique genetic and molecular signature of the affected individuals, which allows researchers to address limitations of transgenic behavioural models, as well as generate hypothesis-driven models to study disorder-relevant phenotypes at a cellular level. In this article, we review the extant literature that has used iPSC-based modelling to understand the neuronal and glial contributions to neurodevelopmental disorders including autism spectrum disorder (ASD), Rett syndrome, bipolar disorder (BP), and schizophrenia. For instance, several molecular candidates have been shown to influence cellular phenotypes in three-dimensional iPSC-based models of ASD patients. Delays in differentiation of astrocytes and morphological changes of neurons are associated with Rett syndrome. In the case of bipolar disorders and schizophrenia, patient-derived models helped to identify cellular phenotypes associated with neuronal deficits (e.g., excitability) and mutation-specific abnormalities in oligodendrocytes (e.g., CSPG4). Further we provide a critical review of the current limitations of this field and provide methodological suggestions to enhance future modelling efforts of neurodevelopmental disorders. Future developments in experimental design and methodology of disease modelling represent an exciting new avenue relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- K M Lee
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Z H Hawi
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Australia
| | - H C Parkington
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - C L Parish
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - P V Kumar
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Australia
| | - J M Polo
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - M A Bellgrove
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Australia
| | - J Tong
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
18
|
Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 2019; 20:34-48. [PMID: 30464208 DOI: 10.1038/s41583-018-0091-3] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Harris
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
19
|
Gancheva MR, Kremer KL, Gronthos S, Koblar SA. Using Dental Pulp Stem Cells for Stroke Therapy. Front Neurol 2019; 10:422. [PMID: 31110489 PMCID: PMC6501465 DOI: 10.3389/fneur.2019.00422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading cause of permanent disability world-wide, but aside from rehabilitation, there is currently no clinically-proven pharmaceutical or biological agent to improve neurological disability. Cell-based therapies using stem cells, such as dental pulp stem cells, are a promising alternative for treatment of neurological diseases, including stroke. The ischaemic environment in stroke affects multiple cell populations, thus stem cells, which act through cellular and molecular mechanisms, are promising candidates. The most common stem cell population studied in the neurological setting has been mesenchymal stem cells due to their accessibility. However, it is believed that neural stem cells, the resident stem cell of the adult brain, would be most appropriate for brain repair. Using reprogramming strategies, alternative sources of neural stem and progenitor cells have been explored. We postulate that a cell of closer origin to the neural lineage would be a promising candidate for reprogramming and modification towards a neural stem or progenitor cell. One such candidate population is dental pulp stem cells, which reside in the root canal of teeth. This review will focus on the neural potential of dental pulp stem cells and their investigations in the stroke setting to date, and include an overview on the use of different sources of neural stem cells in preclinical studies and clinical trials of stroke.
Collapse
Affiliation(s)
- Maria R. Gancheva
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karlea L. Kremer
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Simon A. Koblar
- Stroke Research Programme Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Central Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
20
|
Hwang SI, Kwak TH, Kang JH, Kim J, Lee H, Kim KP, Ko K, Schöler HR, Han DW. Metastable Reprogramming State of Single Transcription Factor-Derived Induced Hepatocyte-Like Cells. Stem Cells Int 2019; 2019:6937257. [PMID: 31089332 PMCID: PMC6476006 DOI: 10.1155/2019/6937257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
We previously described the generation of induced hepatocyte-like cells (iHeps) using the hepatic transcription factor Hnf1a together with small molecules. These iHeps represent a hepatic state that is more mature compared with iHeps generated with multiple hepatic factors. However, the underlying mechanism of hepatic conversion involving transgene dependence of the established iHeps is largely unknown. Here, we describe the generation of transgene-independent iHeps by inducing the ectopic expression of Hnf1a using both an episomal vector and a doxycycline-inducible lentivirus. In contrast to iHeps with sustained expression of Hnf1a, transgene-independent Hnf1a iHeps lose their typical morphology and in vitro functionality with rapid downregulation of hepatic markers upon withdrawal of small molecules. Taken together, our data indicates that the reprogramming state of single factor Hnf1a-derived iHeps is metastable and that the hepatic identity of these cells could be maintained only by the continuous supply of either small molecules or the master hepatic factor Hnf1a. Our findings emphasize the importance of a factor screening strategy for inducing specific cellular identities with a stable reprogramming state in order to eventually translate direct conversion technology to the clinic.
Collapse
Affiliation(s)
- Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji Hyun Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hans R. Schöler
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Transdifferentiation: a new promise for neurodegenerative diseases. Cell Death Dis 2018; 9:830. [PMID: 30082779 PMCID: PMC6078988 DOI: 10.1038/s41419-018-0891-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are characterized by a gradual loss of cognitive and physical functions. Medications for these disorders are limited and treat the symptoms only. There are no disease-modifying therapies available, which have been shown to slow or stop the continuing loss of neurons. Transdifferentiation, whereby somatic cells are reprogrammed into another lineage without going through an intermediate proliferative pluripotent stem cell stage, provides an alternative strategy for regenerative medicine and disease modeling. In particular, the transdifferentiation of somatic cells into specific subset of patient-specific neuronal cells offers alternative autologous cell therapeutic strategies for neurodegenerative disorders and presents a rich source of using diverse somatic cell types for relevant applications in translational, personalized medicine, as well as human mechanistic study, new drug-target identification, and novel drug screening systems. Here, we provide a comprehensive overview of the recent development of transdifferentiation research, with particular attention to chemical-induced transdifferentiation and perspectives for modeling and treatment of neurodegenerative diseases.
Collapse
|
22
|
Kantawong F, Saksiriwisitkul C, Riyapa C, Limpakdee S, Wanachantararak P, Kuboki T. Reprogramming of mouse fibroblasts into neural lineage cells using biomaterials. ACTA ACUST UNITED AC 2018; 8:129-138. [PMID: 29977834 PMCID: PMC6026523 DOI: 10.15171/bi.2018.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Induced neural stem cells (iNSCs) have the ability of differentiation into neurons, astrocytes and oligodendrocytes. iNSCs are very useful in terms of research and treatment. The present study offers an idea that biomaterials could be one of the tools that could modulate reprogramming process in the fibroblasts.
Methods: Gelatin biomaterials were fabricated into 3 types, including (i) gelatin, (ii) gelatin with 1 mg/mL hydroxyapatite, and (iii) gelatin with hydroxyapatite and pig brain. NIH/3T3 fibroblasts were cultured on each type of biomaterial for 7, 9 and 14 days. RT-PCR was performed to investigate the gene expression of the fibroblasts on biomaterials compared to the fibroblasts on tissue culture plates. PI3K/Akt signaling was performed by flow cytometry after 24 hours seeding on the biomaterials. The biomaterials were also tested with the human APCs and PDL cells.
Results: The fibroblasts exhibited changes in the expression of the reprogramming factor; Klf4 and the neural transcription factors; NFIa, NFIb and Ptbp1 after 9 days culture. The cultivation of fibroblasts on the biomaterials for 7 days showed a higher expression of the transcription factor SOX9. The expression of epigenetic genes; Kat2a and HDAC3 were changed upon the cultivation on the biomaterials for 9 days. The fibroblasts cultured on the biomaterials showed an activation of PI3K/Akt signaling. The human APCs and human PDL cells developed mineralization process on biomaterials
Conclusion: Changes in the expression of Klf4, NFIa, NFIb, Ptbp1 and SOX9 indicated that fibroblasts were differentiated into an astrocytic lineage. It is possible that the well-designed biomaterials could work as powerful tools in the reprogramming process of fibroblasts into iNSCs.
Collapse
Affiliation(s)
- Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chanidapa Saksiriwisitkul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chanakan Riyapa
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchalinee Limpakdee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Thasaneeya Kuboki
- Laboratory of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
24
|
Kwak KA, Lee SP, Yang JY, Park YS. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells Int 2018; 2018:6392986. [PMID: 29686714 PMCID: PMC5852851 DOI: 10.1155/2018/6392986] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease's pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.
Collapse
Affiliation(s)
- Kyeong-Ah Kwak
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Yang
- Department of Dental Hygiene, Daejeon Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Following the establishment of a number of successful immunomodulatory treatments for multiple sclerosis, current research focuses on the repair of existing damage. RECENT FINDINGS Promotion of regeneration is particularly important for demyelinated areas with degenerated or functionally impaired axons of the central nervous system's white and gray matter. As the protection and generation of new oligodendrocytes is a key to the re-establishment of functional connections, adult oligodendrogenesis and myelin reconstitution processes are of primary interest. Moreover, understanding, supporting and promoting endogenous repair activities such as mediated by resident oligodendroglial precursor or adult neural stem cells are currently thought to be a promising approach toward the development of novel regenerative therapies. SUMMARY This review summarizes recent developments and findings related to pharmacological myelin repair as well as to the modulation/application of stem cells with the aim to restore defective myelin sheaths.
Collapse
|
26
|
Brooks RW, Robbins PD. Treating Age-Related Diseases with Somatic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:29-45. [DOI: 10.1007/978-3-319-74470-4_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Al-Gharaibeh A, Culver R, Stewart AN, Srinageshwar B, Spelde K, Frollo L, Kolli N, Story D, Paladugu L, Anwar S, Crane A, Wyse R, Maiti P, Dunbar GL, Rossignol J. Induced Pluripotent Stem Cell-Derived Neural Stem Cell Transplantations Reduced Behavioral Deficits and Ameliorated Neuropathological Changes in YAC128 Mouse Model of Huntington's Disease. Front Neurosci 2017; 11:628. [PMID: 29209158 PMCID: PMC5701605 DOI: 10.3389/fnins.2017.00628] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by neuronal loss and motor dysfunction. Although there is no effective treatment, stem cell transplantation offers a promising therapeutic strategy, but the safety and efficacy of this approach needs to be optimized. The purpose of this study was to test the potential of intra-striatal transplantation of induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) for treating HD. For this purpose, we developed mouse adenovirus-generated iPSCs, differentiated them into neural stem cells in vitro, labeled them with Hoechst, and transplanted them bilaterally into striata of 10-month old wild type (WT) and HD YAC128 mice. We assessed the efficiency of these transplanted iPS-NSCs to reduce motor deficits in YAC128 mice by testing them on an accelerating rotarod task at 1 day prior to transplantation, and then weekly for 10 weeks. Our results showed an amelioration of locomotor deficits in YAC128 mice that received iPS-NSC transplantations. Following testing, the mice were sacrificed, and their brains were analyzed using immunohistochemistry and Western blot (WB). The results from our histological examinations revealed no signs of tumors and evidence that many iPS-NSCs survived and differentiated into region-specific neurons (medium spiny neurons) in both WT and HD mice, as confirmed by co-labeling of Hoechst-labeled transplanted cells with NeuN and DARPP-32. Also, counts of Hoechst-labeled cells revealed that a higher proportion were co-labeled with DARPP-32 and NeuN in HD-, compared to WT- mice, suggesting a dissimilar differentiation pattern in HD mice. Whereas significant decreases were found in counts of NeuN- and DARPP-32-labeled cells, and for neuronal density measures in striata of HD vehicle controls, such decrements were not observed in the iPS-NSCs-transplanted-HD mice. WB analysis showed increase of BDNF and TrkB levels in striata of transplanted HD mice compared to HD vehicle controls. Collectively, our data suggest that iPS-NSCs may provide an effective option for neuronal replacement therapy in HD.
Collapse
Affiliation(s)
- Abeer Al-Gharaibeh
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Rebecca Culver
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Andrew N Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Bhairavi Srinageshwar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Kristin Spelde
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Laura Frollo
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Nivya Kolli
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Darren Story
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Leela Paladugu
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Sarah Anwar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Andrew Crane
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, United States
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, United States
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States.,College of Medicine, Central Michigan University, Mt Pleasant, MI, United States
| |
Collapse
|
28
|
Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry 2017; 22:1241-1249. [PMID: 28322279 PMCID: PMC5582162 DOI: 10.1038/mp.2017.40] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023]
Abstract
Neuropsychiatric disorders place an enormous medical burden on patients across all social and economic ranks. The current understanding of the molecular and cellular causes of neuropsychiatric disease remains limited, which leads to a lack of targeted therapies. Human-induced pluripotent stem cell (iPSC) technology offers a novel platform for modeling the genetic contribution to mental disorders and yields access to patient-specific cells for drug discovery and personalized medicine. Here, we review recent progress in using iPSC technology to model and potentially treat neuropsychiatric disorders by focusing on the most prevalent conditions in psychiatry, including depression, anxiety disorders, bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- M A Soliman
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| | - F Aboharb
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Rockefeller University, New York, NY, USA
| | - N Zeltner
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| | - L Studer
- Weill Cornell Medical College, Cornell University, New York, NY, USA
- Developmental Biology and Center of Stem Cell Biology, Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
29
|
Choi KA, Hong S. Induced neural stem cells as a means of treatment in Huntington's disease. Expert Opin Biol Ther 2017; 17:1333-1343. [PMID: 28792249 DOI: 10.1080/14712598.2017.1365133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- a School of Biosystem and Biomedical Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea
| | - Sunghoi Hong
- a School of Biosystem and Biomedical Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea.,b Department of Integrated Biomedical and Life Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea
| |
Collapse
|
30
|
Reid CH, Finnerty NJ. Real-Time Amperometric Recording of Extracellular H₂O₂ in the Brain of Immunocompromised Mice: An In Vitro, Ex Vivo and In Vivo Characterisation Study. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1596. [PMID: 28698470 PMCID: PMC5539478 DOI: 10.3390/s17071596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
We detail an extensive characterisation study on a previously described dual amperometric H₂O₂ biosensor consisting of H₂O₂ detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H₂O₂ sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H₂O₂ biosensor to detect increases in amperometric current following locally perfused/infused H₂O₂ and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H₂O₂ current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H₂O₂ and tentatively supports measurement of H₂O₂ dynamics in freely moving NOD SCID mice.
Collapse
Affiliation(s)
- Caroline H Reid
- Chemistry Department, Maynooth University, Maynooth W23 F2H6, County Kildare, Ireland.
| | - Niall J Finnerty
- Chemistry Department, Maynooth University, Maynooth W23 F2H6, County Kildare, Ireland.
| |
Collapse
|
31
|
Long Term Amperometric Recordings in the Brain Extracellular Fluid of Freely Moving Immunocompromised NOD SCID Mice. SENSORS 2017; 17:s17020419. [PMID: 28241417 PMCID: PMC5335951 DOI: 10.3390/s17020419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 11/17/2022]
Abstract
We describe the in vivo characterization of microamperometric sensors for the real-time monitoring of nitric oxide (NO) and oxygen (O₂) in the striatum of immunocompromised NOD SCID mice. The latter strain has been utilized routinely in the establishment of humanized models of disease e.g., Parkinson's disease. NOD SCID mice were implanted with highly sensitive and selective NO and O₂ sensors that have been previously characterized both in vitro and in freely moving rats. Animals were systemically administered compounds that perturbed the amperometric current and confirmed sensor performance. Furthermore, the stability of the amperometric current was investigated and 24 h recordings examined. Saline injections caused transient changes in both currents that were not significant from baseline. l-NAME caused significant decreases in NO (p < 0.05) and O₂ (p < 0.001) currents compared to saline. l-Arginine produced a significant increase (p < 0.001) in NO current, and chloral hydrate and Diamox (acetazolamide) caused significant increases in O₂ signal (p < 0.01) compared against saline. The stability of both currents were confirmed over an eight-day period and analysis of 24-h recordings identified diurnal variations in both signals. These findings confirm the efficacy of the amperometric sensors to perform continuous and reliable recordings in immunocompromised mice.
Collapse
|
32
|
Choi DH, Kim JH, Kim SM, Kang K, Han DW, Lee J. Therapeutic Potential of Induced Neural Stem Cells for Parkinson's Disease. Int J Mol Sci 2017; 18:E224. [PMID: 28117752 PMCID: PMC5297853 DOI: 10.3390/ijms18010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative disorder that results from the loss of cells in the substantia nigra (SN) which is located in the midbrain. However, no cure is available for PD. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) via the forced expression of specific transcription factors. Therapeutic potential of iNSC in PD has not been investigated yet. Here, we show that iNSCs directly converted from mouse fibroblasts enhanced functional recovery in an animal model of PD. The rotational behavior test was performed to assess recovery. Our results indicate that iNSC transplantation into the striatum of 6-hydroxydopamine (6-OHDA)-injected mice can significantly reduce apomorphine-induced rotational asymmetry. The engrafted iNSCs were able to survive in the striatum and migrated around the medial forebrain bundle and the SN pars compacta. Moreover, iNSCs differentiated into all neuronal lineages. In particular, the transplanted iNSCs that committed to the glial lineage were significantly increased in the striatum of 6-OHDA-injected mice. Engrafted iNSCs differentiated to dopaminergic (DA) neurons and migrated into the SN in the 6-OHDA lesion mice. Therefore, iNSC transplantation serves as a valuable tool to enhance the functional recovery in PD.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Department of Medical Science, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Ji-Hye Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Sung Min Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Kyuree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Konkuk Univesity Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
33
|
Sakalem ME, Seidenbecher T, Zhang M, Saffari R, Kravchenko M, Wördemann S, Diederich K, Schwamborn JC, Zhang W, Ambrée O. Environmental enrichment and physical exercise revert behavioral and electrophysiological impairments caused by reduced adult neurogenesis. Hippocampus 2016; 27:36-51. [PMID: 27701786 DOI: 10.1002/hipo.22669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
It is well known that adult neurogenesis occurs in two distinct regions, the subgranular zone of the dentate gyrus and the subventricular zone along the walls of the lateral ventricles. Until now, the contribution of these newly born neurons to behavior and cognition is still uncertain. The current study tested the functional impacts of diminished hippocampal neurogenesis on emotional and cognitive functions in transgenic Gfap-tk mice. Our results showed that anxiety-related behavior evaluated both in the elevated plus maze as well as in the open field, social interaction in the sociability test, and spatial working memory in the spontaneous alternation test were not affected. On the other hand, recognition and emotional memory in the object recognition test and contextual fear conditioning, and hippocampal long-term potentiation were impaired in transgenic mice. Furthermore, we evaluated whether environmental enrichment together with physical exercise could improve or even restore the level of adult neurogenesis, as well as the behavioral functions. Our results clearly demonstrated that environmental enrichment together with physical exercise successfully elevated the overall number of progenitor cells and young neurons in the dentate gyrus of transgenic mice. Furthermore, it led to a significant improvement in object recognition memory and contextual fear conditioning, and reverted impairments in hippocampal long-term potentiation. Thus, our results confirm the importance of adult neurogenesis for learning and memory processes and for hippocampal circuitry in general. Environmental enrichment and physical exercise beneficially influenced adult neurogenesis after it had been disrupted and most importantly recovered cognitive functions and long-term potentiation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marna Eliana Sakalem
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | | | - Mingyue Zhang
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Roja Saffari
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Mykola Kravchenko
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Stephanie Wördemann
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Kai Diederich
- Department of Neurology, University of Münster, Münster, Germany
| | - Jens C Schwamborn
- Luxembourg Centre for System Biomedicine (LCSB) and Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg
| | - Weiqi Zhang
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Oliver Ambrée
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany.,Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
34
|
Meneghini V, Frati G, Sala D, De Cicco S, Luciani M, Cavazzin C, Paulis M, Mentzen W, Morena F, Giannelli S, Sanvito F, Villa A, Bulfone A, Broccoli V, Martino S, Gritti A. Generation of Human Induced Pluripotent Stem Cell-Derived Bona Fide Neural Stem Cells for Ex Vivo Gene Therapy of Metachromatic Leukodystrophy. Stem Cells Transl Med 2016; 6:352-368. [PMID: 28191778 PMCID: PMC5442804 DOI: 10.5966/sctm.2015-0414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Allogeneic fetal‐derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient‐specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene‐therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC‐derived neural stem cells (NSCs) showing a reliable “NSC signature” is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS‐NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a “gold standard” in a side‐by‐side comparison when validating the phenotype of hiPS‐NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS‐NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA‐overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA‐overexpressing iPSC‐derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient‐specific ARSA‐overexpressing hiPS‐NSCs may be used in autologous ex vivo gene therapy protocols to provide long‐lasting enzymatic supply in MLD‐affected brains. Stem Cells Translational Medicine2017;6:352–368
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Davide Sala
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Silvia De Cicco
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Chiara Cavazzin
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Marianna Paulis
- National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Francesco Morena
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Serena Giannelli
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Francesca Sanvito
- Anatomy and Histopathology Department, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
- National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Vania Broccoli
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Sabata Martino
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| |
Collapse
|
35
|
Moon J, Schwarz SC, Lee H, Kang JM, Lee Y, Kim B, Sung M, Höglinger G, Wegner F, Kim JS, Chung H, Chang SW, Cha KY, Kim K, Schwarz J. Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo. Stem Cells Transl Med 2016; 6:576-588. [PMID: 28191758 PMCID: PMC5442800 DOI: 10.5966/sctm.2015-0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
We have developed a good manufacturing practice for long‐term cultivation of fetal human midbrain‐derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region‐specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum‐free conditions and standardized operating protocols under clean‐room conditions. Long‐term‐cultivated midbrain‐derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9‐specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain‐derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain‐derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long‐term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high‐content or high‐throughput screening. Stem Cells Translational Medicine2017;6:576–588
Collapse
Affiliation(s)
- Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Sigrid C. Schwarz
- German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Hyun‐Seob Lee
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Jun Mo Kang
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Young‐Eun Lee
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Bona Kim
- Development Division, CHA Biotech, Seongnam‐si, Gyeonggi‐do, Korea
| | - Mi‐Young Sung
- Development Division, CHA Biotech, Seongnam‐si, Gyeonggi‐do, Korea
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jin Su Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyung‐Min Chung
- Department of Stem Cell Biology, Graduate School of Medicine, Konkuk University, Gwangjin‐gu, Seoul, Korea
| | - Sung Woon Chang
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Kwang Yul Cha
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Kwang‐Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Johannes Schwarz
- German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| |
Collapse
|
36
|
Gao M, Yao H, Dong Q, Zhang H, Yang Z, Yang Y, Zhu J, Xu M, Xu R. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain. Sci Rep 2016; 6:29955. [PMID: 27417157 PMCID: PMC4945932 DOI: 10.1038/srep29955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023] Open
Abstract
Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Hui Yao
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Hongtian Zhang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Zhijun Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Yang Yang
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Jianwei Zhu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Minhui Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ruxiang Xu
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Affiliated Bayi Brain hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|
37
|
Kim SM, Kim JW, Kwak TH, Park SW, Kim KP, Park H, Lim KT, Kang K, Kim J, Yang JH, Han H, Lee I, Hyun JK, Bae YM, Schöler HR, Lee HT, Han DW. Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts. J Biol Chem 2016; 291:14199-14212. [PMID: 27189941 DOI: 10.1074/jbc.m115.713578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 01/10/2023] Open
Abstract
The viral vector-mediated overexpression of the defined transcription factors, Brn4/Pou3f4, Sox2, Klf4, and c-Myc (BSKM), could induce the direct conversion of somatic fibroblasts into induced neural stem cells (iNSCs). However, viral vectors may be randomly integrated into the host genome thereby increasing the risk for undesired genotoxicity, mutagenesis, and tumor formation. Here we describe the generation of integration-free iNSCs from mouse fibroblasts by non-viral episomal vectors containing BSKM. The episomal vector-derived iNSCs (e-iNSCs) closely resemble control NSCs, and iNSCs generated by retrovirus (r-iNSCs) in morphology, gene expression profile, epigenetic status, and self-renewal capacity. The e-iNSCs are functionally mature, as they could differentiate into all the neuronal cell types both in vitro and in vivo Our study provides a novel concept for generating functional iNSCs using a non-viral, non-integrating, plasmid-based system that could facilitate their biomedical applicability.
Collapse
Affiliation(s)
- Sung Min Kim
- Department of Stem Cell Biology, School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Wan Kim
- Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 31116, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Woong Park
- Department of Physiology, School of Medicine, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyunji Park
- Department of Physiology, School of Medicine, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Kyung Tae Lim
- Department of Stem Cell Biology, School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyuree Kang
- Department of Stem Cell Biology, School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji Hun Yang
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Heonjong Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 04056, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 04056, Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 31116, Republic of Korea
| | - Young Min Bae
- Department of Physiology, School of Medicine, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany,; University of Münster, Medical Faculty, Domagkstraße 3, 48149 Münster, Germany
| | - Hoon Taek Lee
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea; KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
38
|
Hallmann AL, Araúzo-Bravo MJ, Zerfass C, Senner V, Ehrlich M, Psathaki OE, Han DW, Tapia N, Zaehres H, Schöler HR, Kuhlmann T, Hargus G. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain. Stem Cell Res 2016; 16:776-81. [PMID: 27153350 DOI: 10.1016/j.scr.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/21/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
Reprogramming technology enables the production of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs) differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs) and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.
Collapse
Affiliation(s)
- Anna-Lena Hallmann
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany; Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Christina Zerfass
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
| | - Marc Ehrlich
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany; Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | | | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 143701 Seoul, Republic of Korea
| | - Natalia Tapia
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Institute of Biomedicine of Valencia, Spanish National Research Council (IBV-CSIC), Jaime Roig 11, 46010 Valencia, Spain
| | - Holm Zaehres
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany
| | - Gunnar Hargus
- Institute of Neuropathology, University Hospital Münster, 48149 Münster, Germany; Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Department of Pathology and Cell Biology, Columbia University Medical Center, 10032 New York, USA.
| |
Collapse
|
39
|
Shahbazi E, Moradi S, Nemati S, Satarian L, Basiri M, Gourabi H, Zare Mehrjardi N, Günther P, Lampert A, Händler K, Hatay FF, Schmidt D, Molcanyi M, Hescheler J, Schultze JL, Saric T, Baharvand H. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor. Stem Cell Reports 2016; 6:539-551. [PMID: 27052315 PMCID: PMC4834053 DOI: 10.1016/j.stemcr.2016.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
Direct conversion of somatic cells into neural stem cells (NSCs) by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.
Collapse
Affiliation(s)
- Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Shiva Nemati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 1665659911, Iran
| | - Narges Zare Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Patrick Günther
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen- Nürnberg, Erlangen 91054, Germany; Institute of Physiology, RWTH, Aachen University, Aachen 52074, Germany
| | - Kristian Händler
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Firuze Fulya Hatay
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Diana Schmidt
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen- Nürnberg, Erlangen 91054, Germany; IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marek Molcanyi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Tomo Saric
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne 50931, Germany.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran 1461968151, Iran.
| |
Collapse
|
40
|
Hou S, Lu P. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders. Neural Regen Res 2016; 11:28-31. [PMID: 26981072 PMCID: PMC4774217 DOI: 10.4103/1673-5374.169602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Paul Lu
- Veterans Administration Medical Center, San Diego, CA, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
41
|
Petersen GF, Strappe PM. Generation of diverse neural cell types through direct conversion. World J Stem Cells 2016; 8:32-46. [PMID: 26981169 PMCID: PMC4766249 DOI: 10.4252/wjsc.v8.i2.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications.
Collapse
|
42
|
Kim SM, Lim KT, Kwak TH, Lee SC, Im JH, Hali S, In Hwang S, Kim D, Hwang J, Kim KP, Chung HJ, Kim JB, Ko K, Chung HM, Lee HT, Schöler HR, Han DW. Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status. Stem Cell Res 2016; 16:460-8. [PMID: 26930613 DOI: 10.1016/j.scr.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/18/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022] Open
Abstract
Somatic cells could be directly converted into induced neural stem cells (iNSCs) by ectopic expression of defined transcription factors. However, the underlying mechanism of direct lineage transition into iNSCs is largely unknown. In this study, we examined the effect of genetic background on the direct conversion process into an iNSC state. The iNSCs from two different mouse strains exhibited the distinct efficiency of lineage conversion as well as clonal expansion. Furthermore, the expression levels of endogenous NSC markers, silencing of transgenes, and in vitro differentiation potential were also different between iNSC lines from different strains. Therefore, our data suggest that the genetic background of starting cells influences the conversion efficiency as well as reprogramming status of directly converted iNSCs.
Collapse
Affiliation(s)
- Sung Min Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kyung Tae Lim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung Chan Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung Hyun Im
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Sai Hali
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Dajeong Kim
- Dong-A Socio Holdings Research Center, 21, Geumhwa-ro 105 beon-gil, Giheung-gu, Yongin-si, Republic of Korea
| | - Jeongho Hwang
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hak-Jae Chung
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Suwon 441-706, Republic of Korea
| | - Jeong Beom Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hoon Taek Lee
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; University of Münster, Medical Faculty, Domagkstraße 3, 48149 Münster, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
43
|
Winiecka-Klimek M, Smolarz M, Walczak MP, Zieba J, Hulas-Bigoszewska K, Kmieciak B, Piaskowski S, Rieske P, Grzela DP, Stoczynska-Fidelus E. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS One 2015; 10:e0141688. [PMID: 26535892 PMCID: PMC4633175 DOI: 10.1371/journal.pone.0141688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/11/2015] [Indexed: 11/19/2022] Open
Abstract
Tumorigenic potential of induced pluripotent stem cells (iPSCs) infiltrating population of induced neural stem cells (iNSCs) generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc) obtained with different methods—direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like) or SOX2 and c-MYC (SMiNSc-like) and induced pluripotent stem cells differentiation to ebiNSc—in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU) incorporation and senescence-associated beta-galactosidase (SA-β-gal) assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or reprogrammed only into neuronal progenitors, mainly because of the inaccuracies of currently available protocols.
Collapse
Affiliation(s)
- Marta Winiecka-Klimek
- Department of Research and Development, Celther Polska, Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
- * E-mail:
| | - Maciej Smolarz
- Department of Research and Development, Celther Polska, Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Maciej P. Walczak
- Department of Research and Development, Celther Polska, Lodz, Poland
| | - Jolanta Zieba
- Department of Research and Development, Celther Polska, Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | | | - Blazej Kmieciak
- Department of Medical Law, Chair of Human Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwester Piaskowski
- Department of Research and Development, Celther Polska, Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska, Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Dawid P. Grzela
- Department of Research and Development, Celther Polska, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska, Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Kim J, Kim KP, Lim KT, Lee SC, Yoon J, Song G, Hwang SI, Schöler HR, Cantz T, Han DW. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci Rep 2015; 5:15706. [PMID: 26503743 PMCID: PMC4621602 DOI: 10.1038/srep15706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
Abstract
The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application.
Collapse
Affiliation(s)
- Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Kyung Tae Lim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung Chan Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Guangqi Song
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- University of Münster, Medical Faculty, Domagkstrasse 3, 48149 Münster, Germany
| | - Tobias Cantz
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
45
|
Meyer S, Wörsdörfer P, Günther K, Thier M, Edenhofer F. Derivation of Adult Human Fibroblasts and their Direct Conversion into Expandable Neural Progenitor Cells. J Vis Exp 2015:e52831. [PMID: 26275015 DOI: 10.3791/52831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Generation of induced pluripotent stem cell (iPSCs) from adult skin fibroblasts and subsequent differentiation into somatic cells provides fascinating prospects for the derivation of autologous transplants that circumvent histocompatibility barriers. However, progression through a pluripotent state and subsequent complete differentiation into desired lineages remains a roadblock for the clinical translation of iPSC technology because of the associated neoplastic potential and genomic instability. Recently, we and others showed that somatic cells cannot only be converted into iPSCs but also into different types of multipotent somatic stem cells by using defined factors, thereby circumventing progression through the pluripotent state. In particular, the direct conversion of human fibroblasts into induced neural progenitor cells (iNPCs) heralds the possibility of a novel autologous cell source for various applications such as cell replacement, disease modeling and drug screening. Here, we describe the isolation of adult human primary fibroblasts by skin biopsy and their efficient direct conversion into iNPCs by timely restricted expression of Oct4, Sox2, Klf4, as well as c-Myc. Sox2-positive neuroepithelial colonies appear after 17 days of induction and iNPC lines can be established efficiently by monoclonal isolation and expansion. Precise adjustment of viral multiplicity of infection and supplementation of leukemia inhibitory factor during the induction phase represent critical factors to achieve conversion efficiencies of up to 0.2%. Thus far, patient-specific iNPC lines could be expanded for more than 12 passages and uniformly display morphological and molecular features of neural stem/progenitor cells, such as the expression of Nestin and Sox2. The iNPC lines can be differentiated into neurons and astrocytes as judged by staining against TUJ1 and GFAP, respectively. In conclusion, we report a robust protocol for the derivation and direct conversion of human fibroblasts into stably expandable neural progenitor cells that might provide a cellular source for biomedical applications such as autologous neural cell replacement and disease modeling.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Anatomy and Cell Biology, University of Würzburg; Institute of Reconstructive Neurobiology, University of Bonn
| | | | | | - Marc Thier
- Institute of Reconstructive Neurobiology, University of Bonn; German Cancer Research Center, Heidelberg
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg; Institute of Reconstructive Neurobiology, University of Bonn;
| |
Collapse
|
46
|
Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T, Vulto P, Schwamborn JC, Fleming RMT. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. LAB ON A CHIP 2015; 15:2419-2428. [PMID: 25902196 DOI: 10.1039/c5lc00180c] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A hallmark of Parkinson's disease is the progressive loss of nigrostriatal dopaminergic neurons. We derived human neuroepithelial cells from induced pluripotent stem cells and successfully differentiated them into dopaminergic neurons within phase-guided, three-dimensional microfluidic cell culture bioreactors. After 30 days of differentiation within the microfluidic bioreactors, in situ morphological, immunocytochemical and calcium imaging confirmed the presence of dopaminergic neurons that were spontaneously electrophysiologically active, a characteristic feature of nigrostriatal dopaminergic neurons in vivo. Differentiation was as efficient as in macroscopic culture, with up to 19% of differentiated neurons immunoreactive for tyrosine hydroxylase, the penultimate enzyme in the synthesis of dopamine. This new microfluidic cell culture model integrates the latest innovations in developmental biology and microfluidic cell culture to generate a biologically realistic and economically efficient route to personalised drug discovery for Parkinson's disease.
Collapse
Affiliation(s)
- Edinson Lucumi Moreno
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chinchalongporn V, Koppensteiner P, Prè D, Thangnipon W, Bilo L, Arancio O. Connectivity and circuitry in a dish versus in a brain. ALZHEIMERS RESEARCH & THERAPY 2015; 7:44. [PMID: 26045718 PMCID: PMC4456047 DOI: 10.1186/s13195-015-0129-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to understand and find therapeutic strategies for neurological disorders, disease models that recapitulate the connectivity and circuitry of patients’ brain are needed. Owing to many limitations of animal disease models, in vitro neuronal models using patient-derived stem cells are currently being developed. However, prior to employing neurons as a model in a dish, they need to be evaluated for their electrophysiological properties, including both passive and active membrane properties, dynamics of neurotransmitter release, and capacity to undergo synaptic plasticity. In this review, we survey recent attempts to study these issues in human induced pluripotent stem cell-derived neurons. Although progress has been made, there are still many hurdles to overcome before human induced pluripotent stem cell-derived neurons can fully recapitulate all of the above physiological properties of adult mature neurons. Moreover, proper integration of neurons into pre-existing circuitry still needs to be achieved. Nevertheless, in vitro neuronal stem cell-derived models hold great promise for clinical application in neurological diseases in the future.
Collapse
Affiliation(s)
- Vorapin Chinchalongporn
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA ; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170 Thailand
| | - Peter Koppensteiner
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA ; Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Deborah Prè
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170 Thailand
| | - Leonilda Bilo
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA ; Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA
| |
Collapse
|
48
|
Nityanandam A, Baldwin KK. Advances in reprogramming-based study of neurologic disorders. Stem Cells Dev 2015; 24:1265-83. [PMID: 25749371 DOI: 10.1089/scd.2015.0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.
Collapse
Affiliation(s)
- Anjana Nityanandam
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
49
|
Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015; 47:e151. [PMID: 25766620 PMCID: PMC4351411 DOI: 10.1038/emm.2014.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022] Open
Abstract
Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.
Collapse
Affiliation(s)
- Leslie M Tong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Helen Fong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
50
|
Doeppner TR, Kaltwasser B, Bähr M, Hermann DM. Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests. Front Cell Neurosci 2014; 8:338. [PMID: 25374509 PMCID: PMC4205824 DOI: 10.3389/fncel.2014.00338] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/02/2014] [Indexed: 11/16/2022] Open
Abstract
Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University of Goettingen Medical School Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|